

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

 —
comments: false
description: ‘Learn how to use and administer GitLab, the most scalable Git-based fully integrated platform for software development.’
—

GitLab Documentation

Welcome to [GitLab](https://about.gitlab.com/), a Git-based fully featured
platform for software development!

GitLab offers the most scalable Git-based fully integrated platform for
software development, with flexible products and subscriptions.
To understand what features you have access to, check the [GitLab subscriptions](#gitlab-subscriptions) below.

Shortcuts to GitLab’s most visited docs:

General documentation | GitLab CI/CD docs |

:—– | :—– |

[User documentation](user/index.md) | [GitLab CI/CD quick start guide](ci/quick_start/README.md) |

[Administrator documentation](administration/index.md) | [GitLab CI/CD examples](ci/examples/README.md) |

[Contributor documentation](#contributor-documentation) | [Configuring .gitlab-ci.yml](ci/yaml/README.md) |

[Getting started with GitLab](#getting-started-with-gitlab) | [Using Docker images](ci/docker/using_docker_images.md) |

[API](api/README.md) | [Auto DevOps](topics/autodevops/index.md) |

[SSH authentication](ssh/README.md) | [Kubernetes integration](user/project/clusters/index.md)|

[GitLab Pages](user/project/pages/index.md) | [GitLab Container Registry](user/project/container_registry.md) |

Complete DevOps with GitLab

GitLab is the first single application for software development, security,
and operations that enables Concurrent DevOps, making the software lifecycle
three times faster and radically improving the speed of business. GitLab
provides solutions for all the stages of the DevOps lifecycle:
[plan](#plan), [create](#create), [verify](#verify), [package](#package),
[release](#release), [configure](#configure), [monitor](#monitor).

![DevOps Lifecycle](img/devops_lifecycle.png)

Plan

Whether you use Waterfall, Agile, or Conversational Development,
GitLab streamlines your collaborative workflows. Visualize, prioritize,
coordinate, and track your progress your way with GitLab’s flexible project
management tools.

	Chat operations
- [Mattermost slash commands](user/project/integrations/mattermost_slash_commands.md)
- [Slack slash commands](user/project/integrations/slack_slash_commands.md)

	[Discussions](user/discussions/index.md): Threads, comments, and resolvable discussions in issues, commits, and merge requests.

	[Issues](user/project/issues/index.md)

	[Project Issue Board](user/project/issue_board.md)

	[Issues and merge requests templates](user/project/description_templates.md): Create templates for submitting new issues and merge requests.

	[Labels](user/project/labels.md): Categorize your issues or merge requests based on descriptive titles.

	[Milestones](user/project/milestones/index.md): Organize issues and merge requests into a cohesive group, optionally setting a due date.

	[Todos](workflow/todos.md): A chronological list of to-dos that are waiting for your input, all in a simple dashboard.

	[GitLab Quick Actions](user/project/quick_actions.md): Textual shortcuts for common actions on issues or merge requests that are usually done by clicking buttons or dropdowns in GitLab’s UI.

Migrate and import your projects from other platforms

	[Importing to GitLab](user/project/import/index.md): Import your projects from GitHub, Bitbucket, GitLab.com, FogBugz and SVN into GitLab.

	[Migrating from SVN](workflow/importing/migrating_from_svn.md): Convert a SVN repository to Git and GitLab.

Create

Consolidate source code into a single [DVCS](https://en.wikipedia.org/wiki/Distributed_version_control)
that’s easily managed and controlled without disrupting your workflow.
GitLab’s git repositories come complete with branching tools and access
controls, providing a scalable, single source of truth for collaborating
on projects and code.

Projects and groups

	[Projects](user/project/index.md):
- [Project settings](user/project/settings/index.md)
- [Create a project](gitlab-basics/create-project.md)
- [Fork a project](gitlab-basics/fork-project.md)
- [Importing and exporting projects between instances](user/project/settings/import_export.md).
- [Project access](public_access/public_access.md): Setting up your project’s visibility to public, internal, or private.
- [GitLab Pages](user/project/pages/index.md): Build, test, and deploy your static website with GitLab Pages.

	[Groups](user/group/index.md): Organize your projects in groups.
- [Subgroups](user/group/subgroups/index.md)

	[Search through GitLab](user/search/index.md): Search for issues, merge requests, projects, groups, todos, and issues in Issue Boards.

	[Snippets](user/snippets.md): Snippets allow you to create little bits of code.

	[Wikis](user/project/wiki/index.md): Enhance your repository documentation with built-in wikis.

	[Web IDE](user/project/web_ide/index.md)

Repositories

Manage your [repositories](user/project/repository/index.md) from the UI (user interface):

	[Files](user/project/repository/index.md#files)
- [Create a file](user/project/repository/web_editor.md#create-a-file)
- [Upload a file](user/project/repository/web_editor.md#upload-a-file)
- [File templates](user/project/repository/web_editor.md#template-dropdowns)
- [Jupyter Notebook files](user/project/repository/index.md#jupyter-notebook-files)
- [Create a directory](user/project/repository/web_editor.md#create-a-directory)
- [Start a merge request](user/project/repository/web_editor.md#tips) (when committing via UI)

	[Branches](user/project/repository/branches/index.md)
- [Default branch](user/project/repository/branches/index.md#default-branch)
- [Create a branch](user/project/repository/web_editor.md#create-a-new-branch)
- [Protected branches](user/project/protected_branches.md#protected-branches)
- [Delete merged branches](user/project/repository/branches/index.md#delete-merged-branches)

	[Commits](user/project/repository/index.md#commits)
- [Signing commits](user/project/repository/gpg_signed_commits/index.md): use GPG to sign your commits.

Merge Requests

	[Merge Requests](user/project/merge_requests/index.md)
- [Work In Progress “WIP” Merge Requests](user/project/merge_requests/work_in_progress_merge_requests.md)
- [Merge Request discussion resolution](user/discussions/index.md#moving-a-single-discussion-to-a-new-issue): Resolve discussions, move discussions in a merge request to an issue, only allow merge requests to be merged if all discussions are resolved.
- [Checkout merge requests locally](user/project/merge_requests/index.md#checkout-merge-requests-locally)
- [Cherry-pick](user/project/merge_requests/cherry_pick_changes.md)

Integrations

	[Project Services](user/project/integrations/project_services.md): Integrate a project with external services, such as CI and chat.

	[GitLab Integration](integration/README.md): Integrate with multiple third-party services with GitLab to allow external issue trackers and external authentication.

	[Trello Power-Up](integration/trello_power_up.md): Integrate with GitLab’s Trello Power-Up

Automation

	[API](api/README.md): Automate GitLab via a simple and powerful API.

	[GitLab Webhooks](user/project/integrations/webhooks.md): Let GitLab notify you when new code has been pushed to your project.

Verify

Spot errors sooner, improve security and shorten feedback cycles with built-in
static code analysis, code testing, code quality, dependency checking and review
apps. Customize your approval workflow controls, automatically test the quality
of your code, and spin up a staging environment for every code change. GitLab
Continuous Integration is the most popular next generation testing system that
scales to run your tests faster.

	[GitLab CI/CD](ci/README.md): Explore the features and capabilities of Continuous Integration, Continuous Delivery, and Continuous Deployment with GitLab.

	[Review Apps](ci/review_apps/index.md): Preview changes to your app right from a merge request.

	[Pipeline Graphs](ci/pipelines.md#pipeline-graphs)

	[JUnit test reports](ci/junit_test_reports.md)

Package

GitLab Container Registry gives you the enhanced security and access controls of
custom Docker images without 3rd party add-ons. Easily upload and download images
from GitLab CI/CD with full Git repository management integration.

	[GitLab Container Registry](user/project/container_registry.md): Learn how to use GitLab’s built-in Container Registry.

Release

Spend less time configuring your tools, and more time creating. Whether you’re
deploying to one server or thousands, build, test, and release your code
confidently and securely with GitLab’s built-in Continuous Delivery and Deployment.

	[Auto Deploy](topics/autodevops/index.md#auto-deploy): Configure GitLab CI for the deployment of your application.

	[Environments and deployments](ci/environments.md): With environments, you can control the continuous deployment of your software within GitLab.

	[GitLab Pages](user/project/pages/index.md): Build, test, and deploy a static site directly from GitLab.

	[Scheduled Pipelines](user/project/pipelines/schedules.md)

	[Protected Runners](ci/runners/README.md#protected-runners)

Configure

Automate your entire workflow from build to deploy and monitoring with GitLab
Auto Devops. Best practice templates get you started with minimal to zero
configuration. Then customize everything from buildpacks to CI/CD.

	[Auto DevOps](topics/autodevops/index.md)

	[Deployment of Helm, Ingress, and Prometheus on Kubernetes](user/project/clusters/index.md#installing-applications)

	[Protected variables](ci/variables/README.md#protected-variables)

	[Easy creation of Kubernetes clusters on GKE](user/project/clusters/index.md#adding-and-creating-a-new-gke-cluster-via-gitlab)

Monitor

Measure how long it takes to go from planning to monitoring and ensure your
applications are always responsive and available. GitLab collects and displays
performance metrics for deployed apps using Prometheus so you can know in an
instant how code changes impact your production environment.

	[GitLab Prometheus](administration/monitoring/prometheus/index.md): Configure the bundled Prometheus to collect various metrics from your GitLab instance.

	[Prometheus project integration](user/project/integrations/prometheus.md): Configure the Prometheus integration per project and monitor your CI/CD environments.

	[Prometheus metrics](user/project/integrations/prometheus_library/metrics.md): Let Prometheus collect metrics from various services, like Kubernetes, NGINX, NGINX ingress controller, HAProxy, and Amazon Cloud Watch.

	[GitLab Performance Monitoring](administration/monitoring/performance/index.md): Use InfluxDB and Grafana to monitor the performance of your GitLab instance (will be eventually replaced by Prometheus).

	[Health check](user/admin_area/monitoring/health_check.md): GitLab provides liveness and readiness probes to indicate service health and reachability to required services.

	[GitLab Cycle Analytics](user/project/cycle_analytics.md): Cycle Analytics measures the time it takes to go from an
[idea to production](https://about.gitlab.com/2016/08/05/continuous-integration-delivery-and-deployment-with-gitlab/#from-idea-to-production-with-gitlab) for each project you have.

Getting started with GitLab

	[GitLab Basics](gitlab-basics/README.md): Start working on your command line and on GitLab.

	[GitLab Workflow](workflow/README.md): Enhance your workflow with the best of GitLab Workflow.
- See also [GitLab Workflow - an overview](https://about.gitlab.com/2016/10/25/gitlab-workflow-an-overview/).

	[GitLab Markdown](user/markdown.md): GitLab’s advanced formatting system (GitLab Flavored Markdown).

User account

	[User account](user/profile/index.md): Manage your account
- [Authentication](topics/authentication/index.md): Account security with two-factor authentication, setup your ssh keys and deploy keys for secure access to your projects.
- [Profile settings](user/profile/index.md#profile-settings): Manage your profile settings, two factor authentication and more.

	[User permissions](user/permissions.md): Learn what each role in a project (external/guest/reporter/developer/maintainer/owner) can do.

Git and GitLab

	[Git](topics/git/index.md): Getting started with Git, branching strategies, Git LFS, advanced use.

	[Git cheatsheet](https://about.gitlab.com/images/press/git-cheat-sheet.pdf): Download a PDF describing the most used Git operations.

	[GitLab Flow](workflow/gitlab_flow.md): explore the best of Git with the GitLab Flow strategy.

Administrator documentation

[Administration documentation](administration/index.md) applies to admin users of GitLab
self-hosted instances.

Learn how to install, configure, update, upgrade, integrate, and maintain your own instance.
Regular users don’t have access to GitLab administration tools and settings.

Contributor documentation

GitLab Community Edition is [open source](https://gitlab.com/gitlab-org/gitlab-ce/)
and GitLab Enterprise Edition is [open-core](https://gitlab.com/gitlab-org/gitlab-ee/).
Learn how to contribute to GitLab:

	[Development](development/README.md): All styleguides and explanations how to contribute.

	[Legal](legal/README.md): Contributor license agreements.

	[Writing documentation](development/documentation/index.md): Contributing to GitLab Docs.

GitLab subscriptions

You have two options to use GitLab:

	GitLab self-hosted: Install, administer, and maintain your own GitLab instance.

	GitLab.com: GitLab’s SaaS offering. You don’t need to install anything to use GitLab.com,

you only need to [sign up](https://gitlab.com/users/sign_in) and start using GitLab
straight away.

GitLab self-hosted

With GitLab self-hosted, you deploy your own GitLab instance on-premises or on a private cloud of your choice. GitLab self-hosted is available for [free and with paid subscriptions](https://about.gitlab.com/pricing/): Core, Starter, Premium, and Ultimate.

Every feature available in Core is also available in Starter, Premium, and Ultimate.
Starter features are also available in Premium and Ultimate, and Premium features are also
available in Ultimate.

GitLab.com

GitLab.com is hosted, managed, and administered by GitLab, Inc., with
[free and paid subscriptions](https://about.gitlab.com/gitlab-com/) for individuals
and teams: Free, Bronze, Silver, and Gold.

GitLab.com subscriptions grants access
to the same features available in GitLab self-hosted, except
[administration](administration/index.md) tools and settings:

	GitLab.com Free includes the same features available in Core

	GitLab.com Bronze includes the same features available in GitLab Starter

	GitLab.com Silver includes the same features available in GitLab Premium

	GitLab.com Gold includes the same features available in GitLab Ultimate

For supporting the open source community and encouraging the development of
open source projects, GitLab grants access to Gold features
for all GitLab.com public projects, regardless of the subscription.

To know more about GitLab subscriptions and licensing, please refer to the
[GitLab Product Marketing Handbook](https://about.gitlab.com/handbook/marketing/product-marketing/#tiers).

 This document was moved to [job_artifacts](job_artifacts.md).

 # GitLab Container Registry administration

> Notes:
- [Introduced][ce-4040] in GitLab 8.8.
- Container Registry manifest v1 support was added in GitLab 8.9 to support

Docker versions earlier than 1.10.

	This document is about the admin guide. To learn how to use GitLab Container
Registry [user documentation](../user/project/container_registry.md).

With the Container Registry integrated into GitLab, every project can have its
own space to store its Docker images.

You can read more about the Container Registry at
https://docs.docker.com/registry/introduction/.

Enable the Container Registry

Omnibus GitLab installations

All you have to do is configure the domain name under which the Container
Registry will listen to. Read
#container-registry-domain-configuration
and pick one of the two options that fits your case.

>**Note:**
The container registry works under HTTPS by default. Using HTTP is possible
but not recommended and out of the scope of this document.
Read the [insecure Registry documentation][docker-insecure] if you want to
implement this.

—

Installations from source

If you have installed GitLab from source:

1. You will have to [install Registry][registry-deploy] by yourself.
1. After the installation is complete, you will have to configure the Registry’s

settings in gitlab.yml in order to enable it.

	Use the sample NGINX configuration file that is found under
[lib/support/nginx/registry-ssl][registry-ssl] and edit it to match the
host, port and TLS certs paths.

The contents of gitlab.yml are:

```
registry:


enabled: true
host: registry.gitlab.example.com
port: 5005
api_url: http://localhost:5000/
key: config/registry.key
path: shared/registry
issuer: gitlab-issuer




```

where:

Parameter | Description |

——— | ———– |

enabled | true or false. Enables the Registry in GitLab. By default this is false. |

host | The host URL under which the Registry will run and the users will be able to use. |

port | The port under which the external Registry domain will listen on. |

api_url | The internal API URL under which the Registry is exposed to. It defaults to http://localhost:5000. |

key | The private key location that is a pair of Registry’s rootcertbundle. Read the [token auth configuration documentation][token-config]. |

path | This should be the same directory like specified in Registry’s rootdirectory. Read the [storage configuration documentation][storage-config]. This path needs to be readable by the GitLab user, the web-server user and the Registry user. Read more in #container-registry-storage-path. |

issuer | This should be the same value as configured in Registry’s issuer. Read the [token auth configuration documentation][token-config]. |

>**Note:**
A Registry init file is not shipped with GitLab if you install it from source.
Hence, [restarting GitLab][restart gitlab] will not restart the Registry should
you modify its settings. Read the upstream documentation on how to achieve that.

At the absolute minimum, make sure your [Registry configuration][registry-auth]
has container_registry as the service and https://gitlab.example.com/jwt/auth
as the realm:

```
auth:



	token:
	realm: https://gitlab.example.com/jwt/auth
service: container_registry
issuer: gitlab-issuer
rootcertbundle: /root/certs/certbundle








```

Container Registry domain configuration

There are two ways you can configure the Registry’s external domain.

	Either [use the existing GitLab domain][existing-domain] where in that case
the Registry will have to listen on a port and reuse GitLab’s TLS certificate,

	or [use a completely separate domain][new-domain] with a new TLS certificate
for that domain.

Since the container Registry requires a TLS certificate, in the end it all boils
down to how easy or pricey is to get a new one.

Please take this into consideration before configuring the Container Registry
for the first time.

Configure Container Registry under an existing GitLab domain

If the Registry is configured to use the existing GitLab domain, you can
expose the Registry on a port so that you can reuse the existing GitLab TLS
certificate.

Assuming that the GitLab domain is https://gitlab.example.com and the port the
Registry is exposed to the outside world is 4567, here is what you need to set
in gitlab.rb or gitlab.yml if you are using Omnibus GitLab or installed
GitLab from source respectively.

>**Note:**
Be careful to choose a port different than the one that Registry listens to (5000 by default),
otherwise you will run into conflicts.

—

Omnibus GitLab installations

	Your /etc/gitlab/gitlab.rb should contain the Registry URL as well as the
path to the existing TLS certificate and key used by GitLab:

`ruby
registry_external_url 'https://gitlab.example.com:4567'
`

Note how the registry_external_url is listening on HTTPS under the
existing GitLab URL, but on a different port.

If your TLS certificate is not in /etc/gitlab/ssl/gitlab.example.com.crt
and key not in /etc/gitlab/ssl/gitlab.example.com.key uncomment the lines
below:

`ruby
registry_nginx['ssl_certificate'] = "/path/to/certificate.pem"
registry_nginx['ssl_certificate_key'] = "/path/to/certificate.key"
`

	Save the file and [reconfigure GitLab][] for the changes to take effect.

—

Installations from source

	Open /home/git/gitlab/config/gitlab.yml, find the registry entry and
configure it with the following settings:


```
registry:


enabled: true
host: gitlab.example.com
port: 4567




```


1. Save the file and [restart GitLab][] for the changes to take effect.
1. Make the relevant changes in NGINX as well (domain, port, TLS certificates path).

—

Users should now be able to login to the Container Registry with their GitLab
credentials using:

`bash
docker login gitlab.example.com:4567
`

Configure Container Registry under its own domain

If the Registry is configured to use its own domain, you will need a TLS
certificate for that specific domain (e.g., registry.example.com) or maybe
a wildcard certificate if hosted under a subdomain of your existing GitLab
domain (e.g., registry.gitlab.example.com).

Let’s assume that you want the container Registry to be accessible at
https://registry.gitlab.example.com.

—

Omnibus GitLab installations

	Place your TLS certificate and key in
/etc/gitlab/ssl/registry.gitlab.example.com.crt and
/etc/gitlab/ssl/registry.gitlab.example.com.key and make sure they have
correct permissions:

`bash
chmod 600 /etc/gitlab/ssl/registry.gitlab.example.com.*
`

	Once the TLS certificate is in place, edit /etc/gitlab/gitlab.rb with:

`ruby
registry_external_url 'https://registry.gitlab.example.com'
`

Note how the registry_external_url is listening on HTTPS.

	Save the file and [reconfigure GitLab][] for the changes to take effect.

> Note:
If you have a [wildcard certificate][], you need to specify the path to the
certificate in addition to the URL, in this case /etc/gitlab/gitlab.rb will
look like:
>
`ruby
registry_nginx['ssl_certificate'] = "/etc/gitlab/ssl/certificate.pem"
registry_nginx['ssl_certificate_key'] = "/etc/gitlab/ssl/certificate.key"
`

—

Installations from source

	Open /home/git/gitlab/config/gitlab.yml, find the registry entry and
configure it with the following settings:


```
registry:


enabled: true
host: registry.gitlab.example.com




```


1. Save the file and [restart GitLab][] for the changes to take effect.
1. Make the relevant changes in NGINX as well (domain, port, TLS certificates path).

—

Users should now be able to login to the Container Registry using their GitLab
credentials:

`bash
docker login registry.gitlab.example.com
`

Disable Container Registry site-wide

>**Note:**
Disabling the Registry in the Rails GitLab application as set by the following
steps, will not remove any existing Docker images. This is handled by the
Registry application itself.

Omnibus GitLab

	Open /etc/gitlab/gitlab.rb and set registry[‘enable’] to false:

`ruby
registry['enable'] = false
`

	Save the file and [reconfigure GitLab][] for the changes to take effect.

—

Installations from source

	Open /home/git/gitlab/config/gitlab.yml, find the registry entry and
set enabled to false:


```
registry:


enabled: false




```


	Save the file and [restart GitLab][] for the changes to take effect.

Disable Container Registry for new projects site-wide

If the Container Registry is enabled, then it will be available on all new
projects. To disable this function and let the owners of a project to enable
the Container Registry by themselves, follow the steps below.

—

Omnibus GitLab installations

	Edit /etc/gitlab/gitlab.rb and add the following line:

`ruby
gitlab_rails['gitlab_default_projects_features_container_registry'] = false
`

	Save the file and [reconfigure GitLab][] for the changes to take effect.

—

Installations from source

	Open /home/git/gitlab/config/gitlab.yml, find the default_projects_features
entry and configure it so that container_registry is set to false:


```
## Default project features settings
default_projects_features:


issues: true
merge_requests: true
wiki: true
snippets: false
builds: true
container_registry: false




```


	Save the file and [restart GitLab][] for the changes to take effect.

Container Registry storage path

>**Note:**
For configuring storage in the cloud instead of the filesystem, see the
[storage driver configuration](#container-registry-storage-driver).

If you want to store your images on the filesystem, you can change the storage
path for the Container Registry, follow the steps below.

This path is accessible to:

	the user running the Container Registry daemon,

	the user running GitLab

> Warning You should confirm that all GitLab, Registry and web server users
have access to this directory.

—

Omnibus GitLab installations

The default location where images are stored in Omnibus, is
/var/opt/gitlab/gitlab-rails/shared/registry. To change it:

	Edit /etc/gitlab/gitlab.rb:

`ruby
gitlab_rails['registry_path'] = "/path/to/registry/storage"
`

	Save the file and [reconfigure GitLab][] for the changes to take effect.

—

Installations from source

The default location where images are stored in source installations, is
/home/git/gitlab/shared/registry. To change it:

	Open /home/git/gitlab/config/gitlab.yml, find the registry entry and
change the path setting:


```
registry:


path: shared/registry




```


	Save the file and [restart GitLab][] for the changes to take effect.

Container Registry storage driver

You can configure the Container Registry to use a different storage backend by
configuring a different storage driver. By default the GitLab Container Registry
is configured to use the filesystem driver, which makes use of [storage path](#container-registry-storage-path)
configuration.

The different supported drivers are:

Driver | Description |

------------	————————————-
filesystem	Uses a path on the local filesystem
azure	Microsoft Azure Blob Storage
gcs	Google Cloud Storage
s3	Amazon Simple Storage Service
swift	OpenStack Swift Object Storage
oss	Aliyun OSS

Read more about the individual driver’s config options in the
[Docker Registry docs][storage-config].

> Warning GitLab will not backup Docker images that are not stored on the
filesystem. Remember to enable backups with your object storage provider if
desired.

> Important Enabling storage driver other than filesystem would mean
that your Docker client needs to be able to access the storage backend directly.
So you must use an address that resolves and is accessible outside GitLab server.

—

Omnibus GitLab installations

To configure the storage driver in Omnibus:

	Edit /etc/gitlab/gitlab.rb:


```ruby
registry[‘storage’] = {



	‘s3’ => {
	‘accesskey’ => ‘s3-access-key’,
‘secretkey’ => ‘s3-secret-key-for-access-key’,
‘bucket’ => ‘your-s3-bucket’,
‘region’ => ‘your-s3-region’





}












	Save the file and [reconfigure GitLab][] for the changes to take effect.




—

Installations from source

Configuring the storage driver is done in your registry config YML file created
when you [deployed your docker registry][registry-deploy].

Example:

```
storage:

	s3:
	accesskey: ‘AKIAKIAKI’
secretkey: ‘secret123’
bucket: ‘gitlab-registry-bucket-AKIAKIAKI’
region: ‘your-s3-region’

	cache:
	blobdescriptor: inmemory

	delete:
	enabled: true


```

## Change the registry’s internal port

> Note:
This is not to be confused with the port that GitLab itself uses to expose
the Registry to the world.

The Registry server listens on localhost at port 5000 by default,
which is the address for which the Registry server should accept connections.
In the examples below we set the Registry’s port to 5001.

Omnibus GitLab


	Open /etc/gitlab/gitlab.rb and set registry[‘registry_http_addr’]:


`ruby
registry['registry_http_addr'] = "localhost:5001"
`









	Save the file and [reconfigure GitLab][] for the changes to take effect.




—

Installations from source


	Open the configuration file of your Registry server and edit the
[http:addr][registry-http-config] value:


```
http

addr: localhost:5001


```









	Save the file and restart the Registry server.




## Disable Container Registry per project

If Registry is enabled in your GitLab instance, but you don’t need it for your
project, you can disable it from your project’s settings. Read the user guide
on how to achieve that.

## Disable Container Registry but use GitLab as an auth endpoint

Omnibus GitLab

You can use GitLab as an auth endpoint and use a non-bundled Container Registry.


	Open /etc/gitlab/gitlab.rb and set necessary configurations:


`ruby
gitlab_rails['registry_enabled'] = true
gitlab_rails['registry_host'] = "registry.gitlab.example.com"
gitlab_rails['registry_port'] = "5005"
gitlab_rails['registry_api_url'] = "http://localhost:5000"
gitlab_rails['registry_path'] = "/var/opt/gitlab/gitlab-rails/shared/registry"
gitlab_rails['registry_issuer'] = "omnibus-gitlab-issuer"
`









	A certificate keypair is required for GitLab and the Container Registry to
communicate securely.  By default omnibus-gitlab will generate one keypair,
which is saved to /var/opt/gitlab/gitlab-rails/etc/gitlab-registry.key.
When using a non-bundled Container Registry, you will need to supply a
custom certificate key. To do that, add the following to
/etc/gitlab/gitlab.rb


`ruby
gitlab_rails['registry_key_path'] = "/custom/path/to/registry-key.key"
# registry['internal_key'] should contain the contents of the custom key
# file. Line breaks in the key file should be marked using `\n` character
# Example:
registry['internal_key'] = "---BEGIN RSA PRIVATE KEY---\nMIIEpQIBAA\n"
`

Note: The file specified at registry_key_path gets populated with the
content specified by internal_key, each time reconfigure is executed. If
no file is specified, omnibus-gitlab will default it to
/var/opt/gitlab/gitlab-rails/etc/gitlab-registry.key and will populate
it.









	Save the file and [reconfigure GitLab][] for the changes to take effect.




Installations from source


	Open /home/git/gitlab/config/gitlab.yml, and edit the configuration settings under registry:


```
Container Registry

	registry:
	enabled: true
host: “registry.gitlab.example.com”
port: “5005”
api_url: “http://localhost:5000”
path: /var/opt/gitlab/gitlab-rails/shared/registry
key: /var/opt/gitlab/gitlab-rails/certificate.key
issuer: omnibus-gitlab-issuer


```









	Save the file and [restart GitLab][] for the changes to take effect.




## Storage limitations

Currently, there is no storage limitation, which means a user can upload an
infinite amount of Docker images with arbitrary sizes. This setting will be
configurable in future releases.

## Configure Container Registry notifications

You can configure the Container Registry to send webhook notifications in
response to events happening within the registry.

Read more about the Container Registry notifications config options in the
[Docker Registry notifications documentation][notifications-config].

>**Note:**
Multiple endpoints can be configured for the Container Registry.

Omnibus GitLab installations

To configure a notification endpoint in Omnibus:


	Edit /etc/gitlab/gitlab.rb:


```ruby
registry[‘notifications’] = [

	{
	‘name’ => ‘test_endpoint’,
‘url’ => ‘https://gitlab.example.com/notify’,
‘timeout’ => ‘500ms’,
‘threshold’ => 5,
‘backoff’ => ‘1s’,
‘headers’ => {

“Authorization” => [“AUTHORIZATION_EXAMPLE_TOKEN”]

}

}

	Save the file and [reconfigure GitLab][] for the changes to take effect.

—

Installations from source

Configuring the notification endpoint is done in your registry config YML file created
when you [deployed your docker registry][registry-deploy].

Example:

```
notifications:



	endpoints:
	
	name: alistener
disabled: false
url: https://my.listener.com/event
headers: <http.Header>
timeout: 500
threshold: 5
backoff: 1000











```

Using self-signed certificates with Container Registry

If you’re using a self-signed certificate with your Container Registry, you
might encounter issues during the CI jobs like the following:

`
Error response from daemon: Get registry.example.com/v1/users/: x509: certificate signed by unknown authority
`

The Docker daemon running the command expects a cert signed by a recognized CA,
thus the error above.

While GitLab doesn’t support using self-signed certificates with Container
Registry out of the box, it is possible to make it work if you follow
[Docker’s documentation][docker-insecure]. You may find some additional
information in [issue 18239][ce-18239].

[ce-18239]: https://gitlab.com/gitlab-org/gitlab-ce/issues/18239
[docker-insecure]: https://docs.docker.com/registry/insecure/#using-self-signed-certificates
[reconfigure gitlab]: restart_gitlab.md#omnibus-gitlab-reconfigure
[restart gitlab]: restart_gitlab.md#installations-from-source
[wildcard certificate]: https://en.wikipedia.org/wiki/Wildcard_certificate
[ce-4040]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/4040
[docker-insecure]: https://docs.docker.com/registry/insecure/
[registry-deploy]: https://docs.docker.com/registry/deploying/
[storage-config]: https://docs.docker.com/registry/configuration/#storage
[registry-http-config]: https://docs.docker.com/registry/configuration/#http
[registry-auth]: https://docs.docker.com/registry/configuration/#auth
[token-config]: https://docs.docker.com/registry/configuration/#token
[8-8-docs]: https://gitlab.com/gitlab-org/gitlab-ce/blob/8-8-stable/doc/administration/container_registry.md
[registry-ssl]: https://gitlab.com/gitlab-org/gitlab-ce/blob/master/lib/support/nginx/registry-ssl
[existing-domain]: #configure-container-registry-under-an-existing-gitlab-domain
[new-domain]: #configure-container-registry-under-its-own-domain
[notifications-config]: https://docs.docker.com/registry/notifications/
[registry-notifications-config]: https://docs.docker.com/registry/configuration/#notifications

 # Custom Git Hooks

>
Note: Custom Git hooks must be configured on the filesystem of the GitLab
server. Only GitLab server administrators will be able to complete these tasks.
Please explore [webhooks] and [CI] as an option if you do not
have filesystem access. For a user configurable Git hook interface, see
[Push Rules](https://docs.gitlab.com/ee/push_rules/push_rules.html),
available in GitLab Enterprise Edition.

Git natively supports hooks that are executed on different actions.
Examples of server-side git hooks include pre-receive, post-receive, and update.
See [Git SCM Server-Side Hooks][hooks] for more information about each hook type.

As of gitlab-shell version 2.2.0 (which requires GitLab 7.5+), GitLab
administrators can add custom git hooks to any GitLab project.

Setup

Normally, Git hooks are placed in the repository or project’s hooks directory.
GitLab creates a symlink from each project’s hooks directory to the
gitlab-shell hooks directory for ease of maintenance between gitlab-shell
upgrades. As such, custom hooks are implemented a little differently. Behavior
is exactly the same once the hook is created, though.

Follow the steps below to set up a custom hook:

1. Pick a project that needs a custom Git hook.
1. On the GitLab server, navigate to the project’s repository directory.

For an installation from source the path is usually
/home/git/repositories/<group>/<project>.git. For Omnibus installs the path is
usually /var/opt/gitlab/git-data/repositories/<group>/<project>.git.

1. Create a new directory in this location called custom_hooks.
1. Inside the new custom_hooks directory, create a file with a name matching

the hook type. For a pre-receive hook the file name should be pre-receive
with no extension.

1. Make the hook file executable and make sure it’s owned by git.
1. Write the code to make the Git hook function as expected. Hooks can be

in any language. Ensure the ‘shebang’ at the top properly reflects the language
type. For example, if the script is in Ruby the shebang will probably be
#!/usr/bin/env ruby.

That’s it! Assuming the hook code is properly implemented the hook will fire
as appropriate.

Chained hooks support

> [Introduced][93] in GitLab Shell 4.1.0 and GitLab 8.15.

Hooks can be also placed in hooks/<hook_name>.d (global) or
custom_hooks/<hook_name>.d (per project) directories supporting chained
execution of the hooks.

To look in a different directory for the global custom hooks (those in
hooks/<hook_name.d>), set custom_hooks_dir in gitlab-shell config. For
Omnibus installations, this can be set in gitlab.rb; and in source
installations, this can be set in gitlab-shell/config.yml.

The hooks are searched and executed in this order:

1. <project>.git/hooks/ - symlink to gitlab-shell/hooks global dir
1. <project>.git/hooks/<hook_name> - executed by git itself, this is gitlab-shell/hooks/<hook_name>
1. <project>.git/custom_hooks/<hook_name> - per project hook (this is already existing behavior)
1. <project>.git/custom_hooks/<hook_name>.d/* - per project hooks
1. <project>.git/hooks/<hook_name>.d/* OR <custom_hooks_dir>/<hook_name.d>/* - global hooks: all executable files (minus editor backup files)

Files in .d directories need to be executable and not match the backup file
pattern (*~).

The hooks of the same type are executed in order and execution stops on the
first script exiting with a non-zero value.

Custom error messages

> [Introduced][5073] in GitLab 8.10.

If the commit is declined or an error occurs during the Git hook check,
the STDERR or STDOUT message of the hook will be present in GitLab’s UI.
STDERR takes precedence over STDOUT.

![Custom message from custom Git hook](img/custom_hooks_error_msg.png)

[CI]: ../ci/README.md
[hooks]: https://git-scm.com/book/en/v2/Customizing-Git-Git-Hooks#Server-Side-Hooks
[webhooks]: ../user/project/integrations/webhooks.md
[5073]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/5073
[93]: https://gitlab.com/gitlab-org/gitlab-shell/merge_requests/93

 # Environment Variables

GitLab exposes certain environment variables which can be used to override
their defaults values.

People usually configure GitLab via /etc/gitlab/gitlab.rb for Omnibus
installations, or gitlab.yml for installations from source.

Below you will find the supported environment variables which you can use to
override certain values.

Supported environment variables

Variable | Type | Description
——– | —- | ———–
GITLAB_CDN_HOST | string | Sets the base URL for a CDN to serve static assets (e.g. //mycdnsubdomain.fictional-cdn.com)
GITLAB_ROOT_PASSWORD | string | Sets the password for the root user on installation
GITLAB_HOST | string | The full URL of the GitLab server (including http:// or https://)
RAILS_ENV | string | The Rails environment; can be one of production, development, staging or test
DATABASE_URL | string | The database URL; is of the form: postgresql://localhost/blog_development
GITLAB_EMAIL_FROM | string | The e-mail address used in the “From” field in e-mails sent by GitLab
GITLAB_EMAIL_DISPLAY_NAME | string | The name used in the “From” field in e-mails sent by GitLab
GITLAB_EMAIL_REPLY_TO | string | The e-mail address used in the “Reply-To” field in e-mails sent by GitLab
GITLAB_EMAIL_SUBJECT_SUFFIX | string | The e-mail subject suffix used in e-mails sent by GitLab
GITLAB_UNICORN_MEMORY_MIN | integer | The minimum memory threshold (in bytes) for the Unicorn worker killer
GITLAB_UNICORN_MEMORY_MAX | integer | The maximum memory threshold (in bytes) for the Unicorn worker killer
GITLAB_SHARED_RUNNERS_REGISTRATION_TOKEN | string | Sets the initial registration token used for GitLab Runners

Complete database variables

The recommended way of specifying your database connection information is to set
the DATABASE_URL environment variable. This variable only holds connection
information (adapter, database, username, password, host and port),
but not behavior information (encoding, pool). If you don’t want to use
DATABASE_URL and/or want to set database behavior information, you will have
to either:

	copy our template file: cp config/database.yml.env config/database.yml, or

	set a value for some GITLAB_DATABASE_XXX variables

The list of GITLAB_DATABASE_XXX variables that you can set is:

Variable | Default value | Overridden by DATABASE_URL?
——– | ————- | —————————–
GITLAB_DATABASE_ADAPTER | postgresql (for MySQL use mysql2) | Yes
GITLAB_DATABASE_DATABASE | gitlab_#{ENV[‘RAILS_ENV’] | Yes
GITLAB_DATABASE_USERNAME | root | Yes
GITLAB_DATABASE_PASSWORD | None | Yes
GITLAB_DATABASE_HOST | localhost | Yes
GITLAB_DATABASE_PORT | 5432 | Yes
GITLAB_DATABASE_ENCODING | unicode | No
GITLAB_DATABASE_POOL | 10 | No

Adding more variables

We welcome merge requests to make more settings configurable via variables.
Please make changes in the config/initializers/1_settings.rb file and stick
to the naming scheme GITLAB_#{name in 1_settings.rb in upper case}.

Omnibus configuration

To set environment variables, follow [these
instructions](https://docs.gitlab.com/omnibus/settings/environment-variables.html).

It’s possible to preconfigure the GitLab docker image by adding the environment
variable GITLAB_OMNIBUS_CONFIG to the docker run command.
For more information see the [‘preconfigure-docker-container’ section in the Omnibus documentation](http://docs.gitlab.com/omnibus/docker/#preconfigure-docker-container).

 # Configure GitLab using an external PostgreSQL service

If you’re hosting GitLab on a cloud provider, you can optionally use a
managed service for PostgreSQL. For example, AWS offers a managed Relational
Database Service (RDS) that runs PostgreSQL.

Alternatively, you may opt to manage your own PostgreSQL instance or cluster
separate from the GitLab Omnibus package.

If you use a cloud-managed service, or provide your own PostgreSQL instance:

	Setup PostgreSQL according to the
[database requirements document](../install/requirements.md#database).

	Set up a gitlab username with a password of your choice. The gitlab user
needs privileges to create the gitlabhq_production database.

	Configure the GitLab application servers with the appropriate details.
This step is covered in [Configuring GitLab for HA](high_availability/gitlab.md).

 # Housekeeping

> [Introduced][ce-2371] in GitLab 8.4.

—
Automatic housekeeping

GitLab automatically runs git gc and git repack on repositories
after Git pushes. If needed you can change how often this happens, or
to turn it off, go to Admin area > Settings
(/admin/application_settings).

Manual housekeeping

The housekeeping function will run a repack or gc depending on the
“Automatic Git repository housekeeping” settings configured in Admin area > Settings

For example in the following scenario a git repack -d will be executed:

	Project: pushes since gc counter (pushes_since_gc) = 10

	Git GC period = 200

	Full repack period = 50

When the pushes_since_gc value is 50 a repack -A -d –pack-kept-objects will run, similarly when
the pushes_since_gc value is 200 a git gc will be run.

	git gc ([man page][man-gc]) runs a number of housekeeping tasks,

such as compressing filerevisions (to reduce disk space and increase performance)
and removing unreachable objects which may have been created from prior invocations of
git add.

	git repack ([man page][man-repack]) re-organize existing packs into a single, more efficient pack.

You can find this option under your [Project] > Edit Project.

—

![Housekeeping settings](img/housekeeping_settings.png)

[ce-2371]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/2371 “Housekeeping merge request”
[man-gc]: https://www.kernel.org/pub/software/scm/git/docs/git-gc.html “git gc man page”
[man-repack]: https://www.kernel.org/pub/software/scm/git/docs/git-repack.html

 # Incoming email

GitLab has several features based on receiving incoming emails:

	[Reply by Email](reply_by_email.md): allow GitLab users to comment on issues
and merge requests by replying to notification emails.

	[New issue by email](../user/project/issues/create_new_issue.md#new-issue-via-email):
allow GitLab users to create a new issue by sending an email to a
user-specific email address.

	[New merge request by email](../user/project/merge_requests/index.md#create-new-merge-requests-by-email):
allow GitLab users to create a new merge request by sending an email to a
user-specific email address.

Requirements

Handling incoming emails requires an [IMAP]-enabled email account. GitLab
requires one of the following three strategies:

	Email sub-addressing

	Dedicated email address

	Catch-all mailbox

Let’s walk through each of these options.

If your provider or server supports email sub-addressing, we recommend using it.
Most features (other than reply by email) only work with sub-addressing.

[IMAP]: https://en.wikipedia.org/wiki/Internet_Message_Access_Protocol

Email sub-addressing

[Sub-addressing](https://en.wikipedia.org/wiki/Email_address#Sub-addressing) is
a feature where any email to user+some_arbitrary_tag@example.com will end up
in the mailbox for user@example.com, and is supported by providers such as
Gmail, Google Apps, Yahoo! Mail, Outlook.com and iCloud, as well as the
[Postfix mail server] which you can run on-premises.

[Postfix mail server]: reply_by_email_postfix_setup.md

Dedicated email address

This solution is really simple to set up: you just have to create an email
address dedicated to receive your users’ replies to GitLab notifications.

Catch-all mailbox

A [catch-all mailbox](https://en.wikipedia.org/wiki/Catch-all) for a domain will
“catch all” the emails addressed to the domain that do not exist in the mail
server.

GitLab can be set up to allow users to comment on issues and merge requests by
replying to notification emails.

Set it up

If you want to use Gmail / Google Apps for incoming emails, make sure you have
[IMAP access enabled](https://support.google.com/mail/troubleshooter/1668960?hl=en#ts=1665018)
and [allowed less secure apps to access the account](https://support.google.com/accounts/answer/6010255)
or [turn-on 2-step validation](https://support.google.com/accounts/answer/185839)
and use [an application password](https://support.google.com/mail/answer/185833).

To set up a basic Postfix mail server with IMAP access on Ubuntu, follow the
[Postfix setup documentation](reply_by_email_postfix_setup.md).

Security Concerns

WARNING: Be careful when choosing the domain used for receiving incoming
email.

For the sake of example, suppose your top-level company domain is hooli.com.
All employees in your company have an email address at that domain via Google
Apps, and your company’s private Slack instance requires a valid @hooli.com
email address in order to sign up.

If you also host a public-facing GitLab instance at hooli.com and set your
incoming email domain to hooli.com, an attacker could abuse the “Create new
issue by email” or
“[Create new merge request by email](../user/project/merge_requests/index.md#create-new-merge-requests-by-email)”
features by using a project’s unique address as the email when signing up for
Slack, which would send a confirmation email, which would create a new issue or
merge request on the project owned by the attacker, allowing them to click the
confirmation link and validate their account on your company’s private Slack
instance.

We recommend receiving incoming email on a subdomain, such as
incoming.hooli.com, and ensuring that you do not employ any services that
authenticate solely based on access to an email domain such as *.hooli.com.
Alternatively, use a dedicated domain for GitLab email communications such as
hooli-gitlab.com.

See GitLab issue [#30366](https://gitlab.com/gitlab-org/gitlab-ce/issues/30366)
for a real-world example of this exploit.

Omnibus package installations

	Find the incoming_email section in /etc/gitlab/gitlab.rb, enable the

feature and fill in the details for your specific IMAP server and email account:

Configuration for Postfix mail server, assumes mailbox
incoming@gitlab.example.com

```ruby
gitlab_rails[‘incoming_email_enabled’] = true

# The email address including the %{key} placeholder that will be replaced to reference the item being replied to.
# The placeholder can be omitted but if present, it must appear in the “user” part of the address (before the @).
gitlab_rails[‘incoming_email_address’] = “incoming+%{key}@gitlab.example.com”

# Email account username
# With third party providers, this is usually the full email address.
# With self-hosted email servers, this is usually the user part of the email address.
gitlab_rails[‘incoming_email_email’] = “incoming”
# Email account password
gitlab_rails[‘incoming_email_password’] = “[REDACTED]”

# IMAP server host
gitlab_rails[‘incoming_email_host’] = “gitlab.example.com”
# IMAP server port
gitlab_rails[‘incoming_email_port’] = 143
# Whether the IMAP server uses SSL
gitlab_rails[‘incoming_email_ssl’] = false
# Whether the IMAP server uses StartTLS
gitlab_rails[‘incoming_email_start_tls’] = false

# The mailbox where incoming mail will end up. Usually “inbox”.
gitlab_rails[‘incoming_email_mailbox_name’] = “inbox”
# The IDLE command timeout.
gitlab_rails[‘incoming_email_idle_timeout’] = 60
```

Configuration for Gmail / Google Apps, assumes mailbox
gitlab-incoming@gmail.com

```ruby
gitlab_rails[‘incoming_email_enabled’] = true

# The email address including the %{key} placeholder that will be replaced to reference the item being replied to.
# The placeholder can be omitted but if present, it must appear in the “user” part of the address (before the @).
gitlab_rails[‘incoming_email_address’] = “gitlab-incoming+%{key}@gmail.com”

# Email account username
# With third party providers, this is usually the full email address.
# With self-hosted email servers, this is usually the user part of the email address.
gitlab_rails[‘incoming_email_email’] = “gitlab-incoming@gmail.com”
# Email account password
gitlab_rails[‘incoming_email_password’] = “[REDACTED]”

# IMAP server host
gitlab_rails[‘incoming_email_host’] = “imap.gmail.com”
# IMAP server port
gitlab_rails[‘incoming_email_port’] = 993
# Whether the IMAP server uses SSL
gitlab_rails[‘incoming_email_ssl’] = true
# Whether the IMAP server uses StartTLS
gitlab_rails[‘incoming_email_start_tls’] = false

# The mailbox where incoming mail will end up. Usually “inbox”.
gitlab_rails[‘incoming_email_mailbox_name’] = “inbox”
# The IDLE command timeout.
gitlab_rails[‘incoming_email_idle_timeout’] = 60
```

Configuration for Microsoft Exchange mail server w/ IMAP enabled, assumes
mailbox incoming@exchange.example.com

```ruby
gitlab_rails[‘incoming_email_enabled’] = true

# The email address replies are sent to - Exchange does not support sub-addressing so %{key} is not used here
gitlab_rails[‘incoming_email_address’] = “incoming@exchange.example.com”

# Email account username
# Typically this is the userPrincipalName (UPN)
gitlab_rails[‘incoming_email_email’] = “incoming@ad-domain.example.com”
# Email account password
gitlab_rails[‘incoming_email_password’] = “[REDACTED]”

# IMAP server host
gitlab_rails[‘incoming_email_host’] = “exchange.example.com”
# IMAP server port
gitlab_rails[‘incoming_email_port’] = 993
# Whether the IMAP server uses SSL
gitlab_rails[‘incoming_email_ssl’] = true
```


	Reconfigure GitLab for the changes to take effect:

`sh
sudo gitlab-ctl reconfigure
sudo gitlab-ctl restart
`

	Verify that everything is configured correctly:

`sh
sudo gitlab-rake gitlab:incoming_email:check
`

	Reply by email should now be working.

Installations from source

	Go to the GitLab installation directory:

`sh
cd /home/git/gitlab
`

	Find the incoming_email section in config/gitlab.yml, enable the feature

and fill in the details for your specific IMAP server and email account:

`sh
sudo editor config/gitlab.yml
`

Configuration for Postfix mail server, assumes mailbox
incoming@gitlab.example.com

```yaml
incoming_email:


enabled: true

# The email address including the %{key} placeholder that will be replaced to reference the item being replied to.
# The placeholder can be omitted but if present, it must appear in the “user” part of the address (before the @).
address: “incoming+%{key}@gitlab.example.com”

# Email account username
# With third party providers, this is usually the full email address.
# With self-hosted email servers, this is usually the user part of the email address.
user: “incoming”
# Email account password
password: “[REDACTED]”

# IMAP server host
host: “gitlab.example.com”
# IMAP server port
port: 143
# Whether the IMAP server uses SSL
ssl: false
# Whether the IMAP server uses StartTLS
start_tls: false

# The mailbox where incoming mail will end up. Usually “inbox”.
mailbox: “inbox”
# The IDLE command timeout.
idle_timeout: 60




```

Configuration for Gmail / Google Apps, assumes mailbox
gitlab-incoming@gmail.com

```yaml
incoming_email:


enabled: true

# The email address including the %{key} placeholder that will be replaced to reference the item being replied to.
# The placeholder can be omitted but if present, it must appear in the “user” part of the address (before the @).
address: “gitlab-incoming+%{key}@gmail.com”

# Email account username
# With third party providers, this is usually the full email address.
# With self-hosted email servers, this is usually the user part of the email address.
user: “gitlab-incoming@gmail.com”
# Email account password
password: “[REDACTED]”

# IMAP server host
host: “imap.gmail.com”
# IMAP server port
port: 993
# Whether the IMAP server uses SSL
ssl: true
# Whether the IMAP server uses StartTLS
start_tls: false

# The mailbox where incoming mail will end up. Usually “inbox”.
mailbox: “inbox”
# The IDLE command timeout.
idle_timeout: 60




```

Configuration for Microsoft Exchange mail server w/ IMAP enabled, assumes
mailbox incoming@exchange.example.com

```yaml
incoming_email:


enabled: true

# The email address replies are sent to - Exchange does not support sub-addressing so %{key} is not used here
address: “incoming@exchange.example.com”

# Email account username
# Typically this is the userPrincipalName (UPN)
user: “incoming@ad-domain.example.com”
# Email account password
password: “[REDACTED]”

# IMAP server host
host: “exchange.example.com”
# IMAP server port
port: 993
# Whether the IMAP server uses SSL
ssl: true
# Whether the IMAP server uses StartTLS
start_tls: false

# The mailbox where incoming mail will end up. Usually “inbox”.
mailbox: “inbox”
# The IDLE command timeout.
idle_timeout: 60




```


	Enable mail_room in the init script at /etc/default/gitlab:

`sh
sudo mkdir -p /etc/default
echo 'mail_room_enabled=true' | sudo tee -a /etc/default/gitlab
`

	Restart GitLab:

`sh
sudo service gitlab restart
`

	Verify that everything is configured correctly:

`sh
sudo -u git -H bundle exec rake gitlab:incoming_email:check RAILS_ENV=production
`

	Reply by email should now be working.

 —
description: ‘Learn how to install, configure, update, and maintain your GitLab instance.’
—

Administrator documentation [CORE ONLY]

Learn how to administer your GitLab instance (Community Edition and
Enterprise Edition).
Regular users don’t have access to GitLab administration tools and settings.

GitLab has two product distributions: the open source
[GitLab Community Edition (CE)](https://gitlab.com/gitlab-org/gitlab-ce),
and the open core [GitLab Enterprise Edition (EE)](https://gitlab.com/gitlab-org/gitlab-ee),
available through [different subscriptions](https://about.gitlab.com/pricing/).

You can [install GitLab CE or GitLab EE](https://about.gitlab.com/installation/ce-or-ee/),
but the features you’ll have access to depend on the subscription you choose
(Core, Starter, Premium, or Ultimate). GitLab Community Edition installations
only have access to Core features.

GitLab.com is administered by GitLab, Inc., therefore, only GitLab team members have
access to its admin configurations. If you’re a GitLab.com user, please check the
[user documentation](../user/index.html).

Installing and maintaining GitLab

Learn how to install, configure, update, and maintain your GitLab instance.

Installing GitLab

	[Install](../install/README.md): Requirements, directory structures, and installation methods.

	[High Availability](high_availability/README.md): Configure multiple servers for scaling or high availability.
- [High Availability on AWS](../university/high-availability/aws/README.md): Set up GitLab HA on Amazon AWS.

Configuring GitLab

	[Adjust your instance’s timezone](../workflow/timezone.md): Customize the default time zone of GitLab.

	[System hooks](../system_hooks/system_hooks.md): Notifications when users, projects and keys are changed.

	[Security](../security/README.md): Learn what you can do to further secure your GitLab instance.

	[Usage statistics, version check, and usage ping](../user/admin_area/settings/usage_statistics.md): Enable or disable information about your instance to be sent to GitLab, Inc.

	[Polling](polling.md): Configure how often the GitLab UI polls for updates.

	[GitLab Pages configuration](pages/index.md): Enable and configure GitLab Pages.

	[GitLab Pages configuration for GitLab source installations](pages/source.md): Enable and configure GitLab Pages on

[source installations](../install/installation.md#installation-from-source).
- [Environment variables](environment_variables.md): Supported environment variables that can be used to override their defaults values in order to configure GitLab.
- [Plugins](plugins.md): With custom plugins, GitLab administrators can introduce custom integrations without modifying GitLab’s source code.
- [Enforcing Terms of Service](../user/admin_area/settings/terms.md)
- [Third party offers](../user/admin_area/settings/third_party_offers.md)

Customizing GitLab’s appearance

	[Header logo](../customization/branded_page_and_email_header.md): Change the logo on all pages and email headers.

	[Favicon](../customization/favicon.md): Change the default favicon to your own logo.

	[Branded login page](../customization/branded_login_page.md): Customize the login page with your own logo, title, and description.

	[Welcome message](../customization/welcome_message.md): Add a custom welcome message to the sign-in page.

	[“New Project” page](../customization/new_project_page.md): Customize the text to be displayed on the page that opens whenever your users create a new project.

Maintaining GitLab

	[Raketasks](../raketasks/README.md): Perform various tasks for maintenance, backups, automatic webhooks setup, etc.
- [Backup and restore](../raketasks/backup_restore.md): Backup and restore your GitLab instance.

	[Operations](operations/index.md): Keeping GitLab up and running (clean up Redis sessions, moving repositories, Sidekiq Job throttling, Sidekiq MemoryKiller, Unicorn).

	[Restart GitLab](restart_gitlab.md): Learn how to restart GitLab and its components.

Updating GitLab

	[GitLab versions and maintenance policy](../policy/maintenance.md): Understand GitLab versions and releases (Major, Minor, Patch, Security), as well as update recommendations.

	[Update GitLab](../update/README.md): Update guides to upgrade your installation to a new version.

	[Downtimeless updates](../update/README.md#upgrading-without-downtime): Upgrade to a newer major, minor, or patch version of GitLab without taking your GitLab instance offline.

	[Migrate your GitLab CI/CD data to another version of GitLab](../migrate_ci_to_ce/README.md): If you have an old GitLab installation (older than 8.0), follow this guide to migrate your existing GitLab CI/CD data to another version of GitLab.

Upgrading or downgrading GitLab

	[Upgrade from GitLab CE to GitLab EE](../update/README.md#upgrading-between-editions): learn how to upgrade GitLab Community Edition to GitLab Enterprise Editions.

	[Downgrade from GitLab EE to GitLab CE](../downgrade_ee_to_ce/README.md): Learn how to downgrade GitLab Enterprise Editions to Community Edition.

GitLab platform integrations

	[Mattermost](https://docs.gitlab.com/omnibus/gitlab-mattermost/): Integrate with [Mattermost](https://about.mattermost.com/), an open source, private cloud workplace for web messaging.

	[PlantUML](integration/plantuml.md): Create simple diagrams in AsciiDoc and Markdown documents

created in snippets, wikis, and repos.
- [Web terminals](integration/terminal.md): Provide terminal access to your applications deployed to Kubernetes from within GitLab’s CI/CD [environments](../ci/environments.md#web-terminals).

User settings and permissions

	[Libravatar](../customization/libravatar.md): Use Libravatar instead of Gravatar for user avatars.

	[Sign-up restrictions](../user/admin_area/settings/sign_up_restrictions.md): block email addresses of specific domains, or whitelist only specific domains.

	[Access restrictions](../user/admin_area/settings/visibility_and_access_controls.md#enabled-git-access-protocols): Define which Git access protocols can be used to talk to GitLab (SSH, HTTP, HTTPS).

	[Authentication/Authorization](../topics/authentication/index.md#gitlab-administrators): Enforce 2FA, configure external authentication with LDAP, SAML, CAS and additional Omniauth providers.

	[Incoming email](incoming_email.md): Configure incoming emails to allow
users to [reply by email], create [issues by email] and
[merge requests by email], and to enable [Service Desk].
- [Postfix for incoming email](reply_by_email_postfix_setup.md): Set up a
basic Postfix mail server with IMAP authentication on Ubuntu for incoming
emails.

[reply by email]: reply_by_email.md
[issues by email]: ../user/project/issues/create_new_issue.md#new-issue-via-email
[merge requests by email]: ../user/project/merge_requests/index.md#create-new-merge-requests-by-email

Project settings

	[Container Registry](container_registry.md): Configure Container Registry with GitLab.

	[Issue closing pattern](issue_closing_pattern.md): Customize how to close an issue from commit messages.

	[Gitaly](gitaly/index.md): Configuring Gitaly, GitLab’s Git repository storage service.

	[Default labels](../user/admin_area/labels.html): Create labels that will be automatically added to every new project.

	[Restrict the use of public or internal projects](../public_access/public_access.md#restricting-the-use-of-public-or-internal-projects): Restrict the use of visibility levels for users when they create a project or a snippet.

	[Custom project templates](https://docs.gitlab.com/ee/user/admin_area/custom_project_templates.html): Configure a set of projects to be used as custom templates when creating a new project. [PREMIUM ONLY]

Repository settings

	[Repository checks](repository_checks.md): Periodic Git repository checks.

	[Repository storage paths](repository_storage_paths.md): Manage the paths used to store repositories.

	[Repository storage rake tasks](raketasks/storage.md): A collection of rake tasks to list and migrate existing projects and attachments associated with it from Legacy storage to Hashed storage.

Continuous Integration settings

	[Enable/disable GitLab CI/CD](../ci/enable_or_disable_ci.md#site-wide-admin-setting): Enable or disable GitLab CI/CD for your instance.

	[GitLab CI/CD admin settings](../user/admin_area/settings/continuous_integration.md): Define max artifacts size and expiration time.

	[Job artifacts](job_artifacts.md): Enable, disable, and configure job artifacts (a set of files and directories which are outputted by a job when it completes successfully).

	[Job traces](job_traces.md): Information about the job traces (logs).

	[Artifacts size and expiration](../user/admin_area/settings/continuous_integration.md#maximum-artifacts-size): Define maximum artifacts limits and expiration date.

	[Register Shared and specific Runners](../ci/runners/README.md#registering-a-shared-runner): Learn how to register and configure Shared and specific Runners to your own instance.

	[Shared Runners pipelines quota](../user/admin_area/settings/continuous_integration.md#shared-runners-pipeline-minutes-quota): Limit the usage of pipeline minutes for Shared Runners.

	[Enable/disable Auto DevOps](../topics/autodevops/index.md#enabling-auto-devops): Enable or disable Auto DevOps for your instance.

Git configuration options

	[Custom Git hooks](custom_hooks.md): Custom Git hooks (on the filesystem) for when webhooks aren’t enough.

	[Git LFS configuration](../workflow/lfs/lfs_administration.md): Learn how to configure LFS for GitLab.

	[Housekeeping](housekeeping.md): Keep your Git repositories tidy and fast.

Monitoring GitLab

	[Monitoring GitLab](monitoring/index.md):
- [Monitoring uptime](../user/admin_area/monitoring/health_check.md): Check the server status using the health check endpoint.

	[IP whitelist](monitoring/ip_whitelist.md): Monitor endpoints that provide health check information when probed.

	[Monitoring GitHub imports](monitoring/github_imports.md): GitLab’s GitHub Importer displays Prometheus metrics to monitor the health and progress of the importer.

Performance Monitoring

	[GitLab Performance Monitoring](monitoring/performance/index.md):
- [Enable Performance Monitoring](monitoring/performance/gitlab_configuration.md): Enable GitLab Performance Monitoring.
- [GitLab performance monitoring with InfluxDB](monitoring/performance/influxdb_configuration.md): Configure GitLab and InfluxDB for measuring performance metrics.

	[InfluxDB Schema](monitoring/performance/influxdb_schema.md): Measurements stored in InfluxDB.

	[GitLab performance monitoring with Prometheus](monitoring/prometheus/index.md): Configure GitLab and Prometheus for measuring performance metrics.

	[GitLab performance monitoring with Grafana](monitoring/performance/grafana_configuration.md): Configure GitLab to visualize time series metrics through graphs and dashboards.

	[Request Profiling](monitoring/performance/request_profiling.md): Get a detailed profile on slow requests.

	[Performance Bar](monitoring/performance/performance_bar.md): Get performance information for the current page.

Troubleshooting

	[Debugging tips](troubleshooting/debug.md): Tips to debug problems when things go wrong

	[Log system](logs.md): Where to look for logs.

	[Sidekiq Troubleshooting](troubleshooting/sidekiq.md): Debug when Sidekiq appears hung and is not processing jobs.

 # Issue closing pattern

>**Note:**
This is the administration documentation.
There is a separate [user documentation] on issue closing pattern.

When a commit or merge request resolves one or more issues, it is possible to
automatically have these issues closed when the commit or merge request lands
in the project’s default branch.

Change the issue closing pattern

In order to change the pattern you need to have access to the server that GitLab
is installed on.

The default pattern can be located in [gitlab.yml.example] under the
“Automatic issue closing” section.

> Tip:
You are advised to use http://rubular.com to test the issue closing pattern.
Because Rubular doesn’t understand %{issue_ref}, you can replace this by
#d+ when testing your patterns, which matches only local issue references like #123.

For Omnibus installations

1. Open /etc/gitlab/gitlab.rb with your editor.
1. Change the value of gitlab_rails[‘gitlab_issue_closing_pattern’] to a regular

expression of your liking:

`ruby
gitlab_rails['gitlab_issue_closing_pattern'] = "((?:[Cc]los(?:e[sd]|ing)|[Ff]ix(?:e[sd]|ing)?) +(?:(?:issues? +)?%{issue_ref}(?:(?:, *| +and +)?))+)"
`

	[Reconfigure] GitLab for the changes to take effect.

For installations from source

1. Open gitlab.yml with your editor.
1. Change the value of issue_closing_pattern:

`yaml
issue_closing_pattern: "((?:[Cc]los(?:e[sd]|ing)|[Ff]ix(?:e[sd]|ing)?) +(?:(?:issues? +)?%{issue_ref}(?:(?:, *| +and +)?))+)"
`

	[Restart] GitLab for the changes to take effect.

[gitlab.yml.example]: https://gitlab.com/gitlab-org/gitlab-ce/blob/master/config/gitlab.yml.example
[reconfigure]: restart_gitlab.md#omnibus-gitlab-reconfigure
[restart]: restart_gitlab.md#installations-from-source
[user documentation]: ../user/project/issues/automatic_issue_closing.md

 # Jobs artifacts administration

>**Notes:**
>- Introduced in GitLab 8.2 and GitLab Runner 0.7.0.
>- Starting with GitLab 8.4 and GitLab Runner 1.0, the artifacts archive format

changed to ZIP.

>- Starting with GitLab 8.17, builds are renamed to jobs.
>- This is the administration documentation. For the user guide see

[pipelines/job_artifacts](../user/project/pipelines/job_artifacts.md).

Artifacts is a list of files and directories which are attached to a job
after it completes successfully. This feature is enabled by default in all
GitLab installations. Keep reading if you want to know how to disable it.

Disabling job artifacts

To disable artifacts site-wide, follow the steps below.

—

In Omnibus installations:

	Edit /etc/gitlab/gitlab.rb and add the following line:

`ruby
gitlab_rails['artifacts_enabled'] = false
`

	Save the file and [reconfigure GitLab][] for the changes to take effect.

—

In installations from source:

	Edit /home/git/gitlab/config/gitlab.yml and add or amend the following lines:


```yaml
artifacts:


enabled: false




```


	Save the file and [restart GitLab][] for the changes to take effect.

Storing job artifacts

After a successful job, GitLab Runner uploads an archive containing the job
artifacts to GitLab.

Using local storage

To change the location where the artifacts are stored locally, follow the steps
below.

—

In Omnibus installations:

_The artifacts are stored by default in
/var/opt/gitlab/gitlab-rails/shared/artifacts._

	To change the storage path for example to /mnt/storage/artifacts, edit
/etc/gitlab/gitlab.rb and add the following line:

`ruby
gitlab_rails['artifacts_path'] = "/mnt/storage/artifacts"
`

	Save the file and [reconfigure GitLab][] for the changes to take effect.

—

In installations from source:

_The artifacts are stored by default in
/home/git/gitlab/shared/artifacts._

	To change the storage path for example to /mnt/storage/artifacts, edit
/home/git/gitlab/config/gitlab.yml and add or amend the following lines:


```yaml
artifacts:


enabled: true
path: /mnt/storage/artifacts




```


	Save the file and [restart GitLab][] for the changes to take effect.

Using object storage

>**Notes:**
- [Introduced](https://gitlab.com/gitlab-org/gitlab-ee/merge_requests/1762) in

[GitLab Premium](https://about.gitlab.com/pricing/) 9.4.

	Since version 9.5, artifacts are [browsable](../user/project/pipelines/job_artifacts.md#browsing-artifacts),
when object storage is enabled. 9.4 lacks this feature.

	Since version 10.6, available in [GitLab Core](https://about.gitlab.com/pricing/)

	Since version 11.0, we support direct_upload to S3.

If you don’t want to use the local disk where GitLab is installed to store the
artifacts, you can use an object storage like AWS S3 instead.
This configuration relies on valid AWS credentials to be configured already.
Use an [Object storage option][os] like AWS S3 to store job artifacts.

Object Storage Settings

For source installations the following settings are nested under artifacts: and then object_store:. On omnibus installs they are prefixed by artifacts_object_store_.

Setting | Description | Default |

---------	————-	---------
enabled	Enable/disable object storage	false
remote_directory	The bucket name where Artifacts will be stored	
direct_upload	Set to true to enable direct upload of Artifacts without the need of local shared storage. Option may be removed once we decide to support only single storage for all files.	false
background_upload	Set to false to disable automatic upload. Option may be removed once upload is direct to S3	true
proxy_download	Set to true to enable proxying all files served. Option allows to reduce egress traffic as this allows clients to download directly from remote storage instead of proxying all data	false
connection	Various connection options described below	

S3 compatible connection settings

The connection settings match those provided by [Fog](https://github.com/fog), and are as follows:

Setting | Description | Default |

---------	————-	---------
provider	Always AWS for compatible hosts	AWS
aws_access_key_id	AWS credentials, or compatible	
aws_secret_access_key	AWS credentials, or compatible	
aws_signature_version	AWS signature version to use. 2 or 4 are valid options. Digital Ocean Spaces and other providers may need 2.	4
region	AWS region	us-east-1
host	S3 compatible host for when not using AWS, e.g. localhost or storage.example.com	s3.amazonaws.com
endpoint	Can be used when configuring an S3 compatible service such as [Minio](https://www.minio.io), by entering a URL such as http://127.0.0.1:9000	(optional)
path_style	Set to true to use host/bucket_name/object style paths instead of bucket_name.host/object. Leave as false for AWS S3	false

In Omnibus installations:

_The artifacts are stored by default in
/var/opt/gitlab/gitlab-rails/shared/artifacts._

	Edit /etc/gitlab/gitlab.rb and add the following lines by replacing with
the values you want:


```ruby
gitlab_rails[‘artifacts_enabled’] = true
gitlab_rails[‘artifacts_object_store_enabled’] = true
gitlab_rails[‘artifacts_object_store_remote_directory’] = “artifacts”
gitlab_rails[‘artifacts_object_store_connection’] = {


‘provider’ => ‘AWS’,
‘region’ => ‘eu-central-1’,
‘aws_access_key_id’ => ‘AWS_ACCESS_KEY_ID’,
‘aws_secret_access_key’ => ‘AWS_SECRET_ACCESS_KEY’




NOTE: For GitLab 9.4+, if you are using AWS IAM profiles, be sure to omit the
AWS access key and secret access key/value pairs. For example:

```ruby
gitlab_rails[‘artifacts_object_store_connection’] = {

‘provider’ => ‘AWS’,
‘region’ => ‘eu-central-1’,
‘use_iam_profile’ => true

1. Save the file and [reconfigure GitLab][] for the changes to take effect.
1. Migrate any existing local artifacts to the object storage:

`bash
gitlab-rake gitlab:artifacts:migrate
`

Currently this has to be executed manually and it will allow you to
migrate the existing artifacts to the object storage, but all new
artifacts will still be stored on the local disk. In the future
you will be given an option to define a default storage artifacts for all
new files.

—

In installations from source:

_The artifacts are stored by default in
/home/git/gitlab/shared/artifacts._

	Edit /home/git/gitlab/config/gitlab.yml and add or amend the following
lines:


```yaml
artifacts:


enabled: true
object_store:


enabled: true
remote_directory: “artifacts” # The bucket name
connection:


provider: AWS # Only AWS supported at the moment
aws_access_key_id: AWS_ACESS_KEY_ID
aws_secret_access_key: AWS_SECRET_ACCESS_KEY
region: eu-central-1










```


1. Save the file and [restart GitLab][] for the changes to take effect.
1. Migrate any existing local artifacts to the object storage:

`bash
sudo -u git -H bundle exec rake gitlab:artifacts:migrate RAILS_ENV=production
`

Currently this has to be executed manually and it will allow you to
migrate the existing artifacts to the object storage, but all new
artifacts will still be stored on the local disk. In the future
you will be given an option to define a default storage artifacts for all
new files.

Expiring artifacts

If an expiry date is used for the artifacts, they are marked for deletion
right after that date passes. Artifacts are cleaned up by the
expire_build_artifacts_worker cron job which is run by Sidekiq every hour at
50 minutes (50 * * * *).

To change the default schedule on which the artifacts are expired, follow the
steps below.

—

In Omnibus installations:

	Edit /etc/gitlab/gitlab.rb and comment out or add the following line

`ruby
gitlab_rails['expire_build_artifacts_worker_cron'] = "50 * * * *"
`

	Save the file and [reconfigure GitLab][] for the changes to take effect.

—

In installations from source:

	Edit /home/git/gitlab/config/gitlab.yml and add or amend the following
lines:


```yaml
expire_build_artifacts_worker:


cron: “50 * * * *”




```


	Save the file and [restart GitLab][] for the changes to take effect.

Validation for dependencies

> Introduced in GitLab 10.3.

To disable [the dependencies validation](../ci/yaml/README.md#when-a-dependent-job-will-fail),
you can flip the feature flag from a Rails console.

—

In Omnibus installations:

	Enter the Rails console:

`sh
sudo gitlab-rails console
`

	Flip the switch and disable it:

`ruby
Feature.enable('ci_disable_validates_dependencies')
`

—

In installations from source:

	Enter the Rails console:

`sh
cd /home/git/gitlab
RAILS_ENV=production sudo -u git -H bundle exec rails console
`

	Flip the switch and disable it:

`ruby
Feature.enable('ci_disable_validates_dependencies')
`

Set the maximum file size of the artifacts

Provided the artifacts are enabled, you can change the maximum file size of the
artifacts through the [Admin area settings](../user/admin_area/settings/continuous_integration.md#maximum-artifacts-size).

Storage statistics

You can see the total storage used for job artifacts on groups and projects
in the administration area, as well as through the [groups](../api/groups.md)
and [projects APIs](../api/projects.md).

Implementation details

When GitLab receives an artifacts archive, an archive metadata file is also
generated by [GitLab Workhorse]. This metadata file describes all the entries
that are located in the artifacts archive itself.
The metadata file is in a binary format, with additional GZIP compression.

GitLab does not extract the artifacts archive in order to save space, memory
and disk I/O. It instead inspects the metadata file which contains all the
relevant information. This is especially important when there is a lot of
artifacts, or an archive is a very large file.

When clicking on a specific file, [GitLab Workhorse] extracts it
from the archive and the download begins. This implementation saves space,
memory and disk I/O.

[reconfigure gitlab]: restart_gitlab.md#omnibus-gitlab-reconfigure “How to reconfigure Omnibus GitLab”
[restart gitlab]: restart_gitlab.md#installations-from-source “How to restart GitLab”
[gitlab workhorse]: https://gitlab.com/gitlab-org/gitlab-workhorse “GitLab Workhorse repository”
[os]: https://docs.gitlab.com/administration/job_artifacts.html#using-object-storage

 # Job traces (logs)

Job traces are sent by GitLab Runner while it’s processing a job. You can see
traces in job pages, pipelines, email notifications, etc.

There isn’t a way to automatically expire old job logs, but it’s safe to remove
them if they’re taking up too much space. If you remove the logs manually, the
job output in the UI will be empty.

Data flow

In general, there are two states in job traces: “live trace” and “archived trace”.
In the following table you can see the phases a trace goes through.

Phase | State | Condition | Data flow | Stored path |

—– | —– | ——— | ——— | ———– |

1: patching | Live trace | When a job is running | GitLab Runner => Unicorn => file storage |`#{ROOT_PATH}/builds/#{YYYY_mm}/#{project_id}/#{job_id}.log`|

2: overwriting | Live trace | When a job is finished | GitLab Runner => Unicorn => file storage |`#{ROOT_PATH}/builds/#{YYYY_mm}/#{project_id}/#{job_id}.log`|

3: archiving | Archived trace | After a job is finished | Sidekiq moves live trace to artifacts folder |`#{ROOT_PATH}/shared/artifacts/#{disk_hash}/#{YYYY_mm_dd}/#{job_id}/#{job_artifact_id}/trace.log`|

4: uploading | Archived trace | After a trace is archived | Sidekiq moves archived trace to [object storage](#uploading-traces-to-object-storage) (if configured) |`#{bucket_name}/#{disk_hash}/#{YYYY_mm_dd}/#{job_id}/#{job_artifact_id}/trace.log`|

The ROOT_PATH varies per your environment. For Omnibus GitLab it
would be /var/opt/gitlab/gitlab-ci, whereas for installations from source
it would be /home/git/gitlab.

Changing the job traces local location

To change the location where the job logs will be stored, follow the steps below.

In Omnibus installations:

	Edit /etc/gitlab/gitlab.rb and add or amend the following line:

`
gitlab_ci['builds_directory'] = '/mnt/to/gitlab-ci/builds'
`

	Save the file and [reconfigure GitLab][] for the changes to take effect.

—

In installations from source:

	Edit /home/git/gitlab/config/gitlab.yml and add or amend the following lines:


```yaml
gitlab_ci:


# The location where build traces are stored (default: builds/).
# Relative paths are relative to Rails.root.
builds_path: path/to/builds/




```


	Save the file and [restart GitLab][] for the changes to take effect.

[reconfigure gitlab]: restart_gitlab.md#omnibus-gitlab-reconfigure “How to reconfigure Omnibus GitLab”
[restart gitlab]: restart_gitlab.md#installations-from-source “How to restart GitLab”

Uploading traces to object storage

An archived trace is considered as a [job artifact](job_artifacts.md).
Therefore, when you [set up an object storage](job_artifacts.md#object-storage-settings),
job traces are automatically migrated to it along with the other job artifacts.

See [Data flow](#data-flow) to learn about the process.

New live trace architecture

> [Introduced][ce-18169] in GitLab 10.4.
> [Announced as General availability][ce-46097] in GitLab 11.0.

NOTE: Note:
This feature is off by default. Check below how to [enable/disable](#enabling-live-trace) it.

By combining the process with object storage settings, we can completely bypass
the local file storage. This is a useful option if GitLab is installed as
cloud-native, for example on Kubernetes.

The data flow is the same as described in the [data flow section](#data-flow)
with one change: _the stored path of the first two phases is different_. This new live
trace architecture stores chunks of traces in Redis and a persistent store (object storage or database) instead of
file storage. Redis is used as first-class storage, and it stores up-to 128KB
of data. Once the full chunk is sent, it is flushed a persistent store, either object storage(temporary directory) or database.
After a while, the data in Redis and a persitent store will be archived to [object storage](#uploading-traces-to-object-storage).

The data are stored in the following Redis namespace: Gitlab::Redis::SharedState.

Here is the detailed data flow:

1. GitLab Runner picks a job from GitLab
1. GitLab Runner sends a piece of trace to GitLab
1. GitLab appends the data to Redis
1. Once the data in Redis reach 128KB, the data is flushed to a persistent store (object storage or the database).
1. The above steps are repeated until the job is finished.
1. Once the job is finished, GitLab schedules a Sidekiq worker to archive the trace.
1. The Sidekiq worker archives the trace to object storage and cleans up the trace

in Redis and a persistent store (object storage or the database).

Enabling live trace

The following commands are to be issues in a Rails console:

```sh
# Omnibus GitLab
gitlab-rails console

# Installation from source
cd /home/git/gitlab
sudo -u git -H bin/rails console RAILS_ENV=production
```

To check if live trace is enabled:

`ruby
Feature.enabled?('ci_enable_live_trace')
`

To enable live trace:

`ruby
Feature.enable('ci_enable_live_trace')
`

NOTE: Note:
The transition period will be handled gracefully. Upcoming traces will be
generated with the new architecture, and on-going live traces will stay with the
legacy architecture, which means that on-going live traces won’t be forcibly
re-generated with the new architecture.

To disable live trace:

`ruby
Feature.disable('ci_enable_live_trace')
`

NOTE: Note:
The transition period will be handled gracefully. Upcoming traces will be generated
with the legacy architecture, and on-going live traces will stay with the new
architecture, which means that on-going live traces won’t be forcibly re-generated
with the legacy architecture.

Potential implications

In some cases, having data stored on Redis could incur data loss:

	Case 1: When all data in Redis are accidentally flushed

	On going live traces could be recovered by re-sending traces (this is
supported by all versions of the GitLab Runner).

	Finished jobs which have not archived live traces will lose the last part
(~128KB) of trace data.

	Case 2: When Sidekiq workers fail to archive (e.g., there was a bug that
prevents archiving process, Sidekiq inconsistency, etc.)

	Currently all trace data in Redis will be deleted after one week. If the
Sidekiq workers can’t finish by the expiry date, the part of trace data will be lost.

Another issue that might arise is that it could consume all memory on the Redis
instance. If the number of jobs is 1000, 128MB (128KB * 1000) is consumed.

Also, it could pressure the database replication lag. `INSERT`s are generated to
indicate that we have trace chunk. `UPDATE`s with 128KB of data is issued once we
receive multiple chunks.

[ce-18169]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/18169
[ce-46097]: https://gitlab.com/gitlab-org/gitlab-ce/issues/46097

 # Log system

GitLab has an advanced log system where everything is logged so that you
can analyze your instance using various system log files. In addition to
system log files, GitLab Enterprise Edition comes with Audit Events.
Find more about them [in Audit Events
documentation](http://docs.gitlab.com/ee/administration/audit_events.html)

System log files are typically plain text in a standard log file format.
This guide talks about how to read and use these system log files.

production_json.log

This file lives in /var/log/gitlab/gitlab-rails/production_json.log for
Omnibus GitLab packages or in /home/git/gitlab/log/production_json.log for
installations from source. (When Gitlab is running in an environment
other than production, the corresponding logfile is shown here.)

It contains a structured log for Rails controller requests received from
GitLab, thanks to [Lograge](https://github.com/roidrage/lograge/). Note that
requests from the API are logged to a separate file in api_json.log.

Each line contains a JSON line that can be ingested by Elasticsearch, Splunk, etc. For example:

`json
{"method":"GET","path":"/gitlab/gitlab-ce/issues/1234","format":"html","controller":"Projects::IssuesController","action":"show","status":200,"duration":229.03,"view":174.07,"db":13.24,"time":"2017-08-08T20:15:54.821Z","params":[{"key":"param_key","value":"param_value"}],"remote_ip":"18.245.0.1","user_id":1,"username":"admin","gitaly_calls":76}
`

In this example, you can see this was a GET request for a specific issue. Notice each line also contains performance data:

	duration: the total time taken to retrieve the request

	view: total time taken inside the Rails views

	db: total time to retrieve data from the database

	gitaly_calls: total number of calls made to Gitaly

User clone/fetch activity using http transport appears in this log as action: git_upload_pack.

In addition, the log contains the IP address from which the request originated
(remote_ip) as well as the user’s ID (user_id), and username (username).

production.log

This file lives in /var/log/gitlab/gitlab-rails/production.log for
Omnibus GitLab packages or in /home/git/gitlab/log/production.log for
installations from source. (When Gitlab is running in an environment
other than production, the corresponding logfile is shown here.)

It contains information about all performed requests. You can see the
URL and type of request, IP address and what exactly parts of code were
involved to service this particular request. Also you can see all SQL
request that have been performed and how much time it took. This task is
more useful for GitLab contributors and developers. Use part of this log
file when you are going to report bug. For example:

```
Started GET “/gitlabhq/yaml_db/tree/master” for 168.111.56.1 at 2015-02-12 19:34:53 +0200
Processing by Projects::TreeController#show as HTML


Parameters: {“project_id”=>”gitlabhq/yaml_db”, “id”=>”master”}

… [CUT OUT]

Namespaces”.”created_at” DESC, “namespaces”.”id” DESC LIMIT 1 [[“id”, 26]]
CACHE (0.0ms) SELECT  “members”.* FROM “members”  WHERE “members”.”source_type” = ‘Project’ AND “members”.”type” IN (‘ProjectMember’) AND “members”.”source_id” = $1 AND “members”.”source_type” = $2 AND “members”.”user_id” = 1  ORDER BY “members”.”created_at” DESC, “members”.”id” DESC LIMIT 1  [[“source_id”, 18], [“source_type”, “Project”]]
CACHE (0.0ms) SELECT  “members”.* FROM “members”  WHERE “members”.”source_type” = ‘Project’ AND “members”.
(1.4ms) SELECT COUNT(*) FROM “merge_requests”  WHERE “merge_requests”.”target_project_id” = $1 AND (“merge_requests”.”state” IN (‘opened’,’reopened’)) [[“target_project_id”, 18]]
Rendered layouts/nav/_project.html.haml (28.0ms)
Rendered layouts/_collapse_button.html.haml (0.2ms)
Rendered layouts/_flash.html.haml (0.1ms)
Rendered layouts/_page.html.haml (32.9ms)




Completed 200 OK in 166ms (Views: 117.4ms | ActiveRecord: 27.2ms)
```

In this example we can see that server processed an HTTP request with URL
/gitlabhq/yaml_db/tree/master from IP 168.111.56.1 at 2015-02-12
19:34:53 +0200. Also we can see that request was processed by
Projects::TreeController.

api_json.log

Introduced in GitLab 10.0, this file lives in
/var/log/gitlab/gitlab-rails/api_json.log for Omnibus GitLab packages or in
/home/git/gitlab/log/api_json.log for installations from source.

It helps you see requests made directly to the API. For example:

`json
{"time":"2017-10-10T12:30:11.579Z","severity":"INFO","duration":16.84,"db":1.57,"view":15.27,"status":200,"method":"POST","path":"/api/v4/internal/allowed","params":{"action":"git-upload-pack","changes":"_any","gl_repository":null,"project":"root/foobar.git","protocol":"ssh","env":"{}","key_id":"[FILTERED]","secret_token":"[FILTERED]"},"host":"127.0.0.1","ip":"127.0.0.1","ua":"Ruby"}
`

This entry above shows an access to an internal endpoint to check whether an
associated SSH key can download the project in question via a git fetch or
git clone. In this example, we see:

1. method: The HTTP method used to make the request
1. path: The relative path of the query
1. params: Key-value pairs passed in a query string or HTTP body. Sensitive parameters (e.g. passwords, tokens, etc.) are filtered out.
1. ua: The User-Agent of the requester

application.log

This file lives in /var/log/gitlab/gitlab-rails/application.log for
Omnibus GitLab packages or in /home/git/gitlab/log/application.log for
installations from source.

It helps you discover events happening in your instance such as user creation,
project removing and so on. For example:

`
October 06, 2014 11:56: User "Administrator" (admin@example.com) was created
October 06, 2014 11:56: Documentcloud created a new project "Documentcloud / Underscore"
October 06, 2014 11:56: Gitlab Org created a new project "Gitlab Org / Gitlab Ce"
October 07, 2014 11:25: User "Claudie Hodkiewicz" (nasir_stehr@olson.co.uk) was removed
October 07, 2014 11:25: Project "project133" was removed
`

githost.log

This file lives in /var/log/gitlab/gitlab-rails/githost.log for
Omnibus GitLab packages or in /home/git/gitlab/log/githost.log for
installations from source.

GitLab has to interact with Git repositories but in some rare cases
something can go wrong and in this case you will know what exactly
happened. This log file contains all failed requests from GitLab to Git
repositories. In the majority of cases this file will be useful for developers
only. For example:

```
December 03, 2014 13:20 -> ERROR -> Command failed [1]: /usr/bin/git –git-dir=/Users/vsizov/gitlab-development-kit/gitlab/tmp/tests/gitlab-satellites/group184/gitlabhq/.git –work-tree=/Users/vsizov/gitlab-development-kit/gitlab/tmp/tests/gitlab-satellites/group184/gitlabhq merge –no-ff -mMerge branch ‘feature_conflict’ into ‘feature’ source/feature_conflict

error: failed to push some refs to ‘/Users/vsizov/gitlab-development-kit/repositories/gitlabhq/gitlab_git.git’
```

sidekiq.log

This file lives in /var/log/gitlab/gitlab-rails/sidekiq.log for
Omnibus GitLab packages or in /home/git/gitlab/log/sidekiq.log for
installations from source.

GitLab uses background jobs for processing tasks which can take a long
time. All information about processing these jobs are written down to
this file. For example:

`
2014-06-10T07:55:20Z 2037 TID-tm504 ERROR: /opt/bitnami/apps/discourse/htdocs/vendor/bundle/ruby/1.9.1/gems/redis-3.0.7/lib/redis/client.rb:228:in `read'
2014-06-10T18:18:26Z 14299 TID-55uqo INFO: Booting Sidekiq 3.0.0 with redis options {:url=>"redis://localhost:6379/0", :namespace=>"sidekiq"}
`

Instead of the format above, you can opt to generate JSON logs for
Sidekiq. For example:

`json
{"severity":"INFO","time":"2018-04-03T22:57:22.071Z","queue":"cronjob:update_all_mirrors","args":[],"class":"UpdateAllMirrorsWorker","retry":false,"queue_namespace":"cronjob","jid":"06aeaa3b0aadacf9981f368e","created_at":"2018-04-03T22:57:21.930Z","enqueued_at":"2018-04-03T22:57:21.931Z","pid":10077,"message":"UpdateAllMirrorsWorker JID-06aeaa3b0aadacf9981f368e: done: 0.139 sec","job_status":"done","duration":0.139,"completed_at":"2018-04-03T22:57:22.071Z"}
`

For Omnibus GitLab installations, add the configuration option:

`ruby
sidekiq['log_format'] = 'json'
`

For source installations, edit the gitlab.yml and set the Sidekiq
log_format configuration option:


	```yaml
	## Sidekiq
sidekiq:


log_format: json








```

gitlab-shell.log

This file lives in /var/log/gitlab/gitlab-shell/gitlab-shell.log for
Omnibus GitLab packages or in /home/git/gitlab-shell/gitlab-shell.log for
installations from source.

GitLab shell is used by Gitlab for executing Git commands and provide
SSH access to Git repositories. For example:

`
I, [2015-02-13T06:17:00.671315 #9291] INFO -- : Adding project root/example.git at </var/opt/gitlab/git-data/repositories/root/dcdcdcdcd.git>.
I, [2015-02-13T06:17:00.679433 #9291] INFO -- : Moving existing hooks directory and symlinking global hooks directory for /var/opt/gitlab/git-data/repositories/root/example.git.
`

User clone/fetch activity using ssh transport appears in this log as executing git command <gitaly-upload-pack….

unicorn_stderr.log

This file lives in /var/log/gitlab/unicorn/unicorn_stderr.log for
Omnibus GitLab packages or in /home/git/gitlab/log/unicorn_stderr.log for
installations from source.

Unicorn is a high-performance forking Web server which is used for
serving the GitLab application. You can look at this log if, for
example, your application does not respond. This log contains all
information about the state of unicorn processes at any given time.

`
I, [2015-02-13T06:14:46.680381 #9047] INFO -- : Refreshing Gem list
I, [2015-02-13T06:14:56.931002 #9047] INFO -- : listening on addr=127.0.0.1:8080 fd=12
I, [2015-02-13T06:14:56.931381 #9047] INFO -- : listening on addr=/var/opt/gitlab/gitlab-rails/sockets/gitlab.socket fd=13
I, [2015-02-13T06:14:56.936638 #9047] INFO -- : master process ready
I, [2015-02-13T06:14:56.946504 #9092] INFO -- : worker=0 spawned pid=9092
I, [2015-02-13T06:14:56.946943 #9092] INFO -- : worker=0 ready
I, [2015-02-13T06:14:56.947892 #9094] INFO -- : worker=1 spawned pid=9094
I, [2015-02-13T06:14:56.948181 #9094] INFO -- : worker=1 ready
W, [2015-02-13T07:16:01.312916 #9094] WARN -- : #<Unicorn::HttpServer:0x0000000208f618>: worker (pid: 9094) exceeds memory limit (320626688 bytes > 247066940 bytes)
W, [2015-02-13T07:16:01.313000 #9094] WARN -- : Unicorn::WorkerKiller send SIGQUIT (pid: 9094) alive: 3621 sec (trial 1)
I, [2015-02-13T07:16:01.530733 #9047] INFO -- : reaped #<Process::Status: pid 9094 exit 0> worker=1
I, [2015-02-13T07:16:01.534501 #13379] INFO -- : worker=1 spawned pid=13379
I, [2015-02-13T07:16:01.534848 #13379] INFO -- : worker=1 ready
`

repocheck.log

This file lives in /var/log/gitlab/gitlab-rails/repocheck.log for
Omnibus GitLab packages or in /home/git/gitlab/log/repocheck.log for
installations from source.

It logs information whenever a [repository check is run][repocheck] on a project.

Reconfigure Logs

Reconfigure log files live in /var/log/gitlab/reconfigure for Omnibus GitLab
packages. Installations from source don’t have reconfigure logs. A reconfigure log
is populated whenever gitlab-ctl reconfigure is run manually or as part of an upgrade.

Reconfigure logs files are named according to the UNIX timestamp of when the reconfigure
was initiated, such as 1509705644.log

sidekiq_exporter.log

If Prometheus metrics and the Sidekiq Exporter are both enabled, Sidekiq will
start a Web server and listen to the defined port (default: 3807). Access logs
will be generated in /var/log/gitlab/gitlab-rails/sidekiq_exporter.log for
Omnibus GitLab packages or in /home/git/gitlab/log/sidekiq_exporter.log for
installations from source.

[repocheck]: repository_checks.md

 This document was moved to [another location](operations/index.md).

 # GitLab Plugin system

> Introduced in GitLab 10.6.

With custom plugins, GitLab administrators can introduce custom integrations
without modifying GitLab’s source code.

NOTE: Note:
Instead of writing and supporting your own plugin you can make changes
directly to the GitLab source code and contribute back upstream. This way we can
ensure functionality is preserved across versions and covered by tests.

NOTE: Note:
Plugins must be configured on the filesystem of the GitLab server. Only GitLab
server administrators will be able to complete these tasks. Explore
[system hooks] or [webhooks] as an option if you do not have filesystem access.

A plugin will run on each event so it’s up to you to filter events or projects
within a plugin code. You can have as many plugins as you want. Each plugin will
be triggered by GitLab asynchronously in case of an event. For a list of events
see the [system hooks] documentation.

Setup

The plugins must be placed directly into the plugins directory, subdirectories
will be ignored. There is an
[example directory inside plugins](https://gitlab.com/gitlab-org/gitlab-ce/tree/master/plugins/examples)
where you can find some basic examples.

Follow the steps below to set up a custom hook:

	On the GitLab server, navigate to the plugin directory.
For an installation from source the path is usually
/home/git/gitlab/plugins/. For Omnibus installs the path is
usually /opt/gitlab/embedded/service/gitlab-rails/plugins.

For [highly available] configurations, your hook file should exist on each
application server.

	Inside the plugins directory, create a file with a name of your choice,
without spaces or special characters.

1. Make the hook file executable and make sure it’s owned by the git user.
1. Write the code to make the plugin function as expected. That can be

in any language, and ensure the ‘shebang’ at the top properly reflects the
language type. For example, if the script is in Ruby the shebang will
probably be #!/usr/bin/env ruby.

	The data to the plugin will be provided as JSON on STDIN. It will be exactly
same as for [system hooks]

That’s it! Assuming the plugin code is properly implemented, the hook will fire
as appropriate. The plugins file list is updated for each event, there is no
need to restart GitLab to apply a new plugin.

If a plugin executes with non-zero exit code or GitLab fails to execute it, a
message will be logged to plugin.log.

Validation

Writing your own plugin can be tricky and it’s easier if you can check it
without altering the system. A rake task is provided so that you can use it
in a staging environment to test your plugin before using it in production.
The rake task will use a sample data and execute each of plugin. The output
should be enough to determine if the system sees your plugin and if it was
executed without errors.

```bash
# Omnibus installations
sudo gitlab-rake plugins:validate

# Installations from source
cd /home/git/gitlab
bundle exec rake plugins:validate RAILS_ENV=production
```

Example of output:

`
Validating plugins from /plugins directory
* /home/git/gitlab/plugins/save_to_file.clj succeed (zero exit code)
* /home/git/gitlab/plugins/save_to_file.rb failure (non-zero exit code)
`

[system hooks]: ../system_hooks/system_hooks.md
[webhooks]: ../user/project/integrations/webhooks.md
[highly available]: ./high_availability/README.md

 # Polling configuration

The GitLab UI polls for updates for different resources (issue notes, issue
titles, pipeline statuses, etc.) on a schedule appropriate to the resource.

In “Application settings -> Real-time features” you can configure “Polling
interval multiplier”. This multiplier is applied to all resources at once,
and decimal values are supported. For the sake of the examples below, we will
say that issue notes poll every 2 seconds, and issue titles poll every 5
seconds; these are _not_ the actual values.

	1 is the default, and recommended for most installations. (Issue notes poll

every 2 seconds, and issue titles poll every 5 seconds.)
- 0 will disable UI polling completely. (On the next poll, clients will stop
polling for updates.)
- A value greater than 1 will slow polling down. If you see issues with
database load from lots of clients polling for updates, increasing the
multiplier from 1 can be a good compromise, rather than disabling polling
completely. (For example: If this is set to 2, then issue notes poll every 4
seconds, and issue titles poll every 10 seconds.)
- A value between 0 and 1 will make the UI poll more frequently (so updates
will show in other sessions faster), but is not recommended. 1 should be
fast enough. (For example, if this is set to 0.5, then issue notes poll every
1 second, and issue titles poll every 2.5 seconds.)

 # Reply by email

GitLab can be set up to allow users to comment on issues and merge requests by
replying to notification emails.

Requirement

Make sure [incoming email](incoming_email.md) is setup.

How it works?

1. GitLab sends a notification email

When GitLab sends a notification and Reply by email is enabled, the Reply-To
header is set to the address defined in your GitLab configuration, with the
%{key} placeholder (if present) replaced by a specific “reply key”. In
addition, this “reply key” is also added to the References header.

2. You reply to the notification email

When you reply to the notification email, your email client will:

	send the email to the Reply-To address it got from the notification email

	set the In-Reply-To header to the value of the Message-ID header from the
notification email

	set the References header to the value of the Message-ID plus the value of
the notification email’s References header.

3. GitLab receives your reply to the notification email

When GitLab receives your reply, it will look for the “reply key” in the
following headers, in this order:

1. the To header
1. the References header

If it finds a reply key, it will be able to leave your reply as a comment on
the entity the notification was about (issue, merge request, commit…).

For more details about the Message-ID, In-Reply-To, and References headers,
please consult [RFC 5322](https://tools.ietf.org/html/rfc5322#section-3.6.4).

 # Set up Postfix for incoming email

This document will take you through the steps of setting up a basic Postfix mail
server with IMAP authentication on Ubuntu, to be used with [incoming email].

The instructions make the assumption that you will be using the email address incoming@gitlab.example.com, that is, username incoming on host gitlab.example.com. Don’t forget to change it to your actual host when executing the example code snippets.

Configure your server firewall

	Open up port 25 on your server so that people can send email into the server over SMTP.

	If the mail server is different from the server running GitLab, open up port 143 on your server so that GitLab can read email from the server over IMAP.

Install packages

	Install the postfix package if it is not installed already:

`sh
sudo apt-get install postfix
`

When asked about the environment, select ‘Internet Site’. When asked to confirm the hostname, make sure it matches gitlab.example.com.

	Install the mailutils package.

`sh
sudo apt-get install mailutils
`

Create user

	Create a user for incoming email.

`sh
sudo useradd -m -s /bin/bash incoming
`

	Set a password for this user.

`sh
sudo passwd incoming
`

Be sure not to forget this, you’ll need it later.

Test the out-of-the-box setup

	Connect to the local SMTP server:

`sh
telnet localhost 25
`

You should see a prompt like this:

`sh
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
220 gitlab.example.com ESMTP Postfix (Ubuntu)
`

If you get a Connection refused error instead, verify that postfix is running:

`sh
sudo postfix status
`

If it is not, start it:

`sh
sudo postfix start
`

	Send the new incoming user a dummy email to test SMTP, by entering the following into the SMTP prompt:


```
ehlo localhost
mail from: root@localhost
rcpt to: incoming@localhost
data
Subject: Re: Some issue

Sounds good!
.
quit
```

**Note:** The . is a literal period on its own line.

_**Note:** If you receive an error after entering rcpt to: incoming@localhost
then your Postfix my_network configuration is not correct. The error will
say ‘Temporary lookup failure’. See
[Configure Postfix to receive email from the Internet](#configure-postfix-to-receive-email-from-the-internet)._

	Check if the incoming user received the email:

`sh
su - incoming
mail
`

You should see output like this:

`
"/var/mail/incoming": 1 message 1 unread
>U 1 root@localhost 59/2842 Re: Some issue
`

Quit the mail app:

`sh
q
`

	Log out of the incoming account and go back to being root:

`sh
logout
`

Configure Postfix to use Maildir-style mailboxes

Courier, which we will install later to add IMAP authentication, requires mailboxes to have the Maildir format, rather than mbox.

	Configure Postfix to use Maildir-style mailboxes:

`sh
sudo postconf -e "home_mailbox = Maildir/"
`

	Restart Postfix:

`sh
sudo /etc/init.d/postfix restart
`

	Test the new setup:

1. Follow steps 1 and 2 of _[Test the out-of-the-box setup](#test-the-out-of-the-box-setup)_.
1. Check if the incoming user received the email:

`sh
su - incoming
MAIL=/home/incoming/Maildir
mail
`

You should see output like this:

`
"/home/incoming/Maildir": 1 message 1 unread
>U 1 root@localhost 59/2842 Re: Some issue
`

Quit the mail app:

`sh
q
`

_**Note:** If mail returns an error Maildir: Is a directory then your
version of mail doesn’t support Maildir style mailboxes. Install
heirloom-mailx by running sudo apt-get install heirloom-mailx. Then,
try the above steps again, substituting heirloom-mailx for the mail
command._

	Log out of the incoming account and go back to being root:

`sh
logout
`

Install the Courier IMAP server

	Install the courier-imap package:

`sh
sudo apt-get install courier-imap
`

And start imapd:
`sh
imapd start
`

	
	The courier-authdaemon isn’t started after installation. Without it, imap authentication will fail:
	`sh
sudo service courier-authdaemon start
`
You can also configure courier-authdaemon to start on boot:
`sh
sudo systemctl enable courier-authdaemon
`

Configure Postfix to receive email from the internet

	Let Postfix know about the domains that it should consider local:

`sh
sudo postconf -e "mydestination = gitlab.example.com, localhost.localdomain, localhost"
`

	Let Postfix know about the IPs that it should consider part of the LAN:

We’ll assume 192.168.1.0/24 is your local LAN. You can safely skip this step if you don’t have other machines in the same local network.

`sh
sudo postconf -e "mynetworks = 127.0.0.0/8, 192.168.1.0/24"
`

	Configure Postfix to receive mail on all interfaces, which includes the internet:

`sh
sudo postconf -e "inet_interfaces = all"
`

	Configure Postfix to use the + delimiter for sub-addressing:

`sh
sudo postconf -e "recipient_delimiter = +"
`

	Restart Postfix:

`sh
sudo service postfix restart
`

Test the final setup

	Test SMTP under the new setup:

	Connect to the SMTP server:

`sh
telnet gitlab.example.com 25
`

You should see a prompt like this:

`sh
Trying 123.123.123.123...
Connected to gitlab.example.com.
Escape character is '^]'.
220 gitlab.example.com ESMTP Postfix (Ubuntu)
`

If you get a Connection refused error instead, make sure your firewall is setup to allow inbound traffic on port 25.

	Send the incoming user a dummy email to test SMTP, by entering the following into the SMTP prompt:


```
ehlo gitlab.example.com
mail from: root@gitlab.example.com
rcpt to: incoming@gitlab.example.com
data
Subject: Re: Some issue

Sounds good!
.
quit
```

(Note: The . is a literal period on its own line)

	Check if the incoming user received the email:

`sh
su - incoming
MAIL=/home/incoming/Maildir
mail
`

You should see output like this:

`
"/home/incoming/Maildir": 1 message 1 unread
>U 1 root@gitlab.example.com 59/2842 Re: Some issue
`

Quit the mail app:

`sh
q
`

	Log out of the incoming account and go back to being root:

`sh
logout
`

	Test IMAP under the new setup:

	Connect to the IMAP server:

`sh
telnet gitlab.example.com 143
`

You should see a prompt like this:

`sh
Trying 123.123.123.123...
Connected to mail.example.gitlab.com.
Escape character is '^]'.
- OK [CAPABILITY IMAP4rev1 UIDPLUS CHILDREN NAMESPACE THREAD=ORDEREDSUBJECT THREAD=REFERENCES SORT QUOTA IDLE ACL ACL2=UNION] Courier-IMAP ready. Copyright 1998-2011 Double Precision, Inc. See COPYING for distribution information.
`

	Sign in as the incoming user to test IMAP, by entering the following into the IMAP prompt:

`
a login incoming PASSWORD
`

Replace PASSWORD with the password you set on the incoming user earlier.

You should see output like this:

`
a OK LOGIN Ok.
`

	Disconnect from the IMAP server:

`sh
a logout
`

Done!

If all the tests were successful, Postfix is all set up and ready to receive email! Continue with the [incoming email] guide to configure GitLab.

—

This document was adapted from https://help.ubuntu.com/community/PostfixBasicSetupHowto, by contributors to the Ubuntu documentation wiki.

[incoming email]: incoming_email.md

 # Repository checks

> [Introduced][ce-3232] in GitLab 8.7. It is OFF by default because it still
causes too many false alarms.

Git has a built-in mechanism, [git fsck][git-fsck], to verify the
integrity of all data committed to a repository. GitLab administrators
can trigger such a check for a project via the project page under the
admin panel. The checks run asynchronously so it may take a few minutes
before the check result is visible on the project admin page. If the
checks failed you can see their output on the admin log page under
‘repocheck.log’.

Periodic checks

When enabled, GitLab periodically runs a repository check on all project
repositories and wiki repositories in order to detect data corruption.
A project will be checked no more than once per month. If any projects
fail their repository checks all GitLab administrators will receive an email
notification of the situation. This notification is sent out once a week,
by default, midnight at the start of Sunday.

Disabling periodic checks

You can disable the periodic checks on the ‘Settings’ page of the admin
panel.

What to do if a check failed

If the repository check fails for some repository you should look up the error
in repocheck.log:

	in the [admin panel](logs.md#repocheck.log)

	
	or on disk, see:
	
	/var/log/gitlab/gitlab-rails for Omnibus installations

	/home/git/gitlab/log for installations from source

If for some reason the periodic repository check caused a lot of false
alarms you can choose to clear all repository check states by
clicking “Clear all repository checks” on the Settings page of the
admin panel (/admin/application_settings).

—
[ce-3232]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/3232 “Auto git fsck”
[git-fsck]: https://git-scm.com/docs/git-fsck “git fsck documentation”

 # Repository storage paths

> [Introduced][ce-4578] in GitLab 8.10.

GitLab allows you to define multiple repository storage paths to distribute the
storage load between several mount points.

>**Notes:**
>
- You must have at least one storage path called default.
- The paths are defined in key-value pairs. The key is an arbitrary name you

can pick to name the file path.

	The target directories and any of its subpaths must not be a symlink.

Configure GitLab

>**Warning:**
In order for [backups] to work correctly, the storage path must not be a
mount point and the GitLab user should have correct permissions for the parent
directory of the path. In Omnibus GitLab this is taken care of automatically,
but for source installations you should be extra careful.
>
The thing is that for compatibility reasons gitlab.yml has a different
structure than Omnibus. In gitlab.yml you indicate the path for the
repositories, for example /home/git/repositories, while in Omnibus you
indicate git_data_dirs, which for the example above would be /home/git.
Then, Omnibus will create a repositories directory under that path to use with
gitlab.yml.
>
This little detail matters because while restoring a backup, the current
contents of /home/git/repositories [are moved to][raketask] /home/git/repositories.old,
so if /home/git/repositories is the mount point, then mv would be moving
things between mount points, and bad things could happen. Ideally,
/home/git would be the mount point, so then things would be moving within the
same mount point. This is guaranteed with Omnibus installations (because they
don’t specify the full repository path but the parent path), but not for source
installations.

—

Now that you’ve read that big fat warning above, let’s edit the configuration
files and add the full paths of the alternative repository storage paths. In
the example below, we add two more mountpoints that are named nfs and cephfs
respectively.

For installations from source

	Edit gitlab.yml and add the storage paths:


```yaml
repositories:


# Paths where repositories can be stored. Give the canonicalized absolute pathname.
# NOTE: REPOS PATHS MUST NOT CONTAIN ANY SYMLINK!!!
storages: # You must have at least a ‘default’ storage path.



	default:
	path: /home/git/repositories



	nfs:
	path: /mnt/nfs/repositories



	cephfs:
	path: /mnt/cephfs/repositories











```


	[Restart GitLab][restart-gitlab] for the changes to take effect.

>**Note:**
The [gitlab_shell: repos_path entry][repospath] in gitlab.yml will be
deprecated and replaced by repositories: storages in the future, so if you
are upgrading from a version prior to 8.10, make sure to add the configuration
as described in the step above. After you make the changes and confirm they are
working, you can remove the repos_path line.

—

For Omnibus installations

	Edit /etc/gitlab/gitlab.rb by appending the rest of the paths to the
default one:


```ruby
git_data_dirs({


“default” => { “path” => “/var/opt/gitlab/git-data” },
“nfs” => { “path” => “/mnt/nfs/git-data” },
“cephfs” => { “path” => “/mnt/cephfs/git-data” }




Note that Omnibus stores the repositories in a repositories subdirectory
of the git-data directory.








## Choose where new project repositories will be stored

Once you set the multiple storage paths, you can choose where new projects will
be stored via the Application Settings in the Admin area.

![Choose repository storage path in Admin area](img/repository_storages_admin_ui.png)

Beginning with GitLab 8.13.4, multiple paths can be chosen. New projects will be
randomly placed on one of the selected paths.

## Handling failing repository storage

> [Introduced][ce-11449] in GitLab 9.5.

When GitLab detects access to the repositories storage fails repeatedly, it can
gracefully prevent attempts to access the storage. This might be useful when
the repositories are stored somewhere on the network.

This can be configured from the admin interface:

![circuitbreaker configuration](img/circuitbreaker_config.png)

Number of access attempts: The number of attempts GitLab will make to access a
storage when probing a shard.

Number of failures before backing off: The number of failures after which
GitLab will start temporarily disabling access to a storage shard on a host.

Maximum git storage failures: The number of failures of after which GitLab will
completely prevent access to the storage. The number of failures can be reset in
the admin interface: https://gitlab.example.com/admin/health_check or using the
[api](../api/repository_storage_health.md) to allow access to the storage again.

Seconds to wait after a storage failure: When access to a storage fails. GitLab
will prevent access to the storage for the time specified here. This allows the
filesystem to recover.

Seconds before reseting failure information: The time in seconds GitLab will
keep failure information. When no failures occur during this time, information about the
mount is reset.

Seconds to wait for a storage access attempt: The time in seconds GitLab will
try to access storage. After this time a timeout error will be raised.

To enable the circuitbreaker for repository storage you can flip the feature flag from a rails console:

`
Feature.enable('git_storage_circuit_breaker')
`

Alternatively it can be enabled by setting true in the GIT_STORAGE_CIRCUIT_BREAKER environment variable.
This approach would be used when enabling the circuit breaker on a single host.

When storage failures occur, this will be visible in the admin interface like this:

![failing storage](img/failing_storage.png)

To allow access to all storages, click the Reset git storage health information button.

[ce-4578]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/4578
[restart-gitlab]: restart_gitlab.md#installations-from-source
[reconfigure-gitlab]: restart_gitlab.md#omnibus-gitlab-reconfigure
[backups]: ../raketasks/backup_restore.md
[raketask]: https://gitlab.com/gitlab-org/gitlab-ce/blob/033e5423a2594e08a7ebcd2379bd2331f4c39032/lib/backup/repository.rb#L54-56
[repospath]: https://gitlab.com/gitlab-org/gitlab-ce/blob/8-9-stable/config/gitlab.yml.example#L457
[ce-11449]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/11449



            

          

      

      

    

  

    
      
          
            
  # Repository Storage Types

> [Introduced][ce-28283] in GitLab 10.0.

## Legacy Storage

Legacy Storage is the storage behavior prior to version 10.0. For historical
reasons, GitLab replicated the same mapping structure from the projects URLs:


	Project’s repository: #{namespace}/#{project_name}.git


	Project’s wiki: #{namespace}/#{project_name}.wiki.git




This structure made it simple to migrate from existing solutions to GitLab and
easy for Administrators to find where the repository is stored.

On the other hand this has some drawbacks:

Storage location will concentrate huge amount of top-level namespaces. The
impact can be reduced by the introduction of [multiple storage
paths][storage-paths].

Because backups are a snapshot of the same URL mapping, if you try to recover a
very old backup, you need to verify whether any project has taken the place of
an old removed or renamed project sharing the same URL. This means that
mygroup/myproject from your backup may not be the same original project that
is at that same URL today.

Any change in the URL will need to be reflected on disk (when groups / users or
projects are renamed). This can add a lot of load in big installations,
especially if using any type of network based filesystem.

For GitLab Geo in particular: Geo does work with legacy storage, but in some
edge cases due to race conditions it can lead to errors when a project is
renamed multiple times in short succession, or a project is deleted and
recreated under the same name very quickly. We expect these race events to be
rare, and we have not observed a race condition side-effect happening yet.

This pattern also exists in other objects stored in GitLab, like issue
Attachments, GitLab Pages artifacts, Docker Containers for the integrated
Registry, etc.

## Hashed Storage

> Warning: Hashed storage is in Beta. For the latest updates, check the
> associated [issue](https://gitlab.com/gitlab-com/infrastructure/issues/2821)
> and please report any problems you encounter.

Hashed Storage is the new storage behavior we are rolling out with 10.0. Instead
of coupling project URL and the folder structure where the repository will be
stored on disk, we are coupling a hash, based on the project’s ID. This makes
the folder structure immutable, and therefore eliminates any requirement to
synchronize state from URLs to disk structure. This means that renaming a group,
user, or project will cost only the database transaction, and will take effect
immediately.

The hash also helps to spread the repositories more evenly on the disk, so the
top-level directory will contain less folders than the total amount of top-level
namespaces.

The hash format is based on the hexadecimal representation of SHA256:
SHA256(project.id). The top-level folder uses the first 2 characters, followed
by another folder with the next 2 characters. They are both stored in a special
@hashed folder, to be able to co-exist with existing Legacy Storage projects:

```ruby
Project’s repository:
“@hashed/#{hash[0..1]}/#{hash[2..3]}/#{hash}.git”

Wiki’s repository:
“@hashed/#{hash[0..1]}/#{hash[2..3]}/#{hash}.wiki.git”
```

### How to migrate to Hashed Storage

In GitLab, go to Admin > Settings, find the Repository Storage section
and select “_Use hashed storage paths for newly created and renamed projects_”.

To migrate your existing projects to the new storage type, check the specific
[rake tasks].

[ce-28283]: https://gitlab.com/gitlab-org/gitlab-ce/issues/28283
[rake tasks]: raketasks/storage.md#migrate-existing-projects-to-hashed-storage
[storage-paths]: repository_storage_types.md

#### Rollback

There is no automated rollback implemented. Below are the steps required to rollback
from each storage migration.

The rollback has to be performed in the reverse order. To get into “Legacy” state,
you need to rollback Attachments first, then Project.

Also note that if Geo is enabled, after the migration was triggered, an event is generated
to replicate the operation on any Secondary node. That means the on disk changes will also
need to be performed on these nodes as well. Database changes will propagate without issues.

You must make sure the migration event was already processed or otherwise it may migrate
the files back to Hashed state again.

##### Attachments

To rollback single Attachment migration, rename aa/bb/abcdef1234567890… folder back to namespace/project.

Both folder names can be generated by the FileUploader.absolute_base_dir(project), you
just need to switch the version from the project back to the previous one.

```ruby
project.storage_version
=> 2

FileUploader.absolute_base_dir(project)
=> “/opt/gitlab/embedded/service/gitlab-rails/public/uploads/@hashed/d4/73/d4735e3a265e16eee03f59718b9b5d03019c07d8b6c51f90da3a666eec13ab35”

project.storage_version = 1

FileUploader.absolute_base_dir(project)
=> “/opt/gitlab/embedded/service/gitlab-rails/public/uploads/gitlab/gitlab-shell-renamed”
```

##### Project

To rollback single Project migration, move @hashed/aa/bb/aabbcdef1234567890abcdef.git and @hashed/aa/bb/aabbcdef1234567890abcdef.wiki.git
back to namespace/project.git and namespace/project.wiki.git respectively and switch the version from the project back to null.

### Hashed Storage coverage

We are incrementally moving every storable object in GitLab to the Hashed
Storage pattern. You can check the current coverage status below (and also see
the [issue](https://gitlab.com/gitlab-com/infrastructure/issues/2821)).

Note that things stored in an S3 compatible endpoint will not have the downsides
mentioned earlier, if they are not prefixed with #{namespace}/#{project_name},
which is true for CI Cache and LFS Objects.


Storable Object | Legacy Storage | Hashed Storage | S3 Compatible | GitLab Version |

————— | ————– | ————– | ————- | ————– |

Repository      | Yes            | Yes            | -             | 10.0           |

Attachments     | Yes            | Yes            | -             | 10.2           |

Avatars         | Yes            | No             | -             | -              |

Pages           | Yes            | No             | -             | -              |

Docker Registry | Yes            | No             | -             | -              |

CI Build Logs   | No             | No             | -             | -              |

CI Artifacts    | No             | No             | Yes           | 9.4 / 10.6     |

CI Cache        | No             | No             | Yes           | -              |

LFS Objects     | Yes            | Similar        | Yes           | 10.0 / 10.7    |



#### Implementation Details

##### Avatars

Each file is stored in a folder with its id from the database. The filename is always avatar.png for user avatars.
When avatar is replaced, Upload model is destroyed and a new one takes place with different id.

##### CI Artifacts

CI Artifacts are S3 compatible since 9.4 (GitLab Premium), and available in GitLab Core since 10.6.

##### LFS Objects

LFS Objects implements a similar storage pattern using 2 chars, 2 level folders, following git own implementation:

```ruby
“shared/lfs-objects/#{oid[0..1}/#{oid[2..3]}/#{oid[4..-1]}”

Based on object oid: 8909029eb962194cfb326259411b22ae3f4a814b5be4f80651735aeef9f3229c, path will be:
“shared/lfs-objects/89/09/029eb962194cfb326259411b22ae3f4a814b5be4f80651735aeef9f3229c”
```

They are also S3 compatible since 10.0 (GitLab Premium), and available in GitLab Core since 10.7.



            

          

      

      

    

  

    
      
          
            
  This document was moved to [another location](repository_storage_paths.md).



            

          

      

      

    

  

    
      
          
            
  # How to restart GitLab

Depending on how you installed GitLab, there are different methods to restart
its service(s).

If you want the TL;DR versions, jump to:


	[Omnibus GitLab restart](#omnibus-gitlab-restart)


	[Omnibus GitLab reconfigure](#omnibus-gitlab-reconfigure)


	[Source installation restart](#installations-from-source)




## Omnibus installations

If you have used the [Omnibus packages][omnibus-dl] to install GitLab, then
you should already have gitlab-ctl in your PATH.

gitlab-ctl interacts with the Omnibus packages and can be used to restart the
GitLab Rails application (Unicorn) as well as the other components, like:


	GitLab Workhorse


	Sidekiq


	PostgreSQL (if you are using the bundled one)


	NGINX (if you are using the bundled one)


	Redis (if you are using the bundled one)


	[Mailroom][]


	Logrotate




### Omnibus GitLab restart

There may be times in the documentation where you will be asked to _restart_
GitLab. In that case, you need to run the following command:

`bash
sudo gitlab-ctl restart
`

The output should be similar to this:

`
ok: run: gitlab-workhorse: (pid 11291) 1s
ok: run: logrotate: (pid 11299) 0s
ok: run: mailroom: (pid 11306) 0s
ok: run: nginx: (pid 11309) 0s
ok: run: postgresql: (pid 11316) 1s
ok: run: redis: (pid 11325) 0s
ok: run: sidekiq: (pid 11331) 1s
ok: run: unicorn: (pid 11338) 0s
`

To restart a component separately, you can append its service name to the
restart command. For example, to restart only NGINX you would run:

`bash
sudo gitlab-ctl restart nginx
`

To check the status of GitLab services, run:

`bash
sudo gitlab-ctl status
`

Notice that all services say ok: run.

Sometimes, components time out during the restart and sometimes they get stuck.
In that case, you can use gitlab-ctl kill <service> to send the SIGKILL
signal to the service, for example sidekiq. After that, a restart should
perform fine.

As a last resort, you can try to
[reconfigure GitLab](#omnibus-gitlab-reconfigure) instead.

### Omnibus GitLab reconfigure

There may be times in the documentation where you will be asked to _reconfigure_
GitLab. Remember that this method applies only for the Omnibus packages.

Reconfigure Omnibus GitLab with:

`bash
sudo gitlab-ctl reconfigure
`

Reconfiguring GitLab should occur in the event that something in its
configuration (/etc/gitlab/gitlab.rb) has changed.

When you run this command, [Chef], the underlying configuration management
application that powers Omnibus GitLab, will make sure that all directories,
permissions, services, etc., are in place and in the same shape that they were
initially shipped.

It will also restart GitLab components where needed, if any of their
configuration files have changed.

If you manually edit any files in /var/opt/gitlab that are managed by Chef,
running reconfigure will revert the changes AND restart the services that
depend on those files.

## Installations from source

If you have followed the official installation guide to [install GitLab from
source][install], run the following command to restart GitLab:

`
sudo service gitlab restart
`

The output should be similar to this:

`
Shutting down GitLab Unicorn
Shutting down GitLab Sidekiq
Shutting down GitLab Workhorse
Shutting down GitLab MailRoom
...
GitLab is not running.
Starting GitLab Unicorn
Starting GitLab Sidekiq
Starting GitLab Workhorse
Starting GitLab MailRoom
...
The GitLab Unicorn web server with pid 28059 is running.
The GitLab Sidekiq job dispatcher with pid 28176 is running.
The GitLab Workhorse with pid 28122 is running.
The GitLab MailRoom email processor with pid 28114 is running.
GitLab and all its components are up and running.
`

This should restart Unicorn, Sidekiq, GitLab Workhorse and [Mailroom][]
(if enabled). The init service file that does all the magic can be found on
your server in /etc/init.d/gitlab.

—

If you are using other init systems, like systemd, you can check the
[GitLab Recipes][gl-recipes] repository for some unofficial services. These are
not officially supported so use them at your own risk.

[omnibus-dl]: https://about.gitlab.com/downloads/ “Download the Omnibus packages”
[install]: ../install/installation.md “Documentation to install GitLab from source”
[mailroom]: reply_by_email.md “Used for replying by email in GitLab issues and merge requests”
[chef]: https://www.chef.io/chef/ “Chef official website”
[src-service]: https://gitlab.com/gitlab-org/gitlab-ce/blob/master/lib/support/init.d/gitlab “GitLab init service file”
[gl-recipes]: https://gitlab.com/gitlab-org/gitlab-recipes/tree/master/init “GitLab Recipes repository”



            

          

      

      

    

  

    
      
          
            
  # Uploads administration

>**Notes:**
Uploads represent all user data that may be sent to GitLab as a single file. As an example, avatars and notes’ attachments are uploads. Uploads are integral to GitLab functionality, and therefore cannot be disabled.

### Using local storage

>**Notes:**
This is the default configuration

To change the location where the uploads are stored locally, follow the steps
below.

—

In Omnibus installations:

>**Notes:**
For historical reasons, uploads are stored into a base directory, which by default is uploads/-/system. It is strongly discouraged to change this configuration option on an existing GitLab installation.

_The uploads are stored by default in /var/opt/gitlab/gitlab-rails/public/uploads/-/system._


	To change the storage path for example to /mnt/storage/uploads, edit
/etc/gitlab/gitlab.rb and add the following line:


```ruby
gitlab_rails[‘uploads_storage_path’] = “/mnt/storage/”

gitlab_rails[‘uploads_base_dir’] = “uploads”


```









	Save the file and [reconfigure GitLab][] for the changes to take effect.




—

In installations from source:

_The uploads are stored by default in
/home/git/gitlab/public/uploads/-/system._


	To change the storage path for example to /mnt/storage/uploads, edit
/home/git/gitlab/config/gitlab.yml and add or amend the following lines:



	```yaml
	
	uploads:
	storage_path: /mnt/storage
base_dir: uploads


```









	Save the file and [restart GitLab][] for the changes to take effect.




### Using object storage

>**Notes:**
- [Introduced][ee-3867] in [GitLab Enterprise Edition Premium][eep] 10.5.
- Since version 11.1, we support direct_upload to S3.

If you don’t want to use the local disk where GitLab is installed to store the
uploads, you can use an object storage provider like AWS S3 instead.
This configuration relies on valid AWS credentials to be configured already.

### Object Storage Settings

For source installations the following settings are nested under uploads: and then object_store:. On omnibus installs they are prefixed by uploads_object_store_.


Setting | Description | Default |



|---------|————-|---------|
| enabled | Enable/disable object storage | false |
| remote_directory | The bucket name where Uploads will be stored| |
| direct_upload | Set to true to enable direct upload of Uploads without the need of local shared storage. Option may be removed once we decide to support only single storage for all files. | false |
| background_upload | Set to false to disable automatic upload. Option may be removed once upload is direct to S3 | true |
| proxy_download | Set to true to enable proxying all files served. Option allows to reduce egress traffic as this allows clients to download directly from remote storage instead of proxying all data | false |
| connection | Various connection options described below | |

#### S3 compatible connection settings

The connection settings match those provided by [Fog](https://github.com/fog), and are as follows:


Setting | Description | Default |



|---------|————-|---------|
| provider | Always AWS for compatible hosts | AWS |
| aws_access_key_id | AWS credentials, or compatible | |
| aws_secret_access_key | AWS credentials, or compatible | |
| aws_signature_version | AWS signature version to use. 2 or 4 are valid options. Digital Ocean Spaces and other providers may need 2. | 4 |
| region | AWS region | us-east-1 |
| host | S3 compatible host for when not using AWS, e.g. localhost or storage.example.com | s3.amazonaws.com |
| endpoint | Can be used when configuring an S3 compatible service such as [Minio](https://www.minio.io), by entering a URL such as http://127.0.0.1:9000 | (optional) |
| path_style | Set to true to use host/bucket_name/object style paths instead of bucket_name.host/object. Leave as false for AWS S3 | false |

In Omnibus installations:

_The uploads are stored by default in
/var/opt/gitlab/gitlab-rails/public/uploads/-/system._


	Edit /etc/gitlab/gitlab.rb and add the following lines by replacing with
the values you want:


```ruby
gitlab_rails[‘uploads_object_store_enabled’] = true
gitlab_rails[‘uploads_object_store_remote_directory’] = “uploads”
gitlab_rails[‘uploads_object_store_connection’] = {

‘provider’ => ‘AWS’,
‘region’ => ‘eu-central-1’,
‘aws_access_key_id’ => ‘AWS_ACCESS_KEY_ID’,
‘aws_secret_access_key’ => ‘AWS_SECRET_ACCESS_KEY’

>**Note:**
If you are using AWS IAM profiles, be sure to omit the AWS access key and secret access key/value pairs.


```ruby
gitlab_rails[‘uploads_object_store_connection’] = {


‘provider’ => ‘AWS’,
‘region’ => ‘eu-central-1’,
‘use_iam_profile’ => true







1. Save the file and [reconfigure GitLab][] for the changes to take effect.
1. Migrate any existing local uploads to the object storage:

>**Notes:**
These task complies with the BATCH environment variable to process uploads in batch (200 by default). All of the processing will be done in a background worker and requires no downtime.


```bash
gitlab-rake gitlab:uploads:migrate[uploader_class, model_class, mount_point]

Avatars
gitlab-rake “gitlab:uploads:migrate[AvatarUploader, Project, :avatar]”
gitlab-rake “gitlab:uploads:migrate[AvatarUploader, Group, :avatar]”
gitlab-rake “gitlab:uploads:migrate[AvatarUploader, User, :avatar]”

	# Attachments
	gitlab-rake “gitlab:uploads:migrate[AttachmentUploader, Note, :attachment]”
gitlab-rake “gitlab:uploads:migrate[AttachmentUploader, Appearance, :logo]”
gitlab-rake “gitlab:uploads:migrate[AttachmentUploader, Appearance, :header_logo]”

	# Markdown
	gitlab-rake “gitlab:uploads:migrate[FileUploader, Project]”
gitlab-rake “gitlab:uploads:migrate[PersonalFileUploader, Snippet]”
gitlab-rake “gitlab:uploads:migrate[NamespaceFileUploader, Snippet]”
gitlab-rake “gitlab:uploads:migrate[FileUploader, MergeRequest]”


```




—

In installations from source:

_The uploads are stored by default in
/home/git/gitlab/public/uploads/-/system._


	Edit /home/git/gitlab/config/gitlab.yml and add or amend the following
lines:


```yaml
uploads:

	object_store:
	enabled: true
remote_directory: “uploads” # The bucket name
connection:

provider: AWS # Only AWS supported at the moment
aws_access_key_id: AWS_ACESS_KEY_ID
aws_secret_access_key: AWS_SECRET_ACCESS_KEY
region: eu-central-1


```








1. Save the file and [restart GitLab][] for the changes to take effect.
1. Migrate any existing local uploads to the object storage:

>**Notes:**


	These task comply with the BATCH environment variable to process uploads in batch (200 by default). All of the processing will be done in a background worker and requires no downtime.


	To migrate in production use RAILS_ENV=production environment variable.


```bash
sudo -u git -H bundle exec rake gitlab:uploads:migrate

Avatars
sudo -u git -H bundle exec rake “gitlab:uploads:migrate[AvatarUploader, Project, :avatar]”
sudo -u git -H bundle exec rake “gitlab:uploads:migrate[AvatarUploader, Group, :avatar]”
sudo -u git -H bundle exec rake “gitlab:uploads:migrate[AvatarUploader, User, :avatar]”

	# Attachments
	sudo -u git -H bundle exec rake “gitlab:uploads:migrate[AttachmentUploader, Note, :attachment]”
sudo -u git -H bundle exec rake “gitlab:uploads:migrate[AttachmentUploader, Appearance, :logo]”
sudo -u git -H bundle exec rake “gitlab:uploads:migrate[AttachmentUploader, Appearance, :header_logo]”

	# Markdown
	sudo -u git -H bundle exec rake “gitlab:uploads:migrate[FileUploader, Project]”
sudo -u git -H bundle exec rake “gitlab:uploads:migrate[PersonalFileUploader, Snippet]”
sudo -u git -H bundle exec rake “gitlab:uploads:migrate[NamespaceFileUploader, Snippet]”
sudo -u git -H bundle exec rake “gitlab:uploads:migrate[FileUploader, MergeRequest]”


```








[reconfigure gitlab]: restart_gitlab.md#omnibus-gitlab-reconfigure “How to reconfigure Omnibus GitLab”
[restart gitlab]: restart_gitlab.md#installations-from-source “How to restart GitLab”
[eep]: https://about.gitlab.com/gitlab-ee/ “GitLab Enterprise Edition Premium”
[ee-3867]: https://gitlab.com/gitlab-org/gitlab-ee/merge_requests/3867



            

          

      

      

    

  

    
      
          
            
  —
comments: false
—

# Authentication and Authorization

GitLab integrates with the following external authentication and authorization
providers.


	[LDAP](ldap.md) Includes Active Directory, Apple Open Directory, Open LDAP,
and 389 Server


	[OmniAuth](../../integration/omniauth.md) Sign in via Twitter, GitHub, GitLab.com, Google,
Bitbucket, Facebook, Shibboleth, Crowd, Azure and Authentiq ID


	[CAS](../../integration/cas.md) Configure GitLab to sign in using CAS


	[SAML](../../integration/saml.md) Configure GitLab as a SAML 2.0 Service Provider


	[Okta](okta.md) Configure GitLab to sign in using Okta


	[Authentiq](authentiq.md): Enable the Authentiq OmniAuth provider for passwordless authentication






            

          

      

      

    

  

    
      
          
            
  # Authentiq OmniAuth Provider

To enable the Authentiq OmniAuth provider for passwordless authentication you must register an application with Authentiq.

Authentiq will generate a Client ID and the accompanying Client Secret for you to use.


	Get your Client credentials (Client ID and Client Secret) at [Authentiq](https://www.authentiq.com/developers).


	On your GitLab server, open the configuration file:


For omnibus installation
`sh
sudo editor /etc/gitlab/gitlab.rb
`

For installations from source:

`sh
sudo -u git -H editor /home/git/gitlab/config/gitlab.yml
`






	See [Initial OmniAuth Configuration](../../integration/omniauth.md#initial-omniauth-configuration) for initial settings to enable single sign-on and add Authentiq as an OAuth provider.


	Add the provider configuration for Authentiq:


For Omnibus packages:

```ruby
gitlab_rails[‘omniauth_providers’] = [

	{
	“name” => “authentiq”,
“app_id” => “YOUR_CLIENT_ID”,
“app_secret” => “YOUR_CLIENT_SECRET”,
“args” => {

“scope”: ‘aq:name email~rs address aq:push’

}

}

For installations from source:

```yaml
- { name: ‘authentiq’,



app_id: ‘YOUR_CLIENT_ID’,
app_secret: ‘YOUR_CLIENT_SECRET’,
args: {



scope: ‘aq:name email~rs address aq:push’




}







}




```


5. The scope is set to request the user’s name, email (required and signed), and permission to send push notifications to sign in on subsequent visits.
See [OmniAuth Authentiq strategy](https://github.com/AuthentiqID/omniauth-authentiq/wiki/Scopes,-callback-url-configuration-and-responses) for more information on scopes and modifiers.

	Change YOUR_CLIENT_ID and YOUR_CLIENT_SECRET to the Client credentials you received in step 1.

	Save the configuration file.

	[Reconfigure](../restart_gitlab.md#omnibus-gitlab-reconfigure) or [restart GitLab](../restart_gitlab.md#installations-from-source) for the changes to take effect if you installed GitLab via Omnibus or from source respectively.

On the sign in page there should now be an Authentiq icon below the regular sign in form. Click the icon to begin the authentication process.

	If the user has the Authentiq ID app installed in their iOS or Android device, they can scan the QR code, decide what personal details to share and sign in to your GitLab installation.

	If not they will be prompted to download the app and then follow the procedure above.

If everything goes right, the user will be returned to GitLab and will be signed in.

 # Atlassian Crowd OmniAuth Provider

Configure a new Crowd application

1. Choose ‘Applications’ in the top menu, then ‘Add application’.
1. Go through the ‘Add application’ steps, entering the appropriate details.

The screenshot below shows an example configuration.

![Example Crowd application configuration](img/crowd_application.png)

Configure GitLab

	On your GitLab server, open the configuration file.

Omnibus:


	```sh
	sudo editor /etc/gitlab/gitlab.rb





```

Source:


	```sh
	cd /home/git/gitlab

sudo -u git -H editor config/gitlab.yml





```


	See [Initial OmniAuth Configuration](../../integration/omniauth.md#initial-omniauth-configuration)
for initial settings.

	Add the provider configuration:

Omnibus:


	```ruby
	
	gitlab_rails[‘omniauth_providers’] = [
	
	{
	“name” => “crowd”,
“args” => {


“crowd_server_url” => “CROWD_SERVER_URL”,
“application_name” => “YOUR_APP_NAME”,
“application_password” => “YOUR_APP_PASSWORD”




}





}





]





```

Source:


	```
	
	
	{ name: ‘crowd’,
	
	args: {
	crowd_server_url: ‘CROWD_SERVER_URL’,
application_name: ‘YOUR_APP_NAME’,
application_password: ‘YOUR_APP_PASSWORD’ } }

















```


1. Change CROWD_SERVER_URL to the URL of your Crowd server.
1. Change YOUR_APP_NAME to the application name from Crowd applications page.
1. Change YOUR_APP_PASSWORD to the application password you’ve set.
1. Save the configuration file.
1. [Reconfigure][] or [restart][] for the changes to take effect if you

installed GitLab via Omnibus or from source respectively.

On the sign in page there should now be a Crowd tab in the sign in form.

[reconfigure]: ../restart_gitlab.md#omnibus-gitlab-reconfigure
[restart]: ../restart_gitlab.md#installations-from-source

Troubleshooting

If you see an error message like the one below when you sign in after Crowd authentication is configured, you may want to consult the Crowd administrator for the Crowd log file to know the exact cause:

`
could not authorize you from Crowd because invalid credentials
`

Please make sure the Crowd users who need to login to GitLab are authorized to [the application](#configure-a-new-crowd-application) in the step of Authorisation. This could be verified by try “Authentication test” for Crowd as of 2.11.

![Example Crowd application authorisation configuration](img/crowd_application_authorisation.png)

 # JWT OmniAuth provider

To enable the JWT OmniAuth provider, you must register your application with JWT.
JWT will provide you with a secret key for you to use.

	On your GitLab server, open the configuration file.

For Omnibus GitLab:

`sh
sudo editor /etc/gitlab/gitlab.rb
`

For installations from source:

`sh
cd /home/git/gitlab
sudo -u git -H editor config/gitlab.yml
`

1. See [Initial OmniAuth Configuration](../../integration/omniauth.md#initial-omniauth-configuration) for initial settings.
1. Add the provider configuration.

For Omnibus GitLab:

```ruby
gitlab_rails[‘omniauth_providers’] = [



	{ name: ‘jwt’,
	app_secret: ‘YOUR_APP_SECRET’,
args: {



algorithm: ‘HS256’,
uid_claim: ‘email’,
required_claims: [“name”, “email”],
info_maps: { name: “name”, email: “email” },
auth_url: ‘https://example.com/’,
valid_within: nil,




}








}




For installation from source:

```
- { name: ‘jwt’,

app_secret: ‘YOUR_APP_SECRET’,
args: {

algorithm: ‘HS256’,
uid_claim: ‘email’,
required_claims: [“name”, “email”],
info_map: { name: “name”, email: “email” },
auth_url: ‘https://example.com/’,
valid_within: null,

}

}


```

NOTE: Note: For more information on each configuration option refer to
the [OmniAuth JWT usage documentation](https://github.com/mbleigh/omniauth-jwt#usage).




1.  Change YOUR_APP_SECRET to the client secret and set auth_url to your redirect URL.
1.  Save the configuration file.
1.  [Reconfigure GitLab][] or [restart GitLab][] for the changes to take effect if you


installed GitLab via Omnibus or from source respectively.




On the sign in page there should now be a JWT icon below the regular sign in form.
Click the icon to begin the authentication process. JWT will ask the user to
sign in and authorize the GitLab application. If everything goes well, the user
will be redirected to GitLab and will be signed in.

[reconfigure GitLab]: ../restart_gitlab.md#omnibus-gitlab-reconfigure
[restart GitLab]: ../restart_gitlab.md#installations-from-source



            

          

      

      

    

  

    
      
          
            
  [//]: # (Do NOT modify this file in EE documentation. All changes in this)
[//]: # (file should happen in CE, too. If the change is EE-specific, put)
[//]: # (it in ldap-ee.md.)

# LDAP

GitLab integrates with LDAP to support user authentication.
This integration works with most LDAP-compliant directory
servers, including Microsoft Active Directory, Apple Open Directory, Open LDAP,
and 389 Server. GitLab Enterprise Editions include enhanced integration,
including group membership syncing as well as multiple LDAP servers support.

## GitLab EE

The information on this page is relevant for both GitLab CE and EE. For more
details about EE-specific LDAP features, see the
[LDAP Enterprise Edition documentation](https://docs.gitlab.com/ee/administration/auth/ldap-ee.html).

## Security

GitLab assumes that LDAP users are not able to change their LDAP ‘mail’, ‘email’
or ‘userPrincipalName’ attribute. An LDAP user who is allowed to change their
email on the LDAP server can potentially
[take over any account](#enabling-ldap-sign-in-for-existing-gitlab-users)
on your GitLab server.

We recommend against using LDAP integration if your LDAP users are
allowed to change their ‘mail’, ‘email’ or ‘userPrincipalName’  attribute on
the LDAP server.

### User deletion

If a user is deleted from the LDAP server, they will be blocked in GitLab, as
well. Users will be immediately blocked from logging in. However, there is an
LDAP check cache time (sync time) of one hour (see note). This means users that
are already logged in or are using Git over SSH will still be able to access
GitLab for up to one hour. Manually block the user in the GitLab Admin area to
immediately block all access.

NOTE: Note:
GitLab Enterprise Edition Starter supports a
[configurable sync time](https://docs.gitlab.com/ee/administration/auth/ldap-ee.html#adjusting-ldap-user-and-group-sync-schedules),
with a default of one hour.

## Git password authentication

LDAP-enabled users can always authenticate with Git using their GitLab username
or email and LDAP password, even if password authentication for Git is disabled
in the application settings.

## Configuration

NOTE: Note:
In GitLab Enterprise Edition Starter, you can configure multiple LDAP servers
to connect to one GitLab server.

For a complete guide on configuring LDAP with GitLab Community Edition, please check
the admin guide [How to configure LDAP with GitLab CE](how_to_configure_ldap_gitlab_ce/index.md).

To enable LDAP integration you need to add your LDAP server settings in
/etc/gitlab/gitlab.rb or /home/git/gitlab/config/gitlab.yml for Omnibus
GitLab and installations from source respectively.

There is a Rake task to check LDAP configuration. After configuring LDAP
using the documentation below, see [LDAP check Rake task](../raketasks/check.md#ldap-check)
for information on the LDAP check Rake task.

Prior to version 7.4, GitLab used a different syntax for configuring
LDAP integration. The old LDAP integration syntax still works but may be
removed in a future version. If your gitlab.rb or gitlab.yml file contains
LDAP settings in both the old syntax and the new syntax, only the __old__
syntax will be used by GitLab.

The configuration inside gitlab_rails[‘ldap_servers’] below is sensitive to
incorrect indentation. Be sure to retain the indentation given in the example.
Copy/paste can sometimes cause problems.

NOTE: Note:
The encryption value ssl corresponds to ‘Simple TLS’ in the LDAP
library. tls corresponds to StartTLS, not to be confused with regular TLS.
Normally, if you specify ssl it will be on port 636, while tls (StartTLS)
would be on port 389. plain also operates on port 389.

Omnibus configuration

```ruby
gitlab_rails[‘ldap_enabled’] = true
gitlab_rails[‘ldap_servers’] = YAML.load <<-EOS # remember to close this block with ‘EOS’ below
##
‘main’ is the GitLab ‘provider ID’ of this LDAP server
##
main:

##
A human-friendly name for your LDAP server. It is OK to change the label later,
for instance if you find out it is too large to fit on the web page.
##
Example: ‘Paris’ or ‘Acme, Ltd.’
##
label: ‘LDAP’

##
Example: ‘ldap.mydomain.com’
##
host: ‘_your_ldap_server’

##
This port is an example, it is sometimes different but it is always an
integer and not a string.
##
port: 389 # usually 636 for SSL
uid: ‘sAMAccountName’ # This should be the attribute, not the value that maps to uid.

##
Examples: ‘america\momo’ or ‘CN=Gitlab Git,CN=Users,DC=mydomain,DC=com’
##
bind_dn: ‘_the_full_dn_of_the_user_you_will_bind_with’
password: ‘_the_password_of_the_bind_user’

##
Encryption method. The “method” key is deprecated in favor of
“encryption”.
##
Examples: “start_tls” or “simple_tls” or “plain”
##
Deprecated values: “tls” was replaced with “start_tls” and “ssl” was
replaced with “simple_tls”.
##
##
encryption: ‘plain’

##
Enables SSL certificate verification if encryption method is
“start_tls” or “simple_tls”. Defaults to true since GitLab 10.0 for
security. This may break installations upon upgrade to 10.0, that did
not know their LDAP SSL certificates were not setup properly.
##
verify_certificates: true

##
Specifies the SSL version for OpenSSL to use, if the OpenSSL default
is not appropriate.
##
Example: ‘TLSv1_1’
##
##
ssl_version: ‘’

##
Set a timeout, in seconds, for LDAP queries. This helps avoid blocking
a request if the LDAP server becomes unresponsive.
A value of 0 means there is no timeout.
##
timeout: 10

##
This setting specifies if LDAP server is Active Directory LDAP server.
For non AD servers it skips the AD specific queries.
If your LDAP server is not AD, set this to false.
##
active_directory: true

##
If allow_username_or_email_login is enabled, GitLab will ignore everything
after the first ‘@’ in the LDAP username submitted by the user on login.
##
Example:
- the user enters ‘jane.doe@example.com’ and ‘p@ssw0rd’ as LDAP credentials;
- GitLab queries the LDAP server with ‘jane.doe’ and ‘p@ssw0rd’.
##
If you are using “uid: ‘userPrincipalName’” on ActiveDirectory you need to
disable this setting, because the userPrincipalName contains an ‘@’.
##
allow_username_or_email_login: false

##
To maintain tight control over the number of active users on your GitLab installation,
enable this setting to keep new users blocked until they have been cleared by the admin
(default: false).
##
block_auto_created_users: false

##
Base where we can search for users
##
Ex. ‘ou=People,dc=gitlab,dc=example’ or ‘DC=mydomain,DC=com’
##
##
base: ‘’

##
Filter LDAP users
##
Format: RFC 4515 https://tools.ietf.org/search/rfc4515
Ex. (employeeType=developer)
##
Note: GitLab does not support omniauth-ldap’s custom filter syntax.
##
Example for getting only specific users:
‘(&(objectclass=user)(|(samaccountname=momo)(samaccountname=toto)))’
##
user_filter: ‘’

##
LDAP attributes that GitLab will use to create an account for the LDAP user.
The specified attribute can either be the attribute name as a string (e.g. ‘mail’),
or an array of attribute names to try in order (e.g. [‘mail’, ‘email’]).
Note that the user’s LDAP login will always be the attribute specified as uid above.
##
attributes:

##
The username will be used in paths for the user’s own projects
(like gitlab.example.com/username/project) and when mentioning
them in issues, merge request and comments (like @username).
If the attribute specified for username contains an email address,
the GitLab username will be the part of the email address before the ‘@’.
##
username: [‘uid’, ‘userid’, ‘sAMAccountName’]
email: [‘mail’, ‘email’, ‘userPrincipalName’]

##
If no full name could be found at the attribute specified for name,
the full name is determined using the attributes specified for
first_name and last_name.
##
name: ‘cn’
first_name: ‘givenName’
last_name: ‘sn’

##
If lowercase_usernames is enabled, GitLab will lower case the username.
##
lowercase_usernames: false

##
EE only
##

Base where we can search for groups
##
Ex. ou=groups,dc=gitlab,dc=example
##
group_base: ‘’

The CN of a group containing GitLab administrators
##
Ex. administrators
##
Note: Not cn=administrators or the full DN
##
admin_group: ‘’

An array of CNs of groups containing users that should be considered external
##
Ex. [‘interns’, ‘contractors’]
##
Note: Not cn=interns or the full DN
##
external_groups: []

##
The LDAP attribute containing a user’s public SSH key
##
Example: sshPublicKey
##
sync_ssh_keys: false

GitLab EE only: add more LDAP servers
Choose an ID made of a-z and 0-9 . This ID will be stored in the database
so that GitLab can remember which LDAP server a user belongs to.
#uswest2:
label:
host:
….
EOS
```

Source configuration

Use the same format as gitlab_rails[‘ldap_servers’] for the contents under
servers: in the example below:

```yaml
production:

snip…
ldap:

enabled: false
servers:

##
‘main’ is the GitLab ‘provider ID’ of this LDAP server
##
main:

##
A human-friendly name for your LDAP server. It is OK to change the label later,
for instance if you find out it is too large to fit on the web page.
##
Example: ‘Paris’ or ‘Acme, Ltd.’
label: ‘LDAP’
snip…


```

## Using an LDAP filter to limit access to your GitLab server

If you want to limit all GitLab access to a subset of the LDAP users on your
LDAP server, the first step should be to narrow the configured base. However,
it is sometimes necessary to filter users further. In this case, you can set up
an LDAP user filter. The filter must comply with
[RFC 4515](https://tools.ietf.org/search/rfc4515).

Omnibus configuration

```ruby
gitlab_rails[‘ldap_servers’] = YAML.load <<-EOS
main:

snip…
user_filter: ‘(employeeType=developer)’

EOS

Source configuration

```yaml
production:



	ldap:
	
	servers:
	
	main:
	# snip…
user_filter: ‘(employeeType=developer)’
















```

Tip: If you want to limit access to the nested members of an Active Directory
group, you can use the following syntax:

`
(memberOf:1.2.840.113556.1.4.1941:=CN=My Group,DC=Example,DC=com)
`

Find more information about this “LDAP_MATCHING_RULE_IN_CHAIN” filter at
https://msdn.microsoft.com/en-us/library/aa746475(v=vs.85).aspx. Support for
nested members in the user filter should not be confused with
[group sync nested groups support (EE only)](https://docs.gitlab.com/ee/administration/auth/ldap-ee.html#supported-ldap-group-types-attributes).

Please note that GitLab does not support the custom filter syntax used by
omniauth-ldap.

Escaping special characters

If the user_filter DN contains special characters. For example, a comma:

`
OU=GitLab, Inc,DC=gitlab,DC=com
`

This character needs to be escaped as documented in [RFC 4515](https://tools.ietf.org/search/rfc4515).

Due to the way the string is parsed, the special character needs to be converted
to hex and \5C\ (5C = `` in hex) added before it.
As an example the above DN would look like

`
OU=GitLab\\5C\\2C Inc,DC=gitlab,DC=com
`

Enabling LDAP sign-in for existing GitLab users

When a user signs in to GitLab with LDAP for the first time, and their LDAP
email address is the primary email address of an existing GitLab user, then
the LDAP DN will be associated with the existing user. If the LDAP email
attribute is not found in GitLab’s database, a new user is created.

In other words, if an existing GitLab user wants to enable LDAP sign-in for
themselves, they should check that their GitLab email address matches their
LDAP email address, and then sign into GitLab via their LDAP credentials.

Enabling LDAP username lowercase

Some LDAP servers, depending on their configurations, can return uppercase usernames. This can lead to several confusing issues like, for example, creating links or namespaces with uppercase names.

GitLab can automatically lowercase usernames provided by the LDAP server by enabling
the configuration option lowercase_usernames. By default, this configuration option is false.

Omnibus configuration

	Edit /etc/gitlab/gitlab.rb:


```ruby
gitlab_rails[‘ldap_servers’] = YAML.load <<-EOS
main:


# snip…
lowercase_usernames: true








	[Reconfigure GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to take effect.




Source configuration


	Edit config/gitlab.yaml:





```yaml
production:

	ldap:
	
	servers:
	
	main:
	# snip…
lowercase_usernames: true


```





	[Restart GitLab](../restart_gitlab.md#installations-from-source) for the changes to take effect.




## Encryption

### TLS Server Authentication

There are two encryption methods, simple_tls and start_tls.

For either encryption method, if setting verify_certificates: false, TLS
encryption is established with the LDAP server before any LDAP-protocol data is
exchanged but no validation of the LDAP server’s SSL certificate is performed.

>**Note**: Before GitLab 9.5, verify_certificates: false is the default if
unspecified.

## Limitations

### TLS Client Authentication

Not implemented by Net::LDAP.
You should disable anonymous LDAP authentication and enable simple or SASL
authentication. The TLS client authentication setting in your LDAP server cannot
be mandatory and clients cannot be authenticated with the TLS protocol.

## Troubleshooting

### Debug LDAP user filter with ldapsearch

This example uses ldapsearch and assumes you are using ActiveDirectory. The
following query returns the login names of the users that will be allowed to
log in to GitLab if you configure your own user_filter.

`
ldapsearch -H ldaps://$host:$port -D "$bind_dn" -y bind_dn_password.txt  -b "$base" "$user_filter" sAMAccountName
`


	Variables beginning with a $ refer to a variable from the LDAP section of
your configuration file.


	Replace ldaps:// with ldap:// if you are using the plain authentication method.
Port 389 is the default ldap:// port and 636 is the default ldaps://
port.


	We are assuming the password for the bind_dn user is in bind_dn_password.txt.




### Invalid credentials when logging in


	Make sure the user you are binding with has enough permissions to read the user’s




tree and traverse it.
- Check that the user_filter is not blocking otherwise valid users.
- Run the following check command to make sure that the LDAP settings are


correct and GitLab can see your users:


```bash
For Omnibus installations
sudo gitlab-rake gitlab:ldap:check

For installations from source
sudo -u git -H bundle exec rake gitlab:ldap:check RAILS_ENV=production
```







### Connection Refused

If you are getting ‘Connection Refused’ errors when trying to connect to the
LDAP server please double-check the LDAP port and encryption settings used by
GitLab. Common combinations are encryption: ‘plain’ and port: 389, OR
encryption: ‘simple_tls’ and port: 636.

### Troubleshooting

If a user account is blocked or unblocked due to the LDAP configuration, a
message will be logged to application.log.

If there is an unexpected error during an LDAP lookup (configuration error,
timeout), the login is rejected and a message will be logged to
production.log.





            

          

      

      

    

  

    
      
          
            
  # Okta SSO provider

Okta is a [Single Sign-on provider][okta-sso] that can be used to authenticate
with GitLab.

The following documentation enables Okta as a SAML provider.

## Configure the Okta application

1. On Okta go to the admin section and choose to Add an App.
1. When the app screen comes up you see another button to Create an App and


choose SAML 2.0 on the next screen.





	Now, very important, add a logo
(you can choose it from https://about.gitlab.com/press/). You’ll have to
crop and resize it.





	Next, you’ll need the to fill in the SAML general config. Here’s an example
image.


![Okta admin panel view](img/okta_admin_panel.png)









	The last part of the configuration is the feedback section where you can
just say you’re a customer and creating an app for internal use.





	When you have your app you’ll have a few tabs on the top of the app’s
profile. Click on the SAML 2.0 config instructions button which should
look like the following:


![Okta SAML settings](img/okta_saml_settings.png)









	On the screen that comes up take note of the
Identity Provider Single Sign-On URL which you’ll use for the
idp_sso_target_url on your GitLab config file.





	Before you leave Okta make sure you add your user and groups if any.




—

Now that the Okta app is configured, it’s time to enable it in GitLab.

## Configure GitLab


	On your GitLab server, open the configuration file:

For Omnibus GitLab installations

`sh
sudo editor /etc/gitlab/gitlab.rb
`

For installations from source

`sh
cd /home/git/gitlab
sudo -u git -H editor config/gitlab.yml
`






	See [Initial OmniAuth Configuration](../../integration/omniauth.md#initial-omniauth-configuration)
for initial settings.





	To allow your users to use Okta to sign up without having to manually create
an account first, don’t forget to add the following values to your
configuration:

For Omnibus GitLab installations

`ruby
gitlab_rails['omniauth_allow_single_sign_on'] = ['saml']
gitlab_rails['omniauth_block_auto_created_users'] = false
`

For installations from source

`yaml
allow_single_sign_on: ["saml"]
block_auto_created_users: false
`






	You can also automatically link Okta users with existing GitLab users if
their email addresses match by adding the following setting:

For Omnibus GitLab installations

`ruby
gitlab_rails['omniauth_auto_link_saml_user'] = true
`

For installations from source

`yaml
auto_link_saml_user: true
`






	Add the provider configuration.


>**Notes:**
>- Change the value for assertion_consumer_service_url to match the HTTPS endpoint


of GitLab (append users/auth/saml/callback to the HTTPS URL of your GitLab
installation to generate the correct value).





	>- To get the idp_cert_fingerprint fingerprint, first download the
	certificate from the Okta app you registered and then run:
openssl x509 -in okta.cert -noout -fingerprint. Substitute okta.cert
with the location of your certificate.



	>- Change the value of idp_sso_target_url, with the value of the
	Identity Provider Single Sign-On URL from the step when you
configured the Okta app.



	>- Change the value of issuer to a unique name, which will identify the application
	to the IdP.





>- Leave name_identifier_format as-is.




For Omnibus GitLab installations

```ruby
gitlab_rails[‘omniauth_providers’] = [

	{
	name: ‘saml’,
args: {

assertion_consumer_service_url: ‘https://gitlab.example.com/users/auth/saml/callback’,
idp_cert_fingerprint: ‘43:51:43:a1:b5:fc:8b:b7:0a:3a:a9:b1:0f:66:73:a8’,
idp_sso_target_url: ‘https://gitlab.oktapreview.com/app/gitlabdev773716_gitlabsaml_1/exk8odl81tBrjpD4B0h7/sso/saml’,
issuer: ‘https://gitlab.example.com’,
name_identifier_format: ‘urn:oasis:names:tc:SAML:2.0:nameid-format:transient’

},

label: ‘Okta’ # optional label for SAML login button, defaults to “Saml”

}

For installations from source

```yaml
- {



name: ‘saml’,
args: {



assertion_consumer_service_url: ‘https://gitlab.example.com/users/auth/saml/callback’,
idp_cert_fingerprint: ‘43:51:43:a1:b5:fc:8b:b7:0a:3a:a9:b1:0f:66:73:a8’,
idp_sso_target_url: ‘https://gitlab.oktapreview.com/app/gitlabdev773716_gitlabsaml_1/exk8odl81tBrjpD4B0h7/sso/saml’,
issuer: ‘https://gitlab.example.com’,
name_identifier_format: ‘urn:oasis:names:tc:SAML:2.0:nameid-format:transient’




},




label: ‘Okta’ # optional label for SAML login button, defaults to “Saml”




}




```


	[Reconfigure][reconf] or [restart] GitLab for Omnibus and installations
from source respectively for the changes to take effect.

You might want to try this out on an incognito browser window.

Configuring groups

>**Note:**
Make sure the groups exist and are assigned to the Okta app.

You can take a look of the [SAML documentation][saml] on external groups since
it works the same.

[okta-sso]: https://www.okta.com/products/single-sign-on/
[saml]: ../../integration/saml.md#external-groups
[reconf]: ../restart_gitlab.md#omnibus-gitlab-reconfigure
[restart]: ../restart_gitlab.md#installations-from-source

 —
author: Chris Wilson
author_gitlab: MrChrisW
level: intermediary
article_type: admin guide
date: 2017-05-03
—

How to configure LDAP with GitLab CE

Introduction

Managing a large number of users in GitLab can become a burden for system administrators. As an organization grows so do user accounts. Keeping these user accounts in sync across multiple enterprise applications often becomes a time consuming task.

In this guide we will focus on configuring GitLab with Active Directory. [Active Directory](https://en.wikipedia.org/wiki/Active_Directory) is a popular LDAP compatible directory service provided by Microsoft, included in all modern Windows Server operating systems.

GitLab has supported LDAP integration since [version 2.2](https://about.gitlab.com/2012/02/22/gitlab-version-2-2/). With GitLab LDAP [group syncing](#group-syncing-ee) being added to GitLab Enterprise Edition in [version 6.0](https://about.gitlab.com/2013/08/20/gitlab-6-dot-0-released/). LDAP integration has become one of the most popular features in GitLab.

Getting started

Choosing an LDAP Server

The main reason organizations choose to utilize a LDAP server is to keep the entire organization’s user base consolidated into a central repository. Users can access multiple applications and systems across the IT environment using a single login. Because LDAP is an open, vendor-neutral, industry standard application protocol, the number of applications using LDAP authentication continues to increase.

There are many commercial and open source [directory servers](https://en.wikipedia.org/wiki/Directory_service#LDAP_implementations) that support the LDAP protocol. Deciding on the right directory server highly depends on the existing IT environment in which the server will be integrated with.

For example, [Active Directory](https://technet.microsoft.com/en-us/library/hh831484(v=ws.11).aspx) is generally favored in a primarily Windows environment, as this allows quick integration with existing services. Other popular directory services include:

	[Oracle Internet Directory](http://www.oracle.com/technetwork/middleware/id-mgmt/overview/index-082035.html)

	[OpenLDAP](http://www.openldap.org/)

	[389 Directory](http://directory.fedoraproject.org/)

	[OpenDJ](https://forgerock.org/opendj/)

	[ApacheDS](https://directory.apache.org/)

> GitLab uses the [Net::LDAP](https://rubygems.org/gems/net-ldap) library under the hood. This means it supports all [IETF](https://tools.ietf.org/html/rfc2251) compliant LDAPv3 servers.

Active Directory (AD)

We won’t cover the installation and configuration of Windows Server or Active Directory Domain Services in this tutorial. There are a number of resources online to guide you through this process:

	Install Windows Server 2012 - (_technet.microsoft.com_) - [Installing Windows Server 2012](https://technet.microsoft.com/en-us/library/jj134246(v=ws.11).aspx)

	Install Active Directory Domain Services (AD DS) (_technet.microsoft.com_)- [Install Active Directory Domain Services](https://technet.microsoft.com/windows-server-docs/identity/ad-ds/deploy/install-active-directory-domain-services–level-100 [https://technet.microsoft.com/windows-server-docs/identity/ad-ds/deploy/install-active-directory-domain-services--level-100]-#BKMK_PS)

> Shortcut: You can quickly install AD DS via PowerShell using
Install-WindowsFeature AD-Domain-Services -IncludeManagementTools

Creating an AD OU structure

Configuring organizational units (OU**s) is an important part of setting up Active Directory. **OU**s form the base for an entire organizational structure. Using GitLab as an example we have designed the **OU structure below using the geographic OU model. In the Geographic Model we separate **OU**s for different geographic regions.

GitLab OU Design | GitLab AD Structure |

:—————————-: | :——————————: |

![GitLab OU Design][gitlab_ou] | ![GitLab AD Structure][ldap_ou] |

[gitlab_ou]: img/gitlab_ou.png
[ldap_ou]: img/ldap_ou.gif

Using PowerShell you can output the OU structure as a table (_all names are examples only_):

`ps
Get-ADObject -LDAPFilter "(objectClass=*)" -SearchBase 'OU=GitLab INT,DC=GitLab,DC=org' -Properties CanonicalName | Format-Table Name,CanonicalName -A
`

`
OU CanonicalName
---- -------------
GitLab INT GitLab.org/GitLab INT
United States GitLab.org/GitLab INT/United States
Developers GitLab.org/GitLab INT/United States/Developers
Gary Johnson GitLab.org/GitLab INT/United States/Developers/Gary Johnson
Ellis Matthews GitLab.org/GitLab INT/United States/Developers/Ellis Matthews
William Collins GitLab.org/GitLab INT/United States/Developers/William Collins
People Ops GitLab.org/GitLab INT/United States/People Ops
Margaret Baker GitLab.org/GitLab INT/United States/People Ops/Margaret Baker
Libby Hartzler GitLab.org/GitLab INT/United States/People Ops/Libby Hartzler
Victoria Ryles GitLab.org/GitLab INT/United States/People Ops/Victoria Ryles
The Netherlands GitLab.org/GitLab INT/The Netherlands
Developers GitLab.org/GitLab INT/The Netherlands/Developers
John Doe GitLab.org/GitLab INT/The Netherlands/Developers/John Doe
Jon Mealy GitLab.org/GitLab INT/The Netherlands/Developers/Jon Mealy
Jane Weingarten GitLab.org/GitLab INT/The Netherlands/Developers/Jane Weingarten
Production GitLab.org/GitLab INT/The Netherlands/Production
Sarah Konopka GitLab.org/GitLab INT/The Netherlands/Production/Sarah Konopka
Cynthia Bruno GitLab.org/GitLab INT/The Netherlands/Production/Cynthia Bruno
David George GitLab.org/GitLab INT/The Netherlands/Production/David George
United Kingdom GitLab.org/GitLab INT/United Kingdom
Developers GitLab.org/GitLab INT/United Kingdom/Developers
Leroy Fox GitLab.org/GitLab INT/United Kingdom/Developers/Leroy Fox
Christopher Alley GitLab.org/GitLab INT/United Kingdom/Developers/Christopher Alley
Norris Morita GitLab.org/GitLab INT/United Kingdom/Developers/Norris Morita
Support GitLab.org/GitLab INT/United Kingdom/Support
Laura Stanley GitLab.org/GitLab INT/United Kingdom/Support/Laura Stanley
Nikki Schuman GitLab.org/GitLab INT/United Kingdom/Support/Nikki Schuman
Harriet Butcher GitLab.org/GitLab INT/United Kingdom/Support/Harriet Butcher
Global Groups GitLab.org/GitLab INT/Global Groups
DevelopersNL GitLab.org/GitLab INT/Global Groups/DevelopersNL
DevelopersUK GitLab.org/GitLab INT/Global Groups/DevelopersUK
DevelopersUS GitLab.org/GitLab INT/Global Groups/DevelopersUS
ProductionNL GitLab.org/GitLab INT/Global Groups/ProductionNL
SupportUK GitLab.org/GitLab INT/Global Groups/SupportUK
People Ops US GitLab.org/GitLab INT/Global Groups/People Ops US
Global Admins GitLab.org/GitLab INT/Global Groups/Global Admins
`

> See [more information](https://technet.microsoft.com/en-us/library/ff730967.aspx) on searching Active Directory with Windows PowerShell from [The Scripting Guys](https://technet.microsoft.com/en-us/scriptcenter/dd901334.aspx)

GitLab LDAP configuration

The initial configuration of LDAP in GitLab requires changes to the gitlab.rb configuration file (/etc/gitlab/gitlab.rb). Below is an example of a complete configuration using an Active Directory.

The two Active Directory specific values are active_directory: true and uid: ‘sAMAccountName’. sAMAccountName is an attribute returned by Active Directory used for GitLab usernames. See the example output from ldapsearch for a full list of attributes a “person” object (user) has in AD - [ldapsearch example](#using-ldapsearch-unix)

> Both group_base and admin_group configuration options are only available in GitLab Enterprise Edition. See [GitLab EE - LDAP Features](#gitlab-enterprise-edition—ldap-features)

Example gitlab.rb LDAP

```
gitlab_rails[‘ldap_enabled’] = true
gitlab_rails[‘ldap_servers’] = {
‘main’ => {


‘label’ => ‘GitLab AD’,
‘host’ =>  ‘ad.example.org’,
‘port’ => 636,
‘uid’ => ‘sAMAccountName’,
‘encryption’ => ‘simple_tls’,
‘verify_certificates’ => true,
‘bind_dn’ => ‘CN=GitLabSRV,CN=Users,DC=GitLab,DC=org’,
‘password’ => ‘Password1’,
‘active_directory’ => true,
‘base’ => ‘OU=GitLab INT,DC=GitLab,DC=org’,
‘group_base’ => ‘OU=Global Groups,OU=GitLab INT,DC=GitLab,DC=org’,
‘admin_group’ => ‘Global Admins’
}





}

> Note: Remember to run  gitlab-ctl reconfigure after modifying gitlab.rb

## Security improvements (LDAPS)

Security is an important aspect when deploying an LDAP server. By default, LDAP traffic is transmitted unsecured. LDAP can be secured using SSL/TLS called LDAPS, or commonly “LDAP over SSL”.

Securing LDAP (enabling LDAPS) on Windows Server 2012 involves installing a valid SSL certificate. For full details see Microsoft’s guide [How to enable LDAP over SSL with a third-party certification authority](https://support.microsoft.com/en-us/help/321051/how-to-enable-ldap-over-ssl-with-a-third-party-certification-authority)

> By default a LDAP service listens for connections on TCP and UDP port 389. LDAPS (LDAP over SSL) listens on port 636

### Testing you AD server

#### Using AdFind (Windows)

You can use the [AdFind](https://social.technet.microsoft.com/wiki/contents/articles/7535.adfind-command-examples.aspx) utility (on Windows based systems) to test that your LDAP server is accessible and authentication is working correctly. This is a freeware utility built by [Joe Richards](http://www.joeware.net/freetools/tools/adfind/index.htm).

Return all objects

You can use the filter objectclass=* to return all directory objects.

`sh
adfind -h ad.example.org:636 -ssl -u "CN=GitLabSRV,CN=Users,DC=GitLab,DC=org" -up Password1 -b "OU=GitLab INT,DC=GitLab,DC=org" -f (objectClass=*)
`

Return single object using filter

You can also retrieve a single object by specifying the object name or full DN. In this example we specify the object name only CN=Leroy Fox.

`sh
adfind -h ad.example.org:636 -ssl -u "CN=GitLabSRV,CN=Users,DC=GitLab,DC=org" -up Password1 -b "OU=GitLab INT,DC=GitLab,DC=org" -f (&(objectcategory=person)(CN=Leroy Fox))”
`

#### Using ldapsearch (Unix)

You can use the ldapsearch utility (on Unix based systems) to test that your LDAP server is accessible and authentication is working correctly. This utility is included in the [ldap-utils](https://wiki.debian.org/LDAP/LDAPUtils) package.

Return all objects

You can use the filter objectclass=* to return all directory objects.

`sh
ldapsearch -D "CN=GitLabSRV,CN=Users,DC=GitLab,DC=org" \
-w Password1 -p 636 -h ad.example.org \
-b "OU=GitLab INT,DC=GitLab,DC=org" -Z \
-s sub "(objectclass=*)"
`

Return single object using filter

You can also retrieve a single object by specifying the object name or full DN. In this example we specify the object name only CN=Leroy Fox.

`sh
ldapsearch -D "CN=GitLabSRV,CN=Users,DC=GitLab,DC=org" -w Password1 -p 389 -h ad.example.org -b "OU=GitLab INT,DC=GitLab,DC=org" -Z -s sub "CN=Leroy Fox"
`

Full output of `ldapsearch` command: - Filtering for _CN=Leroy Fox_

```
LDAPv3
base <OU=GitLab INT,DC=GitLab,DC=org> with scope subtree
filter: CN=Leroy Fox
requesting: ALL
#

Leroy Fox, Developers, United Kingdom, GitLab INT, GitLab.org
dn: CN=Leroy Fox,OU=Developers,OU=United Kingdom,OU=GitLab INT,DC=GitLab,DC=or

g

objectClass: top
objectClass: person
objectClass: organizationalPerson
objectClass: user
cn: Leroy Fox
sn: Fox
givenName: Leroy
distinguishedName: CN=Leroy Fox,OU=Developers,OU=United Kingdom,OU=GitLab INT,

DC=GitLab,DC=org

instanceType: 4
whenCreated: 20170210030500.0Z
whenChanged: 20170213050128.0Z
displayName: Leroy Fox
uSNCreated: 16790
memberOf: CN=DevelopersUK,OU=Global Groups,OU=GitLab INT,DC=GitLab,DC=org
uSNChanged: 20812
name: Leroy Fox
objectGUID:: rBCAo6NR6E6vfSKgzcUILg==
userAccountControl: 512
badPwdCount: 0
codePage: 0
countryCode: 0
badPasswordTime: 0
lastLogoff: 0
lastLogon: 0
pwdLastSet: 131311695009850084
primaryGroupID: 513
objectSid:: AQUAAAAAAAUVAAAA9GMAb7tdJZvsATf7ZwQAAA==
accountExpires: 9223372036854775807
logonCount: 0
sAMAccountName: Leroyf
sAMAccountType: 805306368
userPrincipalName: Leroyf@GitLab.org
objectCategory: CN=Person,CN=Schema,CN=Configuration,DC=GitLab,DC=org
dSCorePropagationData: 16010101000000.0Z
lastLogonTimestamp: 131314356887754250

search result
search: 2
result: 0 Success

numResponses: 2
numEntries: 1
```

## Basic user authentication

After configuring LDAP, basic authentication will be available. Users can then login using their directory credentials. An extra tab is added to the GitLab login screen for the configured LDAP server (e.g “GitLab AD”).

![GitLab OU Structure](img/user_auth.gif)

Users that are removed from the LDAP base group (e.g OU=GitLab INT,DC=GitLab,DC=org) will be blocked in GitLab. [More information](../ldap.md#security) on LDAP security.

If allow_username_or_email_login is enabled in the LDAP configuration, GitLab will ignore everything after the first ‘@’ in the LDAP username used on login. Example: The username jon.doe@example.com is converted to jon.doe when authenticating with the LDAP server. Disable this setting if you use userPrincipalName as the uid.

## LDAP extended features on GitLab EE

With [GitLab Enterprise Edition (EE)](https://about.gitlab.com/gitlab-ee/), besides everything we just described, you’ll
have extended functionalities with LDAP, such as:


	Group sync


	Group permissions


	Updating user permissions


	Multiple LDAP servers




Read through the article on [LDAP for GitLab EE](https://docs.gitlab.com/ee/administration/auth/how_to_configure_ldap_gitlab_ee/) for an overview.





            

          

      

      

    

  

    
      
          
            
  # Gitaly

[Gitaly](https://gitlab.com/gitlab-org/gitaly) (introduced in GitLab
9.0) is a service that provides high-level RPC access to Git
repositories. Gitaly was optional when it was first introduced in
GitLab, but since GitLab 9.4 it is a mandatory component of the
application.

GitLab components that access Git repositories (gitlab-rails,
gitlab-shell, gitlab-workhorse) act as clients to Gitaly. End users do
not have direct access to Gitaly.

## Configuring Gitaly

The Gitaly service itself is configured via a TOML configuration file.
This file is documented [in the gitaly
repository](https://gitlab.com/gitlab-org/gitaly/blob/master/doc/configuration/README.md).

To change a Gitaly setting in Omnibus you can use
gitaly[‘my_setting’] in /etc/gitlab/gitlab.rb. Changes will be applied
when you run gitlab-ctl reconfigure.

`ruby
gitaly['prometheus_listen_addr'] = 'localhost:9236'
`

To change a Gitaly setting in installations from source you can edit
/home/git/gitaly/config.toml.

`toml
prometheus_listen_addr = "localhost:9236"
`

Changes to /home/git/gitaly/config.toml are applied when you run service
gitlab restart.

## Client-side GRPC logs

Gitaly uses the [gRPC](https://grpc.io/) RPC framework. The Ruby gRPC
client has its own log file which may contain useful information when
you are seeing Gitaly errors. You can control the log level of the
gRPC client with the GRPC_LOG_LEVEL environment variable. The
default level is WARN.

## Running Gitaly on its own server

> This is an optional way to deploy Gitaly which can benefit GitLab
installations that are larger than a single machine. Most
installations will be better served with the default configuration
used by Omnibus and the GitLab source installation guide.

Starting with GitLab 9.4 it is possible to run Gitaly on a different
server from the rest of the application. This can improve performance
when running GitLab with its repositories stored on an NFS server.

At the moment (GitLab 9.4) Gitaly is not yet a replacement for NFS
because some parts of GitLab still bypass Gitaly when accessing Git
repositories. If you choose to deploy Gitaly on your NFS server you
must still also mount your Git shares on your GitLab application
servers.

Gitaly network traffic is unencrypted so you should use a firewall to
restrict access to your Gitaly server.

Below we describe how to configure a Gitaly server at address
gitaly.internal:8075 with secret token abc123secret. We assume
your GitLab installation has two repository storages, default and
storage1.

### Client side token configuration

Start by configuring a token on the client side.

Omnibus installations:

`ruby
# /etc/gitlab/gitlab.rb
gitlab_rails['gitaly_token'] = 'abc123secret'
`

Source installations:

```yaml
/home/git/gitlab/config/gitlab.yml
gitlab:

	gitaly:
	token: ‘abc123secret’


```

You need to reconfigure (Omnibus) or restart (source) for these
changes to be picked up.

### Gitaly server configuration

Next, on the Gitaly server, we need to configure storage paths, enable
the network listener and configure the token.

Note: if you want to reduce the risk of downtime when you enable
authentication you can temporarily disable enforcement, see [the
documentation on configuring Gitaly
authentication](https://gitlab.com/gitlab-org/gitaly/blob/master/doc/configuration/README.md#authentication)
.

>
NOTE: In most or all cases the storage paths below end in /repositories which is
different than path in git_data_dirs of Omnibus installations. Check the
directory layout on your Gitaly server to be sure.

Omnibus installations:

```ruby
/etc/gitlab/gitlab.rb

Avoid running unnecessary services on the gitaly server
postgresql[‘enable’] = false
redis[‘enable’] = false
nginx[‘enable’] = false
prometheus[‘enable’] = false
unicorn[‘enable’] = false
sidekiq[‘enable’] = false
gitlab_workhorse[‘enable’] = false

Prevent database connections during ‘gitlab-ctl reconfigure’
gitlab_rails[‘rake_cache_clear’] = false
gitlab_rails[‘auto_migrate’] = false

Configure the gitlab-shell API callback URL. Without this, git push will
fail. This can be your ‘front door’ GitLab URL or an internal load
balancer.
gitlab_rails[‘internal_api_url’] = ‘https://gitlab.example.com’

Make Gitaly accept connections on all network interfaces. You must use
firewalls to restrict access to this address/port.
gitaly[‘listen_addr’] = “0.0.0.0:8075”
gitaly[‘auth_token’] = ‘abc123secret’

	gitaly[‘storage’] = [
	{ ‘name’ => ‘default’, ‘path’ => ‘/mnt/gitlab/default/repositories’ },
{ ‘name’ => ‘storage1’, ‘path’ => ‘/mnt/gitlab/storage1/repositories’ },

]

Source installations:

```toml
# /home/git/gitaly/config.toml
listen_addr = ‘0.0.0.0:8075’

[auth]
token = ‘abc123secret’

[[storage]
name = ‘default’
path = ‘/mnt/gitlab/default/repositories’

[[storage]]
name = ‘storage1’
path = ‘/mnt/gitlab/storage1/repositories’
```

Again, reconfigure (Omnibus) or restart (source).

Converting clients to use the Gitaly server

Now as the final step update the client machines to switch from using
their local Gitaly service to the new Gitaly server you just
configured. This is a risky step because if there is any sort of
network, firewall, or name resolution problem preventing your GitLab
server from reaching the Gitaly server then all Gitaly requests will
fail.

We assume that your Gitaly server can be reached at
gitaly.internal:8075 from your GitLab server, and that your GitLab
NFS shares are mounted at /mnt/gitlab/default and
/mnt/gitlab/storage1 respectively.

Omnibus installations:

```ruby
# /etc/gitlab/gitlab.rb
git_data_dirs({


‘default’ => { ‘path’ => ‘/mnt/gitlab/default’, ‘gitaly_address’ => ‘tcp://gitaly.internal:8075’ },
‘storage1’ => { ‘path’ => ‘/mnt/gitlab/storage1’, ‘gitaly_address’ => ‘tcp://gitaly.internal:8075’ },




})

gitlab_rails[‘gitaly_token’] = ‘abc123secret’
```

Source installations:

```yaml
# /home/git/gitlab/config/gitlab.yml
gitlab:



	repositories:
	
	storages:
	
	default:
	path: /mnt/gitlab/default/repositories
gitaly_address: tcp://gitaly.internal:8075



	storage1:
	path: /mnt/gitlab/storage1/repositories
gitaly_address: tcp://gitaly.internal:8075











	gitaly:
	token: ‘abc123secret’








```

Now reconfigure (Omnibus) or restart (source). When you tail the
Gitaly logs on your Gitaly server (sudo gitlab-ctl tail gitaly or
tail -f /home/git/gitlab/log/gitaly.log) you should see requests
coming in. One sure way to trigger a Gitaly request is to clone a
repository from your GitLab server over HTTP.

Disabling or enabling the Gitaly service in a cluster environment

If you are running Gitaly [as a remote
service](#running-gitaly-on-its-own-server) you may want to disable
the local Gitaly service that runs on your Gitlab server by default.

> ‘Disabling Gitaly’ only makes sense when you run GitLab in a custom
cluster configuration, where different services run on different
machines. Disabling Gitaly on all machines in the cluster is not a
valid configuration.

If you are setting up a GitLab cluster where Gitaly does not need to
run on all machines, you can disable the Gitaly service in your
Omnibus installation, add the following line to /etc/gitlab/gitlab.rb:

`ruby
gitaly['enable'] = false
`

When you run gitlab-ctl reconfigure the Gitaly service will be
disabled.

To disable the Gitaly service in a GitLab cluster where you installed
GitLab from source, add the following to /etc/default/gitlab on the
machine where you want to disable Gitaly.

`shell
gitaly_enabled=false
`

When you run service gitlab restart Gitaly will be disabled on this
particular machine.

 # High Availability

GitLab supports several different types of clustering and high-availability.
The solution you choose will be based on the level of scalability and
availability you require. The easiest solutions are scalable, but not necessarily
highly available.

GitLab provides a service that is usually essential to most organizations: it
enables people to collaborate on code in a timely fashion. Any downtime should
therefore be short and planned. Luckily, GitLab provides a solid setup even on
a single server without special measures. Due to the distributed nature
of Git, developers can still commit code locally even when GitLab is not
available. However, some GitLab features such as the issue tracker and
Continuous Integration are not available when GitLab is down.

Keep in mind that all Highly Available solutions come with a trade-off between
cost/complexity and uptime. The more uptime you want, the more complex the
solution. And the more complex the solution, the more work is involved in
setting up and maintaining it. High availability is not free and every HA
solution should balance the costs against the benefits.

Architecture

There are two kinds of setups:

	active/active

	active/passive

Active/Active

This architecture scales easily because all application servers handle
user requests simultaneously. The database, Redis, and GitLab application are
all deployed on separate servers. The configuration is only highly-available
if the database, Redis and storage are also configured as such.

Follow the steps below to configure an active/active setup:

1. [Configure the database](database.md)
1. [Configure Redis](redis.md)

	[Configure Redis for GitLab source installations](redis_source.md)

1. [Configure NFS](nfs.md)
1. [Configure the GitLab application servers](gitlab.md)
1. [Configure the load balancers](load_balancer.md)

![Active/Active HA Diagram](../img/high_availability/active-active-diagram.png)

Active/Passive

For pure high-availability/failover with no scaling you can use an
active/passive configuration. This utilizes DRBD (Distributed Replicated
Block Device) to keep all data in sync. DRBD requires a low latency link to
remain in sync. It is not advisable to attempt to run DRBD between data centers
or in different cloud availability zones.

	> Note: GitLab recommends against choosing this HA method because of the
	complexity of managing DRBD and crafting automatic failover. This is
compatible with GitLab, but not officially supported. If you are
an EE customer, support will help you with GitLab related problems, but if the
root cause is identified as DRBD, we will not troubleshoot further.

Components/Servers Required: 2 servers/virtual machines (one active/one passive)

![Active/Passive HA Diagram](../img/high_availability/active-passive-diagram.png)

 # Configuring a Database for GitLab HA

You can choose to install and manage a database server (PostgreSQL/MySQL)
yourself, or you can use GitLab Omnibus packages to help. GitLab recommends
PostgreSQL. This is the database that will be installed if you use the
Omnibus package to manage your database.

Configure your own database server

If you’re hosting GitLab on a cloud provider, you can optionally use a
managed service for PostgreSQL. For example, AWS offers a managed Relational
Database Service (RDS) that runs PostgreSQL.

If you use a cloud-managed service, or provide your own PostgreSQL:

	Setup PostgreSQL according to the
[database requirements document](../../install/requirements.md#database).

	Set up a gitlab username with a password of your choice. The gitlab user
needs privileges to create the gitlabhq_production database.

	Configure the GitLab application servers with the appropriate details.
This step is covered in [Configuring GitLab for HA](gitlab.md).

Configure using Omnibus

	Download/install GitLab Omnibus using steps 1 and 2 from
[GitLab downloads](https://about.gitlab.com/downloads). Do not complete other
steps on the download page.

	Create/edit /etc/gitlab/gitlab.rb and use the following configuration.
Be sure to change the external_url to match your eventual GitLab front-end
URL. If there is a directive listed below that you do not see in the configuration, be sure to add it.


```ruby
external_url ‘https://gitlab.example.com’

# Disable all components except PostgreSQL
roles [‘postgres_role’]

# PostgreSQL configuration
gitlab_rails[‘db_password’] = ‘DB password’
postgresql[‘md5_auth_cidr_addresses’] = [‘0.0.0.0/0’]
postgresql[‘listen_address’] = ‘0.0.0.0’

# Disable automatic database migrations
gitlab_rails[‘auto_migrate’] = false
```


	Run sudo gitlab-ctl reconfigure to install and configure PostgreSQL.

	> Note: This reconfigure step will result in some errors.
	That’s OK - don’t be alarmed.

	Open a database prompt:


```
su - gitlab-psql
/bin/bash
psql -h /var/opt/gitlab/postgresql -d template1

# Output:

psql (9.2.15)
Type “help” for help.

template1=#
```


	Run the following command at the database prompt and you will be asked to
enter the new password for the PostgreSQL superuser.


```
password

# Output:

Enter new password:
Enter it again:
```


	Similarly, set the password for the gitlab database user. Use the same
password that you specified in the /etc/gitlab/gitlab.rb file for
gitlab_rails[‘db_password’].


```
password gitlab

# Output:

Enter new password:
Enter it again:
```


1. Exit from editing template1 prompt by typing q and Enter.
1. Enable the pg_trgm extension within the gitlabhq_production database:


```
gitlab-psql -d gitlabhq_production

CREATE EXTENSION pg_trgm;

# Output:

CREATE EXTENSION
```


1. Exit the database prompt by typing q and Enter.
1. Exit the gitlab-psql user by running exit twice.
1. Run sudo gitlab-ctl reconfigure a final time.
1. Configure the GitLab application servers with the appropriate details.

This step is covered in [Configuring GitLab for HA](gitlab.md).

—

Read more on high-availability configuration:

1. [Configure Redis](redis.md)
1. [Configure NFS](nfs.md)
1. [Configure the GitLab application servers](gitlab.md)
1. [Configure the load balancers](load_balancer.md)

 # Configuring GitLab for HA

Assuming you have already configured a [database](database.md), [Redis](redis.md), and [NFS](nfs.md), you can
configure the GitLab application server(s) now. Complete the steps below
for each GitLab application server in your environment.

	> Note: There is some additional configuration near the bottom for
	additional GitLab application servers. It’s important to read and understand
these additional steps before proceeding with GitLab installation.

	If necessary, install the NFS client utility packages using the following
commands:


```
# Ubuntu/Debian
apt-get install nfs-common

# CentOS/Red Hat
yum install nfs-utils nfs-utils-lib
```


	Specify the necessary NFS shares. Mounts are specified in
/etc/fstab. The exact contents of /etc/fstab will depend on how you chose
to configure your NFS server. See [NFS documentation](nfs.md) for the various
options. Here is an example snippet to add to /etc/fstab:

`
10.1.0.1:/var/opt/gitlab/.ssh /var/opt/gitlab/.ssh nfs defaults,soft,rsize=1048576,wsize=1048576,noatime,nofail,lookupcache=positive 0 2
10.1.0.1:/var/opt/gitlab/gitlab-rails/uploads /var/opt/gitlab/gitlab-rails/uploads nfs defaults,soft,rsize=1048576,wsize=1048576,noatime,nofail,lookupcache=positive 0 2
10.1.0.1:/var/opt/gitlab/gitlab-rails/shared /var/opt/gitlab/gitlab-rails/shared nfs defaults,soft,rsize=1048576,wsize=1048576,noatime,nofail,lookupcache=positive 0 2
10.1.0.1:/var/opt/gitlab/gitlab-ci/builds /var/opt/gitlab/gitlab-ci/builds nfs defaults,soft,rsize=1048576,wsize=1048576,noatime,nofail,lookupcache=positive 0 2
10.1.0.1:/var/opt/gitlab/git-data /var/opt/gitlab/git-data nfs defaults,soft,rsize=1048576,wsize=1048576,noatime,nofail,lookupcache=positive 0 2
`

	Create the shared directories. These may be different depending on your NFS
mount locations.

`
mkdir -p /var/opt/gitlab/.ssh /var/opt/gitlab/gitlab-rails/uploads /var/opt/gitlab/gitlab-rails/shared /var/opt/gitlab/gitlab-ci/builds /var/opt/gitlab/git-data
`

	Download/install GitLab Omnibus using steps 1 and 2 from
[GitLab downloads](https://about.gitlab.com/downloads). Do not complete other
steps on the download page.

	Create/edit /etc/gitlab/gitlab.rb and use the following configuration.
Be sure to change the external_url to match your eventual GitLab front-end
URL. Depending your the NFS configuration, you may need to change some GitLab
data locations. See [NFS documentation](nfs.md) for /etc/gitlab/gitlab.rb
configuration values for various scenarios. The example below assumes you’ve
added NFS mounts in the default data locations. Additionally the UID and GIDs
given are just examples and you should configure with your preferred values.


```ruby
external_url ‘https://gitlab.example.com’

# Prevent GitLab from starting if NFS data mounts are not available
high_availability[‘mountpoint’] = ‘/var/opt/gitlab/git-data’

# Disable components that will not be on the GitLab application server
roles [‘application_role’]

# PostgreSQL connection details
gitlab_rails[‘db_adapter’] = ‘postgresql’
gitlab_rails[‘db_encoding’] = ‘unicode’
gitlab_rails[‘db_host’] = ‘10.1.0.5’ # IP/hostname of database server
gitlab_rails[‘db_password’] = ‘DB password’

# Redis connection details
gitlab_rails[‘redis_port’] = ‘6379’
gitlab_rails[‘redis_host’] = ‘10.1.0.6’ # IP/hostname of Redis server
gitlab_rails[‘redis_password’] = ‘Redis Password’

# Ensure UIDs and GIDs match between servers for permissions via NFS
user[‘uid’] = 9000
user[‘gid’] = 9000
web_server[‘uid’] = 9001
web_server[‘gid’] = 9001
registry[‘uid’] = 9002
registry[‘gid’] = 9002
```

> Note: To maintain uniformity of links across HA clusters, the external_url
on the first application server as well as the additional application
servers should point to the external url that users will use to access GitLab.
In a typical HA setup, this will be the url of the load balancer which will
route traffic to all GitLab application servers in the HA cluster.

> Note: When you specify https in the external_url, as in the example
above, GitLab assumes you have SSL certificates in /etc/gitlab/ssl/. If
certificates are not present, Nginx will fail to start. See
[Nginx documentation](http://docs.gitlab.com/omnibus/settings/nginx.html#enable-https)
for more information.

First GitLab application server

As a final step, run the setup rake task only on the first GitLab application server.
Do not run this on additional application servers.

1. Initialize the database by running sudo gitlab-rake gitlab:setup.
1. Run sudo gitlab-ctl reconfigure to compile the configuration.

	> WARNING: Only run this setup task on NEW GitLab instances because it
	will wipe any existing data.

Extra configuration for additional GitLab application servers

Additional GitLab servers (servers configured after the first GitLab server)
need some extra configuration.

	Configure shared secrets. These values can be obtained from the primary
GitLab server in /etc/gitlab/gitlab-secrets.json. Add these to
/etc/gitlab/gitlab.rb prior to running the first reconfigure.

`ruby
gitlab_shell['secret_token'] = 'fbfb19c355066a9afb030992231c4a363357f77345edd0f2e772359e5be59b02538e1fa6cae8f93f7d23355341cea2b93600dab6d6c3edcdced558fc6d739860'
gitlab_rails['otp_key_base'] = 'b719fe119132c7810908bba18315259ed12888d4f5ee5430c42a776d840a396799b0a5ef0a801348c8a357f07aa72bbd58e25a84b8f247a25c72f539c7a6c5fa'
gitlab_rails['secret_key_base'] = '6e657410d57c71b4fc3ed0d694e7842b1895a8b401d812c17fe61caf95b48a6d703cb53c112bc01ebd197a85da81b18e29682040e99b4f26594772a4a2c98c6d'
gitlab_rails['db_key_base'] = 'bf2e47b68d6cafaef1d767e628b619365becf27571e10f196f98dc85e7771042b9203199d39aff91fcb6837c8ed83f2a912b278da50999bb11a2fbc0fba52964'
`

	Run touch /etc/gitlab/skip-auto-migrations to prevent database migrations
from running on upgrade. Only the primary GitLab application server should
handle migrations.

	Optional Configure host keys. Copy all contents(primary and public keys) inside /etc/ssh/ on
the primary application server to /etc/ssh on all secondary servers. This
prevents false man-in-the-middle-attack alerts when accessing servers in your
High Availability cluster behind a load balancer.

	Run sudo gitlab-ctl reconfigure to compile the configuration.

Troubleshooting

	mount: wrong fs type, bad option, bad superblock on

You have not installed the necessary NFS client utilities. See step 1 above.

	mount: mount point /var/opt/gitlab/… does not exist

This particular directory does not exist on the NFS server. Ensure
the share is exported and exists on the NFS server and try to remount.

—

Read more on high-availability configuration:

1. [Configure the database](database.md)
1. [Configure Redis](redis.md)
1. [Configure NFS](nfs.md)
1. [Configure the load balancers](load_balancer.md)

 # Load Balancer for GitLab HA

In an active/active GitLab configuration, you will need a load balancer to route
traffic to the application servers. The specifics on which load balancer to use
or the exact configuration is beyond the scope of GitLab documentation. We hope
that if you’re managing HA systems like GitLab you have a load balancer of
choice already. Some examples including HAProxy (open-source), F5 Big-IP LTM,
and Citrix Net Scaler. This documentation will outline what ports and protocols
you need to use with GitLab.

Basic ports

LB Port | Backend Port | Protocol |

——- | ———— | ————— |

80 | 80 | HTTP [^1] |

443 | 443 | TCP or HTTPS [^1] [^2] |

22 | 22 | TCP |

GitLab Pages Ports

If you’re using GitLab Pages with custom domain support you will need some
additional port configurations.
GitLab Pages requires a separate virtual IP address. Configure DNS to point the
pages_external_url from /etc/gitlab/gitlab.rb at the new virtual IP address. See the
[GitLab Pages documentation][gitlab-pages] for more information.

LB Port | Backend Port | Protocol |

——- | ———— | ——– |

80 | Varies [^3] | HTTP |

443 | Varies [^3] | TCP [^4] |

Alternate SSH Port

Some organizations have policies against opening SSH port 22. In this case,
it may be helpful to configure an alternate SSH hostname that allows users
to use SSH on port 443. An alternate SSH hostname will require a new virtual IP address
compared to the other GitLab HTTP configuration above.

Configure DNS for an alternate SSH hostname such as altssh.gitlab.example.com.

LB Port | Backend Port | Protocol |

——- | ———— | ——– |

443 | 22 | TCP |

—

Read more on high-availability configuration:

1. [Configure the database](database.md)
1. [Configure Redis](redis.md)
1. [Configure NFS](nfs.md)
1. [Configure the GitLab application servers](gitlab.md)

	[^1]: [Web terminal](../../ci/environments.md#web-terminals) support requires
	your load balancer to correctly handle WebSocket connections. When using
HTTP or HTTPS proxying, this means your load balancer must be configured
to pass through the Connection and Upgrade hop-by-hop headers. See the
[web terminal](../integration/terminal.md) integration guide for
more details.

	[^2]: When using HTTPS protocol for port 443, you will need to add an SSL
	certificate to the load balancers. If you wish to terminate SSL at the
GitLab application server instead, use TCP protocol.

	[^3]: The backend port for GitLab Pages depends on the
	gitlab_pages[‘external_http’] and gitlab_pages[‘external_https’]
setting. See [GitLab Pages documentation][gitlab-pages] for more details.

	[^4]: Port 443 for GitLab Pages should always use the TCP protocol. Users can
	configure custom domains with custom SSL, which would not be possible
if SSL was terminated at the load balancer.

[gitlab-pages]: ../pages/index.md

 # NFS

You can view information and options set for each of the mounted NFS file
systems by running nfsstat -m and cat /etc/fstab.

NFS Server features

Required features

File locking: GitLab requires advisory file locking, which is only
supported natively in NFS version 4. NFSv3 also supports locking as long as
Linux Kernel 2.6.5+ is used. We recommend using version 4 and do not
specifically test NFSv3.

Recommended options

When you define your NFS exports, we recommend you also add the following
options:

	no_root_squash - NFS normally changes the root user to nobody. This is
a good security measure when NFS shares will be accessed by many different
users. However, in this case only GitLab will use the NFS share so it
is safe. GitLab recommends the no_root_squash setting because we need to
manage file permissions automatically. Without the setting you may receive
errors when the Omnibus package tries to alter permissions. Note that GitLab
and other bundled components do not run as root but as non-privileged
users. The recommendation for no_root_squash is to allow the Omnibus package
to set ownership and permissions on files, as needed. In some cases where the
no_root_squash option is not available, the root flag can achieve the same
result.

	sync - Force synchronous behavior. Default is asynchronous and under certain
circumstances it could lead to data loss if a failure occurs before data has
synced.

AWS Elastic File System

GitLab strongly recommends against using AWS Elastic File System (EFS).
Our support team will not be able to assist on performance issues related to
file system access.

Customers and users have reported that AWS EFS does not perform well for GitLab’s
use-case. Workloads where many small files are written in a serialized manner, like git,
are not well-suited for EFS. EBS with an NFS server on top will perform much better.

If you do choose to use EFS, avoid storing GitLab log files (e.g. those in /var/log/gitlab)
there because this will also affect performance. We recommend that the log files be
stored on a local volume.

For more details on another person’s experience with EFS, see
[Amazon’s Elastic File System: Burst Credits](https://www.rawkode.io/2017/04/amazons-elastic-file-system-burst-credits/)

NFS Client mount options

Below is an example of an NFS mount point defined in /etc/fstab we use on
GitLab.com:

`
10.1.1.1:/var/opt/gitlab/git-data /var/opt/gitlab/git-data nfs4 defaults,soft,rsize=1048576,wsize=1048576,noatime,nobootwait,lookupcache=positive 0 2
`

Notice several options that you should consider using:

Setting | Description |

——- | ———– |

nobootwait | Don’t halt boot process waiting for this mount to become available

lookupcache=positive | Tells the NFS client to honor positive cache results but invalidates any negative cache results. Negative cache results cause problems with Git. Specifically, a git push can fail to register uniformly across all NFS clients. The negative cache causes the clients to ‘remember’ that the files did not exist previously.

A single NFS mount

It’s recommended to nest all gitlab data dirs within a mount, that allows automatic
restore of backups without manually moving existing data.

```
mountpoint
└── gitlab-data


├── builds
├── git-data
├── home-git
├── shared
└── uploads




```

To do so, we’ll need to configure Omnibus with the paths to each directory nested
in the mount point as follows:

Mount /gitlab-nfs then use the following Omnibus
configuration to move each data location to a subdirectory:

`ruby
git_data_dirs({"default" => "/gitlab-nfs/gitlab-data/git-data"})
user['home'] = '/gitlab-nfs/gitlab-data/home'
gitlab_rails['uploads_directory'] = '/gitlab-nfs/gitlab-data/uploads'
gitlab_rails['shared_path'] = '/gitlab-nfs/gitlab-data/shared'
gitlab_ci['builds_directory'] = '/gitlab-nfs/gitlab-data/builds'
`

To move the git home directory, all GitLab services must be stopped. Run
gitlab-ctl stop && initctl stop gitlab-runsvdir. Then continue with the
reconfigure.

Run sudo gitlab-ctl reconfigure to start using the central location. Please
be aware that if you had existing data you will need to manually copy/rsync it
to these new locations and then restart GitLab.

Bind mounts

Alternatively to changing the configuration in Omnibus, bind mounts can be used
to store the data on an NFS mount.

Bind mounts provide a way to specify just one NFS mount and then
bind the default GitLab data locations to the NFS mount. Start by defining your
single NFS mount point as you normally would in /etc/fstab. Let’s assume your
NFS mount point is /gitlab-nfs. Then, add the following bind mounts in
/etc/fstab:

`bash
/gitlab-nfs/gitlab-data/git-data /var/opt/gitlab/git-data none bind 0 0
/gitlab-nfs/gitlab-data/.ssh /var/opt/gitlab/.ssh none bind 0 0
/gitlab-nfs/gitlab-data/uploads /var/opt/gitlab/gitlab-rails/uploads none bind 0 0
/gitlab-nfs/gitlab-data/shared /var/opt/gitlab/gitlab-rails/shared none bind 0 0
/gitlab-nfs/gitlab-data/builds /var/opt/gitlab/gitlab-ci/builds none bind 0 0
`

Using bind mounts will require manually making sure the data directories
are empty before attempting a restore. Read more about the
[restore prerequisites](../../raketasks/backup_restore.md).

Multiple NFS mounts

When using default Omnibus configuration you will need to share 5 data locations
between all GitLab cluster nodes. No other locations should be shared. The
following are the 5 locations need to be shared:

Location | Description | Default configuration |

——– | ———– | ——————— |

/var/opt/gitlab/git-data | Git repository data. This will account for a large portion of your data | git_data_dirs({“default” => “/var/opt/gitlab/git-data”})

/var/opt/gitlab/.ssh | SSH authorized_keys file and keys used to import repositories from some other Git services | user[‘home’] = ‘/var/opt/gitlab/’

/var/opt/gitlab/gitlab-rails/uploads | User uploaded attachments | gitlab_rails[‘uploads_directory’] = ‘/var/opt/gitlab/gitlab-rails/uploads’

/var/opt/gitlab/gitlab-rails/shared | Build artifacts, GitLab Pages, LFS objects, temp files, etc. If you’re using LFS this may also account for a large portion of your data | gitlab_rails[‘shared_path’] = ‘/var/opt/gitlab/gitlab-rails/shared’

/var/opt/gitlab/gitlab-ci/builds | GitLab CI build traces | gitlab_ci[‘builds_directory’] = ‘/var/opt/gitlab/gitlab-ci/builds’

Other GitLab directories should not be shared between nodes. They contain
node-specific files and GitLab code that does not need to be shared. To ship
logs to a central location consider using remote syslog. GitLab Omnibus packages
provide configuration for [UDP log shipping][udp-log-shipping].

Having multiple NFS mounts will require manually making sure the data directories
are empty before attempting a restore. Read more about the
[restore prerequisites](../../raketasks/backup_restore.md).

—

Read more on high-availability configuration:

1. [Configure the database](database.md)
1. [Configure Redis](redis.md)
1. [Configure the GitLab application servers](gitlab.md)
1. [Configure the load balancers](load_balancer.md)

[udp-log-shipping]: http://docs.gitlab.com/omnibus/settings/logs.html#udp-log-shipping-gitlab-enterprise-edition-only “UDP log shipping”

 # Configuring Redis for GitLab HA

>
Experimental Redis Sentinel support was [Introduced][ce-1877] in GitLab 8.11.
Starting with 8.14, Redis Sentinel is no longer experimental.
If you’ve used it with versions < 8.14 before, please check the updated
documentation here.

High Availability with [Redis] is possible using a Master x Slave
topology with a [Redis Sentinel][sentinel] service to watch and automatically
start the failover procedure.

You can choose to install and manage Redis and Sentinel yourself, use
a hosted cloud solution or you can use the one that comes bundled with
Omnibus GitLab packages.

> Notes:
- Redis requires authentication for High Availability. See

[Redis Security](http://redis.io/topics/security) documentation for more
information. We recommend using a combination of a Redis password and tight
firewall rules to secure your Redis service.

	You are highly encouraged to read the [Redis Sentinel][sentinel] documentation
before configuring Redis HA with GitLab to fully understand the topology and
architecture.

	This is the documentation for the Omnibus GitLab packages. For installations
from source, follow the [Redis HA source installation](redis_source.md) guide.

	Redis Sentinel daemon is bundled with Omnibus GitLab Enterprise Edition only.
For configuring Sentinel with the Omnibus GitLab Community Edition and
installations from source, read the
[Available configuration setups](#available-configuration-setups) section
below.

Overview

Before diving into the details of setting up Redis and Redis Sentinel for HA,
make sure you read this Overview section to better understand how the components
are tied together.

You need at least 3 independent machines: physical, or VMs running into
distinct physical machines. It is essential that all master and slaves Redis
instances run in different machines. If you fail to provision the machines in
that specific way, any issue with the shared environment can bring your entire
setup down.

It is OK to run a Sentinel alongside of a master or slave Redis instance.
There should be no more than one Sentinel on the same machine though.

You also need to take into consideration the underlying network topology,
making sure you have redundant connectivity between Redis / Sentinel and
GitLab instances, otherwise the networks will become a single point of
failure.

Make sure that you read this document once as a whole before configuring the
components below.

High Availability with Sentinel

>**Notes:**
- Starting with GitLab 8.11, you can configure a list of Redis Sentinel

servers that will monitor a group of Redis servers to provide failover support.

	Starting with GitLab 8.14, the Omnibus GitLab Enterprise Edition package
comes with Redis Sentinel daemon built-in.

High Availability with Redis requires a few things:

	Multiple Redis instances

	Run Redis in a Master x Slave topology

	Multiple Sentinel instances

	Application support and visibility to all Sentinel and Redis instances

Redis Sentinel can handle the most important tasks in an HA environment and that’s
to help keep servers online with minimal to no downtime. Redis Sentinel:

	Monitors Master and Slaves instances to see if they are available

	Promotes a Slave to Master when the Master fails

	Demotes a Master to Slave when the failed Master comes back online
(to prevent data-partitioning)

	Can be queried by the application to always connect to the current Master
server

When a Master fails to respond, it’s the application’s responsibility
(in our case GitLab) to handle timeout and reconnect (querying a Sentinel
for a new Master).

To get a better understanding on how to correctly setup Sentinel, please read
the [Redis Sentinel documentation](http://redis.io/topics/sentinel) first, as
failing to configure it correctly can lead to data loss or can bring your
whole cluster down, invalidating the failover effort.

Recommended setup

For a minimal setup, you will install the Omnibus GitLab package in 3
independent machines, both with Redis and Sentinel:

	Redis Master + Sentinel

	Redis Slave + Sentinel

	Redis Slave + Sentinel

If you are not sure or don’t understand why and where the amount of nodes come
from, read [Redis setup overview](#redis-setup-overview) and
[Sentinel setup overview](#sentinel-setup-overview).

For a recommended setup that can resist more failures, you will install
the Omnibus GitLab package in 5 independent machines, both with
Redis and Sentinel:

	Redis Master + Sentinel

	Redis Slave + Sentinel

	Redis Slave + Sentinel

	Redis Slave + Sentinel

	Redis Slave + Sentinel

Redis setup overview

You must have at least 3 Redis servers: 1 Master, 2 Slaves, and they
need to each be on independent machines (see explanation above).

You can have additional Redis nodes, that will help survive a situation
where more nodes goes down. Whenever there is only 2 nodes online, a failover
will not be initiated.

As an example, if you have 6 Redis nodes, a maximum of 3 can be
simultaneously down.

Please note that there are different requirements for Sentinel nodes.
If you host them in the same Redis machines, you may need to take
that restrictions into consideration when calculating the amount of
nodes to be provisioned. See [Sentinel setup overview](#sentinel-setup-overview)
documentation for more information.

All Redis nodes should be configured the same way and with similar server specs, as
in a failover situation, any Slave can be promoted as the new Master by
the Sentinel servers.

The replication requires authentication, so you need to define a password to
protect all Redis nodes and the Sentinels. They will all share the same
password, and all instances must be able to talk to
each other over the network.

Sentinel setup overview

Sentinels watch both other Sentinels and Redis nodes. Whenever a Sentinel
detects that a Redis node is not responding, it will announce that to the
other Sentinels. They have to reach the quorum, that is the minimum amount
of Sentinels that agrees a node is down, in order to be able to start a failover.

Whenever the quorum is met, the majority of all known Sentinel nodes
need to be available and reachable, so that they can elect the Sentinel leader
who will take all the decisions to restore the service availability by:

	Promoting a new Master

	Reconfiguring the other Slaves and make them point to the new Master

	Announce the new Master to every other Sentinel peer

	Reconfigure the old Master and demote to Slave when it comes back online

You must have at least 3 Redis Sentinel servers, and they need to
be each in an independent machine (that are believed to fail independently),
ideally in different geographical areas.

You can configure them in the same machines where you’ve configured the other
Redis servers, but understand that if a whole node goes down, you loose both
a Sentinel and a Redis instance.

The number of sentinels should ideally always be an odd number, for the
consensus algorithm to be effective in the case of a failure.

In a 3 nodes topology, you can only afford 1 Sentinel node going down.
Whenever the majority of the Sentinels goes down, the network partition
protection prevents destructive actions and a failover will not be started.

Here are some examples:

	With 5 or 6 sentinels, a maximum of 2 can go down for a failover begin.

	With 7 sentinels, a maximum of 3 nodes can go down.

The Leader election can sometimes fail the voting round when consensus
is not achieved (see the odd number of nodes requirement above). In that case,
a new attempt will be made after the amount of time defined in
sentinel[‘failover_timeout’] (in milliseconds).

>**Note:**
We will see where sentinel[‘failover_timeout’] is defined later.

The failover_timeout variable has a lot of different use cases. According to
the official documentation:

	The time needed to re-start a failover after a previous failover was
already tried against the same master by a given Sentinel, is two
times the failover timeout.

	The time needed for a slave replicating to a wrong master according
to a Sentinel current configuration, to be forced to replicate
with the right master, is exactly the failover timeout (counting since
the moment a Sentinel detected the misconfiguration).

	The time needed to cancel a failover that is already in progress but
did not produced any configuration change (SLAVEOF NO ONE yet not
acknowledged by the promoted slave).

	The maximum time a failover in progress waits for all the slaves to be
reconfigured as slaves of the new master. However even after this time
the slaves will be reconfigured by the Sentinels anyway, but not with
the exact parallel-syncs progression as specified.

Available configuration setups

Based on your infrastructure setup and how you have installed GitLab, there are
multiple ways to configure Redis HA. Omnibus GitLab packages have Redis and/or
Redis Sentinel bundled with them so you only need to focus on configuration.
Pick the one that suits your needs.

	[Installations from source][source]: You need to install Redis and Sentinel
yourself. Use the [Redis HA installation from source](redis_source.md)
documentation.

	[Omnibus GitLab Community Edition (CE) package][ce]: Redis is bundled, so you
can use the package with only the Redis service enabled as described in steps
1 and 2 of this document (works for both master and slave setups). To install
and configure Sentinel, jump directly to the Sentinel section in the
[Redis HA installation from source](redis_source.md#step-3-configuring-the-redis-sentinel-instances) documentation.

	[Omnibus GitLab Enterprise Edition (EE) package][ee]: Both Redis and Sentinel
are bundled in the package, so you can use the EE package to setup the whole
Redis HA infrastructure (master, slave and Sentinel) which is described in
this document.

	If you have installed GitLab using the Omnibus GitLab packages (CE or EE),
but you want to use your own external Redis server, follow steps 1-3 in the
[Redis HA installation from source](redis_source.md) documentation, then go
straight to step 4 in this guide to
[set up the GitLab application](#step-4-configuring-the-gitlab-application).

Configuring Redis HA

This is the section where we install and setup the new Redis instances.

>**Notes:**
- We assume that you have installed GitLab and all HA components from scratch. If you

already have it installed and running, read how to
[switch from a single-machine installation to Redis HA](#switching-from-an-existing-single-machine-installation-to-redis-ha).

	Redis nodes (both master and slaves) will need the same password defined in
redis[‘password’]. At any time during a failover the Sentinels can
reconfigure a node and change its status from master to slave and vice versa.

Prerequisites

The prerequisites for a HA Redis setup are the following:

	Provision the minimum required number of instances as specified in the
[recommended setup](#recommended-setup) section.

	We Do not recommend installing Redis or Redis Sentinel in the same machines your
GitLab application is running on as this weakens your HA configuration. You can however opt in to install Redis
and Sentinel in the same machine.

	All Redis nodes must be able to talk to each other and accept incoming
connections over Redis (6379) and Sentinel (26379) ports (unless you
change the default ones).

	The server that hosts the GitLab application must be able to access the
Redis nodes.

	Protect the nodes from access from external networks ([Internet][it]), using
firewall.

Step 1. Configuring the master Redis instance

1. SSH into the master Redis server.
1. [Download/install](https://about.gitlab.com/installation) the Omnibus GitLab

	package you want using steps 1 and 2 from the GitLab downloads page.
	
	Make sure you select the correct Omnibus package, with the same version
and type (Community, Enterprise editions) of your current install.

	Do not complete any other steps on the download page.

	Edit /etc/gitlab/gitlab.rb and add the contents:


```ruby
# Enable the master role and disable all other services in the machine
# (you can still enable Sentinel).
redis_master_role[‘enable’] = true

# IP address pointing to a local IP that the other machines can reach to.
# You can also set bind to ‘0.0.0.0’ which listen in all interfaces.
# If you really need to bind to an external accessible IP, make
# sure you add extra firewall rules to prevent unauthorized access.
redis[‘bind’] = ‘10.0.0.1’

# Define a port so Redis can listen for TCP requests which will allow other
# machines to connect to it.
redis[‘port’] = 6379

# Set up password authentication for Redis (use the same password in all nodes).
redis[‘password’] = ‘redis-password-goes-here’
```


	Only the primary GitLab application server should handle migrations. To
prevent database migrations from running on upgrade, add the following
configuration to your /etc/gitlab/gitlab.rb file:

`
gitlab_rails['auto_migrate'] = false
`

	[Reconfigure Omnibus GitLab][reconfigure] for the changes to take effect.

Step 2. Configuring the slave Redis instances

1. SSH into the slave Redis server.
1. [Download/install](https://about.gitlab.com/installation) the Omnibus GitLab

	package you want using steps 1 and 2 from the GitLab downloads page.
	
	Make sure you select the correct Omnibus package, with the same version
and type (Community, Enterprise editions) of your current install.

	Do not complete any other steps on the download page.

	Edit /etc/gitlab/gitlab.rb and add the contents:

``ruby
Enable the slave role and disable all other services in the machine
(you can still enable Sentinel). This will also set automatically
`redis[‘master’] = false.
redis_slave_role[‘enable’] = true

IP address pointing to a local IP that the other machines can reach to.
You can also set bind to ‘0.0.0.0’ which listen in all interfaces.
If you really need to bind to an external accessible IP, make
sure you add extra firewall rules to prevent unauthorized access.
redis[‘bind’] = ‘10.0.0.2’

Define a port so Redis can listen for TCP requests which will allow other
machines to connect to it.
redis[‘port’] = 6379

The same password for Redis authentication you set up for the master node.
redis[‘password’] = ‘redis-password-goes-here’

The IP of the master Redis node.
redis[‘master_ip’] = ‘10.0.0.1’

Port of master Redis server, uncomment to change to non default. Defaults
to 6379.
#redis[‘master_port’] = 6379
```









	To prevent database migrations from running on upgrade, run:


`
sudo touch /etc/gitlab/skip-auto-migrations
`

Only the primary GitLab application server should handle migrations.








1. [Reconfigure Omnibus GitLab][reconfigure] for the changes to take effect.
1. Go through the steps again for all the other slave nodes.

—

These values don’t have to be changed again in /etc/gitlab/gitlab.rb after
a failover, as the nodes will be managed by the Sentinels, and even after a
gitlab-ctl reconfigure, they will get their configuration restored by
the same Sentinels.

### Step 3. Configuring the Redis Sentinel instances

>**Note:**
Redis Sentinel is bundled with Omnibus GitLab Enterprise Edition only. The
following section assumes you are using Omnibus GitLab Enterprise Edition.
For the Omnibus Community Edition and installations from source, follow the
[Redis HA source install](redis_source.md) guide.

Now that the Redis servers are all set up, let’s configure the Sentinel
servers.

If you are not sure if your Redis servers are working and replicating
correctly, please read the [Troubleshooting Replication](#troubleshooting-replication)
and fix it before proceeding with Sentinel setup.

You must have at least 3 Redis Sentinel servers, and they need to
be each in an independent machine. You can configure them in the same
machines where you’ve configured the other Redis servers.

With GitLab Enterprise Edition, you can use the Omnibus package to setup
multiple machines with the Sentinel daemon.

—

1. SSH into the server that will host Redis Sentinel.
1. **You can omit this step if the Sentinels will be hosted in the same node as


the other Redis instances.**


[Download/install](https://about.gitlab.com/downloads-ee) the
Omnibus GitLab Enterprise Edition package using steps 1 and 2 from the
GitLab downloads page.



	Make sure you select the correct Omnibus package, with the same version
the GitLab application is running.


	Do not complete any other steps on the download page.














	Edit /etc/gitlab/gitlab.rb and add the contents (if you are installing the
Sentinels in the same node as the other Redis instances, some values might
be duplicate below):


```ruby
redis_sentinel_role[‘enable’] = true

Must be the same in every sentinel node
redis[‘master_name’] = ‘gitlab-redis’

The same password for Redis authentication you set up for the master node.
redis[‘password’] = ‘redis-password-goes-here’

The IP of the master Redis node.
redis[‘master_ip’] = ‘10.0.0.1’

Define a port so Redis can listen for TCP requests which will allow other
machines to connect to it.
redis[‘port’] = 6379

Port of master Redis server, uncomment to change to non default. Defaults
to 6379.
#redis[‘master_port’] = 6379

Configure Sentinel
sentinel[‘bind’] = ‘10.0.0.1’

Port that Sentinel listens on, uncomment to change to non default. Defaults
to 26379.
sentinel[‘port’] = 26379

Quorum must reflect the amount of voting sentinels it take to start a failover.
Value must NOT be greater then the amount of sentinels.
##
The quorum can be used to tune Sentinel in two ways:
1. If a the quorum is set to a value smaller than the majority of Sentinels
we deploy, we are basically making Sentinel more sensible to master failures,
triggering a failover as soon as even just a minority of Sentinels is no longer
able to talk with the master.
1. If a quorum is set to a value greater than the majority of Sentinels, we are
making Sentinel able to failover only when there are a very large number (larger
than majority) of well connected Sentinels which agree about the master being down.s
sentinel[‘quorum’] = 2

Consider unresponsive server down after x amount of ms.
sentinel[‘down_after_milliseconds’] = 10000

Specifies the failover timeout in milliseconds. It is used in many ways:
##
- The time needed to re-start a failover after a previous failover was
already tried against the same master by a given Sentinel, is two
times the failover timeout.
##
- The time needed for a slave replicating to a wrong master according
to a Sentinel current configuration, to be forced to replicate
with the right master, is exactly the failover timeout (counting since
the moment a Sentinel detected the misconfiguration).
##
- The time needed to cancel a failover that is already in progress but
did not produced any configuration change (SLAVEOF NO ONE yet not
acknowledged by the promoted slave).
##
- The maximum time a failover in progress waits for all the slaves to be
reconfigured as slaves of the new master. However even after this time
the slaves will be reconfigured by the Sentinels anyway, but not with
the exact parallel-syncs progression as specified.
sentinel[‘failover_timeout’] = 60000
```









	To prevent database migrations from running on upgrade, run:


`
sudo touch /etc/gitlab/skip-auto-migrations
`

Only the primary GitLab application server should handle migrations.








1. [Reconfigure Omnibus GitLab][reconfigure] for the changes to take effect.
1. Go through the steps again for all the other Sentinel nodes.

### Step 4. Configuring the GitLab application

The final part is to inform the main GitLab application server of the Redis
Sentinels servers and authentication credentials.

You can enable or disable Sentinel support at any time in new or existing
installations. From the GitLab application perspective, all it requires is
the correct credentials for the Sentinel nodes.

While it doesn’t require a list of all Sentinel nodes, in case of a failure,
it needs to access at least one of the listed.

>**Note:**
The following steps should be performed in the [GitLab application server](gitlab.md)
which ideally should not have Redis or Sentinels on it for a HA setup.

1. SSH into the server where the GitLab application is installed.
1. Edit /etc/gitlab/gitlab.rb and add/change the following lines:


```
Must be the same in every sentinel node
redis[‘master_name’] = ‘gitlab-redis’

The same password for Redis authentication you set up for the master node.
redis[‘master_password’] = ‘redis-password-goes-here’

A list of sentinels with host and port
gitlab_rails[‘redis_sentinels’] = [

{‘host’ => ‘10.0.0.1’, ‘port’ => 26379},
{‘host’ => ‘10.0.0.2’, ‘port’ => 26379},
{‘host’ => ‘10.0.0.3’, ‘port’ => 26379}

	[Reconfigure Omnibus GitLab][reconfigure] for the changes to take effect.

Switching from an existing single-machine installation to Redis HA

If you already have a single-machine GitLab install running, you will need to
replicate from this machine first, before de-activating the Redis instance
inside it.

Your single-machine install will be the initial Master, and the 3 others
should be configured as Slave pointing to this machine.

After replication catches up, you will need to stop services in the
single-machine install, to rotate the Master to one of the new nodes.

Make the required changes in configuration and restart the new nodes again.

To disable redis in the single install, edit /etc/gitlab/gitlab.rb:

`ruby
redis['enable'] = false
`

If you fail to replicate first, you may loose data (unprocessed background jobs).

Example of a minimal configuration with 1 master, 2 slaves and 3 Sentinels

>**Note:**
Redis Sentinel is bundled with Omnibus GitLab Enterprise Edition only. For
different setups, read the
[available configuration setups](#available-configuration-setups) section.

In this example we consider that all servers have an internal network
interface with IPs in the 10.0.0.x range, and that they can connect
to each other using these IPs.

In a real world usage, you would also setup firewall rules to prevent
unauthorized access from other machines and block traffic from the
outside (Internet).

We will use the same 3 nodes with Redis + Sentinel topology
discussed in [Redis setup overview](#redis-setup-overview) and
[Sentinel setup overview](#sentinel-setup-overview) documentation.

Here is a list and description of each machine and the assigned IP:

	10.0.0.1: Redis Master + Sentinel 1

	10.0.0.2: Redis Slave 1 + Sentinel 2

	10.0.0.3: Redis Slave 2 + Sentinel 3

	10.0.0.4: GitLab application

Please note that after the initial configuration, if a failover is initiated
by the Sentinel nodes, the Redis nodes will be reconfigured and the Master
will change permanently (including in redis.conf) from one node to the other,
until a new failover is initiated again.

The same thing will happen with sentinel.conf that will be overridden after the
initial execution, after any new sentinel node starts watching the Master,
or a failover promotes a different Master node.

Example configuration for Redis master and Sentinel 1

In /etc/gitlab/gitlab.rb:

`ruby
redis_master_role['enable'] = true
redis_sentinel_role['enable'] = true
redis['bind'] = '10.0.0.1'
redis['port'] = 6379
redis['password'] = 'redis-password-goes-here'
redis['master_name'] = 'gitlab-redis' # must be the same in every sentinel node
redis['master_password'] = 'redis-password-goes-here' # the same value defined in redis['password'] in the master instance
redis['master_ip'] = '10.0.0.1' # ip of the initial master redis instance
#redis['master_port'] = 6379 # port of the initial master redis instance, uncomment to change to non default
sentinel['bind'] = '10.0.0.1'
sentinel['port'] = 26379 # uncomment to change default port
sentinel['quorum'] = 2
sentinel['down_after_milliseconds'] = 10000
sentinel['failover_timeout'] = 60000
`

[Reconfigure Omnibus GitLab][reconfigure] for the changes to take effect.

Example configuration for Redis slave 1 and Sentinel 2

In /etc/gitlab/gitlab.rb:

`ruby
redis_slave_role['enable'] = true
redis_sentinel_role['enable'] = true
redis['bind'] = '10.0.0.2'
redis['port'] = 6379
redis['password'] = 'redis-password-goes-here'
redis['master_password'] = 'redis-password-goes-here'
redis['master_ip'] = '10.0.0.1' # IP of master Redis server
#redis['master_port'] = 6379 # Port of master Redis server, uncomment to change to non default
redis['master_name'] = 'gitlab-redis' # must be the same in every sentinel node
sentinel['bind'] = '10.0.0.2'
sentinel['port'] = 26379 # uncomment to change default port
sentinel['quorum'] = 2
sentinel['down_after_milliseconds'] = 10000
sentinel['failover_timeout'] = 60000
`

[Reconfigure Omnibus GitLab][reconfigure] for the changes to take effect.

Example configuration for Redis slave 2 and Sentinel 3

In /etc/gitlab/gitlab.rb:

`ruby
redis_slave_role['enable'] = true
redis_sentinel_role['enable'] = true
redis['bind'] = '10.0.0.3'
redis['port'] = 6379
redis['password'] = 'redis-password-goes-here'
redis['master_password'] = 'redis-password-goes-here'
redis['master_ip'] = '10.0.0.1' # IP of master Redis server
#redis['master_port'] = 6379 # Port of master Redis server, uncomment to change to non default
redis['master_name'] = 'gitlab-redis' # must be the same in every sentinel node
sentinel['bind'] = '10.0.0.3'
sentinel['port'] = 26379 # uncomment to change default port
sentinel['quorum'] = 2
sentinel['down_after_milliseconds'] = 10000
sentinel['failover_timeout'] = 60000
`

[Reconfigure Omnibus GitLab][reconfigure] for the changes to take effect.

Example configuration for the GitLab application

In /etc/gitlab/gitlab.rb:

```ruby
redis[‘master_name’] = ‘gitlab-redis’
redis[‘password’] = ‘redis-password-goes-here’
gitlab_rails[‘redis_sentinels’] = [


{‘host’ => ‘10.0.0.1’, ‘port’ => 26379},
{‘host’ => ‘10.0.0.2’, ‘port’ => 26379},
{‘host’ => ‘10.0.0.3’, ‘port’ => 26379}





]

[Reconfigure Omnibus GitLab][reconfigure] for the changes to take effect.

## Advanced configuration

Omnibus GitLab configures some things behind the curtains to make the sysadmins’
lives easier. If you want to know what happens underneath keep reading.

### Running multiple Redis clusters

GitLab supports running [separate Redis clusters for different persistent
classes](https://docs.gitlab.com/omnibus/settings/redis.html#running-with-multiple-redis-instances):
cache, queues, and shared_state. To make this work with Sentinel:


	Set the appropriate variable in /etc/gitlab/gitlab.rb for each instance you are using:


`ruby
gitlab_rails['redis_cache_instance'] = REDIS_CACHE_URL
gitlab_rails['redis_queues_instance'] = REDIS_QUEUES_URL
gitlab_rails['redis_shared_state_instance'] = REDIS_SHARED_STATE_URL
`
Note: Redis URLs should be in the format: redis://:PASSWORD@SENTINEL_MASTER_NAME


	PASSWORD is the plaintext password for the Redis instance


	SENTINEL_MASTER_NAME is the Sentinel master name (e.g. gitlab-redis-cache)












	Include an array of hashes with host/port combinations, such as the following:


```ruby
gitlab_rails[‘redis_cache_sentinels’] = [

{ host: REDIS_CACHE_SENTINEL_HOST, port: PORT1 },
{ host: REDIS_CACHE_SENTINEL_HOST2, port: PORT2 }

]
gitlab_rails[‘redis_queues_sentinels’] = [

{ host: REDIS_QUEUES_SENTINEL_HOST, port: PORT1 },
{ host: REDIS_QUEUES_SENTINEL_HOST2, port: PORT2 }

]
gitlab_rails[‘redis_shared_state_sentinels’] = [

{ host: SHARED_STATE_SENTINEL_HOST, port: PORT1 },
{ host: SHARED_STATE_SENTINEL_HOST2, port: PORT2 }

	Note that for each persistence class, GitLab will default to using the
configuration specified in gitlab_rails[‘redis_sentinels’] unless
overriden by the settings above.

	Be sure to include BOTH configuration options for each persistent classes. For example,
if you choose to configure a cache instance, you must specify both gitlab_rails[‘redis_cache_instance’]
and gitlab_rails[‘redis_cache_sentinels’] for GitLab to generate the proper configuration files.

	Run gitlab-ctl reconfigure

Control running services

In the previous example, we’ve used redis_sentinel_role and
redis_master_role which simplifies the amount of configuration changes.

If you want more control, here is what each one sets for you automatically
when enabled:

```ruby
## Redis Sentinel Role
redis_sentinel_role[‘enable’] = true

# When Sentinel Role is enabled, the following services are also enabled
sentinel[‘enable’] = true

# The following services are disabled
redis[‘enable’] = false
bootstrap[‘enable’] = false
nginx[‘enable’] = false
postgresql[‘enable’] = false
gitlab_rails[‘enable’] = false
mailroom[‘enable’] = false



## Redis master/slave Role
redis_master_role[‘enable’] = true # enable only one of them
redis_slave_role[‘enable’] = true # enable only one of them

# When Redis Master or Slave role are enabled, the following services are
# enabled/disabled. Note that if Redis and Sentinel roles are combined, both
# services will be enabled.

# The following services are disabled
sentinel[‘enable’] = false
bootstrap[‘enable’] = false
nginx[‘enable’] = false
postgresql[‘enable’] = false
gitlab_rails[‘enable’] = false
mailroom[‘enable’] = false

# For Redis Slave role, also change this setting from default ‘true’ to ‘false’:
redis[‘master’] = false
```

You can find the relevant attributes defined in [gitlab_rails.rb][omnifile].

Troubleshooting

There are a lot of moving parts that needs to be taken care carefully
in order for the HA setup to work as expected.

Before proceeding with the troubleshooting below, check your firewall rules:

	
	Redis machines
	
	Accept TCP connection in 6379

	Connect to the other Redis machines via TCP in 6379

	
	Sentinel machines
	
	Accept TCP connection in 26379

	Connect to other Sentinel machines via TCP in 26379

	Connect to the Redis machines via TCP in 6379

Troubleshooting Redis replication

You can check if everything is correct by connecting to each server using
redis-cli application, and sending the INFO command.

If authentication was correctly defined, it should fail with:
NOAUTH Authentication required error. Try to authenticate with the
previous defined password with AUTH redis-password-goes-here and
try the INFO command again.

Look for the # Replication section where you should see some important
information like the role of the server.

When connected to a master redis, you will see the number of connected
slaves, and a list of each with connection details:

`
Replication
role:master
connected_slaves:1
slave0:ip=10.133.5.21,port=6379,state=online,offset=208037514,lag=1
master_repl_offset:208037658
repl_backlog_active:1
repl_backlog_size:1048576
repl_backlog_first_byte_offset:206989083
repl_backlog_histlen:1048576
`

When it’s a slave, you will see details of the master connection and if
its up or down:

`
Replication
role:slave
master_host:10.133.1.58
master_port:6379
master_link_status:up
master_last_io_seconds_ago:1
master_sync_in_progress:0
slave_repl_offset:208096498
slave_priority:100
slave_read_only:1
connected_slaves:0
master_repl_offset:0
repl_backlog_active:0
repl_backlog_size:1048576
repl_backlog_first_byte_offset:0
repl_backlog_histlen:0
`

Troubleshooting Sentinel

If you get an error like: Redis::CannotConnectError: No sentinels available.,
there may be something wrong with your configuration files or it can be related
to [this issue][gh-531].

You must make sure you are defining the same value in redis[‘master_name’]
and redis[‘master_pasword’] as you defined for your sentinel node.

The way the redis connector redis-rb works with sentinel is a bit
non-intuitive. We try to hide the complexity in omnibus, but it still requires
a few extra configs.

—

To make sure your configuration is correct:

1. SSH into your GitLab application server
1. Enter the Rails console:


```
# For Omnibus installations
sudo gitlab-rails console

# For source installations
sudo -u git rails console production
```


	Run in the console:

`ruby
redis = Redis.new(Gitlab::Redis.params)
redis.info
`

Keep this screen open and try to simulate a failover below.

	To simulate a failover on master Redis, SSH into the Redis server and run:


```bash
# port must match your master redis port, and the sleep time must be a few seconds bigger than defined one


redis-cli -h localhost -p 6379 DEBUG sleep 20




```


	Then back in the Rails console from the first step, run:

`
redis.info
`

You should see a different port after a few seconds delay
(the failover/reconnect time).

Changelog

Changes to Redis HA over time.

8.14

	Redis Sentinel support is production-ready and bundled in the Omnibus GitLab
Enterprise Edition package

	Documentation restructure for better readability

8.11

	Experimental Redis Sentinel support was added

Further reading

Read more on High Availability:

1. [High Availability Overview](README.md)
1. [Configure the database](database.md)
1. [Configure NFS](nfs.md)
1. [Configure the GitLab application servers](gitlab.md)
1. [Configure the load balancers](load_balancer.md)

[ce-1877]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/1877
[restart]: ../restart_gitlab.md#installations-from-source
[reconfigure]: ../restart_gitlab.md#omnibus-gitlab-reconfigure
[gh-531]: https://github.com/redis/redis-rb/issues/531
[gh-534]: https://github.com/redis/redis-rb/issues/534
[redis]: http://redis.io/
[sentinel]: http://redis.io/topics/sentinel
[omnifile]: https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-cookbooks/gitlab/libraries/gitlab_rails.rb
[source]: ../../install/installation.md
[ce]: https://about.gitlab.com/downloads
[ee]: https://about.gitlab.com/downloads-ee
[it]: https://gitlab.com/gitlab-org/gitlab-ce/uploads/c4cc8cd353604bd80315f9384035ff9e/The_Internet_IT_Crowd.png

 # Configuring non-Omnibus Redis for GitLab HA

This is the documentation for configuring a Highly Available Redis setup when
you have installed Redis all by yourself and not using the bundled one that
comes with the Omnibus packages.

Note also that you may elect to override all references to
/home/git/gitlab/config/resque.yml in accordance with the advanced Redis
settings outlined in
[Configuration Files Documentation](https://gitlab.com/gitlab-org/gitlab-ce/blob/master/config/README.md).

We cannot stress enough the importance of reading the
[Overview section](redis.md#overview) of the Omnibus Redis HA as it provides
some invaluable information to the configuration of Redis. Please proceed to
read it before going forward with this guide.

We also highly recommend that you use the Omnibus GitLab packages, as we
optimize them specifically for GitLab, and we will take care of upgrading Redis
to the latest supported version.

If you’re not sure whether this guide is for you, please refer to
[Available configuration setups](redis.md#available-configuration-setups) in
the Omnibus Redis HA documentation.

Configuring your own Redis server

This is the section where we install and setup the new Redis instances.

Prerequisites

	All Redis servers in this guide must be configured to use a TCP connection
instead of a socket. To configure Redis to use TCP connections you need to
define both bind and port in the Redis config file. You can bind to all
interfaces (0.0.0.0) or specify the IP of the desired interface
(e.g., one from an internal network).

	Since Redis 3.2, you must define a password to receive external connections
(requirepass).

	If you are using Redis with Sentinel, you will also need to define the same
password for the slave password definition (masterauth) in the same instance.

In addition, read the prerequisites as described in the
[Omnibus Redis HA document](redis.md#prerequisites) since they provide some
valuable information for the general setup.

Step 1. Configuring the master Redis instance

Assuming that the Redis master instance IP is 10.0.0.1:

1. [Install Redis](../../install/installation.md#6-redis)
1. Edit /etc/redis/redis.conf:

``conf
Define a `bind address pointing to a local IP that your other machines
can reach you. If you really need to bind to an external accessible IP, make
sure you add extra firewall rules to prevent unauthorized access:
bind 10.0.0.1

Define a port to force redis to listen on TCP so other machines can
connect to it (default port is 6379).
port 6379

Set up password authentication (use the same password in all nodes).
The password should be defined equal for both requirepass and masterauth
when setting up Redis to use with Sentinel.
requirepass redis-password-goes-here
masterauth redis-password-goes-here
```





	Restart the Redis service for the changes to take effect.




### Step 2. Configuring the slave Redis instances

Assuming that the Redis slave instance IP is 10.0.0.2:

1. [Install Redis](../../install/installation.md#6-redis)
1. Edit /etc/redis/redis.conf:


``conf
## Define a `bind address pointing to a local IP that your other machines
## can reach you. If you really need to bind to an external accessible IP, make
## sure you add extra firewall rules to prevent unauthorized access:
bind 10.0.0.2

## Define a port to force redis to listen on TCP so other machines can
## connect to it (default port is 6379).
port 6379

## Set up password authentication (use the same password in all nodes).
## The password should be defined equal for both requirepass and masterauth
## when setting up Redis to use with Sentinel.
requirepass redis-password-goes-here
masterauth redis-password-goes-here

## Define slaveof pointing to the Redis master instance with IP and port.
slaveof 10.0.0.1 6379
```


1. Restart the Redis service for the changes to take effect.
1. Go through the steps again for all the other slave nodes.

Step 3. Configuring the Redis Sentinel instances

Sentinel is a special type of Redis server. It inherits most of the basic
configuration options you can define in redis.conf, with specific ones
starting with sentinel prefix.

Assuming that the Redis Sentinel is installed on the same instance as Redis
master with IP 10.0.0.1 (some settings might overlap with the master):

1. [Install Redis Sentinel](http://redis.io/topics/sentinel)
1. Edit /etc/redis/sentinel.conf:

``conf
Define a `bind address pointing to a local IP that your other machines
can reach you. If you really need to bind to an external accessible IP, make
sure you add extra firewall rules to prevent unauthorized access:
bind 10.0.0.1

Define a port to force Sentinel to listen on TCP so other machines can
connect to it (default port is 6379).
port 26379

Set up password authentication (use the same password in all nodes).
The password should be defined equal for both requirepass and masterauth
when setting up Redis to use with Sentinel.
requirepass redis-password-goes-here
masterauth redis-password-goes-here

Define with sentinel auth-pass the same shared password you have
defined for both Redis master and slaves instances.
sentinel auth-pass gitlab-redis redis-password-goes-here

Define with sentinel monitor the IP and port of the Redis
master node, and the quorum required to start a failover.
sentinel monitor gitlab-redis 10.0.0.1 6379 2

Define with sentinel down-after-milliseconds the time in ms
that an unresponsive server will be considered down.
sentinel down-after-milliseconds gitlab-redis 10000

Define a value for sentinel failover_timeout in ms. This has multiple
meanings:
##
* The time needed to re-start a failover after a previous failover was
already tried against the same master by a given Sentinel, is two
times the failover timeout.
##
* The time needed for a slave replicating to a wrong master according
to a Sentinel current configuration, to be forced to replicate
with the right master, is exactly the failover timeout (counting since
the moment a Sentinel detected the misconfiguration).
##
* The time needed to cancel a failover that is already in progress but
did not produced any configuration change (SLAVEOF NO ONE yet not
acknowledged by the promoted slave).
##
* The maximum time a failover in progress waits for all the slaves to be
reconfigured as slaves of the new master. However even after this time
the slaves will be reconfigured by the Sentinels anyway, but not with
the exact parallel-syncs progression as specified.
sentinel failover_timeout 30000
```




1. Restart the Redis service for the changes to take effect.
1. Go through the steps again for all the other Sentinel nodes.

### Step 4. Configuring the GitLab application

You can enable or disable Sentinel support at any time in new or existing
installations. From the GitLab application perspective, all it requires is
the correct credentials for the Sentinel nodes.

While it doesn’t require a list of all Sentinel nodes, in case of a failure,
it needs to access at least one of listed ones.

The following steps should be performed in the [GitLab application server](gitlab.md)
which ideally should not have Redis or Sentinels in the same machine for a HA
setup:


	Edit /home/git/gitlab/config/resque.yml following the example in
[resque.yml.example][resque], and uncomment the Sentinel lines, pointing to
the correct server credentials:


```yaml
resque.yaml
production:

url: redis://:redi-password-goes-here@gitlab-redis/
sentinels:

	host: 10.0.0.1
port: 26379 # point to sentinel, not to redis port

	host: 10.0.0.2
port: 26379 # point to sentinel, not to redis port

	host: 10.0.0.3
port: 26379 # point to sentinel, not to redis port


```









	[Restart GitLab][restart] for the changes to take effect.




## Example of minimal configuration with 1 master, 2 slaves and 3 Sentinels

In this example we consider that all servers have an internal network
interface with IPs in the 10.0.0.x range, and that they can connect
to each other using these IPs.

In a real world usage, you would also setup firewall rules to prevent
unauthorized access from other machines, and block traffic from the
outside ([Internet][it]).

For this example, Sentinel 1 will be configured in the same machine as the
Redis Master, Sentinel 2 and Sentinel 3 in the same machines as the
Slave 1 and Slave 2 respectively.

Here is a list and description of each machine and the assigned IP:


	10.0.0.1: Redis Master + Sentinel 1


	10.0.0.2: Redis Slave 1 + Sentinel 2


	10.0.0.3: Redis Slave 2 + Sentinel 3


	10.0.0.4: GitLab application




Please note that after the initial configuration, if a failover is initiated
by the Sentinel nodes, the Redis nodes will be reconfigured and the Master
will change permanently (including in redis.conf) from one node to the other,
until a new failover is initiated again.

The same thing will happen with sentinel.conf that will be overridden after the
initial execution, after any new sentinel node starts watching the Master,
or a failover promotes a different Master node.

### Example configuration for Redis master and Sentinel 1


	In /etc/redis/redis.conf:


`conf
bind 10.0.0.1
port 6379
requirepass redis-password-goes-here
masterauth redis-password-goes-here
`









	In /etc/redis/sentinel.conf:


`conf
bind 10.0.0.1
port 26379
sentinel auth-pass gitlab-redis redis-password-goes-here
sentinel monitor gitlab-redis 10.0.0.1 6379 2
sentinel down-after-milliseconds gitlab-redis 10000
sentinel failover_timeout 30000
`









	Restart the Redis service for the changes to take effect.




### Example configuration for Redis slave 1 and Sentinel 2


	In /etc/redis/redis.conf:


`conf
bind 10.0.0.2
port 6379
requirepass redis-password-goes-here
masterauth redis-password-goes-here
slaveof 10.0.0.1 6379
`









	In /etc/redis/sentinel.conf:


`conf
bind 10.0.0.2
port 26379
sentinel auth-pass gitlab-redis redis-password-goes-here
sentinel monitor gitlab-redis 10.0.0.1 6379 2
sentinel down-after-milliseconds gitlab-redis 10000
sentinel failover_timeout 30000
`









	Restart the Redis service for the changes to take effect.




### Example configuration for Redis slave 2 and Sentinel 3


	In /etc/redis/redis.conf:


`conf
bind 10.0.0.3
port 6379
requirepass redis-password-goes-here
masterauth redis-password-goes-here
slaveof 10.0.0.1 6379
`









	In /etc/redis/sentinel.conf:


`conf
bind 10.0.0.3
port 26379
sentinel auth-pass gitlab-redis redis-password-goes-here
sentinel monitor gitlab-redis 10.0.0.1 6379 2
sentinel down-after-milliseconds gitlab-redis 10000
sentinel failover_timeout 30000
`









	Restart the Redis service for the changes to take effect.




### Example configuration of the GitLab application


	Edit /home/git/gitlab/config/resque.yml:


```yaml
production:

url: redis://:redi-password-goes-here@gitlab-redis/
sentinels:

	host: 10.0.0.1
port: 26379 # point to sentinel, not to redis port

	host: 10.0.0.2
port: 26379 # point to sentinel, not to redis port

	host: 10.0.0.3
port: 26379 # point to sentinel, not to redis port


```









	[Restart GitLab][restart] for the changes to take effect.




## Troubleshooting

We have a more detailed [Troubleshooting](redis.md#troubleshooting) explained
in the documentation for Omnibus GitLab installations. Here we will list only
the things that are specific to a source installation.

If you get an error in GitLab like Redis::CannotConnectError: No sentinels available.,
there may be something wrong with your configuration files or it can be related
to [this upstream issue][gh-531].

You must make sure that resque.yml and sentinel.conf are configured correctly,
otherwise redis-rb will not work properly.

The master-group-name (‘gitlab-redis’) defined in (sentinel.conf)
must be used as the hostname in GitLab (resque.yml):

`conf
# sentinel.conf:
sentinel monitor gitlab-redis 10.0.0.1 6379 2
sentinel down-after-milliseconds gitlab-redis 10000
sentinel config-epoch gitlab-redis 0
sentinel leader-epoch gitlab-redis 0
`

```yaml
resque.yaml
production:

url: redis://:myredispassword@gitlab-redis/
sentinels:

	host: 10.0.0.1
port: 26379 # point to sentinel, not to redis port

	host: 10.0.0.2
port: 26379 # point to sentinel, not to redis port

	host: 10.0.0.3
port: 26379 # point to sentinel, not to redis port


```

When in doubt, please read [Redis Sentinel documentation](http://redis.io/topics/sentinel).

[gh-531]: https://github.com/redis/redis-rb/issues/531
[downloads]: https://about.gitlab.com/downloads
[restart]: ../restart_gitlab.md#installations-from-source
[it]: https://gitlab.com/gitlab-org/gitlab-ce/uploads/c4cc8cd353604bd80315f9384035ff9e/The_Internet_IT_Crowd.png
[resque]: https://gitlab.com/gitlab-org/gitlab-ce/blob/master/config/resque.yml.example



            

          

      

      

    

  

    
      
          
            
  # Koding & GitLab

>**Notes:**
- **As of GitLab 10.0, the Koding integration is deprecated and will be removed


in a future version. The option to configure it is removed from GitLab’s admin
area.**





	[Introduced][ce-5909] in GitLab 8.11.




This document will guide you through installing and configuring Koding with
GitLab.

First of all, to be able to use Koding and GitLab together you will need public
access to your server. This allows you to use single sign-on from GitLab to
Koding and using vms from cloud providers like AWS. Koding has a registry for
VMs, called Kontrol and it runs on the same server as Koding itself, VMs from
cloud providers register themselves to Kontrol via the agent that we put into
provisioned VMs. This agent is called Klient and it provides Koding to access
and manage the target machine.

Kontrol and Klient are based on another technology called
[Kite](https://github.com/koding/kite), that we have written at Koding. Which is a
microservice framework that allows you to develop microservices easily.

## Requirements

### Hardware

Minimum requirements are;



	2 cores CPU


	3G RAM


	10G Storage







If you plan to use AWS to install Koding it is recommended that you use at
least a c3.xlarge instance.

### Software



	[Git](https://git-scm.com)


	[Docker](https://www.docker.com)


	[docker-compose](https://www.docker.com/products/docker-compose)







Koding can run on most of the UNIX based operating systems, since it’s shipped
as containerized with Docker support, it can work on any operating system that
supports Docker.

Required services are:


	PostgreSQL - Kontrol and Service DB provider


	MongoDB    - Main DB provider the application


	Redis      - In memory DB used by both application and services


	RabbitMQ   - Message Queue for both application and services




which are also provided as a Docker container by Koding.

## Getting Started with Development Versions

### Koding

You can run docker-compose environment for developing koding by
executing commands in the following snippet.

`bash
git clone https://github.com/koding/koding.git
cd koding
docker-compose -f docker-compose-init.yml run init
docker-compose up
`

This should start koding on localhost:8090.

By default there is no team exists in Koding DB. You’ll need to create a team
called gitlab which is the default team name for GitLab integration in the
configuration. To make things in order it’s recommended to create the gitlab
team first thing after setting up Koding.

### GitLab

To install GitLab to your environment for development purposes it’s recommended
to use GitLab Development Kit which you can get it from
[here](https://gitlab.com/gitlab-org/gitlab-development-kit).

After all those steps, gitlab should be running on localhost:3000

## Integration

Integration includes following components;



	Single Sign On with OAuth from GitLab to Koding


	System Hook integration for handling GitLab events on Koding
(project_created, user_joined etc.)


	Service endpoints for importing/executing stacks from GitLab to Koding
(Run/Try on IDE (Koding) buttons on GitLab Projects, Issues, MRs)







As it’s pointed out before, you will need public access to this machine that
you’ve installed Koding and GitLab on. Better to use a domain but a static IP
is also fine.

For IP based installation you can use [nip.io](https://nip.io) service which is
free and provides DNS resolution to IP based requests like following;



	127.0.0.1.nip.io              -> resolves to 127.0.0.1


	foo.bar.baz.127.0.0.1.nip.io  -> resolves to 127.0.0.1


	and so on…







As Koding needs subdomains for team names; foo.127.0.0.1.nip.io requests for
a running koding instance on 127.0.0.1 server will be handled as foo team
requests.

### GitLab Side

You need to enable Koding integration from Settings under Admin Area. To do
that login with an Admin account and do followings;



	open [http://127.0.0.1:3000/admin/application_settings](http://127.0.0.1:3000/admin/application_settings)


	scroll to bottom of the page until Koding section


	check Enable Koding checkbox


	provide GitLab team page for running Koding instance as `Koding URL`*








	For Koding URL you need to provide the gitlab integration enabled team on




your Koding installation. Team called gitlab has integration on Koding out
of the box, so if you didn’t change anything your team on Koding should be
gitlab.

So, if your Koding is running on http://1.2.3.4.nip.io:8090 your URL needs
to be http://gitlab.1.2.3.4.nip.io:8090. You need to provide the same host
with your Koding installation here.

#### Registering Koding for OAuth integration

We need Application ID and Secret to enable login to Koding via GitLab
feature and to do that you need to register running Koding as a new application
to your running GitLab application. Follow
[these](http://docs.gitlab.com/ce/integration/oauth_provider.html) steps to
enable this integration.

Redirect URI should be http://gitlab.127.0.0.1:8090/-/oauth/gitlab/callback
which again you need to _replace 127.0.0.1 with your instance public IP._

Take a copy of Application ID and Secret that is generated by the GitLab
application, we will need those on _Koding Part_ of this guide.

#### Registering system hooks to Koding (optional)

Koding can take actions based on the events generated by GitLab application.
This feature is still in progress and only following events are processed by
Koding at the moment;



	user_create


	user_destroy







All system events are handled but not implemented on Koding side.

To enable this feature you need to provide a URL and a Secret Token to your
GitLab application. Open your admin area on your GitLab app from
[http://127.0.0.1:3000/admin/hooks](http://127.0.0.1:3000/admin/hooks)
and provide URL as http://gitlab.127.0.0.1:8090/-/api/gitlab which is the
endpoint to handle GitLab events on Koding side. Provide a Secret Token and
keep a copy of it, we will need it on _Koding Part_ of this guide.

_(replace 127.0.0.1 with your instance public IP)_

### Koding Part

If you followed the steps in GitLab part we should have followings to enable
Koding part integrations;



	Application ID and Secret for OAuth integration


	Secret Token for system hook integration


	Public address of running GitLab instance







#### Start Koding with GitLab URL

Now we need to configure Koding with all this information to get things ready.
If it’s already running please stop koding first.

##### From command-line

Replace followings with the ones you got from GitLab part of this guide;

```bash
cd koding
docker-compose run

	--service-ports backend

	

/opt/koding/scripts/bootstrap-container build –host=**YOUR_IP**.nip.io –gitlabHost=**GITLAB_IP** –gitlabPort=**GITLAB_PORT** –gitlabToken=**SECRET_TOKEN** –gitlabAppId=**APPLICATION_ID** –gitlabAppSecret=**SECRET**


```

##### By updating configuration

Alternatively you can update gitlab section on
config/credentials.default.coffee like following;

```
gitlab =

host: ‘GITLAB_IP’
port: ‘GITLAB_PORT’
applicationId: ‘APPLICATION_ID’
applicationSecret: ‘SECRET’
team: ‘gitlab’
redirectUri: ‘’
systemHookToken: ‘SECRET_TOKEN’
hooksEnabled: yes


```

and start by only providing the host;

```bash
cd koding
docker-compose run

	--service-ports backend

	

/opt/koding/scripts/bootstrap-container build –host=**YOUR_IP**.nip.io


```

#### Enable Single Sign On

Once you restarted your Koding and logged in with your username and password
you need to activate oauth authentication for your user. To do that



	Navigate to Dashboard on Koding from;
http://gitlab.**YOUR_IP**.nip.io:8090/Home/my-account


	Scroll down to Integrations section


	Click on toggle to turn On integration in GitLab integration section







This will redirect you to your GitLab instance and will ask your permission (
if you are not logged in to GitLab at this point you will be redirected after
login) once you accept you will be redirected to your Koding instance.

From now on you can login by using SIGN IN WITH GITLAB button on your Login
screen in your Koding instance.

[ce-5909]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/5909



            

          

      

      

    

  

    
      
          
            
  # PlantUML & GitLab

> [Introduced][ce-8537] in GitLab 8.16.

When [PlantUML](http://plantuml.com) integration is enabled and configured in
GitLab we are able to create simple diagrams in AsciiDoc and Markdown documents
created in snippets, wikis, and repos.

## PlantUML Server

Before you can enable PlantUML in GitLab; you need to set up your own PlantUML
server that will generate the diagrams.

### Docker

With Docker, you can just run a container like this:

docker run -d –name plantuml -p 8080:8080 plantuml/plantuml-server:tomcat

The PlantUML URL will be the hostname of the server running the container.

### Debian/Ubuntu

Installing and configuring your
own PlantUML server is easy in Debian/Ubuntu distributions using Tomcat.

First you need to create a plantuml.war file from the source code:

`
sudo apt-get install graphviz openjdk-7-jdk git-core maven
git clone https://github.com/plantuml/plantuml-server.git
cd plantuml-server
mvn package
`

The above sequence of commands will generate a WAR file that can be deployed
using Tomcat:

`
sudo apt-get install tomcat7
sudo cp target/plantuml.war /var/lib/tomcat7/webapps/plantuml.war
sudo chown tomcat7:tomcat7 /var/lib/tomcat7/webapps/plantuml.war
sudo service tomcat7 restart
`

Once the Tomcat service restarts the PlantUML service will be ready and
listening for requests on port 8080:

`
http://localhost:8080/plantuml
`

you can change these defaults by editing the /etc/tomcat7/server.xml file.

## GitLab

You need to enable PlantUML integration from Settings under Admin Area. To do
that, login with an Admin account and do following:



	in GitLab go to Admin Area and then Settings


	scroll to bottom of the page until PlantUML section


	check Enable PlantUML checkbox


	set the PlantUML instance as PlantUML URL







## Creating Diagrams

With PlantUML integration enabled and configured, we can start adding diagrams to
our AsciiDoc snippets, wikis and repos using delimited blocks:


	Markdown


<pre>
`plantuml
Bob -> Alice : hello
Alice -> Bob : Go Away
`
</pre>






	AsciiDoc


<pre>
[plantuml, format=”png”, id=”myDiagram”, width=”200px”]
–
Bob->Alice : hello
Alice -> Bob : Go Away
–
</pre>






	reStructuredText


<pre>
.. plantuml:

:caption: Caption with **bold** and *italic*

Bob -> Alice: hello
Alice -> Bob: Go Away





</pre>

You can also use the uml:: directive for compatibility with [sphinxcontrib-plantuml](https://pypi.python.org/pypi/sphinxcontrib-plantuml), but please note that we currently only support the caption option.








The above blocks will be converted to an HTML img tag with source pointing to the
PlantUML instance. If the PlantUML server is correctly configured, this should
render a nice diagram instead of the block:

![PlantUML Integration](../img/integration/plantuml-example.png)

Inside the block you can add any of the supported diagrams by PlantUML such as
[Sequence](http://plantuml.com/sequence-diagram), [Use Case](http://plantuml.com/use-case-diagram),
[Class](http://plantuml.com/class-diagram), [Activity](http://plantuml.com/activity-diagram-legacy),
[Component](http://plantuml.com/component-diagram), [State](http://plantuml.com/state-diagram),
and [Object](http://plantuml.com/object-diagram) diagrams. You do not need to use the PlantUML
diagram delimiters @startuml/@enduml as these are replaced by the AsciiDoc plantuml block.

Some parameters can be added to the AsciiDoc block definition:



	format: Can be either png or svg. Note that svg is not supported by
all browsers so use with care. The default is png.


	id: A CSS id added to the diagram HTML tag.


	width: Width attribute added to the img tag.


	height: Height attribute added to the img tag.







Markdown does not support any parameters and will always use PNG format.

[ce-8537]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/8537



            

          

      

      

    

  

    
      
          
            
  # Web terminals

>
[Introduced](https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/7690)
in GitLab 8.15. Only project maintainers and owners can access web terminals.

With the introduction of the [Kubernetes integration](../../user/project/clusters/index.md),
GitLab gained the ability to store and use credentials for a Kubernetes cluster.
One of the things it uses these credentials for is providing access to
[web terminals](../../ci/environments.md#web-terminals) for environments.

## How it works

A detailed overview of the architecture of web terminals and how they work
can be found in [this document](https://gitlab.com/gitlab-org/gitlab-workhorse/blob/master/doc/terminal.md).
In brief:


	GitLab relies on the user to provide their own Kubernetes credentials, and to
appropriately label the pods they create when deploying.


	When a user navigates to the terminal page for an environment, they are served
a JavaScript application that opens a WebSocket connection back to GitLab.


	
	The WebSocket is handled in [Workhorse](https://gitlab.com/gitlab-org/gitlab-workhorse),
	rather than the Rails application server.







	Workhorse queries Rails for connection details and user permissions; Rails
queries Kubernetes for them in the background, using [Sidekiq](../troubleshooting/sidekiq.md)


	Workhorse acts as a proxy server between the user’s browser and the Kubernetes
API, passing WebSocket frames between the two.


	Workhorse regularly polls Rails, terminating the WebSocket connection if the
user no longer has permission to access the terminal, or if the connection
details have changed.




##  Enabling and disabling terminal support

As web terminals use WebSockets, every HTTP/HTTPS reverse proxy in front of
Workhorse needs to be configured to pass the Connection and Upgrade headers
through to the next one in the chain. If you installed GitLab using Omnibus, or
from source, starting with GitLab 8.15, this should be done by the default
configuration, so there’s no need for you to do anything.

However, if you run a [load balancer](../high_availability/load_balancer.md) in
front of GitLab, you may need to make some changes to your configuration. These
guides document the necessary steps for a selection of popular reverse proxies:


	[Apache](https://httpd.apache.org/docs/2.4/mod/mod_proxy_wstunnel.html)


	[NGINX](https://www.nginx.com/blog/websocket-nginx/)


	[HAProxy](http://blog.haproxy.com/2012/11/07/websockets-load-balancing-with-haproxy/)


	[Varnish](https://www.varnish-cache.org/docs/4.1/users-guide/vcl-example-websockets.html)




Workhorse won’t let WebSocket requests through to non-WebSocket endpoints, so
it’s safe to enable support for these headers globally. If you’d rather had a
narrower set of rules, you can restrict it to URLs ending with /terminal.ws
(although this may still have a few false positives).

If you installed from source, or have made any configuration changes to your
Omnibus installation before upgrading to 8.15, you may need to make some
changes to your configuration. See the  [8.14 to 8.15 upgrade](../../update/8.14-to-8.15.md#nginx-configuration)
document for more details.

If you’d like to disable web terminal support in GitLab, just stop passing
the Connection and Upgrade hop-by-hop headers in the first HTTP reverse
proxy in the chain. For most users, this will be the NGINX server bundled with
Omnibus GitLab, in which case, you need to:


	Find the nginx[‘proxy_set_headers’] section of your gitlab.rb file


	Ensure the whole block is uncommented, and then comment out or remove the
Connection and Upgrade lines.




For your own load balancer, just reverse the configuration changes recommended
by the above guides.

When these headers are not passed through, Workhorse will return a
400 Bad Request response to users attempting to use a web terminal. In turn,
they will receive a Connection failed message.

## Limiting WebSocket connection time

> [Introduced](https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/8413)
in GitLab 8.17.

Terminal sessions use long-lived connections; by default, these may last
forever. You can configure a maximum session time in the Admin area of your
GitLab instance if you find this undesirable from a scalability or security
point of view.



            

          

      

      

    

  

    
      
          
            
  # Monitoring GitHub imports

>**Note:**
Available since [GitLab 10.2][14731].

The GitHub importer exposes various Prometheus metrics that you can use to
monitor the health and progress of the importer.

## Import Duration Times


Name                                     | Type      |



|------------------------------------------|———–|
| github_importer_total_duration_seconds | histogram |

This metric tracks the total time spent (in seconds) importing a project (from
project creation until the import process finishes), for every imported project.

The name of the project is stored in the project label in the format
namespace/name (e.g. gitlab-org/gitlab-ce).

## Number of imported projects


Name                                | Type    |



|-------------------------------------|———|
| github_importer_imported_projects | counter |

This metric tracks the total number of projects imported over time. This metric
does not expose any labels.

## Number of GitHub API calls


Name                            | Type    |



|---------------------------------|———|
| github_importer_request_count | counter |

This metric tracks the total number of GitHub API calls performed over time, for
all projects. This metric does not expose any labels.

## Rate limit errors


Name                              | Type    |



|-----------------------------------|———|
| github_importer_rate_limit_hits | counter |

This metric tracks the number of times we hit the GitHub rate limit, for all
projects. This metric does not expose any labels.

## Number of imported issues


Name                              | Type    |



|-----------------------------------|———|
| github_importer_imported_issues | counter |

This metric tracks the number of imported issues across all projects.

The name of the project is stored in the project label in the format
namespace/name (e.g. gitlab-org/gitlab-ce).

## Number of imported pull requests


Name                                     | Type    |



|------------------------------------------|———|
| github_importer_imported_pull_requests | counter |

This metric tracks the number of imported pull requests across all projects.

The name of the project is stored in the project label in the format
namespace/name (e.g. gitlab-org/gitlab-ce).

## Number of imported comments


Name                             | Type    |



|----------------------------------|———|
| github_importer_imported_notes | counter |

This metric tracks the number of imported comments across all projects.

The name of the project is stored in the project label in the format
namespace/name (e.g. gitlab-org/gitlab-ce).

## Number of imported pull request review comments


Name                                  | Type    |



|---------------------------------------|———|
| github_importer_imported_diff_notes | counter |

This metric tracks the number of imported comments across all projects.

The name of the project is stored in the project label in the format
namespace/name (e.g. gitlab-org/gitlab-ce).

## Number of imported repositories


Name                                    | Type    |



|-----------------------------------------|———|
| github_importer_imported_repositories | counter |

This metric tracks the number of imported repositories across all projects. This
metric does not expose any labels.

[14731]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/14731



            

          

      

      

    

  

    
      
          
            
  # Monitoring GitLab

Explore our features to monitor your GitLab instance:


	[Performance monitoring](performance/index.md): GitLab Performance Monitoring makes it possible to measure a wide variety of statistics of your instance.


	[Prometheus](prometheus/index.md): Prometheus is a powerful time-series monitoring service, providing a flexible platform for monitoring GitLab and other software products.


	[GitHub imports](github_imports.md): Monitor the health and progress of GitLab’s GitHub importer with various Prometheus metrics.


	[Monitoring uptime](../../user/admin_area/monitoring/health_check.md): Check the server status using the health check endpoint.
- [IP whitelists](ip_whitelist.md): Configure GitLab for monitoring endpoints that provide health check information when probed.


	[nginx_status](https://docs.gitlab.com/omnibus/settings/nginx.html#enabling-disabling-nginx_status): Monitor your Nginx server status






            

          

      

      

    

  

    
      
          
            
  # IP whitelist

> Introduced in GitLab 9.4.

GitLab provides some [monitoring endpoints] that provide health check information
when probed.

To control access to those endpoints via IP whitelisting, you can add single
hosts or use IP ranges:

For Omnibus installations


	Open /etc/gitlab/gitlab.rb and add or uncomment the following:


`ruby
gitlab_rails['monitoring_whitelist'] = ['127.0.0.0/8', '192.168.0.1']
`









	Save the file and [reconfigure] GitLab for the changes to take effect.




—

For installations from source


	Edit config/gitlab.yml:


```yaml
monitoring:

by default only local IPs are allowed to access monitoring resources
ip_whitelist:

	127.0.0.0/8

	192.168.0.1


```









	Save the file and [restart] GitLab for the changes to take effect.




[reconfigure]: ../restart_gitlab.md#omnibus-gitlab-reconfigure
[restart]: ../restart_gitlab.md#installations-from-source
[monitoring endpoints]: ../../user/admin_area/monitoring/health_check.md



            

          

      

      

    

  

    
      
          
            
  # GitLab Configuration

GitLab Performance Monitoring is disabled by default. To enable it and change any of its
settings, navigate to the Admin area in Settings > Metrics
(/admin/application_settings).

The minimum required settings you need to set are the InfluxDB host and port.
Make sure _Enable InfluxDB Metrics_ is checked and hit Save to save the
changes.

—

![GitLab Performance Monitoring Admin Settings](img/metrics_gitlab_configuration_settings.png)

—

Finally, a restart of all GitLab processes is required for the changes to take
effect:

```bash
For Omnibus installations
sudo gitlab-ctl restart

For installations from source
sudo service gitlab restart
```

## Pending Migrations

When any migrations are pending, the metrics are disabled until the migrations
have been performed.

—

Read more on:


	[Introduction to GitLab Performance Monitoring](introduction.md)


	[InfluxDB Configuration](influxdb_configuration.md)


	[InfluxDB Schema](influxdb_schema.md)


	[Grafana Install/Configuration](grafana_configuration.md)






            

          

      

      

    

  

    
      
          
            
  # Grafana Configuration

[Grafana](http://grafana.org/) is a tool that allows you to visualize time
series metrics through graphs and dashboards. It supports several backend
data stores, including InfluxDB. GitLab writes performance data to InfluxDB
and Grafana will allow you to query InfluxDB to display useful graphs.

For the easiest installation and configuration, install Grafana on the same
server as InfluxDB. For larger installations, you may want to split out these
services.

## Installation

Grafana supplies package repositories (Yum/Apt) for easy installation.
See [Grafana installation documentation](http://docs.grafana.org/installation/)
for detailed steps.

> Note: Before starting Grafana for the first time, set the admin user
and password in /etc/grafana/grafana.ini. Otherwise, the default password
will be admin.

## Configuration

Login as the admin user. Expand the menu by clicking the Grafana logo in the
top left corner. Choose ‘Data Sources’ from the menu. Then, click ‘Add new’
in the top bar.

![Grafana empty data source page](img/grafana_data_source_empty.png)

Fill in the configuration details for the InfluxDB data source. Save and
Test Connection to ensure the configuration is correct.


	Name: InfluxDB


	Default: Checked


	Type: InfluxDB 0.9.x (Even if you’re using InfluxDB 0.10.x)


	Url: https://localhost:8086 (Or the remote URL if you’ve installed InfluxDB




on a separate server)
- Access: proxy
- Database: gitlab
- User: admin (Or the username configured when setting up InfluxDB)
- Password: The password configured when you set up InfluxDB

![Grafana data source configurations](img/grafana_data_source_configuration.png)

## Apply retention policies and create continuous queries

If you intend to import the GitLab provided Grafana dashboards, you will need to
set up the right retention policies and continuous queries. The easiest way of
doing this is by using the [influxdb-management](https://gitlab.com/gitlab-org/influxdb-management)
repository.

To use this repository you must first clone it:

`
git clone https://gitlab.com/gitlab-org/influxdb-management.git
cd influxdb-management
`

Next you must install the required dependencies:

`
gem install bundler
bundle install
`

Now you must configure the repository by first copying .env.example to .env
and then editing the .env file to contain the correct InfluxDB settings. Once
configured you can simply run bundle exec rake and the InfluxDB database will
be configured for you.

For more information see the [influxdb-management README](https://gitlab.com/gitlab-org/influxdb-management/blob/master/README.md).

## Import Dashboards

You can now import a set of default dashboards that will give you a good
start on displaying useful information. GitLab has published a set of default
[Grafana dashboards][grafana-dashboards] to get you started. Clone the
repository or download a zip/tarball, then follow these steps to import each
JSON file.

Open the dashboard dropdown menu and click ‘Import’

![Grafana dashboard dropdown](img/grafana_dashboard_dropdown.png)

Click ‘Choose file’ and browse to the location where you downloaded or cloned
the dashboard repository. Pick one of the JSON files to import.

![Grafana dashboard import](img/grafana_dashboard_import.png)

Once the dashboard is imported, be sure to click save icon in the top bar. If
you do not save the dashboard after importing it will be removed when you
navigate away.

![Grafana save icon](img/grafana_save_icon.png)

Repeat this process for each dashboard you wish to import.

Alternatively you can automatically import all the dashboards into your Grafana
instance. See the README of the [Grafana dashboards][grafana-dashboards]
repository for more information on this process.

[grafana-dashboards]: https://gitlab.com/gitlab-org/grafana-dashboards

—

Read more on:


	[Introduction to GitLab Performance Monitoring](introduction.md)


	[GitLab Configuration](gitlab_configuration.md)


	[InfluxDB Installation/Configuration](influxdb_configuration.md)


	[InfluxDB Schema](influxdb_schema.md)






            

          

      

      

    

  

    
      
          
            
  # GitLab Performance Monitoring

GitLab comes with its own application performance measuring system as of GitLab
8.4, simply called “GitLab Performance Monitoring”. GitLab Performance Monitoring is available in both the
Community and Enterprise editions.

Apart from this introduction, you are advised to read through the following
documents in order to understand and properly configure GitLab Performance Monitoring:


	[GitLab Configuration](gitlab_configuration.md)


	[InfluxDB Install/Configuration](influxdb_configuration.md)


	[InfluxDB Schema](influxdb_schema.md)


	[Grafana Install/Configuration](grafana_configuration.md)


	[Performance bar](performance_bar.md)


	[Request profiling](request_profiling.md)




>**Note:**
Omnibus GitLab 8.16 includes Prometheus as an additional tool to collect
metrics. It will eventually replace InfluxDB when their metrics collection is
on par. Read more in the [Prometheus documentation](../prometheus/index.md).

## Introduction to GitLab Performance Monitoring

GitLab Performance Monitoring makes it possible to measure a wide variety of statistics
including (but not limited to):


	The time it took to complete a transaction (a web request or Sidekiq job).


	The time spent in running SQL queries and rendering HAML views.


	The time spent executing (instrumented) Ruby methods.


	Ruby object allocations, and retained objects in particular.


	System statistics such as the process’ memory usage and open file descriptors.


	Ruby garbage collection statistics.




Metrics data is written to [InfluxDB][influxdb] over [UDP][influxdb-udp]. Stored
data can be visualized using [Grafana][grafana] or any other application that
supports reading data from InfluxDB. Alternatively data can be queried using the
InfluxDB CLI.

## Metric Types

Two types of metrics are collected:

1. Transaction specific metrics.
1. Sampled metrics, collected at a certain interval in a separate thread.

### Transaction Metrics

Transaction metrics are metrics that can be associated with a single
transaction. This includes statistics such as the transaction duration, timings
of any executed SQL queries, time spent rendering HAML views, etc. These metrics
are collected for every Rack request and Sidekiq job processed.

### Sampled Metrics

Sampled metrics are metrics that can’t be associated with a single transaction.
Examples include garbage collection statistics and retained Ruby objects. These
metrics are collected at a regular interval. This interval is made up out of two
parts:

1. A user defined interval.
1. A randomly generated offset added on top of the interval, the same offset


can’t be used twice in a row.




The actual interval can be anywhere between a half of the defined interval and a
half above the interval. For example, for a user defined interval of 15 seconds
the actual interval can be anywhere between 7.5 and 22.5. The interval is
re-generated for every sampling run instead of being generated once and re-used
for the duration of the process’ lifetime.

[influxdb]: https://influxdata.com/time-series-platform/influxdb/
[influxdb-udp]: https://docs.influxdata.com/influxdb/v0.9/write_protocols/udp/
[grafana]: http://grafana.org/



            

          

      

      

    

  

    
      
          
            
  # InfluxDB Configuration

The default settings provided by [InfluxDB] are not sufficient for a high traffic
GitLab environment. The settings discussed in this document are based on the
settings GitLab uses for GitLab.com, depending on your own needs you may need to
further adjust them.

If you are intending to run InfluxDB on the same server as GitLab, make sure
you have plenty of RAM since InfluxDB can use quite a bit depending on traffic.

Unless you are going with a budget setup, it’s advised to run it separately.

## Requirements


	InfluxDB 0.9.5 or newer


	A fairly modern version of Linux


	At least 4GB of RAM


	At least 10GB of storage for InfluxDB data




Note that the RAM and storage requirements can differ greatly depending on the
amount of data received/stored. To limit the amount of stored data users can
look into [InfluxDB Retention Policies][influxdb-retention].

## Installation

Installing InfluxDB is out of the scope of this document. Please refer to the
[InfluxDB documentation].

## InfluxDB Server Settings

Since InfluxDB has many settings that users may wish to customize themselves
(e.g. what port to run InfluxDB on), we’ll only cover the essentials.

The configuration file in question is usually located at
/etc/influxdb/influxdb.conf. Whenever you make a change in this file,
InfluxDB needs to be restarted.

### Storage Engine

InfluxDB comes with different storage engines and as of InfluxDB 0.9.5 a new
storage engine is available, called [TSM Tree]. All users must use the new
tsm1 storage engine as this [will be the default engine][tsm1-commit] in
upcoming InfluxDB releases.

Make sure you have the following in your configuration file:

```
[data]

dir = “/var/lib/influxdb/data”
engine = “tsm1”


```

### Admin Panel

Production environments should have the InfluxDB admin panel disabled. This
feature can be disabled by adding the following to your InfluxDB configuration
file:

```
[admin]

enabled = false


```

### HTTP

HTTP is required when using the [InfluxDB CLI] or other tools such as Grafana,
thus it should be enabled. When enabling make sure to _also_ enable
authentication:

```
[http]

enabled = true
auth-enabled = true


```

_**Note:** Before you enable authentication, you might want to [create an
admin user](#create-a-new-admin-user)._

### UDP

GitLab writes data to InfluxDB via UDP and thus this must be enabled. Enabling
UDP can be done using the following settings:

```
[[udp]]

enabled = true
bind-address = “:8089”
database = “gitlab”
batch-size = 1000
batch-pending = 5
batch-timeout = “1s”
read-buffer = 209715200


```

This does the following:


	Enable UDP and bind it to port 8089 for all addresses.


	Store any data received in the “gitlab” database.


	Define a batch of points to be 1000 points in size and allow a maximum of
5 batches _or_ flush them automatically after 1 second.


	Define a UDP read buffer size of 200 MB.




One of the most important settings here is the UDP read buffer size as if this
value is set too low, packets will be dropped. You must also make sure the OS
buffer size is set to the same value, the default value is almost never enough.

To set the OS buffer size to 200 MB, on Linux you can run the following command:

`bash
sysctl -w net.core.rmem_max=209715200
`

To make this permanent, add the following to /etc/sysctl.conf and restart the
server:

`bash
net.core.rmem_max=209715200
`

It is very important to make sure the buffer sizes are large enough to
handle all data sent to InfluxDB as otherwise you _will_ lose data. The above
buffer sizes are based on the traffic for GitLab.com. Depending on the amount of
traffic, users may be able to use a smaller buffer size, but we highly recommend
using _at least_ 100 MB.

When enabling UDP, users should take care to not expose the port to the public,
as doing so will allow anybody to write data into your InfluxDB database (as
[InfluxDB’s UDP protocol][udp] doesn’t support authentication). We recommend either
whitelisting the allowed IP addresses/ranges, or setting up a VLAN and only
allowing traffic from members of said VLAN.

## Create a new admin user

If you want to [enable authentication](#http), you might want to [create an
admin user][influx-admin]:

`
influx -execute "CREATE USER jeff WITH PASSWORD '1234' WITH ALL PRIVILEGES"
`

## Create the gitlab database

Once you get InfluxDB up and running, you need to create a database for GitLab.
Make sure you have changed the [storage engine](#storage-engine) to tsm1
before creating a database.

_**Note:** If you [created an admin user](#create-a-new-admin-user) and enabled
[HTTP authentication](#http), remember to append the username (-username <username>)
and password (-password <password>)  you set earlier to the commands below._

Run the following command to create a database named gitlab:

`bash
influx -execute 'CREATE DATABASE gitlab'
`

The name must be gitlab, do not use any other name.

Next, make sure that the database was successfully created:

`bash
influx -execute 'SHOW DATABASES'
`

The output should be similar to:

`
name: databases
---------------
name
_internal
gitlab
`

That’s it! Now your GitLab instance should send data to InfluxDB.

—

Read more on:


	[Introduction to GitLab Performance Monitoring](introduction.md)


	[GitLab Configuration](gitlab_configuration.md)


	[InfluxDB Schema](influxdb_schema.md)


	[Grafana Install/Configuration](grafana_configuration.md)




[influxdb-retention]: https://docs.influxdata.com/influxdb/v0.9/query_language/database_management/#retention-policy-management
[influxdb documentation]: https://docs.influxdata.com/influxdb/v0.9/
[influxdb cli]: https://docs.influxdata.com/influxdb/v0.9/tools/shell/
[udp]: https://docs.influxdata.com/influxdb/v0.9/write_protocols/udp/
[influxdb]: https://influxdata.com/time-series-platform/influxdb/
[tsm tree]: https://influxdata.com/blog/new-storage-engine-time-structured-merge-tree/
[tsm1-commit]: https://github.com/influxdata/influxdb/commit/15d723dc77651bac83e09e2b1c94be480966cb0d
[influx-admin]: https://docs.influxdata.com/influxdb/v0.9/administration/authentication_and_authorization/#create-a-new-admin-user



            

          

      

      

    

  

    
      
          
            
  # InfluxDB Schema

The following measurements are currently stored in InfluxDB:


	PROCESS_file_descriptors


	PROCESS_gc_statistics


	PROCESS_memory_usage


	PROCESS_method_calls


	PROCESS_object_counts


	PROCESS_transactions


	PROCESS_views


	events




Here, PROCESS is replaced with either rails or sidekiq depending on the
process type. In all series, any form of duration is stored in milliseconds.

## PROCESS_file_descriptors

This measurement contains the number of open file descriptors over time. The
value field value contains the number of descriptors.

## PROCESS_gc_statistics

This measurement contains Ruby garbage collection statistics such as the amount
of minor/major GC runs (relative to the last sampling interval), the time spent
in garbage collection cycles, and all fields/values returned by GC.stat.

## PROCESS_memory_usage

This measurement contains the process’ memory usage (in bytes) over time. The
value field value contains the number of bytes.

## PROCESS_method_calls

This measurement contains the methods called during a transaction along with
their duration, and a name of the transaction action that invoked the method (if
available). The method call duration is stored in the value field duration,
while the method name is stored in the tag method. The tag action contains
the full name of the transaction action. Both the method and action fields
are in the following format:

`
ClassName#method_name
`

For example, a method called by the show method in the UsersController class
would have action set to UsersController#show.

## PROCESS_object_counts

This measurement is used to store retained Ruby objects (per class) and the
amount of retained objects. The number of objects is stored in the count value
field while the class name is stored in the type tag.

## PROCESS_transactions

This measurement is used to store basic transaction details such as the time it
took to complete a transaction, how much time was spent in SQL queries, etc. The
following value fields are available:


Value | Description |

—– | ———– |

duration  | The total duration of the transaction |

allocated_memory | The amount of bytes allocated while the transaction was running. This value is only reliable when using single-threaded application servers |

method_duration | The total time spent in method calls |

sql_duration | The total time spent in SQL queries |

view_duration | The total time spent in views |



## PROCESS_views

This measurement is used to store view rendering timings for a transaction. The
following value fields are available:


Value | Description |

—– | ———– |

duration | The rendering time of the view |

view | The path of the view, relative to the application’s root directory |



The action tag contains the action name of the transaction that rendered the
view.

## events

This measurement is used to store generic events such as the number of Git
pushes, Emails sent, etc. Each point in this measurement has a single value
field called count. The value of this field is simply set to 1. Each point
also has at least one tag: event. This tag’s value is set to the event name.
Depending on the event type additional tags may be available as well.

—

Read more on:


	[Introduction to GitLab Performance Monitoring](introduction.md)


	[GitLab Configuration](gitlab_configuration.md)


	[InfluxDB Configuration](influxdb_configuration.md)


	[Grafana Install/Configuration](grafana_configuration.md)






            

          

      

      

    

  

    
      
          
            
  This document was moved to [another location](index.md).



            

          

      

      

    

  

    
      
          
            
  # Performance Bar

A Performance Bar can be displayed, to dig into the performance of a page. When
activated, it looks as follows:

![Performance Bar](img/performance_bar.png)

It allows you to see (from left to right):


	the current host serving the page


	the timing of the page (backend, frontend)


	time taken and number of DB queries, click through for details of these queries




![SQL profiling using the Performance Bar](img/performance_bar_sql_queries.png)
- time taken and number of [Gitaly] calls, click through for details of these calls
![Gitaly profiling using the Performance Bar](img/performance_bar_gitaly_calls.png)
- profile of the code used to generate the page, line by line. In the profile view, the numbers in the left panel represent wall time, cpu time, and number of calls (based on [rblineprof](https://github.com/tmm1/rblineprof)).
![Line profiling using the Performance Bar](img/performance_bar_line_profiling.png)
- time taken and number of calls to Redis
- time taken and number of background jobs created by Sidekiq
- time taken and number of Ruby GC calls

On the far right is a request selector that allows you to view the same metrics
(excluding the page timing and line profiler) for any requests made while the
page was open. Only the first two requests per unique URL are captured.

## Enable the Performance Bar via the Admin panel

GitLab Performance Bar is disabled by default. To enable it for a given group,
navigate to the Admin area in Settings > Profiling - Performance Bar
(/admin/application_settings).

The only required setting you need to set is the full path of the group that
will be allowed to display the Performance Bar.
Make sure _Enable the Performance Bar_ is checked and hit
Save to save the changes.

Once the Performance Bar is enabled, you will need to press the [<kbd>p</kbd> +
<kbd>b</kbd> keyboard shortcut](../../../workflow/shortcuts.md) to actually
display it.

You can toggle the Bar using the same shortcut.

—

![GitLab Performance Bar Admin Settings](img/performance_bar_configuration_settings.png)

—

[Gitaly]: ../../gitaly/index.md



            

          

      

      

    

  

    
      
          
            
  This document was moved to [monitoring/prometheus](../prometheus/index.md).



            

          

      

      

    

  

    
      
          
            
  # Request Profiling

## Procedure
1. Grab the profiling token from Monitoring > Requests Profiles admin page
(highlighted in a blue in the image below).
![Profile token](img/request_profiling_token.png)
1. Pass the header X-Profile-Token: <token> to the request you want to profile. You can use any of these tools



	[ModHeader](https://chrome.google.com/webstore/detail/modheader/idgpnmonknjnojddfkpgkljpfnnfcklj) Chrome extension


	[Modify Headers](https://addons.mozilla.org/en-US/firefox/addon/modify-headers/) Firefox extension


	curl –header ‘X-Profile-Token: <token>’ https://gitlab.example.com/group/project







1. Once request is finished (which will take a little longer than usual), you can
view the profiling output from Monitoring > Requests Profiles admin page.
![Profiling output](img/request_profile_result.png)

## Cleaning up
Profiling output will be cleared out every day via a Sidekiq worker.



            

          

      

      

    

  

    
      
          
            
  # GitLab Prometheus metrics

>**Note:**
Available since [Omnibus GitLab 9.3][29118]. For
installations from source you’ll have to configure it yourself.

To enable the GitLab Prometheus metrics:

1. Log into GitLab as an administrator, and go to the Admin area.
1. Click on the gear, then click on Settings.
1. Find the Metrics - Prometheus section, and click Enable Prometheus Metrics
1. [Restart GitLab][restart] for the changes to take effect

## Collecting the metrics

GitLab monitors its own internal service metrics, and makes them available at the
/-/metrics endpoint. Unlike other [Prometheus] exporters, in order to access
it, the client IP needs to be [included in a whitelist][whitelist].

Currently the embedded Prometheus server is not automatically configured to
collect metrics from this endpoint. We recommend setting up another Prometheus
server, because the embedded server configuration is overwritten once every
[reconfigure of GitLab][reconfigure]. In the future this will not be required.

## Unicorn Metrics available

The following metrics are available:


Metric                            | Type      | Since | Description |



:———————————	:———	:—–	:———–
db_ping_timeout	Gauge	9.4	Whether or not the last database ping timed out
db_ping_success	Gauge	9.4	Whether or not the last database ping succeeded
db_ping_latency_seconds	Gauge	9.4	Round trip time of the database ping
filesystem_access_latency_seconds	Gauge	9.4	Latency in accessing a specific filesystem
filesystem_accessible	Gauge	9.4	Whether or not a specific filesystem is accessible
filesystem_write_latency_seconds	Gauge	9.4	Write latency of a specific filesystem
filesystem_writable	Gauge	9.4	Whether or not the filesystem is writable
filesystem_read_latency_seconds	Gauge	9.4	Read latency of a specific filesystem
filesystem_readable	Gauge	9.4	Whether or not the filesystem is readable
http_requests_total	Counter	9.4	Rack request count
http_request_duration_seconds	Histogram	9.4	HTTP response time from rack middleware
pipelines_created_total	Counter	9.4	Counter of pipelines created
rack_uncaught_errors_total	Counter	9.4	Rack connections handling uncaught errors count
redis_ping_timeout	Gauge	9.4	Whether or not the last redis ping timed out
redis_ping_success	Gauge	9.4	Whether or not the last redis ping succeeded
redis_ping_latency_seconds	Gauge	9.4	Round trip time of the redis ping
user_session_logins_total	Counter	9.4	Counter of how many users have logged in
filesystem_circuitbreaker_latency_seconds	Gauge	9.5	Time spent validating if a storage is accessible
filesystem_circuitbreaker	Gauge	9.5	Whether or not the circuit for a certain shard is broken or not
circuitbreaker_storage_check_duration_seconds	Histogram	10.3	Time a single storage probe took
failed_login_captcha_total	Gauge	11.0	Counter of failed CAPTCHA attempts during login
successful_login_captcha_total	Gauge	11.0	Counter of successful CAPTCHA attempts during login

### Ruby metrics

Some basic Ruby runtime metrics are available:


Metric                                 | Type      | Since | Description |



:————————————–	:———	:—–	:———–
ruby_gc_duration_seconds_total	Counter	11.1	Time spent by Ruby in GC
ruby_gc_stat_…	Gauge	11.1	Various metrics from [GC.stat]
ruby_file_descriptors	Gauge	11.1	File descriptors per process
ruby_memory_bytes	Gauge	11.1	Memory usage by process
ruby_sampler_duration_seconds_total	Counter	11.1	Time spent collecting stats

[GC.stat]: https://ruby-doc.org/core-2.3.0/GC.html#method-c-stat

## Metrics shared directory

GitLab’s Prometheus client requires a directory to store metrics data shared between multi-process services.
Those files are shared among all instances running under Unicorn server.
The directory needs to be accessible to all running Unicorn’s processes otherwise
metrics will not function correctly.

For best performance its advisable that this directory will be located in tmpfs.

Its location is configured using environment variable prometheus_multiproc_dir.

If GitLab is installed using Omnibus and tmpfs is available then metrics
directory will be automatically configured.

[← Back to the main Prometheus page](index.md)

[29118]: https://gitlab.com/gitlab-org/gitlab-ce/issues/29118
[Prometheus]: https://prometheus.io
[restart]: ../../restart_gitlab.md#omnibus-gitlab-restart
[whitelist]: ../ip_whitelist.md
[reconfigure]: ../../restart_gitlab.md#omnibus-gitlab-reconfigure



            

          

      

      

    

  

    
      
          
            
  # GitLab monitor exporter

>**Note:**
Available since [Omnibus GitLab 8.17][1132]. For installations from source
you’ll have to install and configure it yourself.

The [GitLab monitor exporter] allows you to measure various GitLab metrics, pulled from Redis and the database.

To enable the GitLab monitor exporter:

1. [Enable Prometheus](index.md#configuring-prometheus)
1. Edit /etc/gitlab/gitlab.rb
1. Add or find and uncomment the following line, making sure it’s set to true:


`ruby
gitlab_monitor['enable'] = true
`





	Save the file and [reconfigure GitLab][reconfigure] for the changes to
take effect




Prometheus will now automatically begin collecting performance data from
the GitLab monitor exporter exposed under localhost:9168.

[← Back to the main Prometheus page](index.md)

[1132]: https://gitlab.com/gitlab-org/omnibus-gitlab/merge_requests/1132
[GitLab monitor exporter]: https://gitlab.com/gitlab-org/gitlab-monitor
[prometheus]: https://prometheus.io
[reconfigure]: ../../restart_gitlab.md#omnibus-gitlab-reconfigure



            

          

      

      

    

  

    
      
          
            
  # GitLab Prometheus

>**Notes:**
- Prometheus and the various exporters listed in this page are bundled in the


Omnibus GitLab package. Check each exporter’s documentation for the timeline
they got added. For installations from source you will have to install them
yourself. Over subsequent releases additional GitLab metrics will be captured.





	Prometheus services are on by default with GitLab 9.0.


	Prometheus and its exporters do not authenticate users, and will be available
to anyone who can access them.




[Prometheus] is a powerful time-series monitoring service, providing a flexible
platform for monitoring GitLab and other software products.
GitLab provides out of the box monitoring with Prometheus, providing easy
access to high quality time-series monitoring of GitLab services.

## Overview

Prometheus works by periodically connecting to data sources and collecting their
performance metrics via the [various exporters](#prometheus-exporters). To view
and work with the monitoring data, you can either
[connect directly to Prometheus](#viewing-performance-metrics) or utilize a
dashboard tool like [Grafana].

## Configuring Prometheus

>**Note:**
For installations from source you’ll have to install and configure it yourself.

Prometheus and it’s exporters are on by default, starting with GitLab 9.0.
Prometheus will run as the gitlab-prometheus user and listen on
http://localhost:9090. By default Prometheus is only accessible from the GitLab server itself.
Each exporter will be automatically set up as a
monitoring target for Prometheus, unless individually disabled.

To disable Prometheus and all of its exporters, as well as any added in the future:

1. Edit /etc/gitlab/gitlab.rb
1. Add or find and uncomment the following line, making sure it’s set to false:


`ruby
prometheus_monitoring['enable'] = false
`





	Save the file and [reconfigure GitLab][reconfigure] for the changes to
take effect




## Changing the port and address Prometheus listens on

>**Note:**
The following change was added in [GitLab Omnibus 8.17][1261]. Although possible,
it’s not recommended to change the port Prometheus listens
on as this might affect or conflict with other services running on the GitLab
server. Proceed at your own risk.

In order to access Prometheus from outside the GitLab server you will need to
set a FQDN or IP in prometheus[‘listen_address’].
To change the address/port that Prometheus listens on:

1. Edit /etc/gitlab/gitlab.rb
1. Add or find and uncomment the following line:


`ruby
prometheus['listen_address'] = 'localhost:9090'
`

Replace localhost:9090 with the address/port you want Prometheus to
listen on. If you would like to allow access to Prometheus to hosts other
than localhost, leave out the host, or use 0.0.0.0 to allow public access:

`ruby
prometheus['listen_address'] = ':9090'
# or
prometheus['listen_address'] = '0.0.0.0:9090'
`





	Save the file and [reconfigure GitLab][reconfigure] for the changes to
take effect




## Viewing performance metrics

You can visit http://localhost:9090 for the dashboard that Prometheus offers by default.

>**Note:**
If SSL has been enabled on your GitLab instance, you may not be able to access
Prometheus on the same browser as GitLab if using the same FQDN due to [HSTS][hsts]. We plan to
[provide access via GitLab][multi-user-prometheus], but in the interim there are
some workarounds: using a separate FQDN, using server IP, using a separate browser for Prometheus, resetting HSTS, or
having [Nginx proxy it][nginx-custom-config].

The performance data collected by Prometheus can be viewed directly in the
Prometheus console or through a compatible dashboard tool.
The Prometheus interface provides a [flexible query language][prom-query] to work
with the collected data where you can visualize their output.
For a more fully featured dashboard, Grafana can be used and has
[official support for Prometheus][prom-grafana].

Sample Prometheus queries:


	% Memory used: (1 - ((node_memory_MemFree + node_memory_Cached) / node_memory_MemTotal)) * 100


	% CPU load: 1 - rate(node_cpu{mode=”idle”}[5m])


	Data transmitted: irate(node_network_transmit_bytes[5m])


	Data received: irate(node_network_receive_bytes[5m])




## Configuring Prometheus to monitor Kubernetes

> Introduced in GitLab 9.0.
> Pod monitoring introduced in GitLab 9.4.

If your GitLab server is running within Kubernetes, Prometheus will collect metrics from the Nodes and [annotated Pods](https://prometheus.io/docs/operating/configuration/#<kubernetes_sd_config>) in the cluster, including performance data on each container. This is particularly helpful if your CI/CD environments run in the same cluster, as you can use the [Prometheus project integration][] to monitor them.

To disable the monitoring of Kubernetes:

1. Edit /etc/gitlab/gitlab.rb
1. Add or find and uncomment the following line and set it to false:


`ruby
prometheus['monitor_kubernetes'] = false
`





	Save the file and [reconfigure GitLab][reconfigure] for the changes to
take effect




## GitLab Prometheus metrics

> Introduced in GitLab 9.3.

GitLab monitors its own internal service metrics, and makes them available at the /-/metrics endpoint. Unlike other exporters, this endpoint requires authentication as it is available on the same URL and port as user traffic.

[➔ Read more about the GitLab Metrics.](gitlab_metrics.md)

## Prometheus exporters

There are a number of libraries and servers which help in exporting existing
metrics from third-party systems as Prometheus metrics. This is useful for cases
where it is not feasible to instrument a given system with Prometheus metrics
directly (for example, HAProxy or Linux system stats). You can read more in the
[Prometheus exporters and integrations upstream documentation][prom-exporters].

While you can use any exporter you like with your GitLab installation, the
following ones documented here are bundled in the Omnibus GitLab packages
making it easy to configure and use.

### Node exporter

The node exporter allows you to measure various machine resources such as
memory, disk and CPU utilization.

[➔ Read more about the node exporter.](node_exporter.md)

### Redis exporter

The Redis exporter allows you to measure various Redis metrics.

[➔ Read more about the Redis exporter.](redis_exporter.md)

### Postgres exporter

The Postgres exporter allows you to measure various PostgreSQL metrics.

[➔ Read more about the Postgres exporter.](postgres_exporter.md)

### GitLab monitor exporter

The GitLab monitor exporter allows you to measure various GitLab metrics, pulled from Redis and the database.

[➔ Read more about the GitLab monitor exporter.](gitlab_monitor_exporter.md)

[grafana]: https://grafana.net
[hsts]: https://en.wikipedia.org/wiki/HTTP_Strict_Transport_Security
[multi-user-prometheus]: https://gitlab.com/gitlab-org/multi-user-prometheus
[nginx-custom-config]: https://docs.gitlab.com/omnibus/settings/nginx.html#inserting-custom-nginx-settings-into-the-gitlab-server-block
[prometheus]: https://prometheus.io
[prom-exporters]: https://prometheus.io/docs/instrumenting/exporters/
[prom-query]: https://prometheus.io/docs/querying/basics
[prom-grafana]: https://prometheus.io/docs/visualization/grafana/
[scrape-config]: https://prometheus.io/docs/operating/configuration/#%3Cscrape_config%3E
[reconfigure]: ../../restart_gitlab.md#omnibus-gitlab-reconfigure
[1261]: https://gitlab.com/gitlab-org/omnibus-gitlab/merge_requests/1261
[prometheus integration]: ../../../user/project/integrations/prometheus.md
[prometheus-cadvisor-metrics]: https://github.com/google/cadvisor/blob/master/docs/storage/prometheus.md



            

          

      

      

    

  

    
      
          
            
  # Node exporter

>**Note:**
Available since Omnibus GitLab 8.16. For installations from source you’ll
have to install and configure it yourself.

The [node exporter] allows you to measure various machine resources such as
memory, disk and CPU utilization.

To enable the node exporter:

1. [Enable Prometheus](index.md#configuring-prometheus)
1. Edit /etc/gitlab/gitlab.rb
1. Add or find and uncomment the following line, making sure it’s set to true:


`ruby
node_exporter['enable'] = true
`





	Save the file and [reconfigure GitLab][reconfigure] for the changes to
take effect




Prometheus will now automatically begin collecting performance data from
the node exporter exposed under localhost:9100.

[← Back to the main Prometheus page](index.md)

[node exporter]: https://github.com/prometheus/node_exporter
[prometheus]: https://prometheus.io
[reconfigure]: ../../restart_gitlab.md#omnibus-gitlab-reconfigure



            

          

      

      

    

  

    
      
          
            
  # Postgres exporter

>**Note:**
Available since [Omnibus GitLab 8.17][1131]. For installations from source
you’ll have to install and configure it yourself.

The [postgres exporter] allows you to measure various PostgreSQL metrics.

To enable the postgres exporter:

1. [Enable Prometheus](index.md#configuring-prometheus)
1. Edit /etc/gitlab/gitlab.rb
1. Add or find and uncomment the following line, making sure it’s set to true:


`ruby
postgres_exporter['enable'] = true
`





	Save the file and [reconfigure GitLab][reconfigure] for the changes to
take effect




Prometheus will now automatically begin collecting performance data from
the postgres exporter exposed under localhost:9187.

[← Back to the main Prometheus page](index.md)

[1131]: https://gitlab.com/gitlab-org/omnibus-gitlab/merge_requests/1131
[postgres exporter]: https://github.com/wrouesnel/postgres_exporter
[prometheus]: https://prometheus.io
[reconfigure]: ../../restart_gitlab.md#omnibus-gitlab-reconfigure



            

          

      

      

    

  

    
      
          
            
  # Redis exporter

>**Note:**
Available since [Omnibus GitLab 8.17][1118]. For installations from source
you’ll have to install and configure it yourself.

The [Redis exporter] allows you to measure various [Redis] metrics. For more
information on what’s exported [read the upstream documentation][redis-exp].

To enable the Redis exporter:

1. [Enable Prometheus](index.md#configuring-prometheus)
1. Edit /etc/gitlab/gitlab.rb
1. Add or find and uncomment the following line, making sure it’s set to true:


`ruby
redis_exporter['enable'] = true
`





	Save the file and [reconfigure GitLab][reconfigure] for the changes to
take effect




Prometheus will now automatically begin collecting performance data from
the Redis exporter exposed under localhost:9121.

[← Back to the main Prometheus page](index.md)

[1118]: https://gitlab.com/gitlab-org/omnibus-gitlab/merge_requests/1118
[redis]: https://redis.io
[redis exporter]: https://github.com/oliver006/redis_exporter
[redis-exp]: https://github.com/oliver006/redis_exporter/blob/master/README.md#whats-exported
[prometheus]: https://prometheus.io
[reconfigure]: ../../restart_gitlab.md#omnibus-gitlab-reconfigure



            

          

      

      

    

  

    
      
          
            
  # Cleaning up stale Redis sessions

Since version 6.2, GitLab stores web user sessions as key-value pairs in Redis.
Prior to GitLab 7.3, user sessions did not automatically expire from Redis. If
you have been running a large GitLab server (thousands of users) since before
GitLab 7.3 we recommend cleaning up stale sessions to compact the Redis
database after you upgrade to GitLab 7.3. You can also perform a cleanup while
still running GitLab 7.2 or older, but in that case new stale sessions will
start building up again after you clean up.

In GitLab versions prior to 7.3.0, the session keys in Redis are 16-byte
hexadecimal values such as ‘976aa289e2189b17d7ef525a6702ace9’. Starting with
GitLab 7.3.0, the keys are
prefixed with ‘session:gitlab:’, so they would look like
‘session:gitlab:976aa289e2189b17d7ef525a6702ace9’. Below we describe how to
remove the keys in the old format.

Note: the instructions below must be modified in accordance with your
configuration settings if you have used the advanced Redis
settings outlined in
[Configuration Files Documentation](https://gitlab.com/gitlab-org/gitlab-ce/blob/master/config/README.md).

First we define a shell function with the proper Redis connection details.

```
rcli() {

This example works for Omnibus installations of GitLab 7.3 or newer. For an
installation from source you will have to change the socket path and the
path to redis-cli.
sudo /opt/gitlab/embedded/bin/redis-cli -s /var/opt/gitlab/redis/redis.socket “$@”

}

test the new shell function; the response should be PONG
rcli ping
```

Now we do a search to see if there are any session keys in the old format for
us to clean up.

`
# returns the number of old-format session keys in Redis
rcli keys '*' | grep '^[a-f0-9]\{32\}$' | wc -l
`

If the number is larger than zero, you can proceed to expire the keys from
Redis. If the number is zero there is nothing to clean up.

`
# Tell Redis to expire each matched key after 600 seconds.
rcli keys '*' | grep '^[a-f0-9]\{32\}$' | awk '{ print "expire", $0, 600 }' | rcli
# This will print '(integer) 1' for each key that gets expired.
`

Over the next 15 minutes (10 minutes expiry time plus 5 minutes Redis
background save interval) your Redis database will be compacted. If you are
still using GitLab 7.2, users who are not clicking around in GitLab during the
10 minute expiry window will be signed out of GitLab.



            

          

      

      

    

  

    
      
          
            
  # Fast lookup of authorized SSH keys in the database

NOTE: Note: This document describes a drop-in replacement for the
authorized_keys file for normal (non-deploy key) users. Consider
using [ssh certificates](ssh_certificates.md), they are even faster,
but are not a drop-in replacement.

> [Introduced](https://gitlab.com/gitlab-org/gitlab-ee/issues/1631) in
> [GitLab Starter](https://about.gitlab.com/gitlab-ee) 9.3.
>
> [Available in](https://gitlab.com/gitlab-org/gitlab-ee/issues/3953) GitLab
> Community Edition 10.4.

Regular SSH operations become slow as the number of users grows because OpenSSH
searches for a key to authorize a user via a linear search. In the worst case,
such as when the user is not authorized to access GitLab, OpenSSH will scan the
entire file to search for a key. This can take significant time and disk I/O,
which will delay users attempting to push or pull to a repository. Making
matters worse, if users add or remove keys frequently, the operating system may
not be able to cache the authorized_keys file, which causes the disk to be
accessed repeatedly.

GitLab Shell solves this by providing a way to authorize SSH users via a fast,
indexed lookup in the GitLab database. This page describes how to enable the fast
lookup of authorized SSH keys.

> Warning: OpenSSH version 6.9+ is required because
AuthorizedKeysCommand must be able to accept a fingerprint. These
instructions will break installations using older versions of OpenSSH, such as
those included with CentOS 6 as of September 2017. If you want to use this
feature for CentOS 6, follow [the instructions on how to build and install a custom OpenSSH package](#compiling-a-custom-version-of-openssh-for-centos-6) before continuing.

## Setting up fast lookup via GitLab Shell

GitLab Shell provides a way to authorize SSH users via a fast, indexed lookup
to the GitLab database. GitLab Shell uses the fingerprint of the SSH key to
check whether the user is authorized to access GitLab.

Add the following to your sshd_config file. This is usually located at
/etc/ssh/sshd_config, but it will be /assets/sshd_config if you’re using
Omnibus Docker:

`
AuthorizedKeysCommand /opt/gitlab/embedded/service/gitlab-shell/bin/gitlab-shell-authorized-keys-check git %u %k
AuthorizedKeysCommandUser git
`

Reload OpenSSH:

```bash
Debian or Ubuntu installations
sudo service ssh reload

CentOS installations
sudo service sshd reload
```

Confirm that SSH is working by removing your user’s SSH key in the UI, adding a
new one, and attempting to pull a repo.

> Warning: Do not disable writes until SSH is confirmed to be working
perfectly, because the file will quickly become out-of-date.

In the case of lookup failures (which are common), the authorized_keys
file will still be scanned. So git SSH performance will still be slow for many
users as long as a large file exists.

You can disable any more writes to the authorized_keys file by unchecking
Write to “authorized_keys” file in the Application Settings of your GitLab
installation.

![Write to authorized keys setting](img/write_to_authorized_keys_setting.png)

Again, confirm that SSH is working by removing your user’s SSH key in the UI,
adding a new one, and attempting to pull a repo.

Then you can backup and delete your authorized_keys file for best performance.

## How to go back to using the authorized_keys file

This is a brief overview. Please refer to the above instructions for more context.

1. [Rebuild the authorized_keys file](../raketasks/maintenance.md#rebuild-authorized_keys-file)
1. Enable writes to the authorized_keys file in Application Settings
1. Remove the AuthorizedKeysCommand lines from /etc/ssh/sshd_config or from /assets/sshd_config if you are using Omnibus Docker.
1. Reload sshd: sudo service sshd reload
1. Remove the /opt/gitlab-shell/authorized_keys file

## Compiling a custom version of OpenSSH for CentOS 6

Building a custom version of OpenSSH is not necessary for Ubuntu 16.04 users,
since Ubuntu 16.04 ships with OpenSSH 7.2.

It is also unnecessary for CentOS 7.4 users, as that version ships with
OpenSSH 7.4. If you are using CentOS 7.0 - 7.3, we strongly recommend that you
upgrade to CentOS 7.4 instead of following this procedure. This should be as
simple as running yum update.

CentOS 6 users must build their own OpenSSH package to enable SSH lookups via
the database. The following instructions can be used to build OpenSSH 7.5:


	First, download the package and install the required packages:


`
sudo su -
cd /tmp
curl --remote-name https://mirrors.evowise.com/pub/OpenBSD/OpenSSH/portable/openssh-7.5p1.tar.gz
tar xzvf openssh-7.5p1.tar.gz
yum install rpm-build gcc make wget openssl-devel krb5-devel pam-devel libX11-devel xmkmf libXt-devel
`









	Prepare the build by copying files to the right place:


`
mkdir -p /root/rpmbuild/{SOURCES,SPECS}
cp ./openssh-7.5p1/contrib/redhat/openssh.spec /root/rpmbuild/SPECS/
cp openssh-7.5p1.tar.gz /root/rpmbuild/SOURCES/
cd /root/rpmbuild/SPECS
`









	Next, set the spec settings properly:


`
sed -i -e "s/%define no_gnome_askpass 0/%define no_gnome_askpass 1/g" openssh.spec
sed -i -e "s/%define no_x11_askpass 0/%define no_x11_askpass 1/g" openssh.spec
sed -i -e "s/BuildPreReq/BuildRequires/g" openssh.spec
`









	Build the RPMs:


`
rpmbuild -bb openssh.spec
`






	Ensure the RPMs were built:


`
ls -al /root/rpmbuild/RPMS/x86_64/
`

You should see something as the following:

`
total 1324
drwxr-xr-x. 2 root root   4096 Jun 20 19:37 .
drwxr-xr-x. 3 root root     19 Jun 20 19:37 ..
-rw-r--r--. 1 root root 470828 Jun 20 19:37 openssh-7.5p1-1.x86_64.rpm
-rw-r--r--. 1 root root 490716 Jun 20 19:37 openssh-clients-7.5p1-1.x86_64.rpm
-rw-r--r--. 1 root root  17020 Jun 20 19:37 openssh-debuginfo-7.5p1-1.x86_64.rpm
-rw-r--r--. 1 root root 367516 Jun 20 19:37 openssh-server-7.5p1-1.x86_64.rpm
`






	Install the packages. OpenSSH packages will replace /etc/pam.d/sshd
with its own version, which may prevent users from logging in, so be sure
that the file is backed up and restored after installation:


`
timestamp=$(date +%s)
cp /etc/pam.d/sshd pam-ssh-conf-$timestamp
rpm -Uvh /root/rpmbuild/RPMS/x86_64/*.rpm
yes | cp pam-ssh-conf-$timestamp /etc/pam.d/sshd
`






	Verify the installed version. In another window, attempt to login to the server:


`
ssh -v <your-centos-machine>
`

You should see a line that reads: “debug1: Remote protocol version 2.0, remote software version OpenSSH_7.5”

If not, you may need to restart sshd (e.g. systemctl restart sshd.service).






	IMPORTANT! Open a new SSH session to your server before exiting to make
sure everything is working! If you need to downgrade, simple install the
older package:

`
# Only run this if you run into a problem logging in
yum downgrade openssh-server openssh openssh-clients
`







            

          

      

      

    

  

    
      
          
            
  # Performing Operations in GitLab

Keep your GitLab instance up and running smoothly.


	[Clean up Redis sessions](cleaning_up_redis_sessions.md): Prior to GitLab 7.3,




user sessions did not automatically expire from Redis. If
you have been running a large GitLab server (thousands of users) since before
GitLab 7.3 we recommend cleaning up stale sessions to compact the Redis
database after you upgrade to GitLab 7.3.
- [Moving repositories](moving_repositories.md): Moving all repositories managed
by GitLab to another file system or another server.
- [Sidekiq job throttling](sidekiq_job_throttling.md): Throttle Sidekiq queues
that to prioritize important jobs.
- [Sidekiq MemoryKiller](sidekiq_memory_killer.md): Configure Sidekiq MemoryKiller
to restart Sidekiq.
- [Unicorn](unicorn.md): Understand Unicorn and unicorn-worker-killer.
- Speed up SSH operations by [Authorizing SSH users via a fast,
indexed lookup to the GitLab database](fast_ssh_key_lookup.md), and/or
by [doing away with user SSH keys stored on GitLab entirely in favor
of SSH certificates](ssh_certificates.md).



            

          

      

      

    

  

    
      
          
            
  # Moving repositories managed by GitLab

Sometimes you need to move all repositories managed by GitLab to
another filesystem or another server. In this document we will look
at some of the ways you can copy all your repositories from
/var/opt/gitlab/git-data/repositories to /mnt/gitlab/repositories.

We will look at three scenarios: the target directory is empty, the
target directory contains an outdated copy of the repositories, and
how to deal with thousands of repositories.

Each of the approaches we list can/will overwrite data in the
target directory `/mnt/gitlab/repositories`. Do not mix up the
source and the target.

## Target directory is empty: use a tar pipe

If the target directory /mnt/gitlab/repositories is empty the
simplest thing to do is to use a tar pipe.  This method has low
overhead and tar is almost always already installed on your system.
However, it is not possible to resume an interrupted tar pipe:  if
that happens then all data must be copied again.

```
As the git user
tar -C /var/opt/gitlab/git-data/repositories -cf - – . |

tar -C /mnt/gitlab/repositories -xf -


```

If you want to see progress, replace -xf with -xvf.

### Tar pipe to another server

You can also use a tar pipe to copy data to another server. If your
‘git’ user has SSH access to the newserver as ‘git@newserver’, you
can pipe the data through SSH.

```
As the git user
tar -C /var/opt/gitlab/git-data/repositories -cf - – . |

ssh git@newserver tar -C /mnt/gitlab/repositories -xf -


```

If you want to compress the data before it goes over the network
(which will cost you CPU cycles) you can replace ssh with ssh -C.

## The target directory contains an outdated copy of the repositories: use rsync

If the target directory already contains a partial / outdated copy
of the repositories it may be wasteful to copy all the data again
with tar. In this scenario it is better to use rsync. This utility
is either already installed on your system or easily installable
via apt, yum etc.

```
As the ‘git’ user
rsync -a –delete /var/opt/gitlab/git-data/repositories/.

/mnt/gitlab/repositories


```

The /. in the command above is very important, without it you can
easily get the wrong directory structure in the target directory.
If you want to see progress, replace -a with -av.

### Single rsync to another server

If the ‘git’ user on your source system has SSH access to the target
server you can send the repositories over the network with rsync.

```
As the ‘git’ user
rsync -a –delete /var/opt/gitlab/git-data/repositories/.

git@newserver:/mnt/gitlab/repositories


```

## Thousands of Git repositories: use one rsync per repository

Every time you start an rsync job it has to inspect all files in
the source directory, all files in the target directory, and then
decide what files to copy or not. If the source or target directory
has many contents this startup phase of rsync can become a burden
for your GitLab server. In cases like this you can make rsync’s
life easier by dividing its work in smaller pieces, and sync one
repository at a time.

In addition to rsync we will use [GNU
Parallel](http://www.gnu.org/software/parallel/). This utility is
not included in GitLab so you need to install it yourself with apt
or yum.  Also note that the GitLab scripts we used below were added
in GitLab 8.1.

** This process does not clean up repositories at the target location that no
longer exist at the source. ** If you start using your GitLab instance with
/mnt/gitlab/repositories, you need to run gitlab-rake gitlab:cleanup:repos
after switching to the new repository storage directory.

### Parallel rsync for all repositories known to GitLab

This will sync repositories with 10 rsync processes at a time. We keep
track of progress so that the transfer can be restarted if necessary.

First we create a new directory, owned by ‘git’, to hold transfer
logs. We assume the directory is empty before we start the transfer
procedure, and that we are the only ones writing files in it.

```
Omnibus
sudo mkdir /var/opt/gitlab/transfer-logs
sudo chown git:git /var/opt/gitlab/transfer-logs

Source
sudo -u git -H mkdir /home/git/transfer-logs
```

We seed the process with a list of the directories we want to copy.

```
Omnibus
sudo -u git sh -c ‘gitlab-rake gitlab:list_repos > /var/opt/gitlab/transfer-logs/all-repos-$(date +%s).txt’

Source
cd /home/git/gitlab
sudo -u git -H sh -c ‘bundle exec rake gitlab:list_repos > /home/git/transfer-logs/all-repos-$(date +%s).txt’
```

Now we can start the transfer. The command below is idempotent, and
the number of jobs done by GNU Parallel should converge to zero. If it
does not some repositories listed in all-repos-1234.txt may have been
deleted/renamed before they could be copied.

```
Omnibus
sudo -u git sh -c ‘
cat /var/opt/gitlab/transfer-logs/* | sort | uniq -u |

/usr/bin/env JOBS=10 /opt/gitlab/embedded/service/gitlab-rails/bin/parallel-rsync-repos

/var/opt/gitlab/transfer-logs/success-$(date +%s).log /var/opt/gitlab/git-data/repositories /mnt/gitlab/repositories

‘

Source
cd /home/git/gitlab
sudo -u git -H sh -c ‘
cat /home/git/transfer-logs/* | sort | uniq -u |

/usr/bin/env JOBS=10 bin/parallel-rsync-repos

/home/git/transfer-logs/success-$(date +%s).log /home/git/repositories /mnt/gitlab/repositories

`

Parallel rsync only for repositories with recent activity

Suppose you have already done one sync that started after 2015-10-1 12:00 UTC.
Then you might only want to sync repositories that were changed via GitLab
after that time. You can use the ‘SINCE’ variable to tell ‘rake
gitlab:list_repos’ to only print repositories with recent activity.

```
# Omnibus
sudo gitlab-rake gitlab:list_repos SINCE=’2015-10-1 12:00 UTC’ |


sudo -u git /usr/bin/env JOBS=10 /opt/gitlab/embedded/service/gitlab-rails/bin/parallel-rsync-repos 


success-$(date +%s).log /var/opt/gitlab/git-data/repositories /mnt/gitlab/repositories







# Source
cd /home/git/gitlab
sudo -u git -H bundle exec rake gitlab:list_repos SINCE=’2015-10-1 12:00 UTC’ |


sudo -u git -H /usr/bin/env JOBS=10 bin/parallel-rsync-repos 


success-$(date +%s).log /home/git/repositories /mnt/gitlab/repositories







```


 # Sidekiq Job throttling

> Note: Introduced with GitLab 8.14

When your GitLab installation needs to handle tens of thousands of background
jobs, it can be convenient to throttle queues that do not need to be executed
immediately, e.g. long running jobs like Pipelines, thus allowing jobs that do
need to be executed immediately to have access to more resources.

In order to accomplish this, you can limit the amount of workers that certain
slow running queues can have available. This is what we call Sidekiq Job
Throttling. Depending on your infrastructure, you might have different slow
running queues, which is why you can choose which queues you want to throttle
and by how much you want to throttle them.

These settings are available in the Application Settings of your GitLab
installation.

![Sidekiq Job Throttling](img/sidekiq_job_throttling.png)

The throttle factor determines the maximum number of workers a queue can run on.
This value gets multiplied by :concurrency value set in the Sidekiq settings
and rounded up to the closest full integer.

So, for example, you set the :concurrency to 25 and the Throttling factor to
0.1, the maximum workers assigned to the selected queues would be 3.

`ruby
queue_limit = (factor * Sidekiq.options[:concurrency]).ceil
`

After enabling the job throttling, you will need to restart your GitLab
instance, in order for the changes to take effect.

 # Sidekiq MemoryKiller

The GitLab Rails application code suffers from memory leaks. For web requests
this problem is made manageable using
[unicorn-worker-killer](https://github.com/kzk/unicorn-worker-killer) which
restarts Unicorn worker processes in between requests when needed. The Sidekiq
MemoryKiller applies the same approach to the Sidekiq processes used by GitLab
to process background jobs.

Unlike unicorn-worker-killer, which is enabled by default for all GitLab
installations since GitLab 6.4, the Sidekiq MemoryKiller is enabled by default
only for Omnibus packages. The reason for this is that the MemoryKiller
relies on Runit to restart Sidekiq after a memory-induced shutdown and GitLab
installations from source do not all use Runit or an equivalent.

With the default settings, the MemoryKiller will cause a Sidekiq restart no
more often than once every 15 minutes, with the restart causing about one
minute of delay for incoming background jobs.

Configuring the MemoryKiller

The MemoryKiller is controlled using environment variables.

	SIDEKIQ_MEMORY_KILLER_MAX_RSS: if this variable is set, and its value is
greater than 0, then after each Sidekiq job, the MemoryKiller will check the
RSS of the Sidekiq process that executed the job. If the RSS of the Sidekiq
process (expressed in kilobytes) exceeds SIDEKIQ_MEMORY_KILLER_MAX_RSS, a
delayed shutdown is triggered. The default value for Omnibus packages is set
[in the omnibus-gitlab
repository](https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-cookbooks/gitlab/attributes/default.rb).

	SIDEKIQ_MEMORY_KILLER_GRACE_TIME: defaults to 900 seconds (15 minutes). When
a shutdown is triggered, the Sidekiq process will keep working normally for
another 15 minutes.

	SIDEKIQ_MEMORY_KILLER_SHUTDOWN_WAIT: defaults to 30 seconds. When the grace
time has expired, the MemoryKiller tells Sidekiq to stop accepting new jobs.
Existing jobs get 30 seconds to finish. After that, the MemoryKiller tells
Sidekiq to shut down, and an external supervision mechanism (e.g. Runit) must
restart Sidekiq.

 This document was moved to [another location](fast_ssh_key_lookup.md).

 # User lookup via OpenSSH’s AuthorizedPrincipalsCommand

> [Available in](https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/19911) GitLab
> Community Edition 11.2.

GitLab’s default SSH authentication requires users to upload their ssh
public keys before they can use the SSH transport.

In centralized (e.g. corporate) environments this can be a hassle
operationally, particularly if the SSH keys are temporary keys issued
to the user, e.g. ones that expire 24 hours after issuing.

In such setups some external automated process is needed to constantly
upload the new keys to GitLab.

> Warning: OpenSSH version 6.9+ is required because that version
introduced the AuthorizedPrincipalsCommand configuration option. If
using CentOS 6, you can [follow these
instructions](fast_ssh_key_lookup.html#compiling-a-custom-version-of-openssh-for-centos-6)
to compile an up-to-date version.

Why use OpenSSH certificates?

By using OpenSSH certificates all the information about what user on
GitLab owns the key is encoded in the key itself, and OpenSSH itself
guarantees that users can’t fake this, since they’d need to have
access to the private CA signing key.

When correctly set up, this does away with the requirement of
uploading user SSH keys to GitLab entirely.

Setting up SSH certificate lookup via GitLab Shell

How to fully setup SSH certificates is outside the scope of this
document. See [OpenSSH’s
PROTOCOL.certkeys](https://cvsweb.openbsd.org/cgi-bin/cvsweb/src/usr.bin/ssh/PROTOCOL.certkeys?annotate=HEAD)
for how it works, and e.g. [RedHat’s documentation about
it](https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/deployment_guide/sec-using_openssh_certificate_authentication).

We assume that you already have SSH certificates set up, and have
added the TrustedUserCAKeys of your CA to your sshd_config, e.g.:

`
TrustedUserCAKeys /etc/security/mycompany_user_ca.pub
`

Usually TrustedUserCAKeys would not be scoped under a Match User
git in such a setup, since it would also be used for system logins to
the GitLab server itself, but your setup may vary. If the CA is only
used for GitLab consider putting this in the Match User git section
(described below).

The SSH certificates being issued by that CA MUST have a “key id”
corresponding to that user’s username on GitLab, e.g. (some output
omitted for brevity):

```
$ ssh-add -L | grep cert | ssh-keygen -L -f -
(stdin):1:


Type: ssh-rsa-cert-v01@openssh.com user certificate
Public key: RSA-CERT SHA256:[…]
Signing CA: RSA SHA256:[…]
Key ID: “aearnfjord”
Serial: 8289829611021396489
Valid: from 2018-07-18T09:49:00 to 2018-07-19T09:50:34
Principals:


sshUsers
[…]




[…]




```

Technically that’s not strictly true, e.g. it could be
prod-aearnfjord if it’s a SSH certificate you’d normally log in to
servers as the prod-aearnfjord user, but then you must specify your
own AuthorizedPrincipalsCommand to do that mapping instead of using
our provided default.

The important part is that the AuthorizedPrincipalsCommand must be
able to map from the “key id” to a GitLab username in some way, the
default command we ship assumes there’s a 1=1 mapping between the two,
since the whole point of this is to allow us to extract a GitLab
username from the key itself, instead of relying on something like the
default public key to username mapping.

Then, in your sshd_config set up AuthorizedPrincipalsCommand for
the git user. Hopefully you can use the default one shipped with
GitLab:

```
Match User git


AuthorizedPrincipalsCommandUser root
AuthorizedPrincipalsCommand /opt/gitlab/embedded/service/gitlab-shell/bin/gitlab-shell-authorized-principals-check %i sshUsers




```

This command will emit output that looks something like:

`
command="/opt/gitlab/embedded/service/gitlab-shell/bin/gitlab-shell username-{KEY_ID}",no-port-forwarding,no-X11-forwarding,no-agent-forwarding,no-pty {PRINCIPAL}
`

Where {KEY_ID} is the %i argument passed to the script
(e.g. aeanfjord), and {PRINCIPAL} is the principal passed to it
(e.g. sshUsers).

You will need to customize the sshUsers part of that. It should be
some principal that’s guaranteed to be part of the key for all users
who can log in to GitLab, or you must provide a list of principals,
one of which is going to be present for the user, e.g.:


	```
	[…]
AuthorizedPrincipalsCommand /opt/gitlab/embedded/service/gitlab-shell/bin/gitlab-shell-authorized-principals-check %i sshUsers windowsUsers





```

Principals and security

You can supply as many principals as you want, these will be turned
into multiple lines of authorized_keys output, as described in the
AuthorizedPrincipalsFile documentation in sshd_config(5).

Normally when using the AuthorizedKeysCommand with OpenSSH the
principal is some “group” that’s allowed to log into that
server. However with GitLab it’s only used to appease OpenSSH’s
requirement for it, we effectively only care about the “key id” being
correct. Once that’s extracted GitLab will enforce its own ACLs for
that user (e.g. what projects the user can access).

So it’s OK to e.g. be overly generous in what you accept, since if the
user e.g. has no access to GitLab at all it’ll just error out with a
message about this being an invalid user.

Interaction with the authorized_keys file

SSH certificates can be used in conjunction with the authorized_keys
file, and if setup as configured above the authorized_keys file will
still serve as a fallback.

This is because if the AuthorizedPrincipalsCommand can’t
authenticate the user, OpenSSH will fall back on
~/.ssh/authorized_keys (or the AuthorizedKeysCommand).

Therefore there may still be a reason to use the [“Fast lookup of
authorized SSH keys in the database”](fast_ssh_key_lookup.html) method
in conjunction with this. Since you’ll be using SSH certificates for
all your normal users, and relying on the ~/.ssh/authorized_keys
fallback for deploy keys, if you make use of those.

But you may find that there’s no reason to do that, since all your
normal users will use the fast AuthorizedPrincipalsCommand path, and
only automated deployment key access will fall back on
~/.ssh/authorized_keys, or that you have a lot more keys for normal
users (especially if they’re renewed) than you have deploy keys.

Other security caveats

Users can still bypass SSH certificate authentication by manually
uploading an SSH public key to their profile, relying on the
~/.ssh/authorized_keys fallback to authenticate it. There’s
currently no feature to prevent this, [but there’s an open request for
adding it](https://gitlab.com/gitlab-org/gitlab-ce/issues/49218).

Such a restriction can currently be hacked in by e.g. providing a
custom AuthorizedKeysCommand which checks if the discovered key-ID
returned from gitlab-shell-authorized-keys-check is a deploy key or
not (all non-deploy keys should be refused).

 # Understanding Unicorn and unicorn-worker-killer

Unicorn

GitLab uses [Unicorn](http://unicorn.bogomips.org/), a pre-forking Ruby web
server, to handle web requests (web browsers and Git HTTP clients). Unicorn is
a daemon written in Ruby and C that can load and run a Ruby on Rails
application; in our case the Rails application is GitLab Community Edition or
GitLab Enterprise Edition.

Unicorn has a multi-process architecture to make better use of available CPU
cores (processes can run on different cores) and to have stronger fault
tolerance (most failures stay isolated in only one process and cannot take down
GitLab entirely). On startup, the Unicorn ‘master’ process loads a clean Ruby
environment with the GitLab application code, and then spawns ‘workers’ which
inherit this clean initial environment. The ‘master’ never handles any
requests, that is left to the workers. The operating system network stack
queues incoming requests and distributes them among the workers.

In a perfect world, the master would spawn its pool of workers once, and then
the workers handle incoming web requests one after another until the end of
time. In reality, worker processes can crash or time out: if the master notices
that a worker takes too long to handle a request it will terminate the worker
process with SIGKILL (‘kill -9’). No matter how the worker process ended, the
master process will replace it with a new ‘clean’ process again. Unicorn is
designed to be able to replace ‘crashed’ workers without dropping user
requests.

This is what a Unicorn worker timeout looks like in unicorn_stderr.log. The
master process has PID 56227 below.

`
[2015-06-05T10:58:08.660325 #56227] ERROR -- : worker=10 PID:53009 timeout (61s > 60s), killing
[2015-06-05T10:58:08.699360 #56227] ERROR -- : reaped #<Process::Status: pid 53009 SIGKILL (signal 9)> worker=10
[2015-06-05T10:58:08.708141 #62538] INFO -- : worker=10 spawned pid=62538
[2015-06-05T10:58:08.708824 #62538] INFO -- : worker=10 ready
`

Tunables

The main tunables for Unicorn are the number of worker processes and the
request timeout after which the Unicorn master terminates a worker process.
See the [omnibus-gitlab Unicorn settings
documentation](https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/doc/settings/unicorn.md)
if you want to adjust these settings.

unicorn-worker-killer

GitLab has memory leaks. These memory leaks manifest themselves in long-running
processes, such as Unicorn workers. (The Unicorn master process is not known to
leak memory, probably because it does not handle user requests.)

To make these memory leaks manageable, GitLab comes with the
[unicorn-worker-killer gem](https://github.com/kzk/unicorn-worker-killer). This
gem [monkey-patches](https://en.wikipedia.org/wiki/Monkey_patch) the Unicorn
workers to do a memory self-check after every 16 requests. If the memory of the
Unicorn worker exceeds a pre-set limit then the worker process exits. The
Unicorn master then automatically replaces the worker process.

This is a robust way to handle memory leaks: Unicorn is designed to handle
workers that ‘crash’ so no user requests will be dropped. The
unicorn-worker-killer gem is designed to only terminate a worker process _in
between requests_, so no user requests are affected.

This is what a Unicorn worker memory restart looks like in unicorn_stderr.log.
You see that worker 4 (PID 125918) is inspecting itself and decides to exit.
The threshold memory value was 254802235 bytes, about 250MB. With GitLab this
threshold is a random value between 200 and 250 MB. The master process (PID
117565) then reaps the worker process and spawns a new ‘worker 4’ with PID
127549.

`
[2015-06-05T12:07:41.828374 #125918] WARN -- : #<Unicorn::HttpServer:0x00000002734770>: worker (pid: 125918) exceeds memory limit (256413696 bytes > 254802235 bytes)
[2015-06-05T12:07:41.828472 #125918] WARN -- : Unicorn::WorkerKiller send SIGQUIT (pid: 125918) alive: 23 sec (trial 1)
[2015-06-05T12:07:42.025916 #117565] INFO -- : reaped #<Process::Status: pid 125918 exit 0> worker=4
[2015-06-05T12:07:42.034527 #127549] INFO -- : worker=4 spawned pid=127549
[2015-06-05T12:07:42.035217 #127549] INFO -- : worker=4 ready
`

One other thing that stands out in the log snippet above, taken from
GitLab.com, is that ‘worker 4’ was serving requests for only 23 seconds. This
is a normal value for our current GitLab.com setup and traffic.

The high frequency of Unicorn memory restarts on some GitLab sites can be a
source of confusion for administrators. Usually they are a [red
herring](https://en.wikipedia.org/wiki/Red_herring).

 —
description: ‘Learn how to administer GitLab Pages.’
—

GitLab Pages administration

> Notes:
- [Introduced][ee-80] in GitLab EE 8.3.
- Custom CNAMEs with TLS support were [introduced][ee-173] in GitLab EE 8.5.
- GitLab Pages [were ported][ce-14605] to Community Edition in GitLab 8.17.
- This guide is for Omnibus GitLab installations. If you have installed

GitLab from source, follow the [Pages source installation document](source.md).

	To learn how to use GitLab Pages, read the [user documentation][pages-userguide].

This document describes how to set up the _latest_ GitLab Pages feature. Make
sure to read the [changelog](#changelog) if you are upgrading to a new GitLab
version as it may include new features and changes needed to be made in your
configuration.

Overview

GitLab Pages makes use of the [GitLab Pages daemon], a simple HTTP server
written in Go that can listen on an external IP address and provide support for
custom domains and custom certificates. It supports dynamic certificates through
SNI and exposes pages using HTTP2 by default.
You are encouraged to read its [README][pages-readme] to fully understand how
it works.

In the case of [custom domains](#custom-domains) (but not
[wildcard domains](#wildcard-domains)), the Pages daemon needs to listen on
ports 80 and/or 443. For that reason, there is some flexibility in the way
which you can set it up:

1. Run the Pages daemon in the same server as GitLab, listening on a secondary IP.
1. Run the Pages daemon in a separate server. In that case, the

[Pages path](#change-storage-path) must also be present in the server that
the Pages daemon is installed, so you will have to share it via network.

	Run the Pages daemon in the same server as GitLab, listening on the same IP
but on different ports. In that case, you will have to proxy the traffic with
a loadbalancer. If you choose that route note that you should use TCP load
balancing for HTTPS. If you use TLS-termination (HTTPS-load balancing) the
pages will not be able to be served with user provided certificates. For
HTTP it’s OK to use HTTP or TCP load balancing.

In this document, we will proceed assuming the first option. If you are not
supporting custom domains a secondary IP is not needed.

Prerequisites

Before proceeding with the Pages configuration, you will need to:

	Have an exclusive root domain for serving GitLab Pages. Note that you cannot
use a subdomain of your GitLab’s instance domain.

1. Configure a wildcard DNS record.
1. (Optional) Have a wildcard certificate for that domain if you decide to

serve Pages under HTTPS.

	(Optional but recommended) Enable [Shared runners](../../ci/runners/README.md)
so that your users don’t have to bring their own.

	(Only for custom domains) Have a secondary IP.

NOTE: Note:
If your GitLab instance and the Pages daemon are deployed in a private network or behind a firewall, your GitLab Pages websites will only be accessible to devices/users that have access to the private network.

Add the domain to the Public Suffix List

The [Public Suffix List](https://publicsuffix.org) is used by browsers to
decide how to treat subdomains. If your GitLab instance allows members of the
public to create GitLab Pages sites, it also allows those users to create
subdomains on the pages domain (example.io). Adding the domain to the Public
Suffix List prevents browsers from accepting
[supercookies](https://en.wikipedia.org/wiki/HTTP_cookie#Supercookie),
among other things.

Follow [these instructions](https://publicsuffix.org/submit/) to submit your
GitLab Pages subdomain. For instance, if your domain is example.io, you should
request that *.example.io is added to the Public Suffix List. GitLab.com
added *.gitlab.io [in 2016](https://gitlab.com/gitlab-com/infrastructure/issues/230).

DNS configuration

GitLab Pages expect to run on their own virtual host. In your DNS server/provider
you need to add a [wildcard DNS A record][wiki-wildcard-dns] pointing to the
host that GitLab runs. For example, an entry would look like this:

`
*.example.io. 1800 IN A 192.0.2.1
*.example.io. 1800 IN AAAA 2001::1
`

where example.io is the domain under which GitLab Pages will be served
and 192.0.2.1 is the IPv4 address of your GitLab instance and 2001::1 is the
IPv6 address. If you don’t have IPv6, you can omit the AAAA record.

> Note:
You should not use the GitLab domain to serve user pages. For more information
see the [security section](#security).

[wiki-wildcard-dns]: https://en.wikipedia.org/wiki/Wildcard_DNS_record

Configuration

Depending on your needs, you can set up GitLab Pages in 4 different ways.
The following options are listed from the easiest setup to the most
advanced one. The absolute minimum requirement is to set up the wildcard DNS
since that is needed in all configurations.

Wildcard domains

>**Requirements:**
- [Wildcard DNS setup](#dns-configuration)
>
>—
>
URL scheme: http://page.example.io

This is the minimum setup that you can use Pages with. It is the base for all
other setups as described below. Nginx will proxy all requests to the daemon.
The Pages daemon doesn’t listen to the outside world.

	Set the external URL for GitLab Pages in /etc/gitlab/gitlab.rb:

`shell
pages_external_url 'http://example.io'
`

	[Reconfigure GitLab][reconfigure]

Watch the [video tutorial][video-admin] for this configuration.

Wildcard domains with TLS support

>**Requirements:**
- [Wildcard DNS setup](#dns-configuration)
- Wildcard TLS certificate
>
>—
>
URL scheme: https://page.example.io

Nginx will proxy all requests to the daemon. Pages daemon doesn’t listen to the
outside world.

1. Place the certificate and key inside /etc/gitlab/ssl
1. In /etc/gitlab/gitlab.rb specify the following configuration:


```shell
pages_external_url ‘https://example.io’

pages_nginx[‘redirect_http_to_https’] = true
pages_nginx[‘ssl_certificate’] = “/etc/gitlab/ssl/pages-nginx.crt”
pages_nginx[‘ssl_certificate_key’] = “/etc/gitlab/ssl/pages-nginx.key”
```

where pages-nginx.crt and pages-nginx.key are the SSL cert and key,
respectively.

	[Reconfigure GitLab][reconfigure]

Advanced configuration

In addition to the wildcard domains, you can also have the option to configure
GitLab Pages to work with custom domains. Again, there are two options here:
support custom domains with and without TLS certificates. The easiest setup is
that without TLS certificates. In either case, you’ll need a secondary IP. If
you have IPv6 as well as IPv4 addresses, you can use them both.

Custom domains

>**Requirements:**
- [Wildcard DNS setup](#dns-configuration)
- Secondary IP
>
—
>
URL scheme: http://page.example.io and http://domain.com

In that case, the Pages daemon is running, Nginx still proxies requests to
the daemon but the daemon is also able to receive requests from the outside
world. Custom domains are supported, but no TLS.

	Edit /etc/gitlab/gitlab.rb:

`shell
pages_external_url "http://example.io"
nginx['listen_addresses'] = ['192.0.2.1']
pages_nginx['enable'] = false
gitlab_pages['external_http'] = ['192.0.2.2:80', '[2001::2]:80']
`

where 192.0.2.1 is the primary IP address that GitLab is listening to and
192.0.2.2 and 2001::2 are the secondary IPs the GitLab Pages daemon
listens on. If you don’t have IPv6, you can omit the IPv6 address.

	[Reconfigure GitLab][reconfigure]

Custom domains with TLS support

>**Requirements:**
- [Wildcard DNS setup](#dns-configuration)
- Wildcard TLS certificate
- Secondary IP
>
—
>
URL scheme: https://page.example.io and https://domain.com

In that case, the Pages daemon is running, Nginx still proxies requests to
the daemon but the daemon is also able to receive requests from the outside
world. Custom domains and TLS are supported.

	Edit /etc/gitlab/gitlab.rb:

`shell
pages_external_url "https://example.io"
nginx['listen_addresses'] = ['192.0.2.1']
pages_nginx['enable'] = false
gitlab_pages['cert'] = "/etc/gitlab/ssl/example.io.crt"
gitlab_pages['cert_key'] = "/etc/gitlab/ssl/example.io.key"
gitlab_pages['external_http'] = ['192.0.2.2:80', '[2001::2]:80']
gitlab_pages['external_https'] = ['192.0.2.2:443', '[2001::2]:443']
`

where 192.0.2.1 is the primary IP address that GitLab is listening to and
192.0.2.2 and 2001::2 are the secondary IPs where the GitLab Pages daemon
listens on. If you don’t have IPv6, you can omit the IPv6 address.

	[Reconfigure GitLab][reconfigure]

Custom domain verification

To prevent malicious users from hijacking domains that don’t belong to them,
GitLab supports [custom domain verification](../../user/project/pages/getting_started_part_three.md#dns-txt-record).
When adding a custom domain, users will be required to prove they own it by
adding a GitLab-controlled verification code to the DNS records for that domain.

If your userbase is private or otherwise trusted, you can disable the
verification requirement. Navigate to Admin area ➔ Settings and uncheck
Require users to prove ownership of custom domains in the Pages section.
This setting is enabled by default.

Activate verbose logging for daemon

Verbose logging was [introduced](https://gitlab.com/gitlab-org/omnibus-gitlab/merge_requests/2533) in
Omnibus GitLab 11.1.

Follow the steps below to configure verbose logging of GitLab Pages daemon.

	By default the daemon only logs with INFO level.
If you wish to make it log events with level DEBUG you must configure this in
/etc/gitlab/gitlab.rb:

`shell
gitlab_pages['log_verbose'] = true
`

	[Reconfigure GitLab][reconfigure]

Change storage path

Follow the steps below to change the default path where GitLab Pages’ contents
are stored.

	Pages are stored by default in /var/opt/gitlab/gitlab-rails/shared/pages.
If you wish to store them in another location you must set it up in
/etc/gitlab/gitlab.rb:

`shell
gitlab_rails['pages_path'] = "/mnt/storage/pages"
`

	[Reconfigure GitLab][reconfigure]

Configure listener for reverse proxy requests

Follow the steps below to configure the proxy listener of GitLab Pages. [Introduced](https://gitlab.com/gitlab-org/omnibus-gitlab/merge_requests/2533) in
Omnibus GitLab 11.1.

	By default the listener is configured to listen for requests on localhost:8090.

If you wish to disable it you must configure this in
/etc/gitlab/gitlab.rb:

`shell
gitlab_pages['listen_proxy'] = nil
`

If you wish to make it listen on a different port you must configure this also in
/etc/gitlab/gitlab.rb:

`shell
gitlab_pages['listen_proxy'] = "localhost:10080"
`

	[Reconfigure GitLab][reconfigure]

Set maximum pages size

The maximum size of the unpacked archive per project can be configured in the
Admin area under the Application settings in the Maximum size of pages (MB).
The default is 100MB.

Backup

Pages are part of the [regular backup][backup] so there is nothing to configure.

Security

You should strongly consider running GitLab pages under a different hostname
than GitLab to prevent XSS attacks.

Changelog

GitLab Pages were first introduced in GitLab EE 8.3. Since then, many features
where added, like custom CNAME and TLS support, and many more are likely to
come. Below is a brief changelog. If no changes were introduced or a version is
missing from the changelog, assume that the documentation is the same as the
latest previous version.

—

GitLab 8.17 ([documentation][8-17-docs])

	GitLab Pages were ported to Community Edition in GitLab 8.17.

	Documentation was refactored to be more modular and easy to follow.

GitLab 8.5 ([documentation][8-5-docs])

	In GitLab 8.5 we introduced the [gitlab-pages][] daemon which is now the
recommended way to set up GitLab Pages.

	The [NGINX configs][] have changed to reflect this change. So make sure to
update them.

	Custom CNAME and TLS certificates support.

	Documentation was moved to one place.

GitLab 8.3 ([documentation][8-3-docs])

	GitLab Pages feature was introduced.

[8-3-docs]: https://gitlab.com/gitlab-org/gitlab-ee/blob/8-3-stable-ee/doc/pages/administration.md
[8-5-docs]: https://gitlab.com/gitlab-org/gitlab-ee/blob/8-5-stable-ee/doc/pages/administration.md
[8-17-docs]: https://gitlab.com/gitlab-org/gitlab-ce/blob/8-17-stable-ce/doc/administration/pages/index.md
[backup]: ../../raketasks/backup_restore.md
[ce-14605]: https://gitlab.com/gitlab-org/gitlab-ce/issues/14605
[ee-80]: https://gitlab.com/gitlab-org/gitlab-ee/merge_requests/80
[ee-173]: https://gitlab.com/gitlab-org/gitlab-ee/merge_requests/173
[gitlab pages daemon]: https://gitlab.com/gitlab-org/gitlab-pages
[NGINX configs]: https://gitlab.com/gitlab-org/gitlab-ee/tree/8-5-stable-ee/lib/support/nginx
[pages-readme]: https://gitlab.com/gitlab-org/gitlab-pages/blob/master/README.md
[pages-userguide]: ../../user/project/pages/index.md
[reconfigure]: ../restart_gitlab.md#omnibus-gitlab-reconfigure
[restart]: ../restart_gitlab.md#installations-from-source
[gitlab-pages]: https://gitlab.com/gitlab-org/gitlab-pages/tree/v0.2.4
[video-admin]: https://youtu.be/dD8c7WNcc6s

 # GitLab Pages administration for source installations

>**Note:**
Before attempting to enable GitLab Pages, first make sure you have
[installed GitLab](../../install/installation.md) successfully.

This is the documentation for configuring a GitLab Pages when you have installed
GitLab from source and not using the Omnibus packages.

You are encouraged to read the [Omnibus documentation](index.md) as it provides
some invaluable information to the configuration of GitLab Pages. Please proceed
to read it before going forward with this guide.

We also highly recommend that you use the Omnibus GitLab packages, as we
optimize them specifically for GitLab, and we will take care of upgrading GitLab
Pages to the latest supported version.

Overview

GitLab Pages makes use of the [GitLab Pages daemon], a simple HTTP server
written in Go that can listen on an external IP address and provide support for
custom domains and custom certificates. It supports dynamic certificates through
SNI and exposes pages using HTTP2 by default.
You are encouraged to read its [README][pages-readme] to fully understand how
it works.

—

In the case of [custom domains](#custom-domains) (but not
[wildcard domains](#wildcard-domains)), the Pages daemon needs to listen on
ports 80 and/or 443. For that reason, there is some flexibility in the way
which you can set it up:

1. Run the Pages daemon in the same server as GitLab, listening on a secondary IP.
1. Run the Pages daemon in a separate server. In that case, the

[Pages path](#change-storage-path) must also be present in the server that
the Pages daemon is installed, so you will have to share it via network.

	Run the Pages daemon in the same server as GitLab, listening on the same IP
but on different ports. In that case, you will have to proxy the traffic with
a loadbalancer. If you choose that route note that you should use TCP load
balancing for HTTPS. If you use TLS-termination (HTTPS-load balancing) the
pages will not be able to be served with user provided certificates. For
HTTP it’s OK to use HTTP or TCP load balancing.

In this document, we will proceed assuming the first option. If you are not
supporting custom domains a secondary IP is not needed.

Prerequisites

Before proceeding with the Pages configuration, make sure that:

	You have a separate domain under which GitLab Pages will be served. In
this document we assume that to be example.io.

1. You have configured a wildcard DNS record for that domain.
1. You have installed the zip and unzip packages in the same server that

GitLab is installed since they are needed to compress/uncompress the
Pages artifacts.

	(Optional) You have a wildcard certificate for the Pages domain if you
decide to serve Pages (*.example.io) under HTTPS.

	(Optional but recommended) You have configured and enabled the [Shared Runners][]
so that your users don’t have to bring their own.

DNS configuration

GitLab Pages expect to run on their own virtual host. In your DNS server/provider
you need to add a [wildcard DNS A record][wiki-wildcard-dns] pointing to the
host that GitLab runs. For example, an entry would look like this:

`
*.example.io. 1800 IN A 192.0.2.1
`

where example.io is the domain under which GitLab Pages will be served
and 192.0.2.1 is the IP address of your GitLab instance.

> Note:
You should not use the GitLab domain to serve user pages. For more information
see the [security section](#security).

[wiki-wildcard-dns]: https://en.wikipedia.org/wiki/Wildcard_DNS_record

Configuration

Depending on your needs, you can set up GitLab Pages in 4 different ways.
The following options are listed from the easiest setup to the most
advanced one. The absolute minimum requirement is to set up the wildcard DNS
since that is needed in all configurations.

Wildcard domains

>**Requirements:**
- [Wildcard DNS setup](#dns-configuration)
>
>—
>
URL scheme: http://page.example.io

This is the minimum setup that you can use Pages with. It is the base for all
other setups as described below. Nginx will proxy all requests to the daemon.
The Pages daemon doesn’t listen to the outside world.

	Install the Pages daemon:

`
cd /home/git
sudo -u git -H git clone https://gitlab.com/gitlab-org/gitlab-pages.git
cd gitlab-pages
sudo -u git -H git checkout v$(</home/git/gitlab/GITLAB_PAGES_VERSION)
sudo -u git -H make
`

	Go to the GitLab installation directory:

`bash
cd /home/git/gitlab
`

	Edit gitlab.yml and under the pages setting, set enabled to true and
the host to the FQDN under which GitLab Pages will be served:


```yaml
## GitLab Pages
pages:


enabled: true
# The location where pages are stored (default: shared/pages).
# path: shared/pages

host: example.io
port: 80
https: false




```


	Edit /etc/default/gitlab and set gitlab_pages_enabled to true in
order to enable the pages daemon. In gitlab_pages_options the
-pages-domain must match the host setting that you set above.

`
gitlab_pages_enabled=true
gitlab_pages_options="-pages-domain example.io -pages-root $app_root/shared/pages -listen-proxy 127.0.0.1:8090
`

	Copy the gitlab-pages Nginx configuration file:

`bash
sudo cp lib/support/nginx/gitlab-pages /etc/nginx/sites-available/gitlab-pages.conf
sudo ln -sf /etc/nginx/sites-{available,enabled}/gitlab-pages.conf
`

1. Restart NGINX
1. [Restart GitLab][restart]

Wildcard domains with TLS support

>**Requirements:**
- [Wildcard DNS setup](#dns-configuration)
- Wildcard TLS certificate
>
>—
>
URL scheme: https://page.example.io

Nginx will proxy all requests to the daemon. Pages daemon doesn’t listen to the
outside world.

	Install the Pages daemon:

`
cd /home/git
sudo -u git -H git clone https://gitlab.com/gitlab-org/gitlab-pages.git
cd gitlab-pages
sudo -u git -H git checkout v$(</home/git/gitlab/GITLAB_PAGES_VERSION)
sudo -u git -H make
`

	In gitlab.yml, set the port to 443 and https to true:


```bash
## GitLab Pages
pages:


enabled: true
# The location where pages are stored (default: shared/pages).
# path: shared/pages

host: example.io
port: 443
https: true




```


	Edit /etc/default/gitlab and set gitlab_pages_enabled to true in
order to enable the pages daemon. In gitlab_pages_options the
-pages-domain must match the host setting that you set above.
The -root-cert and -root-key settings are the wildcard TLS certificates
of the example.io domain:

`
gitlab_pages_enabled=true
gitlab_pages_options="-pages-domain example.io -pages-root $app_root/shared/pages -listen-proxy 127.0.0.1:8090 -root-cert /path/to/example.io.crt -root-key /path/to/example.io.key
`

	Copy the gitlab-pages-ssl Nginx configuration file:

`bash
sudo cp lib/support/nginx/gitlab-pages-ssl /etc/nginx/sites-available/gitlab-pages-ssl.conf
sudo ln -sf /etc/nginx/sites-{available,enabled}/gitlab-pages-ssl.conf
`

1. Restart NGINX
1. [Restart GitLab][restart]

Advanced configuration

In addition to the wildcard domains, you can also have the option to configure
GitLab Pages to work with custom domains. Again, there are two options here:
support custom domains with and without TLS certificates. The easiest setup is
that without TLS certificates.

Custom domains

>**Requirements:**
- [Wildcard DNS setup](#dns-configuration)
- Secondary IP
>
—
>
URL scheme: http://page.example.io and http://domain.com

In that case, the pages daemon is running, Nginx still proxies requests to
the daemon but the daemon is also able to receive requests from the outside
world. Custom domains are supported, but no TLS.

	Install the Pages daemon:

`
cd /home/git
sudo -u git -H git clone https://gitlab.com/gitlab-org/gitlab-pages.git
cd gitlab-pages
sudo -u git -H git checkout v$(</home/git/gitlab/GITLAB_PAGES_VERSION)
sudo -u git -H make
`

	Edit gitlab.yml to look like the example below. You need to change the
host to the FQDN under which GitLab Pages will be served. Set
external_http to the secondary IP on which the pages daemon will listen
for connections:


```yaml
pages:


enabled: true
# The location where pages are stored (default: shared/pages).
# path: shared/pages

host: example.io
port: 80
https: false

external_http: 192.0.2.2:80




```


	Edit /etc/default/gitlab and set gitlab_pages_enabled to true in
order to enable the pages daemon. In gitlab_pages_options the
-pages-domain and -listen-http must match the host and external_http
settings that you set above respectively:

`
gitlab_pages_enabled=true
gitlab_pages_options="-pages-domain example.io -pages-root $app_root/shared/pages -listen-proxy 127.0.0.1:8090 -listen-http 192.0.2.2:80"
`

	Copy the gitlab-pages-ssl Nginx configuration file:

`bash
sudo cp lib/support/nginx/gitlab-pages /etc/nginx/sites-available/gitlab-pages.conf
sudo ln -sf /etc/nginx/sites-{available,enabled}/gitlab-pages.conf
`

	Edit all GitLab related configs in /etc/nginx/site-available/ and replace
0.0.0.0 with 192.0.2.1, where 192.0.2.1 the primary IP where GitLab
listens to.

1. Restart NGINX
1. [Restart GitLab][restart]

Custom domains with TLS support

>**Requirements:**
- [Wildcard DNS setup](#dns-configuration)
- Wildcard TLS certificate
- Secondary IP
>
—
>
URL scheme: https://page.example.io and https://domain.com

In that case, the pages daemon is running, Nginx still proxies requests to
the daemon but the daemon is also able to receive requests from the outside
world. Custom domains and TLS are supported.

	Install the Pages daemon:

`
cd /home/git
sudo -u git -H git clone https://gitlab.com/gitlab-org/gitlab-pages.git
cd gitlab-pages
sudo -u git -H git checkout v$(</home/git/gitlab/GITLAB_PAGES_VERSION)
sudo -u git -H make
`

	Edit gitlab.yml to look like the example below. You need to change the
host to the FQDN under which GitLab Pages will be served. Set
external_http and external_https to the secondary IP on which the pages
daemon will listen for connections:


```yaml
## GitLab Pages
pages:


enabled: true
# The location where pages are stored (default: shared/pages).
# path: shared/pages

host: example.io
port: 443
https: true

external_http: 192.0.2.2:80
external_https: 192.0.2.2:443




```


	Edit /etc/default/gitlab and set gitlab_pages_enabled to true in
order to enable the pages daemon. In gitlab_pages_options the
-pages-domain, -listen-http and -listen-https must match the host,
external_http and external_https settings that you set above respectively.
The -root-cert and -root-key settings are the wildcard TLS certificates
of the example.io domain:

`
gitlab_pages_enabled=true
gitlab_pages_options="-pages-domain example.io -pages-root $app_root/shared/pages -listen-proxy 127.0.0.1:8090 -listen-http 192.0.2.2:80 -listen-https 192.0.2.2:443 -root-cert /path/to/example.io.crt -root-key /path/to/example.io.key
`

	Copy the gitlab-pages-ssl Nginx configuration file:

`bash
sudo cp lib/support/nginx/gitlab-pages-ssl /etc/nginx/sites-available/gitlab-pages-ssl.conf
sudo ln -sf /etc/nginx/sites-{available,enabled}/gitlab-pages-ssl.conf
`

	Edit all GitLab related configs in /etc/nginx/site-available/ and replace
0.0.0.0 with 192.0.2.1, where 192.0.2.1 the primary IP where GitLab
listens to.

1. Restart NGINX
1. [Restart GitLab][restart]

Change storage path

Follow the steps below to change the default path where GitLab Pages’ contents
are stored.

	Pages are stored by default in /var/opt/gitlab/gitlab-rails/shared/pages.
If you wish to store them in another location you must set it up in
/etc/gitlab/gitlab.rb:

`ruby
gitlab_rails['pages_path'] = "/mnt/storage/pages"
`

	[Reconfigure GitLab][reconfigure]

NGINX caveats

>**Note:**
The following information applies only for installations from source.

Be extra careful when setting up the domain name in the NGINX config. You must
not remove the backslashes.

If your GitLab pages domain is example.io, replace:

`bash
server_name ~^.*\.YOUR_GITLAB_PAGES\.DOMAIN$;
`

with:

`
server_name ~^.*\.example\.io$;
`

If you are using a subdomain, make sure to escape all dots (.) except from
the first one with a backslash (). For example pages.example.io would be:

`
server_name ~^.*\.pages\.example\.io$;
`

Change storage path

Follow the steps below to change the default path where GitLab Pages’ contents
are stored.

	Pages are stored by default in /home/git/gitlab/shared/pages.
If you wish to store them in another location you must set it up in
gitlab.yml under the pages section:


```yaml
pages:


enabled: true
# The location where pages are stored (default: shared/pages).
path: /mnt/storage/pages




```


	[Restart GitLab][restart]

Set maximum Pages size

The maximum size of the unpacked archive per project can be configured in the
Admin area under the Application settings in the Maximum size of pages (MB).
The default is 100MB.

Backup

Pages are part of the [regular backup][backup] so there is nothing to configure.

Security

You should strongly consider running GitLab pages under a different hostname
than GitLab to prevent XSS attacks.

[backup]: ../../raketasks/backup_restore.md
[ee-80]: https://gitlab.com/gitlab-org/gitlab-ee/merge_requests/80
[ee-173]: https://gitlab.com/gitlab-org/gitlab-ee/merge_requests/173
[gitlab pages daemon]: https://gitlab.com/gitlab-org/gitlab-pages
[NGINX configs]: https://gitlab.com/gitlab-org/gitlab-ee/tree/8-5-stable-ee/lib/support/nginx
[pages-readme]: https://gitlab.com/gitlab-org/gitlab-pages/blob/master/README.md
[pages-userguide]: ../../user/project/pages/index.md
[reconfigure]: ../restart_gitlab.md#omnibus-gitlab-reconfigure
[restart]: ../restart_gitlab.md#installations-from-source
[gitlab-pages]: https://gitlab.com/gitlab-org/gitlab-pages/tree/v0.4.0
[gl-example]: https://gitlab.com/gitlab-org/gitlab-ce/blob/master/lib/support/init.d/gitlab.default.example
[shared runners]: ../../ci/runners/README.md

 # Integrity Check Rake Task

Repository Integrity

Even though Git is very resilient and tries to prevent data integrity issues,
there are times when things go wrong. The following Rake tasks intend to
help GitLab administrators diagnose problem repositories so they can be fixed.

There are 3 things that are checked to determine integrity.

	Git repository file system check ([git fsck](https://git-scm.com/docs/git-fsck)).
This step verifies the connectivity and validity of objects in the repository.

1. Check for config.lock in the repository directory.
1. Check for any branch/references lock files in refs/heads.

It’s important to note that the existence of config.lock or reference locks
alone do not necessarily indicate a problem. Lock files are routinely created
and removed as Git and GitLab perform operations on the repository. They serve
to prevent data integrity issues. However, if a Git operation is interrupted these
locks may not be cleaned up properly.

The following symptoms may indicate a problem with repository integrity. If users
experience these symptoms you may use the rake tasks described below to determine
exactly which repositories are causing the trouble.

	Receiving an error when trying to push code - remote: error: cannot lock ref

	A 500 error when viewing the GitLab dashboard or when accessing a specific project.

Check all GitLab repositories

This task loops through all repositories on the GitLab server and runs the
integrity check described previously.

Omnibus Installation

`
sudo gitlab-rake gitlab:git:fsck
`

Source Installation

`bash
sudo -u git -H bundle exec rake gitlab:git:fsck RAILS_ENV=production
`

Uploaded Files Integrity

Various types of files can be uploaded to a GitLab installation by users.
These integrity checks can detect missing files. Additionally, for locally
stored files, checksums are generated and stored in the database upon upload,
and these checks will verify them against current files.

Currently, integrity checks are supported for the following types of file:

	CI artifacts (Available from version 10.7.0)

	LFS objects (Available from version 10.6.0)

	User uploads (Available from version 10.6.0)

Omnibus Installation

`
sudo gitlab-rake gitlab:artifacts:check
sudo gitlab-rake gitlab:lfs:check
sudo gitlab-rake gitlab:uploads:check
`

Source Installation

`bash
sudo -u git -H bundle exec rake gitlab:artifacts:check RAILS_ENV=production
sudo -u git -H bundle exec rake gitlab:lfs:check RAILS_ENV=production
sudo -u git -H bundle exec rake gitlab:uploads:check RAILS_ENV=production
`

These tasks also accept some environment variables which you can use to override
certain values:

Variable | Type | Description
——— | ——- | ———–
BATCH | integer | Specifies the size of the batch. Defaults to 200.
ID_FROM | integer | Specifies the ID to start from, inclusive of the value.
ID_TO | integer | Specifies the ID value to end at, inclusive of the value.
VERBOSE | boolean | Causes failures to be listed individually, rather than being summarized.

`bash
sudo gitlab-rake gitlab:artifacts:check BATCH=100 ID_FROM=50 ID_TO=250
sudo gitlab-rake gitlab:lfs:check BATCH=100 ID_FROM=50 ID_TO=250
sudo gitlab-rake gitlab:uploads:check BATCH=100 ID_FROM=50 ID_TO=250
`

Example output:

`
$ sudo gitlab-rake gitlab:uploads:check
Checking integrity of Uploads
- 1..1350: Failures: 0
- 1351..2743: Failures: 0
- 2745..4349: Failures: 2
- 4357..5762: Failures: 1
- 5764..7140: Failures: 2
- 7142..8651: Failures: 0
- 8653..10134: Failures: 0
- 10135..11773: Failures: 0
- 11777..13315: Failures: 0
Done!
`

Example verbose output:

```
$ sudo gitlab-rake gitlab:uploads:check VERBOSE=1
Checking integrity of Uploads
- 1..1350: Failures: 0
- 1351..2743: Failures: 0
- 2745..4349: Failures: 2



	Upload: 3573: #<Errno::ENOENT: No such file or directory @ rb_sysopen - /opt/gitlab/embedded/service/gitlab-rails/public/uploads/user-foo/project-bar/7a77cc52947bfe188adeff42f890bb77/image.png>


	Upload: 3580: #<Errno::ENOENT: No such file or directory @ rb_sysopen - /opt/gitlab/embedded/service/gitlab-rails/public/uploads/user-foo/project-bar/2840ba1ba3b2ecfa3478a7b161375f8a/pug.png>








	4357..5762: Failures: 1
- Upload: 4636: #<Google::Apis::ServerError: Server error>


	5764..7140: Failures: 2
- Upload: 5812: #<NoMethodError: undefined method `hashed_storage?’ for nil:NilClass>
- Upload: 5837: #<NoMethodError: undefined method `hashed_storage?’ for nil:NilClass>


	7142..8651: Failures: 0


	8653..10134: Failures: 0


	10135..11773: Failures: 0


	11777..13315: Failures: 0




Done!
```

LDAP Check

The LDAP check Rake task will test the bind_dn and password credentials
(if configured) and will list a sample of LDAP users. This task is also
executed as part of the gitlab:check task, but can run independently.
See [LDAP Rake Tasks - LDAP Check](ldap.md#check) for details.

[git-fsck]: https://git-scm.com/docs/git-fsck

 # GitHub import

>**Note:**
>
> - [Introduced][ce-10308] in GitLab 9.1.
> - You need a personal access token in order to retrieve and import GitHub
> projects. You can get it from: https://github.com/settings/tokens
> - You also need to pass an username as the second argument to the rake task
> which will become the owner of the project.
> - You can also resume an import with the same command.

To import a project from the list of your GitHub projects available:

```bash
# Omnibus installations
sudo gitlab-rake import:github[access_token,root,foo/bar]

# Installations from source
bundle exec rake import:github[access_token,root,foo/bar] RAILS_ENV=production
```

In this case, access_token is your GitHub personal access token, root
is your GitLab username, and foo/bar is the new GitLab namespace/project that
will get created from your GitHub project. Subgroups are also possible: foo/foo/bar.

To import a specific GitHub project (named foo/github_repo here):

```bash
# Omnibus installations
sudo gitlab-rake import:github[access_token,root,foo/bar,foo/github_repo]

# Installations from source
bundle exec rake import:github[access_token,root,foo/bar,foo/github_repo] RAILS_ENV=production
```

[ce-10308]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/10308

 # LDAP Rake Tasks

Check

The LDAP check Rake task will test the bind_dn and password credentials
(if configured) and will list a sample of LDAP users. This task is also
executed as part of the gitlab:check task, but can run independently
using the command below.

Omnibus Installation

`
sudo gitlab-rake gitlab:ldap:check
`

Source Installation

`bash
sudo -u git -H bundle exec rake gitlab:ldap:check RAILS_ENV=production
`

By default, the task will return a sample of 100 LDAP users. Change this
limit by passing a number to the check task:

`bash
rake gitlab:ldap:check[50]
`

Rename a provider

If you change the LDAP server ID in gitlab.yml or gitlab.rb you will need
to update all user identities or users will be unable to sign in. Input the
old and new provider and this task will update all matching identities in the
database.

old_provider and new_provider are derived from the prefix ldap plus the
LDAP server ID from the configuration file. For example, in gitlab.yml or
gitlab.rb you may see LDAP configuration like this:

```yaml
main:


label: ‘LDAP’
host: ‘_your_ldap_server’
port: 389
uid: ‘sAMAccountName’
…




```

main is the LDAP server ID. Together, the unique provider is ldapmain.

> Warning: If you input an incorrect new provider users will be unable
to sign in. If this happens, run the task again with the incorrect provider
as the old_provider and the correct provider as the new_provider.

Omnibus Installation

`bash
sudo gitlab-rake gitlab:ldap:rename_provider[old_provider,new_provider]
`

Source Installation

`bash
bundle exec rake gitlab:ldap:rename_provider[old_provider,new_provider] RAILS_ENV=production
`

Example

Consider beginning with the default server ID main (full provider ldapmain).
If we change main to mycompany, the new_provider is ldapmycompany.
To rename all user identities run the following command:

`bash
sudo gitlab-rake gitlab:ldap:rename_provider[ldapmain,ldapmycompany]
`

Example output:

```
100 users with provider ‘ldapmain’ will be updated to ‘ldapmycompany’.
If the new provider is incorrect, users will be unable to sign in.
Do you want to continue (yes/no)? yes

User identities were successfully updated
```

Other options

If you do not specify an old_provider and new_provider you will be prompted
for them:

Omnibus Installation

`bash
sudo gitlab-rake gitlab:ldap:rename_provider
`

Source Installation

`bash
bundle exec rake gitlab:ldap:rename_provider RAILS_ENV=production
`

Example output:

`
What is the old provider? Ex. 'ldapmain': ldapmain
What is the new provider? Ex. 'ldapcustom': ldapmycompany
`

This tasks also accepts the force environment variable which will skip the
confirmation dialog:

`bash
sudo gitlab-rake gitlab:ldap:rename_provider[old_provider,new_provider] force=yes
`

 # Maintenance Rake Tasks

Gather information about GitLab and the system it runs on

This command gathers information about your GitLab installation and the System it runs on. These may be useful when asking for help or reporting issues.

Omnibus Installation

`
sudo gitlab-rake gitlab:env:info
`

Source Installation

`
bundle exec rake gitlab:env:info RAILS_ENV=production
`

Example output:

```
System information
System:           Debian 7.8
Current User:     git
Using RVM:        no
Ruby Version:     2.1.5p273
Gem Version:      2.4.3
Bundler Version:  1.7.6
Rake Version:     10.3.2
Redis Version:    3.2.5
Sidekiq Version:  2.17.8

GitLab information
Version:          7.7.1
Revision:         41ab9e1
Directory:        /home/git/gitlab
DB Adapter:       postgresql
URL:              https://gitlab.example.com
HTTP Clone URL:   https://gitlab.example.com/some-project.git
SSH Clone URL:    git@gitlab.example.com:some-project.git
Using LDAP:       no
Using Omniauth:   no

GitLab Shell
Version:          2.4.1
Repositories:     /home/git/repositories/
Hooks:            /home/git/gitlab-shell/hooks/
Git:              /usr/bin/git
```

Check GitLab configuration

Runs the following rake tasks:

	gitlab:gitlab_shell:check

	gitlab:sidekiq:check

	gitlab:app:check

It will check that each component was setup according to the installation guide and suggest fixes for issues found.

You may also have a look at our Trouble Shooting Guides:
- [Trouble Shooting Guide (GitLab)](http://docs.gitlab.com/ee/README.html#troubleshooting)
- [Trouble Shooting Guide (Omnibus Gitlab)](http://docs.gitlab.com/omnibus/README.html#troubleshooting)

Omnibus Installation

`
sudo gitlab-rake gitlab:check
`

Source Installation

`
bundle exec rake gitlab:check RAILS_ENV=production
`

NOTE: Use SANITIZE=true for gitlab:check if you want to omit project names from the output.

Example output:

```
Checking Environment …

Git configured for git user? … yes
Has python2? … yes
python2 is supported version? … yes

Checking Environment … Finished

Checking GitLab Shell …

GitLab Shell version? … OK (1.2.0)
Repo base directory exists? … yes
Repo base directory is a symlink? … no
Repo base owned by git:git? … yes
Repo base access is drwxrws—? … yes
post-receive hook up-to-date? … yes
post-receive hooks in repos are links: … yes

Checking GitLab Shell … Finished

Checking Sidekiq …

Running? … yes

Checking Sidekiq … Finished

Checking GitLab …

Database config exists? … yes
Database is SQLite … no
All migrations up? … yes
GitLab config exists? … yes
GitLab config outdated? … no
Log directory writable? … yes
Tmp directory writable? … yes
Init script exists? … yes
Init script up-to-date? … yes
Redis version >= 2.0.0? … yes

Checking GitLab … Finished
```

Rebuild authorized_keys file

In some case it is necessary to rebuild the authorized_keys file.

Omnibus Installation

`
sudo gitlab-rake gitlab:shell:setup
`

Source Installation

`
cd /home/git/gitlab
sudo -u git -H bundle exec rake gitlab:shell:setup RAILS_ENV=production
`

`
This will rebuild an authorized_keys file.
You will lose any data stored in authorized_keys file.
Do you want to continue (yes/no)? yes
`

Clear redis cache

If for some reason the dashboard shows wrong information you might want to
clear Redis’ cache.

Omnibus Installation

`
sudo gitlab-rake cache:clear
`

Source Installation

`
cd /home/git/gitlab
sudo -u git -H bundle exec rake cache:clear RAILS_ENV=production
`

Precompile the assets

Sometimes during version upgrades you might end up with some wrong CSS or
missing some icons. In that case, try to precompile the assets again.

Note that this only applies to source installations and does NOT apply to
Omnibus packages.

Source Installation

`
cd /home/git/gitlab
sudo -u git -H bundle exec rake gitlab:assets:compile RAILS_ENV=production
`

For omnibus versions, the unoptimized assets (JavaScript, CSS) are frozen at
the release of upstream GitLab. The omnibus version includes optimized versions
of those assets. Unless you are modifying the JavaScript / CSS code on your
production machine after installing the package, there should be no reason to redo
rake gitlab:assets:compile on the production machine. If you suspect that assets
have been corrupted, you should reinstall the omnibus package.

Tracking Deployments

GitLab provides a Rake task that lets you track deployments in GitLab
Performance Monitoring. This Rake task simply stores the current GitLab version
in the GitLab Performance Monitoring database.

Omnibus Installation

`
sudo gitlab-rake gitlab:track_deployment
`

Source Installation

`
cd /home/git/gitlab
sudo -u git -H bundle exec rake gitlab:track_deployment RAILS_ENV=production
`

Create or repair repository hooks symlink

If the GitLab shell hooks directory location changes or another circumstance
leads to the hooks symlink becoming missing or invalid, run this Rake task
to create or repair the symlinks.

Omnibus Installation

`
sudo gitlab-rake gitlab:shell:create_hooks
`

Source Installation

`
cd /home/git/gitlab
sudo -u git -H bundle exec rake gitlab:shell:create_hooks RAILS_ENV=production
`

Check TCP connectivity to a remote site

Sometimes you need to know if your GitLab installation can connect to a TCP
service on another machine - perhaps a PostgreSQL or HTTPS server. A rake task
is included to help you with this:

Omnibus Installation

`
sudo gitlab-rake gitlab:tcp_check[example.com,80]
`

Source Installation

`
cd /home/git/gitlab
sudo -u git -H bundle exec rake gitlab:tcp_check[example.com,80] RAILS_ENV=production
`

Clear exclusive lease (DANGER)

GitLab uses a shared lock mechanism: ExclusiveLease to prevent simultaneous operations
in a shared resource. An example is running periodic garbage collection on repositories.

In very specific situations, a operation locked by an Exclusive Lease can fail without
releasing the lock. If you can’t wait for it to expire, you can run this task to manually
clear it.

To clear all exclusive leases:

DANGER: DANGER:
Don’t run it while GitLab or Sidekiq is running

`bash
sudo gitlab-rake gitlab:exclusive_lease:clear
`

To specify a lease type or lease type + id, specify a scope:

```bash
# to clear all leases for repository garbage collection:
sudo gitlab-rake gitlab:exclusive_lease:clear[project_housekeeping:*]

# to clear a lease for repository garbage collection in a specific project: (id=4)
sudo gitlab-rake gitlab:exclusive_lease:clear[project_housekeeping:4]
```


 # Project import/export administration [CORE ONLY]

>**Note:**
>
> - [Introduced][ce-3050] in GitLab 8.9.
> - Importing will not be possible if the import instance version is lower
> than that of the exporter.
> - For existing installations, the project import option has to be enabled in
> application settings (/admin/application_settings) under ‘Import sources’.
> - The exports are stored in a temporary [shared directory][tmp] and are deleted
> every 24 hours by a specific worker.

The GitLab Import/Export version can be checked by using:

```bash
# Omnibus installations
sudo gitlab-rake gitlab:import_export:version

# Installations from source
bundle exec rake gitlab:import_export:version RAILS_ENV=production
```

The current list of DB tables that will get exported can be listed by using:

```bash
# Omnibus installations
sudo gitlab-rake gitlab:import_export:data

# Installations from source
bundle exec rake gitlab:import_export:data RAILS_ENV=production
```

In order to enable Object Storage on the Export, you can use the [feature flag][feature-flags]:

`
import_export_object_storage
`

[ce-3050]: https://gitlab.com/gitlab-org/gitlab-ce/issues/3050
[feature-flags]: https://docs.gitlab.com/ee/api/features.html
[tmp]: ../../development/shared_files.md

 # Repository Storage Rake Tasks

This is a collection of rake tasks you can use to help you list and migrate
existing projects and attachments associated with it from Legacy storage to
the new Hashed storage type.

You can read more about the storage types [here][storage-types].

Migrate existing projects to Hashed storage

Before migrating your existing projects, you should
[enable hashed storage][storage-migration] for the new projects as well.

This task will schedule all your existing projects and attachments associated with it to be migrated to the
Hashed storage type:

Omnibus Installation

`bash
sudo gitlab-rake gitlab:storage:migrate_to_hashed
`

Source Installation

`bash
sudo -u git -H bundle exec rake gitlab:storage:migrate_to_hashed RAILS_ENV=production
`

They both also accept a range as environment variable:

`bash
to migrate any non migrated project from ID 20 to 50.
export ID_FROM=20
export ID_TO=50
`

You can monitor the progress in the _Admin > Monitoring > Background jobs_ screen.
There is a specific Queue you can watch to see how long it will take to finish: project_migrate_hashed_storage

After it reaches zero, you can confirm every project has been migrated by running the commands bellow.
If you find it necessary, you can run this migration script again to schedule missing projects.

Any error or warning will be logged in the sidekiq’s log file.

You only need the gitlab:storage:migrate_to_hashed rake task to migrate your repositories, but we have additional
commands below that helps you inspect projects and attachments in both legacy and hashed storage.

List projects on Legacy storage

To have a simple summary of projects using Legacy storage:

Omnibus Installation

`bash
sudo gitlab-rake gitlab:storage:legacy_projects
`

Source Installation

`bash
sudo -u git -H bundle exec rake gitlab:storage:legacy_projects RAILS_ENV=production
`

To list projects using Legacy storage:

Omnibus Installation

`bash
sudo gitlab-rake gitlab:storage:list_legacy_projects
`

Source Installation

```bash
sudo -u git -H bundle exec rake gitlab:storage:list_legacy_projects RAILS_ENV=production

```

List projects on Hashed storage

To have a simple summary of projects using Hashed storage:

Omnibus Installation

`bash
sudo gitlab-rake gitlab:storage:hashed_projects
`

Source Installation

`bash
sudo -u git -H bundle exec rake gitlab:storage:hashed_projects RAILS_ENV=production
`

To list projects using Hashed storage:

Omnibus Installation

`bash
sudo gitlab-rake gitlab:storage:list_hashed_projects
`

Source Installation

`bash
sudo -u git -H bundle exec rake gitlab:storage:list_hashed_projects RAILS_ENV=production
`

List attachments on Legacy storage

To have a simple summary of project attachments using Legacy storage:

Omnibus Installation

`bash
sudo gitlab-rake gitlab:storage:legacy_attachments
`

Source Installation

`bash
sudo -u git -H bundle exec rake gitlab:storage:legacy_attachments RAILS_ENV=production
`

To list project attachments using Legacy storage:

Omnibus Installation

`bash
sudo gitlab-rake gitlab:storage:list_legacy_attachments
`

Source Installation

`bash
sudo -u git -H bundle exec rake gitlab:storage:list_legacy_attachments RAILS_ENV=production
`

List attachments on Hashed storage

To have a simple summary of project attachments using Hashed storage:

Omnibus Installation

`bash
sudo gitlab-rake gitlab:storage:hashed_attachments
`

Source Installation

`bash
sudo -u git -H bundle exec rake gitlab:storage:hashed_attachments RAILS_ENV=production
`

To list project attachments using Hashed storage:

Omnibus Installation

`bash
sudo gitlab-rake gitlab:storage:list_hashed_attachments
`

Source Installation

`bash
sudo -u git -H bundle exec rake gitlab:storage:list_hashed_attachments RAILS_ENV=production
`

[storage-types]: ../repository_storage_types.md
[storage-migration]: ../repository_storage_types.md#how-to-migrate-to-hashed-storage

 # Uploads Migrate Rake Task

Migrate to Object Storage

After [configuring the object storage](../../uploads.md#using-object-storage) for GitLab’s uploads, you may use this task to migrate existing uploads from the local storage to the remote storage.

>**Note:**
All of the processing will be done in a background worker and requires no downtime.

This tasks uses 3 parameters to find uploads to migrate.

>**Note:**
These parameters are mainly internal to GitLab’s structure, you may want to refer to the task list instead below.

Parameter | Type | Description
——— | —- | ———–
uploader_class | string | Type of the uploader to migrate from
model_class | string | Type of the model to migrate from
mount_point | string/symbol | Name of the model’s column on which the uploader is mounted on.

This task also accepts some environment variables which you can use to override
certain values:

Variable | Type | Description
——– | —- | ———–
BATCH | integer | Specifies the size of the batch. Defaults to 200.

** Omnibus Installation**

```bash
# gitlab-rake gitlab:uploads:migrate[uploader_class, model_class, mount_point]

# Avatars
gitlab-rake “gitlab:uploads:migrate[AvatarUploader, Project, :avatar]”
gitlab-rake “gitlab:uploads:migrate[AvatarUploader, Group, :avatar]”
gitlab-rake “gitlab:uploads:migrate[AvatarUploader, User, :avatar]”

# Attachments
gitlab-rake “gitlab:uploads:migrate[AttachmentUploader, Note, :attachment]”
gitlab-rake “gitlab:uploads:migrate[AttachmentUploader, Appearance, :logo]”
gitlab-rake “gitlab:uploads:migrate[AttachmentUploader, Appearance, :header_logo]”

# Markdown
gitlab-rake “gitlab:uploads:migrate[FileUploader, Project]”
gitlab-rake “gitlab:uploads:migrate[PersonalFileUploader, Snippet]”
gitlab-rake “gitlab:uploads:migrate[NamespaceFileUploader, Snippet]”
gitlab-rake “gitlab:uploads:migrate[FileUploader, MergeRequest]”
```

Source Installation

>**Note:**
Use RAILS_ENV=production for every task.

```bash
# sudo -u git -H bundle exec rake gitlab:uploads:migrate

# Avatars
sudo -u git -H bundle exec rake “gitlab:uploads:migrate[AvatarUploader, Project, :avatar]”
sudo -u git -H bundle exec rake “gitlab:uploads:migrate[AvatarUploader, Group, :avatar]”
sudo -u git -H bundle exec rake “gitlab:uploads:migrate[AvatarUploader, User, :avatar]”

# Attachments
sudo -u git -H bundle exec rake “gitlab:uploads:migrate[AttachmentUploader, Note, :attachment]”
sudo -u git -H bundle exec rake “gitlab:uploads:migrate[AttachmentUploader, Appearance, :logo]”
sudo -u git -H bundle exec rake “gitlab:uploads:migrate[AttachmentUploader, Appearance, :header_logo]”

# Markdown
sudo -u git -H bundle exec rake “gitlab:uploads:migrate[FileUploader, Project]”
sudo -u git -H bundle exec rake “gitlab:uploads:migrate[PersonalFileUploader, Snippet]”
sudo -u git -H bundle exec rake “gitlab:uploads:migrate[NamespaceFileUploader, Snippet]”
sudo -u git -H bundle exec rake “gitlab:uploads:migrate[FileUploader, MergeRequest]”

```


 # Debugging Tips

Sometimes things don’t work the way they should. Here are some tips on debugging issues out
in production.

Mail not working

A common problem is that mails are not being sent for some reason. Suppose you configured
an SMTP server, but you’re not seeing mail delivered. Here’s how to check the settings:

	Run a Rails console:

`sh
sudo gitlab-rails console production
`

or for source installs:

`sh
bundle exec rails console production
`

	Look at the ActionMailer delivery_method to make sure it matches what you
intended. If you configured SMTP, it should say :smtp. If you’re using
Sendmail, it should say :sendmail:

`ruby
irb(main):001:0> ActionMailer::Base.delivery_method
=> :smtp
`

	If you’re using SMTP, check the mail settings:

`ruby
irb(main):002:0> ActionMailer::Base.smtp_settings
=> {:address=>"localhost", :port=>25, :domain=>"localhost.localdomain", :user_name=>nil, :password=>nil, :authentication=>nil, :enable_starttls_auto=>true}`
```

In the example above, the SMTP server is configured for the local machine. If this is intended, you may need to check your local mail
logs (e.g. /var/log/mail.log) for more details.






	Send a test message via the console.

`ruby
irb(main):003:0> Notify.test_email('youremail@email.com', 'Hello World', 'This is a test message').deliver_now
`

If you do not receive an e-mail and/or see an error message, then check
your mail server settings.





## Advanced Issues

For more advanced issues, gdb is a must-have tool for debugging issues.

### The GNU Project Debugger (gdb)

To install on Ubuntu/Debian:

`
sudo apt-get install gdb
`

On CentOS:

`
sudo yum install gdb
`

### rbtrace

GitLab 11.2 ships with [rbtrace](https://github.com/tmm1/rbtrace), which
allows you to trace Ruby code, view all running threads, take memory dumps,
and more. However, this is not enabled by default. To enable it, define the
ENABLE_RBTRACE variable to the environment. For example, in Omnibus:

`ruby
gitlab_rails['env'] = {"ENABLE_RBTRACE" => "1"}
`

Then reconfigure the system and restart Unicorn and Sidekiq. To run this
in Omnibus, run as root:

`ruby
/opt/gitlab/embedded/bin/ruby /opt/gitlab/embedded/bin/rbtrace
`

## Common Problems

Many of the tips to diagnose issues below apply to many different situations. We’ll use one
concrete example to illustrate what you can do to learn what is going wrong.

### 502 Gateway Timeout after unicorn spins at 100% CPU

This error occurs when the Web server times out (default: 60 s) after not
hearing back from the unicorn worker. If the CPU spins to 100% while this in
progress, there may be something taking longer than it should.

To fix this issue, we first need to figure out what is happening. The
following tips are only recommended if you do NOT mind users being affected by
downtime. Otherwise skip to the next section.

1. Load the problematic URL
1. Run sudo gdb -p <PID> to attach to the unicorn process.
1. In the gdb window, type:


`
call (void) rb_backtrace()
`





	This forces the process to generate a Ruby backtrace. Check
/var/log/gitlab/unicorn/unicorn_stderr.log for the backtace. For example, you may see:


`ruby
from /opt/gitlab/embedded/service/gitlab-rails/lib/gitlab/metrics/sampler.rb:33:in `block in start'
from /opt/gitlab/embedded/service/gitlab-rails/lib/gitlab/metrics/sampler.rb:33:in `loop'
from /opt/gitlab/embedded/service/gitlab-rails/lib/gitlab/metrics/sampler.rb:36:in `block (2 levels) in start'
from /opt/gitlab/embedded/service/gitlab-rails/lib/gitlab/metrics/sampler.rb:44:in `sample'
from /opt/gitlab/embedded/service/gitlab-rails/lib/gitlab/metrics/sampler.rb:68:in `sample_objects'
from /opt/gitlab/embedded/service/gitlab-rails/lib/gitlab/metrics/sampler.rb:68:in `each_with_object'
from /opt/gitlab/embedded/service/gitlab-rails/lib/gitlab/metrics/sampler.rb:68:in `each'
from /opt/gitlab/embedded/service/gitlab-rails/lib/gitlab/metrics/sampler.rb:69:in `block in sample_objects'
from /opt/gitlab/embedded/service/gitlab-rails/lib/gitlab/metrics/sampler.rb:69:in `name'
`









	To see the current threads, run:


`
thread apply all bt
`









	Once you’re done debugging with gdb, be sure to detach from the process and exit:


`
detach
exit
`








Note that if the unicorn process terminates before you are able to run these
commands, gdb will report an error. To buy more time, you can always raise the
Unicorn timeout. For omnibus users, you can edit /etc/gitlab/gitlab.rb and
increase it from 60 seconds to 300:

`ruby
unicorn['worker_timeout'] = 300
`

For source installations, edit config/unicorn.rb.

[Reconfigure] GitLab for the changes to take effect.

[Reconfigure]: ../restart_gitlab.md#omnibus-gitlab-reconfigure

#### Troubleshooting without affecting other users

The previous section attached to a running unicorn process, and this may have
undesirable effects for users trying to access GitLab during this time. If you
are concerned about affecting others during a production system, you can run a
separate Rails process to debug the issue:

1. Log in to your GitLab account.
1. Copy the URL that is causing problems (e.g. https://gitlab.com/ABC).
1. Create a Personal Access Token for your user (Profile Settings -> Access Tokens).
1. Bring up the GitLab Rails console. For omnibus users, run:


`
sudo gitlab-rails console
`





	At the Rails console, run:


`ruby
[1] pry(main)> app.get '<URL FROM STEP 2>/?private_token=<TOKEN FROM STEP 3>'
`

For example:

`ruby
[1] pry(main)> app.get 'https://gitlab.com/gitlab-org/gitlab-ce/issues/1?private_token=123456'
`








1. In a new window, run top. It should show this ruby process using 100% CPU. Write down the PID.
1. Follow step 2 from the previous section on using gdb.

### GitLab: API is not accessible

This often occurs when gitlab-shell attempts to request authorization via the
internal API (e.g., http://localhost:8080/api/v4/internal/allowed), and
something in the check fails. There are many reasons why this may happen:

1. Timeout connecting to a database (e.g., PostgreSQL or Redis)
1. Error in Git hooks or push rules
1. Error accessing the repository (e.g., stale NFS handles)

To diagnose this problem, try to reproduce the problem and then see if there
is a unicorn worker that is spinning via top. Try to use the gdb
techniques above. In addition, using strace may help isolate issues:

`shell
strace -tt -T -f -s 1024 -p <PID of unicorn worker> -o /tmp/unicorn.txt
`

If you cannot isolate which Unicorn worker is the issue, try to run strace
on all the Unicorn workers to see where the /internal/allowed endpoint gets
stuck:

`shell
ps auwx | grep unicorn | awk '{ print " -p " $2}' | xargs strace -tt -T -f -s 1024 -o /tmp/unicorn.txt
`

The output in /tmp/unicorn.txt may help diagnose the root cause.

# More information


	[Debugging Stuck Ruby Processes](https://blog.newrelic.com/2013/04/29/debugging-stuck-ruby-processes-what-to-do-before-you-kill-9/)


	[Cheatsheet of using gdb and ruby processes](gdb-stuck-ruby.txt)






            

          

      

      

    

  

    
      
          
            
  # Troubleshooting Sidekiq

Sidekiq is the background job processor GitLab uses to asynchronously run
tasks. When things go wrong it can be difficult to troubleshoot. These
situations also tend to be high-pressure because a production system job queue
may be filling up. Users will notice when this happens because new branches
may not show up and merge requests may not be updated. The following are some
troubleshooting steps that will help you diagnose the bottleneck.

> Note: GitLab administrators/users should consider working through these
debug steps with GitLab Support so the backtraces can be analyzed by our team.
It may reveal a bug or necessary improvement in GitLab.


	> Note: In any of the backtraces, be wary of suspecting cases where every
	thread appears to be waiting in the database, Redis, or waiting to acquire
a mutex. This may mean there’s contention in the database, for example,
but look for one thread that is different than the rest. This other thread
may be using all available CPU, or have a Ruby Global Interpreter Lock,
preventing other threads from continuing.





## Thread dump

Send the Sidekiq process ID the TTIN signal and it will output thread
backtraces in the log file.

`
kill -TTIN <sidekiq_pid>
`

Check in /var/log/gitlab/sidekiq/current or $GITLAB_HOME/log/sidekiq.log for
the backtrace output. The backtraces will be lengthy and generally start with
several WARN level messages. Here’s an example of a single thread’s backtrace:

`
2016-04-13T06:21:20.022Z 31517 TID-orn4urby0 WARN: ActiveRecord::RecordNotFound: Couldn't find Note with 'id'=3375386
2016-04-13T06:21:20.022Z 31517 TID-orn4urby0 WARN: /opt/gitlab/embedded/service/gem/ruby/2.1.0/gems/activerecord-4.2.5.2/lib/active_record/core.rb:155:in `find'
/opt/gitlab/embedded/service/gitlab-rails/app/workers/new_note_worker.rb:7:in `perform'
/opt/gitlab/embedded/service/gem/ruby/2.1.0/gems/sidekiq-4.0.1/lib/sidekiq/processor.rb:150:in `execute_job'
/opt/gitlab/embedded/service/gem/ruby/2.1.0/gems/sidekiq-4.0.1/lib/sidekiq/processor.rb:132:in `block (2 levels) in process'
/opt/gitlab/embedded/service/gem/ruby/2.1.0/gems/sidekiq-4.0.1/lib/sidekiq/middleware/chain.rb:127:in `block in invoke'
/opt/gitlab/embedded/service/gitlab-rails/lib/gitlab/sidekiq_middleware/memory_killer.rb:17:in `call'
/opt/gitlab/embedded/service/gem/ruby/2.1.0/gems/sidekiq-4.0.1/lib/sidekiq/middleware/chain.rb:129:in `block in invoke'
/opt/gitlab/embedded/service/gitlab-rails/lib/gitlab/sidekiq_middleware/arguments_logger.rb:6:in `call'
...
`

In some cases Sidekiq may be hung and unable to respond to the TTIN signal.
Move on to other troubleshooting methods if this happens.

## Process profiling with perf

Linux has a process profiling tool called perf that is helpful when a certain
process is eating up a lot of CPU. If you see high CPU usage and Sidekiq won’t
respond to the TTIN signal, this is a good next step.

If perf is not installed on your system, install it with apt-get or yum:

```
Debian
sudo apt-get install linux-tools

Ubuntu (may require these additional Kernel packages)
sudo apt-get install linux-tools-common linux-tools-generic linux-tools-uname -r

Red Hat/CentOS
sudo yum install perf
```

Run perf against the Sidekiq PID:

`
sudo perf record -p <sidekiq_pid>
`

Let this run for 30-60 seconds and then press Ctrl-C. Then view the perf report:

```
sudo perf report

Sample output
Samples: 348K of event ‘cycles’, Event count (approx.): 280908431073

	97.69% ruby nokogiri.so [.] xmlXPathNodeSetMergeAndClear
	0.18% ruby libruby.so.2.1.0 [.] objspace_malloc_increase
0.12% ruby libc-2.12.so [.] _int_malloc
0.10% ruby libc-2.12.so [.] _int_free


```

Above you see sample output from a perf report. It shows that 97% of the CPU is
being spent inside Nokogiri and xmlXPathNodeSetMergeAndClear. For something
this obvious you should then go investigate what job in GitLab would use
Nokogiri and XPath. Combine with TTIN or gdb output to show the
corresponding Ruby code where this is happening.

## The GNU Project Debugger (gdb)

gdb can be another effective tool for debugging Sidekiq. It gives you a little
more interactive way to look at each thread and see what’s causing problems.


	> Note: Attaching to a process with gdb will suspends the normal operation
	of the process (Sidekiq will not process jobs while gdb is attached).





Start by attaching to the Sidekiq PID:

`
gdb -p <sidekiq_pid>
`

Then gather information on all the threads:

```
info threads

Example output
30 Thread 0x7fe5fbd63700 (LWP 26060) 0x0000003f7cadf113 in poll () from /lib64/libc.so.6
29 Thread 0x7fe5f2b3b700 (LWP 26533) 0x0000003f7ce0b68c in pthread_cond_wait@@GLIBC_2.3.2 () from /lib64/libpthread.so.0
28 Thread 0x7fe5f2a3a700 (LWP 26534) 0x0000003f7ce0ba5e in pthread_cond_timedwait@@GLIBC_2.3.2 () from /lib64/libpthread.so.0
27 Thread 0x7fe5f2939700 (LWP 26535) 0x0000003f7ce0b68c in pthread_cond_wait@@GLIBC_2.3.2 () from /lib64/libpthread.so.0
26 Thread 0x7fe5f2838700 (LWP 26537) 0x0000003f7ce0b68c in pthread_cond_wait@@GLIBC_2.3.2 () from /lib64/libpthread.so.0
25 Thread 0x7fe5f2737700 (LWP 26538) 0x0000003f7ce0b68c in pthread_cond_wait@@GLIBC_2.3.2 () from /lib64/libpthread.so.0
24 Thread 0x7fe5f2535700 (LWP 26540) 0x0000003f7ce0b68c in pthread_cond_wait@@GLIBC_2.3.2 () from /lib64/libpthread.so.0
23 Thread 0x7fe5f2434700 (LWP 26541) 0x0000003f7ce0b68c in pthread_cond_wait@@GLIBC_2.3.2 () from /lib64/libpthread.so.0
22 Thread 0x7fe5f2232700 (LWP 26543) 0x0000003f7ce0b68c in pthread_cond_wait@@GLIBC_2.3.2 () from /lib64/libpthread.so.0
21 Thread 0x7fe5f2131700 (LWP 26544) 0x00007fe5f7b570f0 in xmlXPathNodeSetMergeAndClear ()
from /opt/gitlab/embedded/service/gem/ruby/2.1.0/gems/nokogiri-1.6.7.2/lib/nokogiri/nokogiri.so
…
```

If you see a suspicious thread, like the Nokogiri one above, you may want
to get more information:

```
thread 21
bt

Example output
#0 0x00007ff0d6afe111 in xmlXPathNodeSetMergeAndClear () from /opt/gitlab/embedded/service/gem/ruby/2.1.0/gems/nokogiri-1.6.7.2/lib/nokogiri/nokogiri.so
#1 0x00007ff0d6b0b836 in xmlXPathNodeCollectAndTest () from /opt/gitlab/embedded/service/gem/ruby/2.1.0/gems/nokogiri-1.6.7.2/lib/nokogiri/nokogiri.so
#2 0x00007ff0d6b09037 in xmlXPathCompOpEval () from /opt/gitlab/embedded/service/gem/ruby/2.1.0/gems/nokogiri-1.6.7.2/lib/nokogiri/nokogiri.so
#3 0x00007ff0d6b09017 in xmlXPathCompOpEval () from /opt/gitlab/embedded/service/gem/ruby/2.1.0/gems/nokogiri-1.6.7.2/lib/nokogiri/nokogiri.so
#4 0x00007ff0d6b092e0 in xmlXPathCompOpEval () from /opt/gitlab/embedded/service/gem/ruby/2.1.0/gems/nokogiri-1.6.7.2/lib/nokogiri/nokogiri.so
#5 0x00007ff0d6b0bc37 in xmlXPathRunEval () from /opt/gitlab/embedded/service/gem/ruby/2.1.0/gems/nokogiri-1.6.7.2/lib/nokogiri/nokogiri.so
#6 0x00007ff0d6b0be5f in xmlXPathEvalExpression () from /opt/gitlab/embedded/service/gem/ruby/2.1.0/gems/nokogiri-1.6.7.2/lib/nokogiri/nokogiri.so
#7 0x00007ff0d6a97dc3 in evaluate (argc=2, argv=0x1022d058, self=<value optimized out>) at xml_xpath_context.c:221
#8 0x00007ff0daeab0ea in vm_call_cfunc_with_frame (th=0x1022a4f0, reg_cfp=0x1032b810, ci=<value optimized out>) at vm_insnhelper.c:1510
```

To output a backtrace from all threads at once:

`
set pagination off
thread apply all bt
`

Once you’re done debugging with gdb, be sure to detach from the process and
exit:

`
detach
exit
`

## Check for blocking queries

Sometimes the speed at which Sidekiq processes jobs can be so fast that it can
cause database contention. Check for blocking queries when backtraces above
show that many threads are stuck in the database adapter.

The PostgreSQL wiki has details on the query you can run to see blocking
queries. The query is different based on PostgreSQL version. See
[Lock Monitoring](https://wiki.postgresql.org/wiki/Lock_Monitoring) for
the query details.



            

          

      

      

    

  

    
      
          
            
  # GitLab API

Automate GitLab via a simple and powerful API. All definitions can be found
under [/lib/api](https://gitlab.com/gitlab-org/gitlab-ce/tree/master/lib/api).

## Resources

Documentation for various API resources can be found separately in the
following locations:


	[Award Emoji](award_emoji.md)


	[Branches](branches.md)


	[Broadcast Messages](broadcast_messages.md)


	[Project-level Variables](project_level_variables.md)


	[Group-level Variables](group_level_variables.md)


	[Code Snippets](snippets.md)


	[Commits](commits.md)


	[Custom Attributes](custom_attributes.md)


	[Deployments](deployments.md)


	[Deploy Keys](deploy_keys.md)


	[Environments](environments.md)


	[Events](events.md)


	[Feature flags](features.md)


	[Gitignores templates](templates/gitignores.md)


	[GitLab CI Config templates](templates/gitlab_ci_ymls.md)


	[Groups](groups.md)


	[Group Access Requests](access_requests.md)


	[Group Badges](group_badges.md)


	[Group Members](members.md)


	[Issues](issues.md)


	[Issue Boards](boards.md)


	[Group Issue Boards](group_boards.md)


	[Jobs](jobs.md)


	[Keys](keys.md)


	[Labels](labels.md)


	[Markdown](markdown.md)


	[Merge Requests](merge_requests.md)


	[Project milestones](milestones.md)


	[Group milestones](group_milestones.md)


	[Namespaces](namespaces.md)


	[Notes](notes.md) (comments)


	[Discussions](discussions.md) (threaded comments)


	[Notification settings](notification_settings.md)


	[Open source license templates](templates/licenses.md)


	[Pages Domains](pages_domains.md)


	[Pipelines](pipelines.md)


	[Pipeline Triggers](pipeline_triggers.md)


	[Pipeline Schedules](pipeline_schedules.md)


	[Projects](projects.md) including setting Webhooks


	[Project Access Requests](access_requests.md)


	[Project Badges](project_badges.md)


	[Project import/export](project_import_export.md)


	[Project Members](members.md)


	[Project Snippets](project_snippets.md)


	[Protected Branches](protected_branches.md)


	[Repositories](repositories.md)


	[Repository Files](repository_files.md)


	[Runners](runners.md)


	[Search](search.md)


	[Services](services.md)


	[Settings](settings.md)


	[Sidekiq metrics](sidekiq_metrics.md)


	[System Hooks](system_hooks.md)


	[Tags](tags.md)


	[Todos](todos.md)


	[Users](users.md)


	[Validate CI configuration](lint.md)


	[V3 to V4](v3_to_v4.md)


	[Version](version.md)


	[Wikis](wikis.md)




## Road to GraphQL

Going forward, we will start on moving to
[GraphQL](http://graphql.org/learn/best-practices/) and deprecate the use of
controller-specific endpoints. GraphQL has a number of benefits:


	We avoid having to maintain two different APIs.


	Callers of the API can request only what they need.


	It is versioned by default.




It will co-exist with the current v4 REST API. If we have a v5 API, this should
be a compatibility layer on top of GraphQL.

Although there were some patenting and licensing concerns with GraphQL, these
have been resolved to our satisfaction by the relicensing of the reference
implementations under MIT, and the use of the OWF license for the GraphQL
specification.

## Compatibility Guidelines

The HTTP API is versioned using a single number, the current one being 4. This
number symbolises the same as the major version number as described by
[SemVer](https://semver.org/). This mean that backward incompatible changes
will require this version number to change. However, the minor version is
not explicit. This allows for a stable API endpoint, but also means new
features can be added to the API in the same version number.

New features and bug fixes are released in tandem with a new GitLab, and apart
from incidental patch and security releases, are released on the 22nd each
month. Backward incompatible changes (e.g. endpoints removal, parameters
removal etc.), as well as removal of entire API versions are done in tandem
with a major point release of GitLab itself. All deprecations and changes
between two versions should be listed in the documentation. For the changes
between v3 and v4; please read the [v3 to v4 documentation](v3_to_v4.md)

### Current status

Currently only API version v4 is available. Version v3 was removed in
[GitLab 11.0](https://gitlab.com/gitlab-org/gitlab-ce/issues/36819).

## Basic usage

API requests should be prefixed with api and the API version. The API version
is defined in [lib/api.rb][lib-api-url]. For example, the root of the v4 API
is at /api/v4.

Example of a valid API request using cURL:

`shell
curl "https://gitlab.example.com/api/v4/projects"
`

The API uses JSON to serialize data. You don’t need to specify .json at the
end of an API URL.

## Authentication

Most API requests require authentication, or will only return public data when
authentication is not provided. For
those cases where it is not required, this will be mentioned in the documentation
for each individual endpoint. For example, the [/projects/:id endpoint](projects.md).

There are three ways to authenticate with the GitLab API:

1. [OAuth2 tokens](#oauth2-tokens)
1. [Personal access tokens](#personal-access-tokens)
1. [Session cookie](#session-cookie)

For admins who want to authenticate with the API as a specific user, or who want to build applications or scripts that do so, two options are available:
1. [Impersonation tokens](#impersonation-tokens)
2. [Sudo](#sudo)

If authentication information is invalid or omitted, an error message will be
returned with status code 401:

```json
{

“message”: “401 Unauthorized”

}

OAuth2 tokens

You can use an [OAuth2 token](oauth2.md) to authenticate with the API by passing it in either the
access_token parameter or the Authorization header.

Example of using the OAuth2 token in a parameter:

`shell
curl https://gitlab.example.com/api/v4/projects?access_token=OAUTH-TOKEN
`

Example of using the OAuth2 token in a header:

`shell
curl --header "Authorization: Bearer OAUTH-TOKEN" https://gitlab.example.com/api/v4/projects
`

Read more about [GitLab as an OAuth2 provider](oauth2.md).

Personal access tokens

You can use a [personal access token][pat] to authenticate with the API by passing it in either the
private_token parameter or the Private-Token header.

Example of using the personal access token in a parameter:

`shell
curl https://gitlab.example.com/api/v4/projects?private_token=9koXpg98eAheJpvBs5tK
`

Example of using the personal access token in a header:

`shell
curl --header "Private-Token: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects
`

Read more about [personal access tokens][pat].

Session cookie

When signing in to the main GitLab application, a _gitlab_session cookie is
set. The API will use this cookie for authentication if it is present, but using
the API to generate a new session cookie is currently not supported.

The primary user of this authentication method is the web frontend of GitLab itself,
which can use the API as the authenticated user to get a list of their projects,
for example, without needing to explicitly pass an access token.

Impersonation tokens

> [Introduced][ce-9099] in GitLab 9.0. Needs admin permissions.

Impersonation tokens are a type of [personal access token][pat]
that can only be created by an admin for a specific user. They are a great fit
if you want to build applications or scripts that authenticate with the API as a specific user.

They are an alternative to directly using the user’s password or one of their
personal access tokens, and to using the [Sudo](#sudo) feature, since the user’s (or admin’s, in the case of Sudo)
password/token may not be known or may change over time.

For more information, refer to the
[users API](users.md#retrieve-user-impersonation-tokens) docs.

Impersonation tokens are used exactly like regular personal access tokens, and can be passed in either the
private_token parameter or the Private-Token header.

Sudo

> Needs admin permissions.

All API requests support performing an API call as if you were another user,
provided you are authenticated as an administrator with an OAuth or Personal Access Token that has the sudo scope.

You need to pass the sudo parameter either via query string or a header with an ID/username of
the user you want to perform the operation as. If passed as a header, the
header name must be Sudo.

If a non administrative access token is provided, an error message will
be returned with status code 403:

```json
{


“message”: “403 Forbidden - Must be admin to use sudo”







}

If an access token without the sudo scope is provided, an error message will
be returned with status code 403:

```json
{

“error”: “insufficient_scope”,
“error_description”: “The request requires higher privileges than provided by the access token.”,
“scope”: “sudo”

}

If the sudo user ID or username cannot be found, an error message will be
returned with status code 404:

```json
{


“message”: “404 User with ID or username ‘123’ Not Found”







}

—

Example of a valid API call and a request using cURL with sudo request,
providing a username:

`
GET /projects?private_token=9koXpg98eAheJpvBs5tK&sudo=username
`

`shell
curl --header "Private-Token: 9koXpg98eAheJpvBs5tK" --header "Sudo: username" "https://gitlab.example.com/api/v4/projects"
`

Example of a valid API call and a request using cURL with sudo request,
providing an ID:

`
GET /projects?private_token=9koXpg98eAheJpvBs5tK&sudo=23
`

`shell
curl --header "Private-Token: 9koXpg98eAheJpvBs5tK" --header "Sudo: 23" "https://gitlab.example.com/api/v4/projects"
`

## Status codes

The API is designed to return different status codes according to context and
action. This way, if a request results in an error, the caller is able to get
insight into what went wrong.

The following table gives an overview of how the API functions generally behave.


Request type | Description |

———— | ———– |

GET   | Access one or more resources and return the result as JSON. |

POST  | Return 201 Created if the resource is successfully created and return the newly created resource as JSON. |

GET / PUT | Return 200 OK if the resource is accessed or modified successfully. The (modified) result is returned as JSON. |

DELETE | Returns 204 No Content if the resource was deleted successfully. |



The following table shows the possible return codes for API requests.


Return values | Description |

————- | ———– |

200 OK | The GET, PUT or DELETE request was successful, the resource(s) itself is returned as JSON. |

204 No Content | The server has successfully fulfilled the request and that there is no additional content to send in the response payload body. |

201 Created | The POST request was successful and the resource is returned as JSON. |

304 Not Modified | Indicates that the resource has not been modified since the last request. |

400 Bad Request | A required attribute of the API request is missing, e.g., the title of an issue is not given. |

401 Unauthorized | The user is not authenticated, a valid [user token](#authentication) is necessary. |

403 Forbidden | The request is not allowed, e.g., the user is not allowed to delete a project. |

404 Not Found | A resource could not be accessed, e.g., an ID for a resource could not be found. |

405 Method Not Allowed | The request is not supported. |

409 Conflict | A conflicting resource already exists, e.g., creating a project with a name that already exists. |

412 | Indicates the request was denied. May happen if the If-Unmodified-Since header is provided when trying to delete a resource, which was modified in between. |

422 Unprocessable | The entity could not be processed. |

500 Server Error | While handling the request something went wrong server-side. |



## Pagination

Sometimes the returned result will span across many pages. When listing
resources you can pass the following parameters:


Parameter | Description |

——— | ———– |

page    | Page number (default: 1) |

per_page`| Number of items to list per page (default: `20, max: 100) |



In the example below, we list 50 [namespaces](namespaces.md) per page.

`bash
curl --request PUT --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" "https://gitlab.example.com/api/v4/namespaces?per_page=50
`

### Pagination Link header

[Link headers](http://www.w3.org/wiki/LinkHeader) are sent back with each
response. They have rel set to prev/next/first/last and contain the relevant
URL. Please use these links instead of generating your own URLs.

In the cURL example below, we limit the output to 3 items per page (per_page=3)
and we request the second page (page=2) of [comments](notes.md) of the issue
with ID 8 which belongs to the project with ID 8:

`bash
curl --head --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/8/issues/8/notes?per_page=3&page=2
`

The response will then be:

`
HTTP/1.1 200 OK
Cache-Control: no-cache
Content-Length: 1103
Content-Type: application/json
Date: Mon, 18 Jan 2016 09:43:18 GMT
Link: <https://gitlab.example.com/api/v4/projects/8/issues/8/notes?page=1&per_page=3>; rel="prev", <https://gitlab.example.com/api/v4/projects/8/issues/8/notes?page=3&per_page=3>; rel="next", <https://gitlab.example.com/api/v4/projects/8/issues/8/notes?page=1&per_page=3>; rel="first", <https://gitlab.example.com/api/v4/projects/8/issues/8/notes?page=3&per_page=3>; rel="last"
Status: 200 OK
Vary: Origin
X-Next-Page: 3
X-Page: 2
X-Per-Page: 3
X-Prev-Page: 1
X-Request-Id: 732ad4ee-9870-4866-a199-a9db0cde3c86
X-Runtime: 0.108688
X-Total: 8
X-Total-Pages: 3
`

### Other pagination headers

Additional pagination headers are also sent back.


Header | Description |

—— | ———– |

X-Total       | The total number of items |

X-Total-Pages | The total number of pages |

X-Per-Page    | The number of items per page |

X-Page        | The index of the current page (starting at 1) |

X-Next-Page   | The index of the next page |

X-Prev-Page   | The index of the previous page |



## Namespaced path encoding

If using namespaced API calls, make sure that the NAMESPACE/PROJECT_NAME is
URL-encoded.

For example, / is represented by %2F:

`
GET /api/v4/projects/diaspora%2Fdiaspora
`

## Branches and tags name encoding

If your branch or tag contains a /, make sure the branch/tag name is
URL-encoded.

For example, / is represented by %2F:

`
GET /api/v4/projects/1/branches/my%2Fbranch/commits
`

## Encoding API parameters of array and hash types

We can call the API with array and hash types parameters as shown below:

### array

import_sources is a parameter of type array:

`bash
curl --request POST --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" \
-d "import_sources[]=github" \
-d "import_sources[]=bitbucket" \
"https://gitlab.example.com/api/v4/some_endpoint
`

### hash

override_params is a parameter of type hash:

`bash
curl --request POST --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" \
--form "namespace=email" \
--form "path=impapi" \
--form "file=@/path/to/somefile.txt"
--form "override_params[visibility]=private" \
--form "override_params[some_other_param]=some_value" \
https://gitlab.example.com/api/v4/projects/import
`

### Array of hashes

variables is a parameter of type array containing hash key/value pairs [{ ‘key’ => ‘UPLOAD_TO_S3’, ‘value’ => ‘true’ }]:

```bash
curl –globoff –request POST –header “PRIVATE-TOKEN: ****************” “https://gitlab.example.com/api/v4/projects/169/pipeline?ref=master&variables[][key]=VAR1&variables[][value]=hello&variables[][key]=VAR2&variables[][value]=world”

curl –request POST –header “PRIVATE-TOKEN: ****************” –header “Content-Type: application/json” –data ‘{ “ref”: “master”, “variables”: [{“key”: “VAR1”, “value”: “hello”}, {“key”: “VAR2”, “value”: “world”}] }’ “https://gitlab.example.com/api/v4/projects/169/pipeline”
```

## id vs iid

When you work with the API, you may notice two similar fields in API entities:
id and iid. The main difference between them is scope.

For example, an issue might have id: 46 and iid: 5.


Parameter | Description |

——— | ———– |

id  | Is unique across all issues and is used for any API call |

iid | Is unique only in scope of a single project. When you browse issues or merge requests with the Web UI, you see the iid |



That means that if you want to get an issue via the API you should use the id:

`
GET /projects/42/issues/:id
`

On the other hand, if you want to create a link to a web page you should use
the iid:

`
GET /projects/42/issues/:iid
`

## Data validation and error reporting

When working with the API you may encounter validation errors, in which case
the API will answer with an HTTP 400 status.

Such errors appear in two cases:


	A required attribute of the API request is missing, e.g., the title of an
issue is not given


	An attribute did not pass the validation, e.g., user bio is too long




When an attribute is missing, you will get something like:

```
HTTP/1.1 400 Bad Request
Content-Type: application/json
{

“message”:”400 (Bad request) "title" not given”

}

When a validation error occurs, error messages will be different. They will
hold all details of validation errors:

```
HTTP/1.1 400 Bad Request
Content-Type: application/json
{



	“message”: {
	
	“bio”: [
	“is too long (maximum is 255 characters)”





]





}







}

This makes error messages more machine-readable. The format can be described as
follows:

```json
{

	“message”: {
	
	“<property-name>”: [
	“<error-message>”,
“<error-message>”,
…

],
“<embed-entity>”: {

	“<property-name>”: [
	“<error-message>”,
“<error-message>”,
…

],

}

}

}

Unknown route

When you try to access an API URL that does not exist you will receive 404 Not Found.

```
HTTP/1.1 404 Not Found
Content-Type: application/json
{


“error”: “404 Not Found”







}

## Encoding + in ISO 8601 dates

If you need to include a + in a query parameter, you may need to use %2B instead due
a [W3 recommendation](http://www.w3.org/Addressing/URL/4_URI_Recommentations.html) that
causes a + to be interpreted as a space. For example, in an ISO 8601 date, you may want to pass
a time in Mountain Standard Time, such as:

`
2017-10-17T23:11:13.000+05:30
`

The correct encoding for the query parameter would be:

`
2017-10-17T23:11:13.000%2B05:30
`

## Clients

There are many unofficial GitLab API Clients for most of the popular
programming languages. Visit the [GitLab website] for a complete list.

[GitLab website]: https://about.gitlab.com/applications/#api-clients “Clients using the GitLab API”
[lib-api-url]: https://gitlab.com/gitlab-org/gitlab-ce/tree/master/lib/api/api.rb
[ce-3749]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/3749
[ce-5951]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/5951
[ce-9099]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/9099
[pat]: ../user/profile/personal_access_tokens.md





            

          

      

      

    

  

    
      
          
            
  # Group and project access requests API


>**Note:** This feature was introduced in GitLab 8.11

Valid access levels

The access levels are defined in the Gitlab::Access module. Currently, these levels are recognized:




`
10 => Guest access
20 => Reporter access
30 => Developer access
40 => Maintainer access
50 => Owner access # Only valid for groups
`

## List access requests for a group or project

Gets a list of access requests viewable by the authenticated user.

`
GET /groups/:id/access_requests
GET /projects/:id/access_requests
`


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id      | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |



`bash
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/groups/:id/access_requests
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/:id/access_requests
`

Example response:

```json
[

	{
	“id”: 1,
“username”: “raymond_smith”,
“name”: “Raymond Smith”,
“state”: “active”,
“created_at”: “2012-10-22T14:13:35Z”,
“requested_at”: “2012-10-22T14:13:35Z”

},
{

“id”: 2,
“username”: “john_doe”,
“name”: “John Doe”,
“state”: “active”,
“created_at”: “2012-10-22T14:13:35Z”,
“requested_at”: “2012-10-22T14:13:35Z”

}

]

Request access to a group or project

Requests access for the authenticated user to a group or project.

`
POST /groups/:id/access_requests
POST /projects/:id/access_requests
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

`bash
curl --request POST --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/groups/:id/access_requests
curl --request POST --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/:id/access_requests
`

Example response:

```json
{


“id”: 1,
“username”: “raymond_smith”,
“name”: “Raymond Smith”,
“state”: “active”,
“created_at”: “2012-10-22T14:13:35Z”,
“requested_at”: “2012-10-22T14:13:35Z”







}

## Approve an access request

Approves an access request for the given user.

`
PUT /groups/:id/access_requests/:user_id/approve
PUT /projects/:id/access_requests/:user_id/approve
`


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id      | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

user_id | integer | yes   | The user ID of the access requester |

access_level | integer | no | A valid access level (defaults: 30, developer access level) |



`bash
curl --request PUT --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/groups/:id/access_requests/:user_id/approve?access_level=20
curl --request PUT --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/:id/access_requests/:user_id/approve?access_level=20
`

Example response:

```json
{

“id”: 1,
“username”: “raymond_smith”,
“name”: “Raymond Smith”,
“state”: “active”,
“created_at”: “2012-10-22T14:13:35Z”,
“access_level”: 20

}

Deny an access request

Denies an access request for the given user.

`
DELETE /groups/:id/access_requests/:user_id
DELETE /projects/:id/access_requests/:user_id
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

user_id | integer | yes | The user ID of the access requester |

`bash
curl --request DELETE --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/groups/:id/access_requests/:user_id
curl --request DELETE --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/:id/access_requests/:user_id
`

 # Applications API

> [Introduced][ce-8160] in GitLab 10.5

[ce-8160]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/8160

Create a application

Create a application by posting a JSON payload.

User must be admin to do that.

Returns 200 if the request succeeds.

`
POST /applications
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

name | string | yes | The name of the application |

redirect_uri | string | yes | The redirect URI of the application |

scopes | string | yes | The scopes of the application |

`bash
curl --request POST --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" --data "name=MyApplication&redirect_uri=http://redirect.uri&scopes=" https://gitlab.example.com/api/v4/applications
`

Example response:

```json
{


“application_id”: “5832fc6e14300a0d962240a8144466eef4ee93ef0d218477e55f11cf12fc3737”,
“secret”: “ee1dd64b6adc89cf7e2c23099301ccc2c61b441064e9324d963c46902a85ec34”,
“callback_url”: “http://redirect.uri”





}





            

          

      

      

    

  

    
      
          
            
  # Avatar API

> [Introduced][ce-19121] in GitLab 11.0

## Get a single avatar URL

Get a single avatar URL for a given email addres. If user with matching public
email address is not found, results from external avatar services are returned.
This endpoint can be accessed without authentication. In case public visibility
is restricted, response will be 403 Forbidden when unauthenticated.

`
GET /avatar?email=admin@example.com
`


Attribute | Type    | Required | Description           |

——— | ——- | ——– | ——————— |

email   | string  | yes      | Public email address of the user |

size    | integer | no       | Single pixel dimension (since images are squares). Only used for avatar lookups at Gravatar or at the configured Libravatar server |



`bash
curl https://gitlab.example.com/api/v4/avatar?email=admin@example.com
`

Example response:

```json
{

“avatar_url”: “https://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80u0026d=identicon”

}

[ce-19121]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/19121

 # Award Emoji API

> [Introduced][ce-4575] in GitLab 8.9, Snippet support in 8.12

An awarded emoji tells a thousand words, and can be awarded on issues, merge
requests, snippets, and notes/comments. Issues, merge requests, snippets, and notes are further called
awardables.

Issues, merge requests, and snippets

List an awardable’s award emoji

Gets a list of all award emoji

`
GET /projects/:id/issues/:issue_iid/award_emoji
GET /projects/:id/merge_requests/:merge_request_iid/award_emoji
GET /projects/:id/snippets/:snippet_id/award_emoji
`

Parameters:

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

awardable_id | integer | yes | The ID (iid for merge requests/issues, id for snippets) of an awardable |

`bash
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/1/issues/80/award_emoji
`

Example Response:

```json
[



	{
	“id”: 4,
“name”: “1234”,
“user”: {


“name”: “Administrator”,
“username”: “root”,
“id”: 1,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”,
“web_url”: “http://gitlab.example.com/root”




},
“created_at”: “2016-06-15T10:09:34.206Z”,
“updated_at”: “2016-06-15T10:09:34.206Z”,
“awardable_id”: 80,
“awardable_type”: “Issue”





},
{


“id”: 1,
“name”: “microphone”,
“user”: {


“name”: “User 4”,
“username”: “user4”,
“id”: 26,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/7e65550957227bd38fe2d7fbc6fd2f7b?s=80&d=identicon”,
“web_url”: “http://gitlab.example.com/user4”




},
“created_at”: “2016-06-15T10:09:34.177Z”,
“updated_at”: “2016-06-15T10:09:34.177Z”,
“awardable_id”: 80,
“awardable_type”: “Issue”




}





]

### Get single award emoji

Gets a single award emoji from an issue, snippet, or merge request.

`
GET /projects/:id/issues/:issue_iid/award_emoji/:award_id
GET /projects/:id/merge_requests/:merge_request_iid/award_emoji/:award_id
GET /projects/:id/snippets/:snippet_id/award_emoji/:award_id
`

Parameters:


Attribute      | Type    | Required | Description                                                                 |

———      | —-    | ——– | ———–                                                                 |

id           | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

awardable_id | integer | yes      | The ID (iid for merge requests/issues, id for snippets) of an awardable |

award_id     | integer | yes      | The ID of the award emoji                                                   |



`bash
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/1/issues/80/award_emoji/1
`

Example Response:

```json
{

“id”: 1,
“name”: “microphone”,
“user”: {

“name”: “User 4”,
“username”: “user4”,
“id”: 26,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/7e65550957227bd38fe2d7fbc6fd2f7b?s=80&d=identicon”,
“web_url”: “http://gitlab.example.com/user4”

},
“created_at”: “2016-06-15T10:09:34.177Z”,
“updated_at”: “2016-06-15T10:09:34.177Z”,
“awardable_id”: 80,
“awardable_type”: “Issue”

}

Award a new emoji

This end point creates an award emoji on the specified resource

`
POST /projects/:id/issues/:issue_iid/award_emoji
POST /projects/:id/merge_requests/:merge_request_iid/award_emoji
POST /projects/:id/snippets/:snippet_id/award_emoji
`

Parameters:

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

awardable_id | integer | yes | The ID (iid for merge requests/issues, id for snippets) of an awardable |

name | string | yes | The name of the emoji, without colons |

`bash
curl --request POST --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/1/issues/80/award_emoji?name=blowfish
`

Example Response:

```json
{


“id”: 344,
“name”: “blowfish”,
“user”: {


“name”: “Administrator”,
“username”: “root”,
“id”: 1,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”,
“web_url”: “http://gitlab.example.com/root”




},
“created_at”: “2016-06-17T17:47:29.266Z”,
“updated_at”: “2016-06-17T17:47:29.266Z”,
“awardable_id”: 80,
“awardable_type”: “Issue”







}

### Delete an award emoji

Sometimes its just not meant to be, and you’ll have to remove your award. Only available to
admins or the author of the award.

`
DELETE /projects/:id/issues/:issue_iid/award_emoji/:award_id
DELETE /projects/:id/merge_requests/:merge_request_iid/award_emoji/:award_id
DELETE /projects/:id/snippets/:snippet_id/award_emoji/:award_id
`

Parameters:


Attribute   | Type    | Required | Description                 |

———   | —-    | ——– | ———–                 |

id        | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user  |

issue_iid | integer | yes      | The internal ID of an issue |

award_id  | integer | yes      | The ID of an award_emoji    |



`bash
curl --request DELETE --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/1/issues/80/award_emoji/344
`

## Award Emoji on Notes

The endpoints documented above are available for Notes as well. Notes
are a sub-resource of Issues, Merge Requests, or Snippets. The examples below
describe working with Award Emoji on notes for an Issue, but can be
easily adapted for notes on a Merge Request.

### List a note’s award emoji

`
GET /projects/:id/issues/:issue_iid/notes/:note_id/award_emoji
`

Parameters:


Attribute   | Type    | Required | Description                 |

———   | —-    | ——– | ———–                 |

id        | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

issue_iid | integer | yes      | The internal ID of an issue |

note_id   | integer | yes      | The ID of a note            |



`bash
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/1/issues/80/notes/1/award_emoji
`

Example Response:

```json
[

	{
	“id”: 2,
“name”: “mood_bubble_lightning”,
“user”: {

“name”: “User 4”,
“username”: “user4”,
“id”: 26,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/7e65550957227bd38fe2d7fbc6fd2f7b?s=80&d=identicon”,
“web_url”: “http://gitlab.example.com/user4”

},
“created_at”: “2016-06-15T10:09:34.197Z”,
“updated_at”: “2016-06-15T10:09:34.197Z”,
“awardable_id”: 1,
“awardable_type”: “Note”

}

]

Get single note’s award emoji

`
GET /projects/:id/issues/:issue_iid/notes/:note_id/award_emoji/:award_id
`

Parameters:

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

issue_iid | integer | yes | The internal ID of an issue |

note_id | integer | yes | The ID of a note |

award_id | integer | yes | The ID of the award emoji |

`bash
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/1/issues/80/notes/1/award_emoji/2
`

Example Response:

```json
{


“id”: 2,
“name”: “mood_bubble_lightning”,
“user”: {


“name”: “User 4”,
“username”: “user4”,
“id”: 26,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/7e65550957227bd38fe2d7fbc6fd2f7b?s=80&d=identicon”,
“web_url”: “http://gitlab.example.com/user4”




},
“created_at”: “2016-06-15T10:09:34.197Z”,
“updated_at”: “2016-06-15T10:09:34.197Z”,
“awardable_id”: 1,
“awardable_type”: “Note”







}

### Award a new emoji on a note

`
POST /projects/:id/issues/:issue_iid/notes/:note_id/award_emoji
`

Parameters:


Attribute   | Type    | Required | Description                           |

———   | —-    | ——– | ———–                           |

id        | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

issue_iid | integer | yes      | The internal ID of an issue           |

note_id   | integer | yes      | The ID of a note                      |

name      | string  | yes      | The name of the emoji, without colons |



`bash
curl --request POST --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/1/issues/80/notes/1/award_emoji?name=rocket
`

Example Response:

```json
{

“id”: 345,
“name”: “rocket”,
“user”: {

“name”: “Administrator”,
“username”: “root”,
“id”: 1,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”,
“web_url”: “http://gitlab.example.com/root”

},
“created_at”: “2016-06-17T19:59:55.888Z”,
“updated_at”: “2016-06-17T19:59:55.888Z”,
“awardable_id”: 1,
“awardable_type”: “Note”

}

Delete an award emoji

Sometimes its just not meant to be, and you’ll have to remove your award. Only available to
admins or the author of the award.

`
DELETE /projects/:id/issues/:issue_iid/notes/:note_id/award_emoji/:award_id
`

Parameters:

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

issue_iid | integer | yes | The internal ID of an issue |

note_id | integer | yes | The ID of a note |

award_id | integer | yes | The ID of an award_emoji |

`bash
curl --request DELETE --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/1/issues/80/award_emoji/345
`

[ce-4575]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/4575

 # Issue Boards API

Every API call to boards must be authenticated.

If a user is not a member of a project and the project is private, a GET
request on that project will result to a 404 status code.

Project Board

Lists Issue Boards in the given project.

`
GET /projects/:id/boards
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

`bash
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/5/boards
`

Example response:

```json
[



	{
	“id” : 1,
“project”: {


“id”: 5,
“name”: “Diaspora Project Site”,
“name_with_namespace”: “Diaspora / Diaspora Project Site”,
“path”: “diaspora-project-site”,
“path_with_namespace”: “diaspora/diaspora-project-site”,
“http_url_to_repo”: “http://example.com/diaspora/diaspora-project-site.git”,
“web_url”: “http://example.com/diaspora/diaspora-project-site”




},
“milestone”:   {


“id”: 12
“title”: “10.0”




},
“lists” : [



	{
	“id” : 1,
“label” : {


“name” : “Testing”,
“color” : “#F0AD4E”,
“description” : null




},
“position” : 1





},
{


“id” : 2,
“label” : {


“name” : “Ready”,
“color” : “#FF0000”,
“description” : null




},
“position” : 2




},
{


“id” : 3,
“label” : {


“name” : “Production”,
“color” : “#FF5F00”,
“description” : null




},
“position” : 3




}




]





}





]

## Single board

Get a single board.

`
GET /projects/:id/boards/:board_id
`


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

board_id | integer | yes | The ID of a board |



`bash
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/5/boards/1
`

Example response:


	```json
	
	{
	“id”: 1,
“name:”: “project issue board”,
“project”: {

“id”: 5,
“name”: “Diaspora Project Site”,
“name_with_namespace”: “Diaspora / Diaspora Project Site”,
“path”: “diaspora-project-site”,
“path_with_namespace”: “diaspora/diaspora-project-site”,
“http_url_to_repo”: “http://example.com/diaspora/diaspora-project-site.git”,
“web_url”: “http://example.com/diaspora/diaspora-project-site”

},
“milestone”: {

“id”: 12
“title”: “10.0”

},
“lists” : [

	{
	“id” : 1,
“label” : {

“name” : “Testing”,
“color” : “#F0AD4E”,
“description” : null

},
“position” : 1

},
{

“id” : 2,
“label” : {

“name” : “Ready”,
“color” : “#FF0000”,
“description” : null

},
“position” : 2

},
{

“id” : 3,
“label” : {

“name” : “Production”,
“color” : “#FF5F00”,
“description” : null

},
“position” : 3

}

]

}


```

## List board lists

Get a list of the board’s lists.
Does not include backlog and closed lists

`
GET /projects/:id/boards/:board_id/lists
`


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

board_id | integer | yes | The ID of a board |



`bash
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/5/boards/1/lists
`

Example response:

```json
[

	{
	“id” : 1,
“label” : {

“name” : “Testing”,
“color” : “#F0AD4E”,
“description” : null

},
“position” : 1

},
{

“id” : 2,
“label” : {

“name” : “Ready”,
“color” : “#FF0000”,
“description” : null

},
“position” : 2

},
{

“id” : 3,
“label” : {

“name” : “Production”,
“color” : “#FF5F00”,
“description” : null

},
“position” : 3

}

]

Single board list

Get a single board list.

`
GET /projects/:id/boards/:board_id/lists/:list_id
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

board_id | integer | yes | The ID of a board |

`list_id`| integer | yes | The ID of a board’s list |

`bash
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/5/boards/1/lists/1
`

Example response:

```json
{


“id” : 1,
“label” : {


“name” : “Testing”,
“color” : “#F0AD4E”,
“description” : null




},
“position” : 1







}

## New board list

Creates a new Issue Board list.

`
POST /projects/:id/boards/:board_id/lists
`


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

board_id | integer | yes | The ID of a board |

label_id | integer | yes | The ID of a label |



`bash
curl --request POST --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/5/boards/1/lists?label_id=5
`

Example response:

```json
{

“id” : 1,
“label” : {

“name” : “Testing”,
“color” : “#F0AD4E”,
“description” : null

},
“position” : 1

}

Edit board list

Updates an existing Issue Board list. This call is used to change list position.

`
PUT /projects/:id/boards/:board_id/lists/:list_id
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

board_id | integer | yes | The ID of a board |

list_id | integer | yes | The ID of a board’s list |

position | integer | yes | The position of the list |

`bash
curl --request PUT --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/5/boards/1/lists/1?position=2
`

Example response:

```json
{


“id” : 1,
“label” : {


“name” : “Testing”,
“color” : “#F0AD4E”,
“description” : null




},
“position” : 1







}

## Delete a board list

Only for admins and project owners. Soft deletes the board list in question.

`
DELETE /projects/:id/boards/:board_id/lists/:list_id
`


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

board_id | integer | yes | The ID of a board |

list_id | integer | yes | The ID of a board’s list |



`bash
curl --request DELETE --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/5/boards/1/lists/1
`





            

          

      

      

    

  

    
      
          
            
  # Branches API

## List repository branches

Get a list of repository branches from a project, sorted by name alphabetically.
This endpoint can be accessed without authentication if the repository is
publicly accessible.

`
GET /projects/:id/repository/branches
`


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

search | string | no | Return list of branches matching the search criteria.  |



`bash
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/5/repository/branches
`

Example response:

```json
[

	{
	“name”: “master”,
“merged”: false,
“protected”: true,
“developers_can_push”: false,
“developers_can_merge”: false,
“can_push”: true,
“commit”: {

“author_email”: “john@example.com”,
“author_name”: “John Smith”,
“authored_date”: “2012-06-27T05:51:39-07:00”,
“committed_date”: “2012-06-28T03:44:20-07:00”,
“committer_email”: “john@example.com”,
“committer_name”: “John Smith”,
“id”: “7b5c3cc8be40ee161ae89a06bba6229da1032a0c”,
“short_id”: “7b5c3cc”,
“title”: “add projects API”,
“message”: “add projects API”,
“parent_ids”: [

“4ad91d3c1144c406e50c7b33bae684bd6837faf8”

]

}

]

Get single repository branch

Get a single project repository branch. This endpoint can be accessed without
authentication if the repository is publicly accessible.

`
GET /projects/:id/repository/branches/:branch
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

branch | string | yes | The name of the branch |

`bash
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/5/repository/branches/master
`

Example response:

```json
{


“name”: “master”,
“merged”: false,
“protected”: true,
“developers_can_push”: false,
“developers_can_merge”: false,
“can_push”: true,
“commit”: {


“author_email”: “john@example.com”,
“author_name”: “John Smith”,
“authored_date”: “2012-06-27T05:51:39-07:00”,
“committed_date”: “2012-06-28T03:44:20-07:00”,
“committer_email”: “john@example.com”,
“committer_name”: “John Smith”,
“id”: “7b5c3cc8be40ee161ae89a06bba6229da1032a0c”,
“short_id”: “7b5c3cc”,
“title”: “add projects API”,
“message”: “add projects API”,
“parent_ids”: [


“4ad91d3c1144c406e50c7b33bae684bd6837faf8”




]




}







}

## Protect repository branch

>**Note:** This API endpoint is deprecated in favor of POST /projects/:id/protected_branches.

Protects a single project repository branch. This is an idempotent function,
protecting an already protected repository branch still returns a 200 OK
status code.

`
PUT /projects/:id/repository/branches/:branch/protect
`

`bash
curl --request PUT --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/5/repository/branches/master/protect?developers_can_push=true&developers_can_merge=true
`


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

branch | string | yes | The name of the branch |

developers_can_push | boolean | no | Flag if developers can push to the branch |

developers_can_merge | boolean | no | Flag if developers can merge to the branch |



Example response:

```json
{

	“commit”: {
	“author_email”: “john@example.com”,
“author_name”: “John Smith”,
“authored_date”: “2012-06-27T05:51:39-07:00”,
“committed_date”: “2012-06-28T03:44:20-07:00”,
“committer_email”: “john@example.com”,
“committer_name”: “John Smith”,
“id”: “7b5c3cc8be40ee161ae89a06bba6229da1032a0c”,
“short_id”: “7b5c3cc”,
“title”: “add projects API”,
“message”: “add projects API”,
“parent_ids”: [

“4ad91d3c1144c406e50c7b33bae684bd6837faf8”

]

},
“name”: “master”,
“merged”: false,
“protected”: true,
“developers_can_push”: true,
“developers_can_merge”: true,
“can_push”: true

}

Unprotect repository branch

>**Note:** This API endpoint is deprecated in favor of DELETE /projects/:id/protected_branches/:name

Unprotects a single project repository branch. This is an idempotent function,
unprotecting an already unprotected repository branch still returns a 200 OK
status code.

`
PUT /projects/:id/repository/branches/:branch/unprotect
`

`bash
curl --request PUT --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/5/repository/branches/master/unprotect
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

branch | string | yes | The name of the branch |

Example response:

```json
{



	“commit”: {
	“author_email”: “john@example.com”,
“author_name”: “John Smith”,
“authored_date”: “2012-06-27T05:51:39-07:00”,
“committed_date”: “2012-06-28T03:44:20-07:00”,
“committer_email”: “john@example.com”,
“committer_name”: “John Smith”,
“id”: “7b5c3cc8be40ee161ae89a06bba6229da1032a0c”,
“short_id”: “7b5c3cc”,
“title”: “add projects API”,
“message”: “add projects API”,
“parent_ids”: [


“4ad91d3c1144c406e50c7b33bae684bd6837faf8”




]





},
“name”: “master”,
“merged”: false,
“protected”: false,
“developers_can_push”: false,
“developers_can_merge”: false,
“can_push”: true







}

## Create repository branch

`
POST /projects/:id/repository/branches
`


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id          | integer | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

branch | string  | yes | The name of the branch |

ref         | string  | yes | The branch name or commit SHA to create branch from |



`bash
curl --request POST --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" "https://gitlab.example.com/api/v4/projects/5/repository/branches?branch=newbranch&ref=master"
`

Example response:

```json
{

	“commit”: {
	“author_email”: “john@example.com”,
“author_name”: “John Smith”,
“authored_date”: “2012-06-27T05:51:39-07:00”,
“committed_date”: “2012-06-28T03:44:20-07:00”,
“committer_email”: “john@example.com”,
“committer_name”: “John Smith”,
“id”: “7b5c3cc8be40ee161ae89a06bba6229da1032a0c”,
“short_id”: “7b5c3cc”,
“title”: “add projects API”,
“message”: “add projects API”,
“parent_ids”: [

“4ad91d3c1144c406e50c7b33bae684bd6837faf8”

]

},
“name”: “newbranch”,
“merged”: false,
“protected”: false,
“developers_can_push”: false,
“developers_can_merge”: false,
“can_push”: true

}

Delete repository branch

`
DELETE /projects/:id/repository/branches/:branch
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

branch | string | yes | The name of the branch |

In case of an error, an explaining message is provided.

`bash
curl --request DELETE --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" "https://gitlab.example.com/api/v4/projects/5/repository/branches/newbranch"
`

Delete merged branches

Will delete all branches that are merged into the project’s default branch.

Protected branches will not be deleted as part of this operation.

`
DELETE /projects/:id/repository/merged_branches
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

`bash
curl --request DELETE --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" "https://gitlab.example.com/api/v4/projects/5/repository/merged_branches"
`

 # Broadcast Messages API

> Note: This feature was introduced in GitLab 8.12.

The broadcast message API is only accessible to administrators. All requests by
guests will respond with 401 Unauthorized, and all requests by normal users
will respond with 403 Forbidden.

Get all broadcast messages

`
GET /broadcast_messages
`

`bash
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/broadcast_messages
`

Example response:

```json
[



	{
	“message”:”Example broadcast message”,
“starts_at”:”2016-08-24T23:21:16.078Z”,
“ends_at”:”2016-08-26T23:21:16.080Z”,
“color”:”#E75E40”,
“font”:”#FFFFFF”,
“id”:1,
“active”: false





}





]

## Get a specific broadcast message

`
GET /broadcast_messages/:id
`


Attribute   | Type     | Required | Description               |

———– | ——– | ——– | ————————- |

id        | integer  | yes      | Broadcast message ID      |



`bash
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/broadcast_messages/1
`

Example response:

```json
{

“message”:”Deploy in progress”,
“starts_at”:”2016-08-24T23:21:16.078Z”,
“ends_at”:”2016-08-26T23:21:16.080Z”,
“color”:”#cecece”,
“font”:”#FFFFFF”,
“id”:1,
“active”:false

}

Create a broadcast message

`
POST /broadcast_messages
`

Attribute | Type | Required | Description |

———– | ——– | ——– | —————————————————- |

message | string | yes | Message to display |

starts_at | datetime | no | Starting time (defaults to current time) |

ends_at | datetime | no | Ending time (defaults to one hour from current time) |

color | string | no | Background color hex code |

font | string | no | Foreground color hex code |

`bash
curl --data "message=Deploy in progress&color=#cecece" --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/broadcast_messages
`

Example response:

```json
{


“message”:”Deploy in progress”,
“starts_at”:”2016-08-26T00:41:35.060Z”,
“ends_at”:”2016-08-26T01:41:35.060Z”,
“color”:”#cecece”,
“font”:”#FFFFFF”,
“id”:1,
“active”: true







}

## Update a broadcast message

`
PUT /broadcast_messages/:id
`


Attribute   | Type     | Required | Description               |

———– | ——– | ——– | ————————- |

id        | integer  | yes      | Broadcast message ID      |

message   | string   | no       | Message to display        |

starts_at | datetime | no       | Starting time             |

ends_at   | datetime | no       | Ending time               |

color     | string   | no       | Background color hex code |

font      | string   | no       | Foreground color hex code |



`bash
curl --request PUT --data "message=Update message&color=#000" --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/broadcast_messages/1
`

Example response:

```json
{

“message”:”Update message”,
“starts_at”:”2016-08-26T00:41:35.060Z”,
“ends_at”:”2016-08-26T01:41:35.060Z”,
“color”:”#000”,
“font”:”#FFFFFF”,
“id”:1,
“active”: true

}

Delete a broadcast message

`
DELETE /broadcast_messages/:id
`

Attribute | Type | Required | Description |

———– | ——– | ——– | ————————- |

id | integer | yes | Broadcast message ID |

`bash
curl --request DELETE --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/broadcast_messages/1
`

 This document was moved to [Pipeline Triggers](pipeline_triggers.md).

 This document was moved to [another location](jobs.md).

 # Commits API

List repository commits

Get a list of repository commits in a project.

`
GET /projects/:id/repository/commits
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user

ref_name | string | no | The name of a repository branch or tag or if not given the default branch |

since | string | no | Only commits after or on this date will be returned in ISO 8601 format YYYY-MM-DDTHH:MM:SSZ |

until | string | no | Only commits before or on this date will be returned in ISO 8601 format YYYY-MM-DDTHH:MM:SSZ |

path | string | no | The file path |

all | boolean | no | Retrieve every commit from the repository |

with_stats | boolean | no | Stats about each commit will be added to the response |

`bash
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" "https://gitlab.example.com/api/v4/projects/5/repository/commits"
`

Example response:

```json
[



	{
	“id”: “ed899a2f4b50b4370feeea94676502b42383c746”,
“short_id”: “ed899a2f4b5”,
“title”: “Replace sanitize with escape once”,
“author_name”: “Dmitriy Zaporozhets”,
“author_email”: “dzaporozhets@sphereconsultinginc.com”,
“authored_date”: “2012-09-20T11:50:22+03:00”,
“committer_name”: “Administrator”,
“committer_email”: “admin@example.com”,
“committed_date”: “2012-09-20T11:50:22+03:00”,
“created_at”: “2012-09-20T11:50:22+03:00”,
“message”: “Replace sanitize with escape once”,
“parent_ids”: [


“6104942438c14ec7bd21c6cd5bd995272b3faff6”




]





},
{


“id”: “6104942438c14ec7bd21c6cd5bd995272b3faff6”,
“short_id”: “6104942438c”,
“title”: “Sanitize for network graph”,
“author_name”: “randx”,
“author_email”: “dmitriy.zaporozhets@gmail.com”,
“committer_name”: “Dmitriy”,
“committer_email”: “dmitriy.zaporozhets@gmail.com”,
“created_at”: “2012-09-20T09:06:12+03:00”,
“message”: “Sanitize for network graph”,
“parent_ids”: [


“ae1d9fb46aa2b07ee9836d49862ec4e2c46fbbba”




]




}





]

## Create a commit with multiple files and actions

> [Introduced][ce-6096] in GitLab 8.13.

Create a commit by posting a JSON payload

`
POST /projects/:id/repository/commits
`


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |

branch | string | yes | Name of the branch to commit into. To create a new branch, also provide start_branch. |

commit_message | string | yes | Commit message |

start_branch | string | no | Name of the branch to start the new commit from |

actions[] | array | yes | An array of action hashes to commit as a batch. See the next table for what attributes it can take. |

author_email | string | no | Specify the commit author’s email address |

author_name | string | no | Specify the commit author’s name |




actions[] Attribute | Type | Required | Description |

——————— | —- | ——– | ———– |

action | string | yes | The action to perform, create, delete, move, update |

file_path | string | yes | Full path to the file. Ex. lib/class.rb |

previous_path | string | no | Original full path to the file being moved. Ex. lib/class1.rb |

content | string | no | File content, required for all except delete. Optional for move |

encoding | string | no | text or base64. text is default. |

last_commit_id | string | no | Last known file commit id. Will be only considered in update, move and delete actions. |



```bash
PAYLOAD=$(cat << ‘JSON’
{

“branch”: “master”,
“commit_message”: “some commit message”,
“actions”: [

	{
	“action”: “create”,
“file_path”: “foo/bar”,
“content”: “some content”

},
{

“action”: “delete”,
“file_path”: “foo/bar2”

},
{

“action”: “move”,
“file_path”: “foo/bar3”,
“previous_path”: “foo/bar4”,
“content”: “some content”

},
{

“action”: “update”,
“file_path”: “foo/bar5”,
“content”: “new content”

}

]

}
JSON
)
curl –request POST –header “PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK” –header “Content-Type: application/json” –data “$PAYLOAD” https://gitlab.example.com/api/v4/projects/1/repository/commits
```

Example response:
```json
{

“id”: “ed899a2f4b50b4370feeea94676502b42383c746”,
“short_id”: “ed899a2f4b5”,
“title”: “some commit message”,
“author_name”: “Dmitriy Zaporozhets”,
“author_email”: “dzaporozhets@sphereconsultinginc.com”,
“committer_name”: “Dmitriy Zaporozhets”,
“committer_email”: “dzaporozhets@sphereconsultinginc.com”,
“created_at”: “2016-09-20T09:26:24.000-07:00”,
“message”: “some commit message”,
“parent_ids”: [

“ae1d9fb46aa2b07ee9836d49862ec4e2c46fbbba”

],
“committed_date”: “2016-09-20T09:26:24.000-07:00”,
“authored_date”: “2016-09-20T09:26:24.000-07:00”,
“stats”: {

“additions”: 2,
“deletions”: 2,
“total”: 4

},
“status”: null

}

Get a single commit

Get a specific commit identified by the commit hash or name of a branch or tag.

`
GET /projects/:id/repository/commits/:sha
`

Parameters:

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user

sha | string | yes | The commit hash or name of a repository branch or tag |

stats | boolean | no | Include commit stats. Default is true |

`bash
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" "https://gitlab.example.com/api/v4/projects/5/repository/commits/master
`

Example response:

```json
{


“id”: “6104942438c14ec7bd21c6cd5bd995272b3faff6”,
“short_id”: “6104942438c”,
“title”: “Sanitize for network graph”,
“author_name”: “randx”,
“author_email”: “dmitriy.zaporozhets@gmail.com”,
“committer_name”: “Dmitriy”,
“committer_email”: “dmitriy.zaporozhets@gmail.com”,
“created_at”: “2012-09-20T09:06:12+03:00”,
“message”: “Sanitize for network graph”,
“committed_date”: “2012-09-20T09:06:12+03:00”,
“authored_date”: “2012-09-20T09:06:12+03:00”,
“parent_ids”: [


“ae1d9fb46aa2b07ee9836d49862ec4e2c46fbbba”




],
“last_pipeline” : {


“id”: 8,
“ref”: “master”,
“sha”: “2dc6aa325a317eda67812f05600bdf0fcdc70ab0”
“status”: “created”




}
“stats”: {


“additions”: 15,
“deletions”: 10,
“total”: 25




},
“status”: “running”







}

## Get references a commit is pushed to

> [Introduced][ce-15026] in GitLab 10.6

Get all references (from branches or tags) a commit is pushed to.
The pagination parameters page and per_page can be used to restrict the list of references.

`
GET /projects/:id/repository/commits/:sha/refs
`

Parameters:


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id      | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user

sha | string | yes | The commit hash  |

type | string | no | The scope of commits. Possible values branch, tag, all. Default is all.  |



`bash
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" "https://gitlab.example.com/api/v4/projects/5/repository/commits/5937ac0a7beb003549fc5fd26fc247adbce4a52e/refs?type=all"
`

Example response:

```json
[

{“type”: “branch”, “name”: “‘test’”},
{“type”: “branch”, “name”: “add-balsamiq-file”},
{“type”: “branch”, “name”: “wip”},
{“type”: “tag”, “name”: “v1.1.0”}

]


```

## Cherry pick a commit

> [Introduced][ce-8047] in GitLab 8.15.

Cherry picks a commit to a given branch.

`
POST /projects/:id/repository/commits/:sha/cherry_pick
`

Parameters:


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id      | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user

sha | string | yes | The commit hash  |

branch | string | yes | The name of the branch  |



`bash
curl --request POST --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" --form "branch=master" "https://gitlab.example.com/api/v4/projects/5/repository/commits/master/cherry_pick"
`

Example response:

```json
{

“id”: “8b090c1b79a14f2bd9e8a738f717824ff53aebad”,
“short_id”: “8b090c1b”,
“title”: “Feature added”,
“author_name”: “Dmitriy Zaporozhets”,
“author_email”: “dmitriy.zaporozhets@gmail.com”,
“authored_date”: “2016-12-12T20:10:39.000+01:00”,
“created_at”: “2016-12-12T20:10:39.000+01:00”,
“committer_name”: “Administrator”,
“committer_email”: “admin@example.com”,
“committed_date”: “2016-12-12T20:10:39.000+01:00”,
“title”: “Feature added”,
“message”: “Feature addednnSigned-off-by: Dmitriy Zaporozhets <dmitriy.zaporozhets@gmail.com>n”,
“parent_ids”: [

“a738f717824ff53aebad8b090c1b79a14f2bd9e8”

]

}

Get the diff of a commit

Get the diff of a commit in a project.

`
GET /projects/:id/repository/commits/:sha/diff
`

Parameters:

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user

sha | string | yes | The commit hash or name of a repository branch or tag |

`bash
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" "https://gitlab.example.com/api/v4/projects/5/repository/commits/master/diff"
`

Example response:

```json
[



	{
	“diff”: “— a/doc/update/5.4-to-6.0.mdn+++ b/doc/update/5.4-to-6.0.mdn@@ -71,6 +71,8 @@n sudo -u git -H bundle exec rake migrate_keys RAILS_ENV=productionn sudo -u git -H bundle exec rake migrate_inline_notes RAILS_ENV=productionn n+sudo -u git -H bundle exec rake gitlab:assets:compile RAILS_ENV=productionn+n ```n n ### 6. Update config files”,
“new_path”: “doc/update/5.4-to-6.0.md”,
“old_path”: “doc/update/5.4-to-6.0.md”,
“a_mode”: null,
“b_mode”: “100644”,
“new_file”: false,
“renamed_file”: false,
“deleted_file”: false





}







]

## Get the comments of a commit

Get the comments of a commit in a project.

`
GET /projects/:id/repository/commits/:sha/comments
`

Parameters:


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id      | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user

sha | string | yes | The commit hash or name of a repository branch or tag |



`bash
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" "https://gitlab.example.com/api/v4/projects/5/repository/commits/master/comments"
`

Example response:

```json
[

	{
	“note”: “this code is really nice”,
“author”: {

“id”: 11,
“username”: “admin”,
“email”: “admin@local.host”,
“name”: “Administrator”,
“state”: “active”,
“created_at”: “2014-03-06T08:17:35.000Z”

}

}

]

Post comment to commit

Adds a comment to a commit.

In order to post a comment in a particular line of a particular file, you must
specify the full commit SHA, the path, the line and line_type should be
new.

The comment will be added at the end of the last commit if at least one of the
cases below is valid:

	the sha is instead a branch or a tag and the line or path are invalid

	the line number is invalid (does not exist)

	the path is invalid (does not exist)

In any of the above cases, the response of line, line_type and path is
set to null.

`
POST /projects/:id/repository/commits/:sha/comments
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user

sha | string | yes | The commit SHA or name of a repository branch or tag |

note | string | yes | The text of the comment |

path | string | no | The file path relative to the repository |

line | integer | no | The line number where the comment should be placed |

line_type | string | no | The line type. Takes new or old as arguments |

`bash
curl --request POST --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" --form "note=Nice picture man\!" --form "path=dudeism.md" --form "line=11" --form "line_type=new" https://gitlab.example.com/api/v4/projects/17/repository/commits/18f3e63d05582537db6d183d9d557be09e1f90c8/comments
`

Example response:

```json
{



	“author”{
	“web_url” : “https://gitlab.example.com/thedude”,
“avatar_url” : “https://gitlab.example.com/uploads/user/avatar/28/The-Big-Lebowski-400-400.png”,
“username” : “thedude”,
“state” : “active”,
“name” : “Jeff Lebowski”,
“id” : 28





},
“created_at” : “2016-01-19T09:44:55.600Z”,
“line_type” : “new”,
“path” : “dudeism.md”,
“line” : 11,
“note” : “Nice picture man!”







}

## Commit status

Since GitLab 8.1, this is the new commit status API.

### List the statuses of a commit

List the statuses of a commit in a project.
The pagination parameters page and per_page can be used to restrict the list of references.

`
GET /projects/:id/repository/commits/:sha/statuses
`


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id      | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user

sha     | string  | yes | The commit SHA

ref     | string  | no  | The name of a repository branch or tag or, if not given, the default branch

stage   | string  | no  | Filter by [build stage](../ci/yaml/README.md#stages), e.g., test

name    | string  | no  | Filter by [job name](../ci/yaml/README.md#jobs), e.g., bundler:audit

all     | boolean | no  | Return all statuses, not only the latest ones



`bash
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" "https://gitlab.example.com/api/v4/projects/17/repository/commits/18f3e63d05582537db6d183d9d557be09e1f90c8/statuses
`

Example response:

```json
[

…

	{
	“status” : “pending”,
“created_at” : “2016-01-19T08:40:25.934Z”,
“started_at” : null,
“name” : “bundler:audit”,
“allow_failure” : true,
“author” : {

“username” : “thedude”,
“state” : “active”,
“web_url” : “https://gitlab.example.com/thedude”,
“avatar_url” : “https://gitlab.example.com/uploads/user/avatar/28/The-Big-Lebowski-400-400.png”,
“id” : 28,
“name” : “Jeff Lebowski”

},
“description” : null,
“sha” : “18f3e63d05582537db6d183d9d557be09e1f90c8”,
“target_url” : “https://gitlab.example.com/thedude/gitlab-ce/builds/91”,
“finished_at” : null,
“id” : 91,
“ref” : “master”

},
{

“started_at” : null,
“name” : “flay”,
“allow_failure” : false,
“status” : “pending”,
“created_at” : “2016-01-19T08:40:25.832Z”,
“target_url” : “https://gitlab.example.com/thedude/gitlab-ce/builds/90”,
“id” : 90,
“finished_at” : null,
“ref” : “master”,
“sha” : “18f3e63d05582537db6d183d9d557be09e1f90c8”,
“author” : {

“id” : 28,
“name” : “Jeff Lebowski”,
“username” : “thedude”,
“web_url” : “https://gitlab.example.com/thedude”,
“state” : “active”,
“avatar_url” : “https://gitlab.example.com/uploads/user/avatar/28/The-Big-Lebowski-400-400.png”

},
“description” : null

},

…

]

Post the build status to a commit

Adds or updates a build status of a commit.

`
POST /projects/:id/statuses/:sha
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user

sha | string | yes | The commit SHA

state | string | yes | The state of the status. Can be one of the following: pending, running, success, failed, canceled

ref | string | no | The ref (branch or tag) to which the status refers

name or context | string | no | The label to differentiate this status from the status of other systems. Default value is default

target_url | string | no | The target URL to associate with this status

description | string | no | The short description of the status

coverage | float | no | The total code coverage

`bash
curl --request POST --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" "https://gitlab.example.com/api/v4/projects/17/statuses/18f3e63d05582537db6d183d9d557be09e1f90c8?state=success"
`

Example response:

```json
{



	“author”{
	“web_url” : “https://gitlab.example.com/thedude”,
“name” : “Jeff Lebowski”,
“avatar_url” : “https://gitlab.example.com/uploads/user/avatar/28/The-Big-Lebowski-400-400.png”,
“username” : “thedude”,
“state” : “active”,
“id” : 28





},
“name” : “default”,
“sha” : “18f3e63d05582537db6d183d9d557be09e1f90c8”,
“status” : “success”,
“coverage”: 100.0,
“description” : null,
“id” : 93,
“target_url” : null,
“ref” : null,
“started_at” : null,
“created_at” : “2016-01-19T09:05:50.355Z”,
“allow_failure” : false,
“finished_at” : “2016-01-19T09:05:50.365Z”







}

## List Merge Requests associated with a commit

> [Introduced][ce-18004] in GitLab 10.7.

Get a list of Merge Requests related to the specified commit.

`
GET /projects/:id/repository/commits/:sha/merge_requests
`


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id      | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user

sha     | string  | yes   | The commit SHA



`bash
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" "https://gitlab.example.com/api/v4/projects/5/repository/commits/af5b13261899fb2c0db30abdd0af8b07cb44fdc5/merge_requests"
`

Example response:

```json
[

	{
	“id”:45,
“iid”:1,
“project_id”:35,
“title”:”Add new file”,
“description”:””,
“state”:”opened”,
“created_at”:”2018-03-26T17:26:30.916Z”,
“updated_at”:”2018-03-26T17:26:30.916Z”,
“target_branch”:”master”,
“source_branch”:”test-branch”,
“upvotes”:0,
“downvotes”:0,
“author” : {

“web_url” : “https://gitlab.example.com/thedude”,
“name” : “Jeff Lebowski”,
“avatar_url” : “https://gitlab.example.com/uploads/user/avatar/28/The-Big-Lebowski-400-400.png”,
“username” : “thedude”,
“state” : “active”,
“id” : 28

},
“assignee”:null,
“source_project_id”:35,
“target_project_id”:35,
“labels”:[],
“work_in_progress”:false,
“milestone”:null,
“merge_when_pipeline_succeeds”:false,
“merge_status”:”can_be_merged”,
“sha”:”af5b13261899fb2c0db30abdd0af8b07cb44fdc5”,
“merge_commit_sha”:null,
“user_notes_count”:0,
“discussion_locked”:null,
“should_remove_source_branch”:null,
“force_remove_source_branch”:false,
“web_url”:”http://https://gitlab.example.com/root/test-project/merge_requests/1”,
“time_stats”:{

“time_estimate”:0,
“total_time_spent”:0,
“human_time_estimate”:null,
“human_total_time_spent”:null

}

}

]

[ce-6096]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/6096 “Multi-file commit”
[ce-8047]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/8047
[ce-15026]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/15026
[ce-18004]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/18004

 # Custom Attributes API

Every API call to custom attributes must be authenticated as administrator.

Custom attributes are currently available on users, groups, and projects,
which will be referred to as “resource” in this documentation.

List custom attributes

Get all custom attributes on a resource.

`
GET /users/:id/custom_attributes
GET /groups/:id/custom_attributes
GET /projects/:id/custom_attributes
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer | yes | The ID of a resource |

`bash
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/users/42/custom_attributes
`

Example response:

```json
[



	{
	“key”: “location”,
“value”: “Antarctica”





},
{


“key”: “role”,
“value”: “Developer”




}





]

## Single custom attribute

Get a single custom attribute on a resource.

`
GET /users/:id/custom_attributes/:key
GET /groups/:id/custom_attributes/:key
GET /projects/:id/custom_attributes/:key
`


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer | yes | The ID of a resource |

key | string | yes | The key of the custom attribute |



`bash
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/users/42/custom_attributes/location
`

Example response:

```json
{

“key”: “location”,
“value”: “Antarctica”

}

Set custom attribute

Set a custom attribute on a resource. The attribute will be updated if it already exists,
or newly created otherwise.

`
PUT /users/:id/custom_attributes/:key
PUT /groups/:id/custom_attributes/:key
PUT /projects/:id/custom_attributes/:key
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer | yes | The ID of a resource |

key | string | yes | The key of the custom attribute |

value | string | yes | The value of the custom attribute |

`bash
curl --request PUT --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" --data "value=Greenland" https://gitlab.example.com/api/v4/users/42/custom_attributes/location
`

Example response:

```json
{


“key”: “location”,
“value”: “Greenland”







}

## Delete custom attribute

Delete a custom attribute on a resource.

`
DELETE /users/:id/custom_attributes/:key
DELETE /groups/:id/custom_attributes/:key
DELETE /projects/:id/custom_attributes/:key
`


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer | yes | The ID of a resource |

key | string | yes | The key of the custom attribute |



`bash
curl --request DELETE --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/users/42/custom_attributes/location
`





            

          

      

      

    

  

    
      
          
            
  # Adding deploy keys to multiple projects via API

If you want to easily add the same deploy key to multiple projects in the same
group, this can be achieved quite easily with the API.

First, find the ID of the projects you’re interested in, by either listing all
projects:

`
curl --header 'PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK' https://gitlab.example.com/api/v4/projects
`

Or finding the ID of a group and then listing all projects in that group:

```
curl –header ‘PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK’ https://gitlab.example.com/api/v4/groups

For group 1234:
curl –header ‘PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK’ https://gitlab.example.com/api/v4/groups/1234
```

With those IDs, add the same deploy key to all:

```
for project_id in 321 456 987; do

curl –request POST –header “PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK” –header “Content-Type: application/json” –data ‘{“title”: “my key”, “key”: “ssh-rsa AAAA…”}’ https://gitlab.example.com/api/v4/projects/${project_id}/deploy_keys

done
```



            

          

      

      

    

  

    
      
          
            
  # Deploy Keys API

## List all deploy keys

Get a list of all deploy keys across all projects of the GitLab instance. This endpoint requires admin access.

`
GET /deploy_keys
`

`bash
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" "https://gitlab.example.com/api/v4/deploy_keys"
`

Example response:

```json
[

	{
	“id”: 1,
“title”: “Public key”,
“key”: “ssh-rsa AAAAB3NzaC1yc2EAAAABJQAAAIEAiPWx6WM4lhHNedGfBpPJNPpZ7yKu+dnn1SJejgt4596k6YjzGGphH2TUxwKzxcKDKKezwkpfnxPkSMkuEspGRt/aZZ9wa++Oi7Qkr8prgHc4soW6NUlfDzpvZK2H5E7eQaSeP3SAwGmQKUFHCddNaP0L+hM7zhFNzjFvpaMgJw0=”,
“created_at”: “2013-10-02T10:12:29Z”

},
{

“id”: 3,
“title”: “Another Public key”,
“key”: “ssh-rsa AAAAB3NzaC1yc2EAAAABJQAAAIEAiPWx6WM4lhHNedGfBpPJNPpZ7yKu+dnn1SJejgt4596k6YjzGGphH2TUxwKzxcKDKKezwkpfnxPkSMkuEspGRt/aZZ9wa++Oi7Qkr8prgHc4soW6NUlfDzpvZK2H5E7eQaSeP3SAwGmQKUFHCddNaP0L+hM7zhFNzjFvpaMgJw0=”,
“created_at”: “2013-10-02T11:12:29Z”

}

]

List project deploy keys

Get a list of a project’s deploy keys.

`
GET /projects/:id/deploy_keys
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

`bash
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" "https://gitlab.example.com/api/v4/projects/5/deploy_keys"
`

Example response:

```json
[



	{
	“id”: 1,
“title”: “Public key”,
“key”: “ssh-rsa AAAAB3NzaC1yc2EAAAABJQAAAIEAiPWx6WM4lhHNedGfBpPJNPpZ7yKu+dnn1SJejgt4596k6YjzGGphH2TUxwKzxcKDKKezwkpfnxPkSMkuEspGRt/aZZ9wa++Oi7Qkr8prgHc4soW6NUlfDzpvZK2H5E7eQaSeP3SAwGmQKUFHCddNaP0L+hM7zhFNzjFvpaMgJw0=”,
“created_at”: “2013-10-02T10:12:29Z”,
“can_push”: false





},
{


“id”: 3,
“title”: “Another Public key”,
“key”: “ssh-rsa AAAAB3NzaC1yc2EAAAABJQAAAIEAiPWx6WM4lhHNedGfBpPJNPpZ7yKu+dnn1SJejgt4596k6YjzGGphH2TUxwKzxcKDKKezwkpfnxPkSMkuEspGRt/aZZ9wa++Oi7Qkr8prgHc4soW6NUlfDzpvZK2H5E7eQaSeP3SAwGmQKUFHCddNaP0L+hM7zhFNzjFvpaMgJw0=”,
“created_at”: “2013-10-02T11:12:29Z”,
“can_push”: false




}







]

## Single deploy key

Get a single key.

`
GET /projects/:id/deploy_keys/:key_id
`

Parameters:


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id      | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

key_id  | integer | yes | The ID of the deploy key |



`bash
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" "https://gitlab.example.com/api/v4/projects/5/deploy_keys/11"
`

Example response:

```json
{

“id”: 1,
“title”: “Public key”,
“key”: “ssh-rsa AAAAB3NzaC1yc2EAAAABJQAAAIEAiPWx6WM4lhHNedGfBpPJNPpZ7yKu+dnn1SJejgt4596k6YjzGGphH2TUxwKzxcKDKKezwkpfnxPkSMkuEspGRt/aZZ9wa++Oi7Qkr8prgHc4soW6NUlfDzpvZK2H5E7eQaSeP3SAwGmQKUFHCddNaP0L+hM7zhFNzjFvpaMgJw0=”,
“created_at”: “2013-10-02T10:12:29Z”,
“can_push”: false

}

Add deploy key

Creates a new deploy key for a project.

If the deploy key already exists in another project, it will be joined to current
project only if original one is accessible by the same user.

`
POST /projects/:id/deploy_keys
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

title | string | yes | New deploy key’s title |

key | string | yes | New deploy key |

can_push | boolean | no | Can deploy key push to the project’s repository |

`bash
curl --request POST --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" --header "Content-Type: application/json" --data '{"title": "My deploy key", "key": "ssh-rsa AAAA...", "can_push": "true"}' "https://gitlab.example.com/api/v4/projects/5/deploy_keys/"
`

Example response:

```json
{


“key” : “ssh-rsa AAAA…”,
“id” : 12,
“title” : “My deploy key”,
“can_push”: true,
“created_at” : “2015-08-29T12:44:31.550Z”







}

## Update deploy key

Updates a deploy key for a project.

`
PUT /projects/:id/deploy_keys/:key_id
`


Attribute  | Type | Required | Description |

———  | —- | ——– | ———– |

id       | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

title    | string  | no | New deploy key’s title |

can_push | boolean | no  | Can deploy key push to the project’s repository |



`bash
curl --request PUT --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" --header "Content-Type: application/json" --data '{"title": "New deploy key", "can_push": true}' "https://gitlab.example.com/api/v4/projects/5/deploy_keys/11"
`

Example response:

```json
{

“id”: 11,
“title”: “New deploy key”,
“key”: “ssh-rsa AAAA…”,
“created_at”: “2015-08-29T12:44:31.550Z”,
“can_push”: true

}

Delete deploy key

Removes a deploy key from the project. If the deploy key is used only for this project, it will be deleted from the system.

`
DELETE /projects/:id/deploy_keys/:key_id
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

key_id | integer | yes | The ID of the deploy key |

`bash
curl --request DELETE --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" "https://gitlab.example.com/api/v4/projects/5/deploy_keys/13"
`

Enable a deploy key

Enables a deploy key for a project so this can be used. Returns the enabled key, with a status code 201 when successful.

`bash
curl --request POST --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/5/deploy_keys/13/enable
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

key_id | integer | yes | The ID of the deploy key |

Example response:

```json
{


“key” : “ssh-rsa AAAA…”,
“id” : 12,
“title” : “My deploy key”,
“created_at” : “2015-08-29T12:44:31.550Z”







}





            

          

      

      

    

  

    
      
          
            
  # Deployments API

## List project deployments

Get a list of deployments in a project.

`
GET /projects/:id/deployments
`


Attribute | Type    | Required | Description         |



|-----------|———|----------|———————|
| id      | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |
| order_by`| string  | no       | Return deployments ordered by `id or iid or created_at or ref fields. Default is id |
| sort    | string  | no       | Return deployments sorted in asc or desc order. Default is asc |

`bash
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" "https://gitlab.example.com/api/v4/projects/1/deployments"
`

Example of response

```json
[

	{
	“created_at”: “2016-08-11T07:36:40.222Z”,
“deployable”: {

	“commit”: {
	“author_email”: “admin@example.com”,
“author_name”: “Administrator”,
“created_at”: “2016-08-11T09:36:01.000+02:00”,
“id”: “99d03678b90d914dbb1b109132516d71a4a03ea8”,
“message”: “Merge branch ‘new-title’ into ‘master’rnrnUpdate READMErnrnrnrnSee merge request !1”,
“short_id”: “99d03678”,
“title”: “Merge branch ‘new-title’ into ‘master’r”

},
“coverage”: null,
“created_at”: “2016-08-11T07:36:27.357Z”,
“finished_at”: “2016-08-11T07:36:39.851Z”,
“id”: 657,
“name”: “deploy”,
“ref”: “master”,
“runner”: null,
“stage”: “deploy”,
“started_at”: null,
“status”: “success”,
“tag”: false,
“user”: {

“avatar_url”: “http://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”,
“bio”: null,
“created_at”: “2016-08-11T07:09:20.351Z”,
“id”: 1,
“linkedin”: “”,
“location”: null,
“name”: “Administrator”,
“skype”: “”,
“state”: “active”,
“twitter”: “”,
“username”: “root”,
“web_url”: “http://localhost:3000/root”,
“website_url”: “”

}

},
“environment”: {

“external_url”: “https://about.gitlab.com”,
“id”: 9,
“name”: “production”

},
“id”: 41,
“iid”: 1,
“ref”: “master”,
“sha”: “99d03678b90d914dbb1b109132516d71a4a03ea8”,
“user”: {

“avatar_url”: “http://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”,
“id”: 1,
“name”: “Administrator”,
“state”: “active”,
“username”: “root”,
“web_url”: “http://localhost:3000/root”

}

},
{

“created_at”: “2016-08-11T11:32:35.444Z”,
“deployable”: {

	“commit”: {
	“author_email”: “admin@example.com”,
“author_name”: “Administrator”,
“created_at”: “2016-08-11T13:28:26.000+02:00”,
“id”: “a91957a858320c0e17f3a0eca7cfacbff50ea29a”,
“message”: “Merge branch ‘rename-readme’ into ‘master’rnrnRename READMErnrnrnrnSee merge request !2”,
“short_id”: “a91957a8”,
“title”: “Merge branch ‘rename-readme’ into ‘master’r”

},
“coverage”: null,
“created_at”: “2016-08-11T11:32:24.456Z”,
“finished_at”: “2016-08-11T11:32:35.145Z”,
“id”: 664,
“name”: “deploy”,
“ref”: “master”,
“runner”: null,
“stage”: “deploy”,
“started_at”: null,
“status”: “success”,
“tag”: false,
“user”: {

“avatar_url”: “http://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”,
“bio”: null,
“created_at”: “2016-08-11T07:09:20.351Z”,
“id”: 1,
“linkedin”: “”,
“location”: null,
“name”: “Administrator”,
“skype”: “”,
“state”: “active”,
“twitter”: “”,
“username”: “root”,
“web_url”: “http://localhost:3000/root”,
“website_url”: “”

}

},
“environment”: {

“external_url”: “https://about.gitlab.com”,
“id”: 9,
“name”: “production”

},
“id”: 42,
“iid”: 2,
“ref”: “master”,
“sha”: “a91957a858320c0e17f3a0eca7cfacbff50ea29a”,
“user”: {

“avatar_url”: “http://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”,
“id”: 1,
“name”: “Administrator”,
“state”: “active”,
“username”: “root”,
“web_url”: “http://localhost:3000/root”

}

}

]

Get a specific deployment

`
GET /projects/:id/deployments/:deployment_id
`

Attribute | Type | Required | Description |

|-----------|———|----------|———————|
| id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |
| deployment_id | integer | yes | The ID of the deployment |

`bash
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" "https://gitlab.example.com/api/v4/projects/1/deployments/1"
`

Example of response

```json
{


“id”: 42,
“iid”: 2,
“ref”: “master”,
“sha”: “a91957a858320c0e17f3a0eca7cfacbff50ea29a”,
“created_at”: “2016-08-11T11:32:35.444Z”,
“user”: {


“name”: “Administrator”,
“username”: “root”,
“id”: 1,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”,
“web_url”: “http://localhost:3000/root”




},
“environment”: {


“id”: 9,
“name”: “production”,
“external_url”: “https://about.gitlab.com”




},
“deployable”: {


“id”: 664,
“status”: “success”,
“stage”: “deploy”,
“name”: “deploy”,
“ref”: “master”,
“tag”: false,
“coverage”: null,
“created_at”: “2016-08-11T11:32:24.456Z”,
“started_at”: null,
“finished_at”: “2016-08-11T11:32:35.145Z”,
“user”: {


“name”: “Administrator”,
“username”: “root”,
“id”: 1,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”,
“web_url”: “http://localhost:3000/root”,
“created_at”: “2016-08-11T07:09:20.351Z”,
“bio”: null,
“location”: null,
“skype”: “”,
“linkedin”: “”,
“twitter”: “”,
“website_url”: “”




},
“commit”: {


“id”: “a91957a858320c0e17f3a0eca7cfacbff50ea29a”,
“short_id”: “a91957a8”,
“title”: “Merge branch ‘rename-readme’ into ‘master’r”,
“author_name”: “Administrator”,
“author_email”: “admin@example.com”,
“created_at”: “2016-08-11T13:28:26.000+02:00”,
“message”: “Merge branch ‘rename-readme’ into ‘master’rnrnRename READMErnrnrnrnSee merge request !2”




},
“runner”: null




}







}





            

          

      

      

    

  

    
      
          
            
  # Discussions API

Discussions are set of related notes on snippets, issues, merge requests or commits.

## Issues

### List project issue discussions

Gets a list of all discussions for a single issue.

`
GET /projects/:id/issues/:issue_iid/discussions
`


Attribute           | Type             | Required   | Description  |

——————- | —————- | ———- | ———— |

id                | integer/string   | yes        | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |

issue_iid         | integer          | yes        | The IID of an issue |



```json
[

	{
	“id”: “6a9c1750b37d513a43987b574953fceb50b03ce7”,
“individual_note”: false,
“notes”: [

	{
	“id”: 1126,
“type”: “DiscussionNote”,
“body”: “discussion text”,
“attachment”: null,
“author”: {

“id”: 1,
“name”: “root”,
“username”: “root”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/00afb8fb6ab07c3ee3e9c1f38777e2f4?s=80&d=identicon”,
“web_url”: “http://localhost:3000/root”

},
“created_at”: “2018-03-03T21:54:39.668Z”,
“updated_at”: “2018-03-03T21:54:39.668Z”,
“system”: false,
“noteable_id”: 3,
“noteable_type”: “Issue”,
“noteable_iid”: null

},
{

“id”: 1129,
“type”: “DiscussionNote”,
“body”: “reply to the discussion”,
“attachment”: null,
“author”: {

“id”: 1,
“name”: “root”,
“username”: “root”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/00afb8fb6ab07c3ee3e9c1f38777e2f4?s=80&d=identicon”,
“web_url”: “http://localhost:3000/root”

},
“created_at”: “2018-03-04T13:38:02.127Z”,
“updated_at”: “2018-03-04T13:38:02.127Z”,
“system”: false,
“noteable_id”: 3,
“noteable_type”: “Issue”,
“noteable_iid”: null,
“resolvable”: false

}

]

},
{

“id”: “87805b7c09016a7058e91bdbe7b29d1f284a39e6”,
“individual_note”: true,
“notes”: [

	{
	“id”: 1128,
“type”: null,
“body”: “a single comment”,
“attachment”: null,
“author”: {

“id”: 1,
“name”: “root”,
“username”: “root”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/00afb8fb6ab07c3ee3e9c1f38777e2f4?s=80&d=identicon”,
“web_url”: “http://localhost:3000/root”

},
“created_at”: “2018-03-04T09:17:22.520Z”,
“updated_at”: “2018-03-04T09:17:22.520Z”,
“system”: false,
“noteable_id”: 3,
“noteable_type”: “Issue”,
“noteable_iid”: null,
“resolvable”: false

}

]

}

]

`bash
curl --request GET --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/5/issues/11/discussions
`

Get single issue discussion

Returns a single discussion for a specific project issue

`
GET /projects/:id/issues/:issue_iid/discussions/:discussion_id
`

Parameters:

Attribute | Type | Required | Description |

————— | ————– | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |

issue_iid | integer | yes | The IID of an issue |

discussion_id | integer | yes | The ID of a discussion |

`bash
curl --request GET --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/5/issues/11/discussions/6a9c1750b37d513a43987b574953fceb50b03ce7
`

Create new issue discussion

Creates a new discussion to a single project issue. This is similar to creating
a note but but another comments (replies) can be added to it later.

`
POST /projects/:id/issues/:issue_iid/discussions
`

Parameters:

Attribute | Type | Required | Description |

————— | ————– | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |

issue_iid | integer | yes | The IID of an issue |

body | string | yes | The content of a discussion |

created_at | string | no | Date time string, ISO 8601 formatted, e.g. 2016-03-11T03:45:40Z |

`bash
curl --request POST --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/5/issues/11/discussions?body=comment
`

Add note to existing issue discussion

Adds a new note to the discussion.

`
POST /projects/:id/issues/:issue_iid/discussions/:discussion_id/notes
`

Parameters:

Attribute | Type | Required | Description |

————— | ————– | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |

issue_iid | integer | yes | The IID of an issue |

discussion_id | integer | yes | The ID of a discussion |

note_id | integer | yes | The ID of a discussion note |

body | string | yes | The content of a discussion |

created_at | string | no | Date time string, ISO 8601 formatted, e.g. 2016-03-11T03:45:40Z |

`bash
curl --request POST --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/5/issues/11/discussions/6a9c1750b37d513a43987b574953fceb50b03ce7/notes?body=comment
`

Modify existing issue discussion note

Modify existing discussion note of an issue.

`
PUT /projects/:id/issues/:issue_iid/discussions/:discussion_id/notes/:note_id
`

Parameters:

Attribute | Type | Required | Description |

————— | ————– | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |

issue_iid | integer | yes | The IID of an issue |

discussion_id | integer | yes | The ID of a discussion |

note_id | integer | yes | The ID of a discussion note |

body | string | yes | The content of a discussion |

`bash
curl --request PUT --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/5/issues/11/discussions/6a9c1750b37d513a43987b574953fceb50b03ce7/notes/1108?body=comment
`

Delete an issue discussion note

Deletes an existing discussion note of an issue.

`
DELETE /projects/:id/issues/:issue_iid/discussions/:discussion_id/notes/:note_id
`

Parameters:

Attribute | Type | Required | Description |

————— | ————– | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |

issue_iid | integer | yes | The IID of an issue |

discussion_id | integer | yes | The ID of a discussion |

note_id | integer | yes | The ID of a discussion note |

`bash
curl --request DELETE --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/5/issues/11/discussions/636
`

Snippets

List project snippet discussions

Gets a list of all discussions for a single snippet.

`
GET /projects/:id/snippets/:snippet_id/discussions
`

Attribute | Type | Required | Description |

——————- | —————- | ———- | ————|

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |

snippet_id | integer | yes | The ID of an snippet |


```json
[



	{
	“id”: “6a9c1750b37d513a43987b574953fceb50b03ce7”,
“individual_note”: false,
“notes”: [



	{
	“id”: 1126,
“type”: “DiscussionNote”,
“body”: “discussion text”,
“attachment”: null,
“author”: {


“id”: 1,
“name”: “root”,
“username”: “root”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/00afb8fb6ab07c3ee3e9c1f38777e2f4?s=80&d=identicon”,
“web_url”: “http://localhost:3000/root”




},
“created_at”: “2018-03-03T21:54:39.668Z”,
“updated_at”: “2018-03-03T21:54:39.668Z”,
“system”: false,
“noteable_id”: 3,
“noteable_type”: “Snippet”,
“noteable_id”: null





},
{


“id”: 1129,
“type”: “DiscussionNote”,
“body”: “reply to the discussion”,
“attachment”: null,
“author”: {


“id”: 1,
“name”: “root”,
“username”: “root”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/00afb8fb6ab07c3ee3e9c1f38777e2f4?s=80&d=identicon”,
“web_url”: “http://localhost:3000/root”




},
“created_at”: “2018-03-04T13:38:02.127Z”,
“updated_at”: “2018-03-04T13:38:02.127Z”,
“system”: false,
“noteable_id”: 3,
“noteable_type”: “Snippet”,
“noteable_id”: null,
“resolvable”: false




}




]





},
{


“id”: “87805b7c09016a7058e91bdbe7b29d1f284a39e6”,
“individual_note”: true,
“notes”: [



	{
	“id”: 1128,
“type”: null,
“body”: “a single comment”,
“attachment”: null,
“author”: {


“id”: 1,
“name”: “root”,
“username”: “root”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/00afb8fb6ab07c3ee3e9c1f38777e2f4?s=80&d=identicon”,
“web_url”: “http://localhost:3000/root”




},
“created_at”: “2018-03-04T09:17:22.520Z”,
“updated_at”: “2018-03-04T09:17:22.520Z”,
“system”: false,
“noteable_id”: 3,
“noteable_type”: “Snippet”,
“noteable_id”: null,
“resolvable”: false





}




]




}







]

`bash
curl --request GET --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/5/snippets/11/discussions
`

### Get single snippet discussion

Returns a single discussion for a specific project snippet

`
GET /projects/:id/snippets/:snippet_id/discussions/:discussion_id
`

Parameters:


Attribute       | Type           | Required | Description |

————— | ————– | ——– | ———– |

id            | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |

snippet_id    | integer        | yes      | The ID of an snippet |

discussion_id | integer        | yes      | The ID of a discussion |



`bash
curl --request POST --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/5/snippets/11/discussions/6a9c1750b37d513a43987b574953fceb50b03ce7
`

### Create new snippet discussion

Creates a new discussion to a single project snippet. This is similar to creating
a note but but another comments (replies) can be added to it later.

`
POST /projects/:id/snippets/:snippet_id/discussions
`

Parameters:


Attribute       | Type           | Required | Description |

————— | ————– | ——– | ———– |

id            | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |

snippet_id    | integer        | yes      | The ID of an snippet |

body          | string         | yes      | The content of a discussion |

created_at    | string         | no       | Date time string, ISO 8601 formatted, e.g. 2016-03-11T03:45:40Z |



`bash
curl --request POST --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/5/snippets/11/discussions?body=comment
`

### Add note to existing snippet discussion

Adds a new note to the discussion.

`
POST /projects/:id/snippets/:snippet_id/discussions/:discussion_id/notes
`

Parameters:


Attribute       | Type           | Required | Description |

————— | ————– | ——– | ———– |

id            | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |

snippet_id    | integer        | yes      | The ID of an snippet |

discussion_id | integer        | yes      | The ID of a discussion |

note_id       | integer        | yes      | The ID of a discussion note |

body          | string         | yes      | The content of a discussion |

created_at    | string         | no       | Date time string, ISO 8601 formatted, e.g. 2016-03-11T03:45:40Z |



`bash
curl --request POST --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/5/snippets/11/discussions/6a9c1750b37d513a43987b574953fceb50b03ce7/notes?body=comment
`

### Modify existing snippet discussion note

Modify existing discussion note of an snippet.

`
PUT /projects/:id/snippets/:snippet_id/discussions/:discussion_id/notes/:note_id
`

Parameters:


Attribute       | Type           | Required | Description |

————— | ————– | ——– | ———– |

id            | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |

snippet_id    | integer        | yes      | The ID of an snippet |

discussion_id | integer        | yes      | The ID of a discussion |

note_id       | integer        | yes      | The ID of a discussion note |

body          | string         | yes      | The content of a discussion |



`bash
curl --request PUT --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/5/snippets/11/discussions/6a9c1750b37d513a43987b574953fceb50b03ce7/notes/1108?body=comment
`

### Delete an snippet discussion note

Deletes an existing discussion note of an snippet.

`
DELETE /projects/:id/snippets/:snippet_id/discussions/:discussion_id/notes/:note_id
`

Parameters:


Attribute       | Type           | Required | Description |

————— | ————– | ——– | ———– |

id            | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |

snippet_id    | integer        | yes      | The ID of an snippet |

discussion_id | integer        | yes      | The ID of a discussion |

note_id       | integer        | yes      | The ID of a discussion note |



`bash
curl --request DELETE --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/5/snippets/11/discussions/636
`

## Merge requests

### List project merge request discussions

Gets a list of all discussions for a single merge request.

`
GET /projects/:id/merge_requests/:merge_request_iid/discussions
`


Attribute           | Type             | Required   | Description  |

——————- | —————- | ———- | ———— |

id                | integer/string   | yes        | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |

merge_request_iid | integer          | yes        | The IID of a merge request |



```json
[

	{
	“id”: “6a9c1750b37d513a43987b574953fceb50b03ce7”,
“individual_note”: false,
“notes”: [

	{
	“id”: 1126,
“type”: “DiscussionNote”,
“body”: “discussion text”,
“attachment”: null,
“author”: {

“id”: 1,
“name”: “root”,
“username”: “root”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/00afb8fb6ab07c3ee3e9c1f38777e2f4?s=80&d=identicon”,
“web_url”: “http://localhost:3000/root”

},
“created_at”: “2018-03-03T21:54:39.668Z”,
“updated_at”: “2018-03-03T21:54:39.668Z”,
“system”: false,
“noteable_id”: 3,
“noteable_type”: “Merge request”,
“noteable_iid”: null,
“resolved”: false,
“resolvable”: true,
“resolved_by”: null

},
{

“id”: 1129,
“type”: “DiscussionNote”,
“body”: “reply to the discussion”,
“attachment”: null,
“author”: {

“id”: 1,
“name”: “root”,
“username”: “root”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/00afb8fb6ab07c3ee3e9c1f38777e2f4?s=80&d=identicon”,
“web_url”: “http://localhost:3000/root”

},
“created_at”: “2018-03-04T13:38:02.127Z”,
“updated_at”: “2018-03-04T13:38:02.127Z”,
“system”: false,
“noteable_id”: 3,
“noteable_type”: “Merge request”,
“noteable_iid”: null,
“resolved”: false,
“resolvable”: true,
“resolved_by”: null

}

]

},
{

“id”: “87805b7c09016a7058e91bdbe7b29d1f284a39e6”,
“individual_note”: true,
“notes”: [

	{
	“id”: 1128,
“type”: null,
“body”: “a single comment”,
“attachment”: null,
“author”: {

“id”: 1,
“name”: “root”,
“username”: “root”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/00afb8fb6ab07c3ee3e9c1f38777e2f4?s=80&d=identicon”,
“web_url”: “http://localhost:3000/root”

},
“created_at”: “2018-03-04T09:17:22.520Z”,
“updated_at”: “2018-03-04T09:17:22.520Z”,
“system”: false,
“noteable_id”: 3,
“noteable_type”: “Merge request”,
“noteable_iid”: null,
“resolved”: false,
“resolvable”: true,
“resolved_by”: null

}

]

}

]

Diff comments contain also position:

```json
[



	{
	“id”: “87805b7c09016a7058e91bdbe7b29d1f284a39e6”,
“individual_note”: false,
“notes”: [



	{
	“id”: 1128,
“type”: DiffNote,
“body”: “diff comment”,
“attachment”: null,
“author”: {


“id”: 1,
“name”: “root”,
“username”: “root”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/00afb8fb6ab07c3ee3e9c1f38777e2f4?s=80&d=identicon”,
“web_url”: “http://localhost:3000/root”




},
“created_at”: “2018-03-04T09:17:22.520Z”,
“updated_at”: “2018-03-04T09:17:22.520Z”,
“system”: false,
“noteable_id”: 3,
“noteable_type”: “Merge request”,
“noteable_iid”: null,
“position”: {


“base_sha”: “b5d6e7b1613fca24d250fa8e5bc7bcc3dd6002ef”,
“start_sha”: “7c9c2ead8a320fb7ba0b4e234bd9529a2614e306”,
“head_sha”: “4803c71e6b1833ca72b8b26ef2ecd5adc8a38031”,
“old_path”: “package.json”,
“new_path”: “package.json”,
“position_type”: “text”,
“old_line”: 27,
“new_line”: 27




},
“resolved”: false,
“resolvable”: true,
“resolved_by”: null





}




]





}







]

`bash
curl --request GET --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/5/merge_requests/11/discussions
`

### Get single merge request discussion

Returns a single discussion for a specific project merge request

`
GET /projects/:id/merge_requests/:merge_request_iid/discussions/:discussion_id
`

Parameters:


Attribute           | Type           | Required | Description |

——————- | ————– | ——– | ———– |

id                | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |

merge_request_iid | integer        | yes      | The IID of a merge request |

discussion_id     | integer        | yes      | The ID of a discussion |



`bash
curl --request GET --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/5/merge_requests/11/discussions/6a9c1750b37d513a43987b574953fceb50b03ce7
`

### Create new merge request discussion

Creates a new discussion to a single project merge request. This is similar to creating
a note but but another comments (replies) can be added to it later.

`
POST /projects/:id/merge_requests/:merge_request_iid/discussions
`

Parameters:


Attribute                 | Type           | Required | Description |

————————- | ————– | ——– | ———– |

id                      | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |

merge_request_iid       | integer        | yes      | The IID of a merge request |

body                    | string         | yes      | The content of a discussion |

created_at              | string         | no       | Date time string, ISO 8601 formatted, e.g. 2016-03-11T03:45:40Z |

position                | hash           | no       | Position when creating a diff note |

position[base_sha]      | string         | yes      | Base commit SHA in the source branch |

position[start_sha]     | string         | yes      | SHA referencing commit in target branch |

position[head_sha]      | string         | yes      | SHA referencing HEAD of this merge request |

position[position_type] | string         | yes      | Type of the position reference’, allowed values: ‘text’ or ‘image’ |

position[new_path]      | string         | no       | File path after change |

position[new_line]      | integer        | no       | Line number after change (for ‘text’ diff notes) |

position[old_path]      | string         | no       | File path before change |

position[old_line]      | integer        | no       | Line number before change (for ‘text’ diff notes) |

position[width]         | integer        | no       | Width of the image (for ‘image’ diff notes) |

position[height]        | integer        | no       | Height of the image (for ‘image’ diff notes) |

position[x]             | integer        | no       | X coordinate (for ‘image’ diff notes) |

position[y]             | integer        | no       | Y coordinate (for ‘image’ diff notes) |



`bash
curl --request POST --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/5/merge_requests/11/discussions?body=comment
`

### Resolve a merge request discussion

Resolve/unresolve whole discussion of a merge request.

`
PUT /projects/:id/merge_requests/:merge_request_iid/discussions/:discussion_id
`

Parameters:


Attribute           | Type           | Required | Description |

——————- | ————– | ——– | ———– |

id                | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |

merge_request_iid | integer        | yes      | The IID of a merge request |

discussion_id     | integer        | yes      | The ID of a discussion |

resolved          | boolean        | yes      | Resolve/unresolve the discussion |



`bash
curl --request PUT --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/5/merge_requests/11/discussions/6a9c1750b37d513a43987b574953fceb50b03ce7?resolved=true
`

### Add note to existing merge request discussion

Adds a new note to the discussion.

`
POST /projects/:id/merge_requests/:merge_request_iid/discussions/:discussion_id/notes
`

Parameters:


Attribute           | Type           | Required | Description |

——————- | ————– | ——– | ———– |

id                | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |

merge_request_iid | integer        | yes      | The IID of a merge request |

discussion_id     | integer        | yes      | The ID of a discussion |

note_id           | integer        | yes      | The ID of a discussion note |

body              | string         | yes      | The content of a discussion |

created_at        | string         | no       | Date time string, ISO 8601 formatted, e.g. 2016-03-11T03:45:40Z |



`bash
curl --request POST --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/5/merge_requests/11/discussions/6a9c1750b37d513a43987b574953fceb50b03ce7/notes?body=comment
`

### Modify an existing merge request discussion note

Modify or resolve an existing discussion note of a merge request.

`
PUT /projects/:id/merge_requests/:merge_request_iid/discussions/:discussion_id/notes/:note_id
`

Parameters:


Attribute           | Type           | Required | Description |

——————- | ————– | ——– | ———– |

id                | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |

merge_request_iid | integer        | yes      | The IID of a merge request |

discussion_id     | integer        | yes      | The ID of a discussion |

note_id           | integer        | yes      | The ID of a discussion note |

body              | string         | no       | The content of a discussion (exactly one of body or resolved must be set |

resolved          | boolean        | no       | Resolve/unresolve the note (exactly one of body or resolved must be set |



`bash
curl --request PUT --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/5/merge_requests/11/discussions/6a9c1750b37d513a43987b574953fceb50b03ce7/notes/1108?body=comment
`

Resolving a note:

`bash
curl --request PUT --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/5/merge_requests/11/discussions/6a9c1750b37d513a43987b574953fceb50b03ce7/notes/1108?resolved=true
`

### Delete a merge request discussion note

Deletes an existing discussion note of a merge request.

`
DELETE /projects/:id/merge_requests/:merge_request_iid/discussions/:discussion_id/notes/:note_id
`

Parameters:


Attribute           | Type           | Required | Description |

——————- | ————– | ——– | ———– |

id                | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |

merge_request_iid | integer        | yes      | The IID of a merge request |

discussion_id     | integer        | yes      | The ID of a discussion |

note_id           | integer        | yes      | The ID of a discussion note |



`bash
curl --request DELETE --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/5/merge_requests/11/discussions/636
`

## Commits

### List project commit discussions

Gets a list of all discussions for a single commit.

`
GET /projects/:id/commits/:commit_id/discussions
`


Attribute           | Type             | Required   | Description  |

——————- | —————- | ———- | ———— |

id                | integer/string   | yes        | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |

commit_id         | integer          | yes        | The ID of a commit |



```json
[

	{
	“id”: “6a9c1750b37d513a43987b574953fceb50b03ce7”,
“individual_note”: false,
“notes”: [

	{
	“id”: 1126,
“type”: “DiscussionNote”,
“body”: “discussion text”,
“attachment”: null,
“author”: {

“id”: 1,
“name”: “root”,
“username”: “root”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/00afb8fb6ab07c3ee3e9c1f38777e2f4?s=80&d=identicon”,
“web_url”: “http://localhost:3000/root”

},
“created_at”: “2018-03-03T21:54:39.668Z”,
“updated_at”: “2018-03-03T21:54:39.668Z”,
“system”: false,
“noteable_id”: 3,
“noteable_type”: “Commit”,
“noteable_iid”: null,
“resolvable”: false

},
{

“id”: 1129,
“type”: “DiscussionNote”,
“body”: “reply to the discussion”,
“attachment”: null,
“author”: {

“id”: 1,
“name”: “root”,
“username”: “root”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/00afb8fb6ab07c3ee3e9c1f38777e2f4?s=80&d=identicon”,
“web_url”: “http://localhost:3000/root”

},
“created_at”: “2018-03-04T13:38:02.127Z”,
“updated_at”: “2018-03-04T13:38:02.127Z”,
“system”: false,
“noteable_id”: 3,
“noteable_type”: “Commit”,
“noteable_iid”: null,
“resolvable”: false

}

]

},
{

“id”: “87805b7c09016a7058e91bdbe7b29d1f284a39e6”,
“individual_note”: true,
“notes”: [

	{
	“id”: 1128,
“type”: null,
“body”: “a single comment”,
“attachment”: null,
“author”: {

“id”: 1,
“name”: “root”,
“username”: “root”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/00afb8fb6ab07c3ee3e9c1f38777e2f4?s=80&d=identicon”,
“web_url”: “http://localhost:3000/root”

},
“created_at”: “2018-03-04T09:17:22.520Z”,
“updated_at”: “2018-03-04T09:17:22.520Z”,
“system”: false,
“noteable_id”: 3,
“noteable_type”: “Commit”,
“noteable_iid”: null,
“resolvable”: false

}

]

}

]

Diff comments contain also position:

```json
[



	{
	“id”: “87805b7c09016a7058e91bdbe7b29d1f284a39e6”,
“individual_note”: false,
“notes”: [



	{
	“id”: 1128,
“type”: DiffNote,
“body”: “diff comment”,
“attachment”: null,
“author”: {


“id”: 1,
“name”: “root”,
“username”: “root”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/00afb8fb6ab07c3ee3e9c1f38777e2f4?s=80&d=identicon”,
“web_url”: “http://localhost:3000/root”




},
“created_at”: “2018-03-04T09:17:22.520Z”,
“updated_at”: “2018-03-04T09:17:22.520Z”,
“system”: false,
“noteable_id”: 3,
“noteable_type”: “Commit”,
“noteable_iid”: null,
“position”: {


“base_sha”: “b5d6e7b1613fca24d250fa8e5bc7bcc3dd6002ef”,
“start_sha”: “7c9c2ead8a320fb7ba0b4e234bd9529a2614e306”,
“head_sha”: “4803c71e6b1833ca72b8b26ef2ecd5adc8a38031”,
“old_path”: “package.json”,
“new_path”: “package.json”,
“position_type”: “text”,
“old_line”: 27,
“new_line”: 27




},
“resolvable”: false





}




]





}







]

`bash
curl --request GET --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/5/commits/11/discussions
`

### Get single commit discussion

Returns a single discussion for a specific project commit

`
GET /projects/:id/commits/:commit_id/discussions/:discussion_id
`

Parameters:


Attribute           | Type           | Required | Description |

——————- | ————– | ——– | ———– |

id                | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |

commit_id         | integer        | yes      | The ID of a commit |

discussion_id     | integer        | yes      | The ID of a discussion |



`bash
curl --request GET --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/5/commits/11/discussions/6a9c1750b37d513a43987b574953fceb50b03ce7
`

### Create new commit discussion

Creates a new discussion to a single project commit. This is similar to creating
a note but but another comments (replies) can be added to it later.

`
POST /projects/:id/commits/:commit_id/discussions
`

Parameters:


Attribute                 | Type           | Required | Description |

————————- | ————– | ——– | ———– |

id                      | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |

commit_id               | integer        | yes      | The ID of a commit |

body                    | string         | yes      | The content of a discussion |

created_at              | string         | no       | Date time string, ISO 8601 formatted, e.g. 2016-03-11T03:45:40Z |

position                | hash           | no       | Position when creating a diff note |

position[base_sha]      | string         | yes      | Base commit SHA in the source branch |

position[start_sha]     | string         | yes      | SHA referencing commit in target branch |

position[head_sha]      | string         | yes      | SHA referencing HEAD of this commit |

position[position_type] | string         | yes      | Type of the position reference’, allowed values: ‘text’ or ‘image’ |

position[new_path]      | string         | no       | File path after change |

position[new_line]      | integer        | no       | Line number after change |

position[old_path]      | string         | no       | File path before change |

position[old_line]      | integer        | no       | Line number before change |

position[width]         | integer        | no       | Width of the image (for ‘image’ diff notes) |

position[height]        | integer        | no       | Height of the image (for ‘image’ diff notes) |

position[x]             | integer        | no       | X coordinate (for ‘image’ diff notes) |

position[y]             | integer        | no       | Y coordinate (for ‘image’ diff notes) |



`bash
curl --request POST --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/5/commits/11/discussions?body=comment
`

### Add note to existing commit discussion

Adds a new note to the discussion.

`
POST /projects/:id/commits/:commit_id/discussions/:discussion_id/notes
`

Parameters:


Attribute           | Type           | Required | Description |

——————- | ————– | ——– | ———– |

id                | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |

commit_id         | integer        | yes      | The ID of a commit |

discussion_id     | integer        | yes      | The ID of a discussion |

note_id           | integer        | yes      | The ID of a discussion note |

body              | string         | yes      | The content of a discussion |

created_at        | string         | no       | Date time string, ISO 8601 formatted, e.g. 2016-03-11T03:45:40Z |



`bash
curl --request POST --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/5/commits/11/discussions/6a9c1750b37d513a43987b574953fceb50b03ce7/notes?body=comment
`

### Modify an existing commit discussion note

Modify or resolve an existing discussion note of a commit.

`
PUT /projects/:id/commits/:commit_id/discussions/:discussion_id/notes/:note_id
`

Parameters:


Attribute           | Type           | Required | Description |

——————- | ————– | ——– | ———– |

id                | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |

commit_id         | integer        | yes      | The ID of a commit |

discussion_id     | integer        | yes      | The ID of a discussion |

note_id           | integer        | yes      | The ID of a discussion note |

body              | string         | no       | The content of a note |



`bash
curl --request PUT --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/5/commits/11/discussions/6a9c1750b37d513a43987b574953fceb50b03ce7/notes/1108?body=comment
`

Resolving a note:

`bash
curl --request PUT --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/5/commits/11/discussions/6a9c1750b37d513a43987b574953fceb50b03ce7/notes/1108?resolved=true
`

### Delete a commit discussion note

Deletes an existing discussion note of a commit.

`
DELETE /projects/:id/commits/:commit_id/discussions/:discussion_id/notes/:note_id
`

Parameters:


Attribute           | Type           | Required | Description |

——————- | ————– | ——– | ———– |

id                | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |

commit_id         | integer        | yes      | The ID of a commit |

discussion_id     | integer        | yes      | The ID of a discussion |

note_id           | integer        | yes      | The ID of a discussion note |



`bash
curl --request DELETE --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/5/commits/11/discussions/636
`





            

          

      

      

    

  

    
      
          
            
  # Environments API

## List environments

Get all environments for a given project.

`
GET /projects/:id/environments
`


Attribute | Type    | Required | Description           |

——— | ——- | ——– | ——————— |

id      | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |



`bash
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/1/environments
`

Example response:

```json
[

	{
	“id”: 1,
“name”: “review/fix-foo”,
“slug”: “review-fix-foo-dfjre3”,
“external_url”: “https://review-fix-foo-dfjre3.example.gitlab.com”

}

]

Create a new environment

Creates a new environment with the given name and external_url.

It returns 201 if the environment was successfully created, 400 for wrong parameters.

`
POST /projects/:id/environments
`

Attribute | Type | Required | Description |

————- | ——- | ——– | —————————- |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

name | string | yes | The name of the environment |

external_url | string | no | Place to link to for this environment |

`bash
curl --data "name=deploy&external_url=https://deploy.example.gitlab.com" --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" "https://gitlab.example.com/api/v4/projects/1/environments"
`

Example response:

```json
{


“id”: 1,
“name”: “deploy”,
“slug”: “deploy”,
“external_url”: “https://deploy.example.gitlab.com”







}

## Edit an existing environment

Updates an existing environment’s name and/or external_url.

It returns 200 if the environment was successfully updated. In case of an error, a status code 400 is returned.

`
PUT /projects/:id/environments/:environments_id
`


Attribute       | Type    | Required                          | Description                      |

————— | ——- | ——————————— | ——————————-  |

id            | integer/string | yes                               | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user            |

environment_id | integer | yes | The ID of the environment  | The ID of the environment        |

name          | string  | no                                | The new name of the environment  |

external_url  | string  | no                                | The new external_url             |



`bash
curl --request PUT --data "name=staging&external_url=https://staging.example.gitlab.com" --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" "https://gitlab.example.com/api/v4/projects/1/environments/1"
`

Example response:

```json
{

“id”: 1,
“name”: “staging”,
“slug”: “staging”,
“external_url”: “https://staging.example.gitlab.com”

}

Delete an environment

It returns 204 if the environment was successfully deleted, and 404 if the environment does not exist.

`
DELETE /projects/:id/environments/:environment_id
`

Attribute | Type | Required | Description |

——— | ——- | ——– | ——————— |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

environment_id | integer | yes | The ID of the environment |

`bash
curl --request DELETE --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" "https://gitlab.example.com/api/v4/projects/1/environments/1"
`

Stop an environment

It returns 200 if the environment was successfully stopped, and 404 if the environment does not exist.

`
POST /projects/:id/environments/:environment_id/stop
`

Attribute | Type | Required | Description |

——— | ——- | ——– | ——————— |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

environment_id | integer | yes | The ID of the environment |

`bash
curl --request POST --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" "https://gitlab.example.com/api/v4/projects/1/environments/1/stop"
`

Example response:

```json
{


“id”: 1,
“name”: “deploy”,
“slug”: “deploy”,
“external_url”: “https://deploy.example.gitlab.com”







}





            

          

      

      

    

  

    
      
          
            
  # Events

## Filter parameters

### Action Types

Available action types for the action parameter are:


	created


	updated


	closed


	reopened


	pushed


	commented


	merged


	joined


	left


	destroyed


	expired




Note that these options are downcased.

### Target Types

Available target types for the target_type parameter are:


	issue


	milestone


	merge_request


	note


	project


	snippet


	user




Note that these options are downcased.

### Date formatting

Dates for the before and after parameters should be supplied in the following format:

`
YYYY-MM-DD
`

### Event Time Period Limit

GitLab removes events older than 1 year from the events table for performance reasons. The range of 1 year was chosen because user contribution calendars only show contributions of the past year.

## List currently authenticated user’s events

>**Note:** This endpoint was introduced in GitLab 9.3.

Get a list of events for the authenticated user.

`
GET /events
`

Parameters:


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

action | string | no | Include only events of a particular [action type][action-types] |

target_type | string | no | Include only events of a particular [target type][target-types] |

before | date | no |  Include only events created before a particular date. Please see [here for the supported format][date-formatting] |

after | date | no |  Include only events created after a particular date. Please see [here for the supported format][date-formatting]  |

sort | string | no | Sort events in asc or desc order by created_at. Default is desc |



Example request:

`
curl --header "PRIVATE-TOKEN 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/events&target_type=issue&action=created&after=2017-01-31&before=2017-03-01
`

Example response:

```json
[

	{
	“title”:null,
“project_id”:1,
“action_name”:”opened”,
“target_id”:160,
“target_type”:”Issue”,
“author_id”:25,
“target_title”:”Qui natus eos odio tempore et quaerat consequuntur ducimus cupiditate quis.”,
“created_at”:”2017-02-09T10:43:19.667Z”,
“author”:{

“name”:”User 3”,
“username”:”user3”,
“id”:25,
“state”:”active”,
“avatar_url”:”http://www.gravatar.com/avatar/97d6d9441ff85fdc730e02a6068d267b?s=80u0026d=identicon”,
“web_url”:”https://gitlab.example.com/user3”

},
“author_username”:”user3”

},
{

“title”:null,
“project_id”:1,
“action_name”:”opened”,
“target_id”:159,
“target_type”:”Issue”,
“author_id”:21,
“target_title”:”Nostrum enim non et sed optio illo deleniti non.”,
“created_at”:”2017-02-09T10:43:19.426Z”,
“author”:{

“name”:”Test User”,
“username”:”ted”,
“id”:21,
“state”:”active”,
“avatar_url”:”http://www.gravatar.com/avatar/80fb888c9a48b9a3f87477214acaa63f?s=80u0026d=identicon”,
“web_url”:”https://gitlab.example.com/ted”

},
“author_username”:”ted”

}

]

Get user contribution events

>**Note:** Documentation was formerly located in the [Users API pages][users-api].

Get the contribution events for the specified user, sorted from newest to oldest.

`
GET /users/:id/events
`

Parameters:

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer | yes | The ID or Username of the user |

action | string | no | Include only events of a particular [action type][action-types] |

target_type | string | no | Include only events of a particular [target type][target-types] |

before | date | no | Include only events created before a particular date. Please see [here for the supported format][date-formatting] |

after | date | no | Include only events created after a particular date. Please see [here for the supported format][date-formatting] |

sort | string | no | Sort events in asc or desc order by created_at. Default is desc |

`bash
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/users/:id/events
`

Example response:

```json
[



	{
	“title”: null,
“project_id”: 15,
“action_name”: “closed”,
“target_id”: 830,
“target_type”: “Issue”,
“author_id”: 1,
“target_title”: “Public project search field”,
“author”: {


“name”: “Dmitriy Zaporozhets”,
“username”: “root”,
“id”: 1,
“state”: “active”,
“avatar_url”: “http://localhost:3000/uploads/user/avatar/1/fox_avatar.png”,
“web_url”: “http://localhost:3000/root”




},
“author_username”: “root”





},
{


“title”: null,
“project_id”: 15,
“action_name”: “pushed”,
“target_id”: null,
“target_type”: null,
“author_id”: 1,
“author”: {


“name”: “Dmitriy Zaporozhets”,
“username”: “root”,
“id”: 1,
“state”: “active”,
“avatar_url”: “http://localhost:3000/uploads/user/avatar/1/fox_avatar.png”,
“web_url”: “http://localhost:3000/root”




},
“author_username”: “john”,
“push_data”: {


“commit_count”: 1,
“action”: “pushed”,
“ref_type”: “branch”,
“commit_from”: “50d4420237a9de7be1304607147aec22e4a14af7”,
“commit_to”: “c5feabde2d8cd023215af4d2ceeb7a64839fc428”,
“ref”: “master”,
“commit_title”: “Add simple search to projects in public area”




},
“target_title”: null




},
{


“title”: null,
“project_id”: 15,
“action_name”: “closed”,
“target_id”: 840,
“target_type”: “Issue”,
“author_id”: 1,
“target_title”: “Finish & merge Code search PR”,
“author”: {


“name”: “Dmitriy Zaporozhets”,
“username”: “root”,
“id”: 1,
“state”: “active”,
“avatar_url”: “http://localhost:3000/uploads/user/avatar/1/fox_avatar.png”,
“web_url”: “http://localhost:3000/root”




},
“author_username”: “root”




},
{


“title”: null,
“project_id”: 15,
“action_name”: “commented on”,
“target_id”: 1312,
“target_type”: “Note”,
“author_id”: 1,
“target_title”: null,
“created_at”: “2015-12-04T10:33:58.089Z”,
“note”: {


“id”: 1312,
“body”: “What an awesome day!”,
“attachment”: null,
“author”: {


“name”: “Dmitriy Zaporozhets”,
“username”: “root”,
“id”: 1,
“state”: “active”,
“avatar_url”: “http://localhost:3000/uploads/user/avatar/1/fox_avatar.png”,
“web_url”: “http://localhost:3000/root”




},
“created_at”: “2015-12-04T10:33:56.698Z”,
“system”: false,
“noteable_id”: 377,
“noteable_type”: “Issue”




},
“author”: {


“name”: “Dmitriy Zaporozhets”,
“username”: “root”,
“id”: 1,
“state”: “active”,
“avatar_url”: “http://localhost:3000/uploads/user/avatar/1/fox_avatar.png”,
“web_url”: “http://localhost:3000/root”




},
“author_username”: “root”




}







]

## List a Project’s visible events

>**Note:** This endpoint has been around longer than the others. Documentation was formerly located in the [Projects API pages][projects-api].

Get a list of visible events for a particular project.

`
GET /:project_id/events
`

Parameters:


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

project_id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |

action | string | no | Include only events of a particular [action type][action-types] |

target_type | string | no | Include only events of a particular [target type][target-types] |

before | date | no |  Include only events created before a particular date. Please see [here for the supported format][date-formatting] |

after | date | no |  Include only events created after a particular date. Please see [here for the supported format][date-formatting]  |

sort | string | no | Sort events in asc or desc order by created_at. Default is desc |



Example request:

`
curl --header "PRIVATE-TOKEN 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/:project_id/events&target_type=issue&action=created&after=2017-01-31&before=2017-03-01
`

Example response:

```json
[

	{
	“title”:null,
“project_id”:1,
“action_name”:”opened”,
“target_id”:160,
“target_iid”:160,
“target_type”:”Issue”,
“author_id”:25,
“target_title”:”Qui natus eos odio tempore et quaerat consequuntur ducimus cupiditate quis.”,
“created_at”:”2017-02-09T10:43:19.667Z”,
“author”:{

“name”:”User 3”,
“username”:”user3”,
“id”:25,
“state”:”active”,
“avatar_url”:”http://www.gravatar.com/avatar/97d6d9441ff85fdc730e02a6068d267b?s=80u0026d=identicon”,
“web_url”:”https://gitlab.example.com/user3”

},
“author_username”:”user3”

},
{

“title”:null,
“project_id”:1,
“action_name”:”opened”,
“target_id”:159,
“target_iid”:159,
“target_type”:”Issue”,
“author_id”:21,
“target_title”:”Nostrum enim non et sed optio illo deleniti non.”,
“created_at”:”2017-02-09T10:43:19.426Z”,
“author”:{

“name”:”Test User”,
“username”:”ted”,
“id”:21,
“state”:”active”,
“avatar_url”:”http://www.gravatar.com/avatar/80fb888c9a48b9a3f87477214acaa63f?s=80u0026d=identicon”,
“web_url”:”https://gitlab.example.com/ted”

},
“author_username”:”ted”

},
{

“title”: null,
“project_id”: 1,
“action_name”: “commented on”,
“target_id”: 1312,
“target_iid”: 1312,
“target_type”: “Note”,
“author_id”: 1,
“data”: null,
“target_title”: null,
“created_at”: “2015-12-04T10:33:58.089Z”,
“note”: {

“id”: 1312,
“body”: “What an awesome day!”,
“attachment”: null,
“author”: {

“name”: “Dmitriy Zaporozhets”,
“username”: “root”,
“id”: 1,
“state”: “active”,
“avatar_url”: “http://localhost:3000/uploads/user/avatar/1/fox_avatar.png”,
“web_url”: “http://localhost:3000/root”

},
“created_at”: “2015-12-04T10:33:56.698Z”,
“system”: false,
“noteable_id”: 377,
“noteable_type”: “Issue”,
“noteable_iid”: 377

},
“author”: {

“name”: “Dmitriy Zaporozhets”,
“username”: “root”,
“id”: 1,
“state”: “active”,
“avatar_url”: “http://localhost:3000/uploads/user/avatar/1/fox_avatar.png”,
“web_url”: “http://localhost:3000/root”

},
“author_username”: “root”

}

]

[target-types]: #target-types “Target Type parameter”
[action-types]: #action-types “Action Type parameter”
[date-formatting]: #date-formatting “Date Formatting guidance”
[projects-api]: projects.md “Projects API pages”
[users-api]: users.md “Users API pages”

 # Features flags API

All methods require administrator authorization.

Notice that currently the API only supports boolean and percentage-of-time gate
values.

List all features

Get a list of all persisted features, with its gate values.

`
GET /features
`

`bash
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/features
`

Example response:

```json
[



	{
	“name”: “experimental_feature”,
“state”: “off”,
“gates”: [



	{
	“key”: “boolean”,
“value”: false





}




]





},
{


“name”: “new_library”,
“state”: “on”,
“gates”: [



	{
	“key”: “boolean”,
“value”: true





}




]




}





]

## Set or create a feature

Set a feature’s gate value. If a feature with the given name doesn’t exist yet
it will be created. The value can be a boolean, or an integer to indicate
percentage of time.

`
POST /features/:name
`


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

name | string | yes | Name of the feature to create or update |

value | integer/string | yes | true or false to enable/disable, or an integer for percentage of time |

feature_group | string | no | A Feature group name |

user | string | no | A GitLab username |



Note that you can enable or disable a feature for both a feature_group and a
user with a single API call.

`bash
curl --data "value=30" --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/features/new_library
`

Example response:

```json
{

“name”: “new_library”,
“state”: “conditional”,
“gates”: [

	{
	“key”: “boolean”,
“value”: false

},
{

“key”: “percentage_of_time”,
“value”: 30

}

]

}

Delete a feature

Removes a feature gate. Response is equal when the gate exists, or doesn’t.

`
DELETE /features/:name
`

 # Group badges API

> [Introduced](https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/17082)
in GitLab 10.6.

Placeholder tokens

Badges support placeholders that will be replaced in real time in both the link and image URL. The allowed placeholders are:

	%{project_path}: will be replaced by the project path.

	%{project_id}: will be replaced by the project id.

	%{default_branch}: will be replaced by the project default branch.

	%{commit_sha}: will be replaced by the last project’s commit sha.

Because these endpoints aren’t inside a project’s context, the information used to replace the placeholders will be
from the first group’s project by creation date. If the group hasn’t got any project the original URL with the placeholders will be returned.

List all badges of a group

Gets a list of a group’s badges.

`
GET /groups/:id/badges
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) owned by the authenticated user |

`bash
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/groups/:id/badges
`

Example response:

```json
[



	{
	“id”: 1,
“link_url”: “http://example.com/ci_status.svg?project=%{project_path}&ref=%{default_branch}”,
“image_url”: “https://shields.io/my/badge”,
“rendered_link_url”: “http://example.com/ci_status.svg?project=example-org/example-project&ref=master”,
“rendered_image_url”: “https://shields.io/my/badge”,
“kind”: “group”





},
{


“id”: 2,
“link_url”: “http://example.com/ci_status.svg?project=%{project_path}&ref=%{default_branch}”,
“image_url”: “https://shields.io/my/badge”,
“rendered_link_url”: “http://example.com/ci_status.svg?project=example-org/example-project&ref=master”,
“rendered_image_url”: “https://shields.io/my/badge”,
“kind”: “group”




},





]

## Get a badge of a group

Gets a badge of a group.

`
GET /groups/:id/badges/:badge_id
`


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id      | integer/string | yes | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) owned by the authenticated user |

badge_id | integer | yes   | The badge ID |



`bash
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/groups/:id/badges/:badge_id
`

Example response:

```json
{

“id”: 1,
“link_url”: “http://example.com/ci_status.svg?project=%{project_path}&ref=%{default_branch}”,
“image_url”: “https://shields.io/my/badge”,
“rendered_link_url”: “http://example.com/ci_status.svg?project=example-org/example-project&ref=master”,
“rendered_image_url”: “https://shields.io/my/badge”,
“kind”: “group”

}

Add a badge to a group

Adds a badge to a group.

`
POST /groups/:id/badges
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) owned by the authenticated user |

link_url | string | yes | URL of the badge link |

image_url | string | yes | URL of the badge image |

`bash
curl --request POST --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" --data "link_url=https://gitlab.com/gitlab-org/gitlab-ce/commits/master&image_url=https://shields.io/my/badge1&position=0" https://gitlab.example.com/api/v4/groups/:id/badges
`

Example response:

```json
{


“id”: 1,
“link_url”: “https://gitlab.com/gitlab-org/gitlab-ce/commits/master”,
“image_url”: “https://shields.io/my/badge1”,
“rendered_link_url”: “https://gitlab.com/gitlab-org/gitlab-ce/commits/master”,
“rendered_image_url”: “https://shields.io/my/badge1”,
“kind”: “group”







}

## Edit a badge of a group

Updates a badge of a group.

`
PUT /groups/:id/badges/:badge_id
`


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id      | integer/string | yes | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) owned by the authenticated user |

badge_id | integer | yes   | The badge ID |

link_url | string         | no | URL of the badge link |

image_url | string | no | URL of the badge image |



`bash
curl --request PUT --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/groups/:id/badges/:badge_id
`

Example response:

```json
{

“id”: 1,
“link_url”: “https://gitlab.com/gitlab-org/gitlab-ce/commits/master”,
“image_url”: “https://shields.io/my/badge”,
“rendered_link_url”: “https://gitlab.com/gitlab-org/gitlab-ce/commits/master”,
“rendered_image_url”: “https://shields.io/my/badge”,
“kind”: “group”

}

Remove a badge from a group

Removes a badge from a group.

`
DELETE /groups/:id/badges/:badge_id
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) owned by the authenticated user |

badge_id | integer | yes | The badge ID |

`bash
curl --request DELETE --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/groups/:id/badges/:badge_id
`

Preview a badge from a group

Returns how the link_url and image_url final URLs would be after resolving the placeholder interpolation.

`
GET /groups/:id/badges/render
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) owned by the authenticated user |

link_url | string | yes | URL of the badge link|

image_url | string | yes | URL of the badge image |

`bash
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/groups/:id/badges/render?link_url=http%3A%2F%2Fexample.com%2Fci_status.svg%3Fproject%3D%25%7Bproject_path%7D%26ref%3D%25%7Bdefault_branch%7D&image_url=https%3A%2F%2Fshields.io%2Fmy%2Fbadge
`

Example response:

```json
{


“link_url”: “http://example.com/ci_status.svg?project=%{project_path}&ref=%{default_branch}”,
“image_url”: “https://shields.io/my/badge”,
“rendered_link_url”: “http://example.com/ci_status.svg?project=example-org/example-project&ref=master”,
“rendered_image_url”: “https://shields.io/my/badge”,







}





            

          

      

      

    

  

    
      
          
            
  # Group Issue Boards API

Every API call to group boards must be authenticated.

If a user is not a member of a group and the group is private, a GET
request will result in 404 status code.

## Group Board

Lists Issue Boards in the given group.

`
GET /groups/:id/boards
`


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) owned by the authenticated user |



`bash
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/groups/5/boards
`

Example response:

```json
[

	{
	“id”: 1,
“group_id”: 5,
“lists” : [

	{
	“id” : 1,
“label” : {

“name” : “Testing”,
“color” : “#F0AD4E”,
“description” : null

},
“position” : 1

},
{

“id” : 2,
“label” : {

“name” : “Ready”,
“color” : “#FF0000”,
“description” : null

},
“position” : 2

},
{

“id” : 3,
“label” : {

“name” : “Production”,
“color” : “#FF5F00”,
“description” : null

},
“position” : 3

}

]

}

]

Single board

Gets a single board.

`
GET /groups/:id/boards/:board_id
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) owned by the authenticated user |

board_id | integer | yes | The ID of a board |

`bash
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/groups/5/boards/1
`

Example response:


	```json
	
	{
	“id”: 1,
“group_id”: 5,
“lists” : [



	{
	“id” : 1,
“label” : {


“name” : “Testing”,
“color” : “#F0AD4E”,
“description” : null




},
“position” : 1





},
{


“id” : 2,
“label” : {


“name” : “Ready”,
“color” : “#FF0000”,
“description” : null




},
“position” : 2




},
{


“id” : 3,
“label” : {


“name” : “Production”,
“color” : “#FF5F00”,
“description” : null




},
“position” : 3




}




]





}





```

List board lists

Get a list of the board’s lists.
Does not include backlog and closed lists

`
GET /groups/:id/boards/:board_id/lists
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) owned by the authenticated user |

board_id | integer | yes | The ID of a board |

`bash
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/groups/5/boards/1/lists
`

Example response:

```json
[



	{
	“id” : 1,
“label” : {


“name” : “Testing”,
“color” : “#F0AD4E”,
“description” : null




},
“position” : 1





},
{


“id” : 2,
“label” : {


“name” : “Ready”,
“color” : “#FF0000”,
“description” : null




},
“position” : 2




},
{


“id” : 3,
“label” : {


“name” : “Production”,
“color” : “#FF5F00”,
“description” : null




},
“position” : 3




}







]

## Single board list

Get a single board list.

`
GET /groups/:id/boards/:board_id/lists/:list_id
`


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) owned by the authenticated user |

board_id | integer | yes | The ID of a board |

list_id | integer | yes | The ID of a board’s list |



`bash
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/groups/5/boards/1/lists/1
`

Example response:

```json
{

“id” : 1,
“label” : {

“name” : “Testing”,
“color” : “#F0AD4E”,
“description” : null

},
“position” : 1

}

New board list

Creates a new Issue Board list.

`
POST /groups/:id/boards/:board_id/lists
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) owned by the authenticated user |

board_id | integer | yes | The ID of a board |

label_id | integer | yes | The ID of a label |

`bash
curl --request POST --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/groups/5/boards/1/lists?label_id=5
`

Example response:

```json
{


“id” : 1,
“label” : {


“name” : “Testing”,
“color” : “#F0AD4E”,
“description” : null




},
“position” : 1







}

## Edit board list

Updates an existing Issue Board list. This call is used to change list position.

`
PUT /groups/:id/boards/:board_id/lists/:list_id
`


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id            | integer/string | yes | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) owned by the authenticated user |

board_id | integer | yes | The ID of a board |

list_id | integer | yes | The ID of a board’s list |

position | integer | yes | The position of the list |



`bash
curl --request PUT --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/group/5/boards/1/lists/1?position=2
`

Example response:

```json
{

“id” : 1,
“label” : {

“name” : “Testing”,
“color” : “#F0AD4E”,
“description” : null

},
“position” : 1

}

Delete a board list

Only for admins and group owners. Soft deletes the board list in question.

`
DELETE /groups/:id/boards/:board_id/lists/:list_id
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) owned by the authenticated user |

board_id | integer | yes | The ID of a board |

list_id | integer | yes | The ID of a board’s list |

`bash
curl --request DELETE --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/groups/5/boards/1/lists/1
`

 # Group-level Variables API

> [Introduced][ce-34519] in GitLab 9.5

List group variables

Get list of a group’s variables.

`
GET /groups/:id/variables
`

Attribute | Type | required | Description |

|-----------|———|----------|———————|
| id | integer/string | yes | The ID of a group or [URL-encoded path of the group](README.md#namespaced-path-encoding) owned by the authenticated user |

`
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" "https://gitlab.example.com/api/v4/groups/1/variables"
`

```json
[



	{
	“key”: “TEST_VARIABLE_1”,
“value”: “TEST_1”





},
{


“key”: “TEST_VARIABLE_2”,
“value”: “TEST_2”




}





]

## Show variable details

Get the details of a group’s specific variable.

`
GET /groups/:id/variables/:key
`


Attribute | Type    | required | Description           |



|-----------|———|----------|———————–|
| id      | integer/string | yes      | The ID of a group or [URL-encoded path of the group](README.md#namespaced-path-encoding) owned by the authenticated user   |
| key     | string  | yes      | The key of a variable |

`
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" "https://gitlab.example.com/api/v4/groups/1/variables/TEST_VARIABLE_1"
`

```json
{

“key”: “TEST_VARIABLE_1”,
“value”: “TEST_1”

}

Create variable

Create a new variable.

`
POST /groups/:id/variables
`

Attribute | Type | required | Description |

|-------------|———|----------|———————–|
| id | integer/string | yes | The ID of a group or [URL-encoded path of the group](README.md#namespaced-path-encoding) owned by the authenticated user |
| key | string | yes | The key of a variable; must have no more than 255 characters; only A-Z, a-z, 0-9, and _ are allowed |
| value | string | yes | The value of a variable |
| protected | boolean | no | Whether the variable is protected |

`
curl --request POST --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" "https://gitlab.example.com/api/v4/groups/1/variables" --form "key=NEW_VARIABLE" --form "value=new value"
`

```json
{


“key”: “NEW_VARIABLE”,
“value”: “new value”,
“protected”: false







}

## Update variable

Update a group’s variable.

`
PUT /groups/:id/variables/:key
`


Attribute   | Type    | required | Description             |



|-------------|———|----------|————————-|
| id        | integer/string | yes      | The ID of a group or [URL-encoded path of the group](README.md#namespaced-path-encoding) owned by the authenticated user     |
| key       | string  | yes      | The key of a variable   |
| value     | string  | yes      | The value of a variable |
| protected | boolean | no       | Whether the variable is protected |

`
curl --request PUT --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" "https://gitlab.example.com/api/v4/groups/1/variables/NEW_VARIABLE" --form "value=updated value"
`

```json
{

“key”: “NEW_VARIABLE”,
“value”: “updated value”,
“protected”: true

}

Remove variable

Remove a group’s variable.

`
DELETE /groups/:id/variables/:key
`

Attribute | Type | required | Description |

|-----------|———|----------|————————-|
| id | integer/string | yes | The ID of a group or [URL-encoded path of the group](README.md#namespaced-path-encoding) owned by the authenticated user |
| key | string | yes | The key of a variable |

`
curl --request DELETE --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" "https://gitlab.example.com/api/v4/groups/1/variables/VARIABLE_1"
`

[ce-34519]: https://gitlab.com/gitlab-org/gitlab-ce/issues/34519

 # Group milestones API

> Notes:
> [Introduced][ce-12819] in GitLab 9.5.

List group milestones

Returns a list of group milestones.

`
GET /groups/:id/milestones
GET /groups/:id/milestones?iids[]=42
GET /groups/:id/milestones?iids[]=42&iids[]=43
GET /groups/:id/milestones?state=active
GET /groups/:id/milestones?state=closed
GET /groups/:id/milestones?search=version
`

Parameters:

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) owned by the authenticated user |

iids[] | Array[integer] | optional | Return only the milestones having the given iid |

state | string | optional | Return only active or closed milestones |

search | string | optional | Return only milestones with a title or description matching the provided string |

`bash
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/groups/5/milestones
`

Example Response:

```json
[



	{
	“id”: 12,
“iid”: 3,
“group_id”: 16,
“title”: “10.0”,
“description”: “Version”,
“due_date”: “2013-11-29”,
“start_date”: “2013-11-10”,
“state”: “active”,
“updated_at”: “2013-10-02T09:24:18Z”,
“created_at”: “2013-10-02T09:24:18Z”





}





]

## Get single milestone

Gets a single group milestone.

`
GET /groups/:id/milestones/:milestone_id
`

Parameters:


	id (required) - The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) owned by the authenticated user


	milestone_id (required) - The ID of the group milestone




## Create new milestone

Creates a new group milestone.

`
POST /groups/:id/milestones
`

Parameters:


	id (required) - The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) owned by the authenticated user


	title (required) - The title of a milestone


	description (optional) - The description of the milestone


	due_date (optional) - The due date of the milestone


	start_date (optional) - The start date of the milestone




## Edit milestone

Updates an existing group milestone.

`
PUT /groups/:id/milestones/:milestone_id
`

Parameters:


	id (required) - The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) owned by the authenticated user


	milestone_id (required) - The ID of a group milestone


	title (optional) - The title of a milestone


	description (optional) - The description of a milestone


	due_date (optional) - The due date of the milestone


	start_date (optional) - The start date of the milestone


	state_event (optional) - The state event of the milestone (close|activate)




## Get all issues assigned to a single milestone

Gets all issues assigned to a single group milestone.

`
GET /groups/:id/milestones/:milestone_id/issues
`

Parameters:


	id (required) - The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) owned by the authenticated user


	milestone_id (required) - The ID of a group milestone




## Get all merge requests assigned to a single milestone

Gets all merge requests assigned to a single group milestone.

`
GET /groups/:id/milestones/:milestone_id/merge_requests
`

Parameters:


	id (required) - The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) owned by the authenticated user


	milestone_id (required) - The ID of a group milestone




[ce-12819]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/12819





            

          

      

      

    

  

    
      
          
            
  # Groups API

## List groups

Get a list of visible groups for the authenticated user. When accessed without
authentication, only public groups are returned.

Parameters:


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

skip_groups | array of integers | no | Skip the group IDs passed |

all_available | boolean | no | Show all the groups you have access to (defaults to false for authenticated users, true for admin); Attributes owned and min_access_level have precedence |

search | string | no | Return the list of authorized groups matching the search criteria |

order_by | string | no | Order groups by name, path or id. Default is name |

sort | string | no | Order groups in asc or desc order. Default is asc |

statistics | boolean | no | Include group statistics (admins only) |

with_custom_attributes | boolean | no | Include [custom attributes](custom_attributes.md) in response (admins only) |

owned | boolean | no | Limit to groups explicitly owned by the current user |

min_access_level | integer | no | Limit to groups where current user has at least this [access level](members.md) |



`
GET /groups
`

```json
[

	{
	“id”: 1,
“name”: “Foobar Group”,
“path”: “foo-bar”,
“description”: “An interesting group”,
“visibility”: “public”,
“lfs_enabled”: true,
“avatar_url”: “http://localhost:3000/uploads/group/avatar/1/foo.jpg”,
“web_url”: “http://localhost:3000/groups/foo-bar”,
“request_access_enabled”: false,
“full_name”: “Foobar Group”,
“full_path”: “foo-bar”,
“parent_id”: null

}

]

When adding the parameter statistics=true and the authenticated user is an admin, additional group statistics are returned.

`
GET /groups?statistics=true
`

```json
[



	{
	“id”: 1,
“name”: “Foobar Group”,
“path”: “foo-bar”,
“description”: “An interesting group”,
“visibility”: “public”,
“lfs_enabled”: true,
“avatar_url”: “http://localhost:3000/uploads/group/avatar/1/foo.jpg”,
“web_url”: “http://localhost:3000/groups/foo-bar”,
“request_access_enabled”: false,
“full_name”: “Foobar Group”,
“full_path”: “foo-bar”,
“parent_id”: null,
“statistics”: {


“storage_size” : 212,
“repository_size” : 33,
“lfs_objects_size” : 123,
“job_artifacts_size” : 57




}





}







]

You can search for groups by name or path, see below.

You can filter by [custom attributes](custom_attributes.md) with:

`
GET /groups?custom_attributes[key]=value&custom_attributes[other_key]=other_value
`

## List a groups’s subgroups

> [Introduced][ce-15142] in GitLab 10.3.

Get a list of visible direct subgroups in this group.
When accessed without authentication, only public groups are returned.

Parameters:


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) of the parent group |

skip_groups | array of integers | no | Skip the group IDs passed |

all_available | boolean | no | Show all the groups you have access to (defaults to false for authenticated users, true for admin); Attributes owned and min_access_level have precedence |

search | string | no | Return the list of authorized groups matching the search criteria |

order_by | string | no | Order groups by name, path or id. Default is name |

sort | string | no | Order groups in asc or desc order. Default is asc |

statistics | boolean | no | Include group statistics (admins only) |

with_custom_attributes | boolean | no | Include [custom attributes](custom_attributes.md) in response (admins only) |

owned | boolean | no | Limit to groups explicitly owned by the current user |

min_access_level | integer | no | Limit to groups where current user has at least this [access level](members.md) |



`
GET /groups/:id/subgroups
`

```json
[

	{
	“id”: 1,
“name”: “Foobar Group”,
“path”: “foo-bar”,
“description”: “An interesting group”,
“visibility”: “public”,
“lfs_enabled”: true,
“avatar_url”: “http://gitlab.example.com/uploads/group/avatar/1/foo.jpg”,
“web_url”: “http://gitlab.example.com/groups/foo-bar”,
“request_access_enabled”: false,
“full_name”: “Foobar Group”,
“full_path”: “foo-bar”,
“parent_id”: 123

}

]

List a group’s projects

Get a list of projects in this group. When accessed without authentication, only
public projects are returned.

`
GET /groups/:id/projects
`

Parameters:

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) owned by the authenticated user |

archived | boolean | no | Limit by archived status |

visibility | string | no | Limit by visibility public, internal, or private |

order_by | string | no | Return projects ordered by id, name, path, created_at, updated_at, or last_activity_at fields. Default is created_at |

sort | string | no | Return projects sorted in asc or desc order. Default is desc |

search | string | no | Return list of authorized projects matching the search criteria |

simple | boolean | no | Return only the ID, URL, name, and path of each project |

owned | boolean | no | Limit by projects owned by the current user |

starred | boolean | no | Limit by projects starred by the current user |

with_issues_enabled | boolean | no | Limit by enabled issues feature |

with_merge_requests_enabled | boolean | no | Limit by enabled merge requests feature |

with_custom_attributes | boolean | no | Include [custom attributes](custom_attributes.md) in response (admins only) |

Example response:

```json
[



	{
	“id”: 9,
“description”: “foo”,
“default_branch”: “master”,
“tag_list”: [],
“archived”: false,
“visibility”: “internal”,
“ssh_url_to_repo”: “git@gitlab.example.com/html5-boilerplate.git”,
“http_url_to_repo”: “http://gitlab.example.com/h5bp/html5-boilerplate.git”,
“web_url”: “http://gitlab.example.com/h5bp/html5-boilerplate”,
“name”: “Html5 Boilerplate”,
“name_with_namespace”: “Experimental / Html5 Boilerplate”,
“path”: “html5-boilerplate”,
“path_with_namespace”: “h5bp/html5-boilerplate”,
“issues_enabled”: true,
“merge_requests_enabled”: true,
“wiki_enabled”: true,
“jobs_enabled”: true,
“snippets_enabled”: true,
“created_at”: “2016-04-05T21:40:50.169Z”,
“last_activity_at”: “2016-04-06T16:52:08.432Z”,
“shared_runners_enabled”: true,
“creator_id”: 1,
“namespace”: {


“id”: 5,
“name”: “Experimental”,
“path”: “h5bp”,
“kind”: “group”




},
“avatar_url”: null,
“star_count”: 1,
“forks_count”: 0,
“open_issues_count”: 3,
“public_jobs”: true,
“shared_with_groups”: [],
“request_access_enabled”: false





}







]

## Details of a group

Get all details of a group. This endpoint can be accessed without authentication
if the group is publicly accessible.

`
GET /groups/:id
`

Parameters:


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) owned by the authenticated user |

with_custom_attributes | boolean | no | Include [custom attributes](custom_attributes.md) in response (admins only) |

with_projects | boolean | no | Include details from projects that belong to the specified group (defaults to true). |



`bash
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/groups/4
`

Example response:

```json
{

“id”: 4,
“name”: “Twitter”,
“path”: “twitter”,
“description”: “Aliquid qui quis dignissimos distinctio ut commodi voluptas est.”,
“visibility”: “public”,
“avatar_url”: null,
“web_url”: “https://gitlab.example.com/groups/twitter”,
“request_access_enabled”: false,
“full_name”: “Twitter”,
“full_path”: “twitter”,
“parent_id”: null,
“projects”: [

	{
	“id”: 7,
“description”: “Voluptas veniam qui et beatae voluptas doloremque explicabo facilis.”,
“default_branch”: “master”,
“tag_list”: [],
“archived”: false,
“visibility”: “public”,
“ssh_url_to_repo”: “git@gitlab.example.com:twitter/typeahead-js.git”,
“http_url_to_repo”: “https://gitlab.example.com/twitter/typeahead-js.git”,
“web_url”: “https://gitlab.example.com/twitter/typeahead-js”,
“name”: “Typeahead.Js”,
“name_with_namespace”: “Twitter / Typeahead.Js”,
“path”: “typeahead-js”,
“path_with_namespace”: “twitter/typeahead-js”,
“issues_enabled”: true,
“merge_requests_enabled”: true,
“wiki_enabled”: true,
“jobs_enabled”: true,
“snippets_enabled”: false,
“container_registry_enabled”: true,
“created_at”: “2016-06-17T07:47:25.578Z”,
“last_activity_at”: “2016-06-17T07:47:25.881Z”,
“shared_runners_enabled”: true,
“creator_id”: 1,
“namespace”: {

“id”: 4,
“name”: “Twitter”,
“path”: “twitter”,
“kind”: “group”

},
“avatar_url”: null,
“star_count”: 0,
“forks_count”: 0,
“open_issues_count”: 3,
“public_jobs”: true,
“shared_with_groups”: [],
“request_access_enabled”: false

},
{

“id”: 6,
“description”: “Aspernatur omnis repudiandae qui voluptatibus eaque.”,
“default_branch”: “master”,
“tag_list”: [],
“archived”: false,
“visibility”: “internal”,
“ssh_url_to_repo”: “git@gitlab.example.com:twitter/flight.git”,
“http_url_to_repo”: “https://gitlab.example.com/twitter/flight.git”,
“web_url”: “https://gitlab.example.com/twitter/flight”,
“name”: “Flight”,
“name_with_namespace”: “Twitter / Flight”,
“path”: “flight”,
“path_with_namespace”: “twitter/flight”,
“issues_enabled”: true,
“merge_requests_enabled”: true,
“wiki_enabled”: true,
“jobs_enabled”: true,
“snippets_enabled”: false,
“container_registry_enabled”: true,
“created_at”: “2016-06-17T07:47:24.661Z”,
“last_activity_at”: “2016-06-17T07:47:24.838Z”,
“shared_runners_enabled”: true,
“creator_id”: 1,
“namespace”: {

“id”: 4,
“name”: “Twitter”,
“path”: “twitter”,
“kind”: “group”

},
“avatar_url”: null,
“star_count”: 0,
“forks_count”: 0,
“open_issues_count”: 8,
“public_jobs”: true,
“shared_with_groups”: [],
“request_access_enabled”: false

}

],
“shared_projects”: [

	{
	“id”: 8,
“description”: “Velit eveniet provident fugiat saepe eligendi autem.”,
“default_branch”: “master”,
“tag_list”: [],
“archived”: false,
“visibility”: “private”,
“ssh_url_to_repo”: “git@gitlab.example.com:h5bp/html5-boilerplate.git”,
“http_url_to_repo”: “https://gitlab.example.com/h5bp/html5-boilerplate.git”,
“web_url”: “https://gitlab.example.com/h5bp/html5-boilerplate”,
“name”: “Html5 Boilerplate”,
“name_with_namespace”: “H5bp / Html5 Boilerplate”,
“path”: “html5-boilerplate”,
“path_with_namespace”: “h5bp/html5-boilerplate”,
“issues_enabled”: true,
“merge_requests_enabled”: true,
“wiki_enabled”: true,
“jobs_enabled”: true,
“snippets_enabled”: false,
“container_registry_enabled”: true,
“created_at”: “2016-06-17T07:47:27.089Z”,
“last_activity_at”: “2016-06-17T07:47:27.310Z”,
“shared_runners_enabled”: true,
“creator_id”: 1,
“namespace”: {

“id”: 5,
“name”: “H5bp”,
“path”: “h5bp”,
“kind”: “group”

},
“avatar_url”: null,
“star_count”: 0,
“forks_count”: 0,
“open_issues_count”: 4,
“public_jobs”: true,
“shared_with_groups”: [

	{
	“group_id”: 4,
“group_name”: “Twitter”,
“group_access_level”: 30

},
{

“group_id”: 3,
“group_name”: “Gitlab Org”,
“group_access_level”: 10

}

]

}

]

}

When adding the parameter with_projects=false, projects will not be returned.

`bash
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/groups/4?with_projects=false
`

Example response:

```json
{


“id”: 4,
“name”: “Twitter”,
“path”: “twitter”,
“description”: “Aliquid qui quis dignissimos distinctio ut commodi voluptas est.”,
“visibility”: “public”,
“avatar_url”: null,
“web_url”: “https://gitlab.example.com/groups/twitter”,
“request_access_enabled”: false,
“full_name”: “Twitter”,
“full_path”: “twitter”,
“parent_id”: null







}

## New group

Creates a new project group. Available only for users who can create groups.

`
POST /groups
`

Parameters:


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

name | string | yes | The name of the group |

path | string | yes | The path of the group |

description | string | no | The group’s description |

visibility | string | no | The group’s visibility. Can be private, internal, or public. |

lfs_enabled | boolean | no | Enable/disable Large File Storage (LFS) for the projects in this group |

request_access_enabled | boolean | no | Allow users to request member access. |

parent_id | integer | no | The parent group id for creating nested group. |



## Transfer project to group

Transfer a project to the Group namespace. Available only for admin

`
POST  /groups/:id/projects/:project_id
`

Parameters:


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) owned by the authenticated user |

project_id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |



## Update group

Updates the project group. Only available to group owners and administrators.

`
PUT /groups/:id
`


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer | yes | The ID of the group |

name | string | no | The name of the group |

path | string | no | The path of the group |

description | string | no | The description of the group |

visibility | string | no | The visibility level of the group. Can be private, internal, or public. |

lfs_enabled (optional) | boolean | no | Enable/disable Large File Storage (LFS) for the projects in this group |

request_access_enabled | boolean | no | Allow users to request member access. |



```bash
curl –request PUT –header “PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK” “https://gitlab.example.com/api/v4/groups/5?name=Experimental”

```

Example response:

```json
{

“id”: 5,
“name”: “Experimental”,
“path”: “h5bp”,
“description”: “foo”,
“visibility”: “internal”,
“avatar_url”: null,
“web_url”: “http://gitlab.example.com/groups/h5bp”,
“request_access_enabled”: false,
“full_name”: “Foobar Group”,
“full_path”: “foo-bar”,
“parent_id”: null,
“projects”: [

	{
	“id”: 9,
“description”: “foo”,
“default_branch”: “master”,
“tag_list”: [],
“public”: false,
“archived”: false,
“visibility”: “internal”,
“ssh_url_to_repo”: “git@gitlab.example.com/html5-boilerplate.git”,
“http_url_to_repo”: “http://gitlab.example.com/h5bp/html5-boilerplate.git”,
“web_url”: “http://gitlab.example.com/h5bp/html5-boilerplate”,
“name”: “Html5 Boilerplate”,
“name_with_namespace”: “Experimental / Html5 Boilerplate”,
“path”: “html5-boilerplate”,
“path_with_namespace”: “h5bp/html5-boilerplate”,
“issues_enabled”: true,
“merge_requests_enabled”: true,
“wiki_enabled”: true,
“jobs_enabled”: true,
“snippets_enabled”: true,
“created_at”: “2016-04-05T21:40:50.169Z”,
“last_activity_at”: “2016-04-06T16:52:08.432Z”,
“shared_runners_enabled”: true,
“creator_id”: 1,
“namespace”: {

“id”: 5,
“name”: “Experimental”,
“path”: “h5bp”,
“kind”: “group”

},
“avatar_url”: null,
“star_count”: 1,
“forks_count”: 0,
“open_issues_count”: 3,
“public_jobs”: true,
“shared_with_groups”: [],
“request_access_enabled”: false

}

]

}

Remove group

Removes group with all projects inside.

`
DELETE /groups/:id
`

Parameters:

	id (required) - The ID or path of a user group

This will queue a background job to delete all projects in the group. The
response will be a 202 Accepted if the user has authorization.

Search for group

Get all groups that match your string in their name or path.

`
GET /groups?search=foobar
`

```json
[



	{
	“id”: 1,
“name”: “Foobar Group”,
“path”: “foo-bar”,
“description”: “An interesting group”





}







]

## Group members

Please consult the [Group Members](members.md) documentation.

## Namespaces in groups

By default, groups only get 20 namespaces at a time because the API results are paginated.

To get more (up to 100), pass the following as an argument to the API call:
`
/groups?per_page=100
`

And to switch pages add:
`
/groups?per_page=100&page=2
`

[ce-15142]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/15142

## Group badges

Read more in the [Group Badges](group_badges.md) documentation.





            

          

      

      

    

  

    
      
          
            
  # Issues API

Every API call to issues must be authenticated.

If a user is not a member of a project and the project is private, a GET
request on that project will result to a 404 status code.

## Issues pagination

By default, GET requests return 20 results at a time because the API results
are paginated.

Read more on [pagination](README.md#pagination).

## List issues

Get all issues the authenticated user has access to. By default it
returns only issues created by the current user. To get all issues,
use parameter scope=all.

`
GET /issues
GET /issues?state=opened
GET /issues?state=closed
GET /issues?labels=foo
GET /issues?labels=foo,bar
GET /issues?labels=foo,bar&state=opened
GET /issues?milestone=1.0.0
GET /issues?milestone=1.0.0&state=opened
GET /issues?iids[]=42&iids[]=43
GET /issues?author_id=5
GET /issues?assignee_id=5
GET /issues?my_reaction_emoji=star
`


Attribute           | Type             | Required   | Description                                                                                                                                         |

——————- | —————- | ———- | ————————————————————————————————————————————————— |

state             | string           | no         | Return all issues or just those that are opened or closed                                                                                       |

labels            | string           | no         | Comma-separated list of label names, issues must have all labels to be returned. No+Label lists all issues with no labels                         |

milestone         | string           | no         | The milestone title. No+Milestone lists all issues with no milestone                                                                                                                                |

scope             | string           | no         | Return issues for the given scope: created_by_me, assigned_to_me or all. Defaults to created_by_me`<br> For versions before 11.0, use the now deprecated `created-by-me or assigned-to-me scopes instead.<br> _([Introduced][ce-13004] in GitLab 9.5. [Changed to snake_case][ce-18935] in GitLab 11.0)_ |

author_id         | integer          | no         | Return issues created by the given user id. Combine with scope=all or scope=assigned_to_me. _([Introduced][ce-13004] in GitLab 9.5)_          |

assignee_id       | integer          | no         | Return issues assigned to the given user id _([Introduced][ce-13004] in GitLab 9.5)_                                                              |

my_reaction_emoji | string           | no         | Return issues reacted by the authenticated user by the given emoji _([Introduced][ce-14016] in GitLab 10.0)_                                      |

iids[]            | Array[integer]   | no         | Return only the issues having the given iid                                                                                                       |

order_by          | string           | no         | Return issues ordered by created_at or updated_at fields. Default is created_at                                                               |

sort              | string           | no         | Return issues sorted in asc or desc order. Default is desc                                                                                    |

search            | string           | no         | Search issues against their title and description                                                                                               |

created_after     | datetime         | no         | Return issues created on or after the given time                                                                                                    |

created_before    | datetime         | no         | Return issues created on or before the given time                                                                                                   |

updated_after     | datetime         | no         | Return issues updated on or after the given time                                                                                                    |

updated_before    | datetime         | no         | Return issues updated on or before the given time                                                                                                   |



`bash
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/issues
`

Example response:

```json
[

	{
	“state” : “opened”,
“description” : “Ratione dolores corrupti mollitia soluta quia.”,
“author” : {

“state” : “active”,
“id” : 18,
“web_url” : “https://gitlab.example.com/eileen.lowe”,
“name” : “Alexandra Bashirian”,
“avatar_url” : null,
“username” : “eileen.lowe”

},
“milestone” : {

“project_id” : 1,
“description” : “Ducimus nam enim ex consequatur cumque ratione.”,
“state” : “closed”,
“due_date” : null,
“iid” : 2,
“created_at” : “2016-01-04T15:31:39.996Z”,
“title” : “v4.0”,
“id” : 17,
“updated_at” : “2016-01-04T15:31:39.996Z”

},
“project_id” : 1,
“assignees” : [{

“state” : “active”,
“id” : 1,
“name” : “Administrator”,
“web_url” : “https://gitlab.example.com/root”,
“avatar_url” : null,
“username” : “root”

}],
“assignee” : {

“state” : “active”,
“id” : 1,
“name” : “Administrator”,
“web_url” : “https://gitlab.example.com/root”,
“avatar_url” : null,
“username” : “root”

},
“updated_at” : “2016-01-04T15:31:51.081Z”,
“closed_at” : null,
“closed_by” : null,
“id” : 76,
“title” : “Consequatur vero maxime deserunt laboriosam est voluptas dolorem.”,
“created_at” : “2016-01-04T15:31:51.081Z”,
“iid” : 6,
“labels” : [],
“user_notes_count”: 1,
“due_date”: “2016-07-22”,
“web_url”: “http://example.com/example/example/issues/6”,
“time_stats”: {

“time_estimate”: 0,
“total_time_spent”: 0,
“human_time_estimate”: null,
“human_total_time_spent”: null

},
“confidential”: false,
“discussion_locked”: false

}

]

Note: assignee column is deprecated, now we show it as a single-sized array assignees to conform to the GitLab EE API.

Note: The closed_by attribute was [introduced in GitLab 10.6][ce-17042]. This value will only be present for issues which were closed after GitLab 10.6 and when the user account that closed the issue still exists.

List group issues

Get a list of a group’s issues.

`
GET /groups/:id/issues
GET /groups/:id/issues?state=opened
GET /groups/:id/issues?state=closed
GET /groups/:id/issues?labels=foo
GET /groups/:id/issues?labels=foo,bar
GET /groups/:id/issues?labels=foo,bar&state=opened
GET /groups/:id/issues?milestone=1.0.0
GET /groups/:id/issues?milestone=1.0.0&state=opened
GET /groups/:id/issues?iids[]=42&iids[]=43
GET /groups/:id/issues?search=issue+title+or+description
GET /groups/:id/issues?author_id=5
GET /groups/:id/issues?assignee_id=5
GET /groups/:id/issues?my_reaction_emoji=star
`

Attribute | Type | Required | Description |

——————- | —————- | ———- | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) owned by the authenticated user |

state | string | no | Return all issues or just those that are opened or closed |

labels | string | no | Comma-separated list of label names, issues must have all labels to be returned. No+Label lists all issues with no labels |

iids[] | Array[integer] | no | Return only the issues having the given iid |

milestone | string | no | The milestone title. No+Milestone lists all issues with no milestone |

scope | string | no | Return issues for the given scope: created_by_me, assigned_to_me or all.
 For versions before 11.0, use the now deprecated created-by-me or assigned-to-me scopes instead.
 _([Introduced][ce-13004] in GitLab 9.5. [Changed to snake_case][ce-18935] in GitLab 11.0)_ |

author_id | integer | no | Return issues created by the given user id _([Introduced][ce-13004] in GitLab 9.5)_ |

assignee_id | integer | no | Return issues assigned to the given user id _([Introduced][ce-13004] in GitLab 9.5)_ |

my_reaction_emoji | string | no | Return issues reacted by the authenticated user by the given emoji _([Introduced][ce-14016] in GitLab 10.0)_ |

order_by | string | no | Return issues ordered by created_at or updated_at fields. Default is created_at |

sort | string | no | Return issues sorted in asc or desc order. Default is desc |

search | string | no | Search group issues against their title and description |

created_after | datetime | no | Return issues created on or after the given time |

created_before | datetime | no | Return issues created on or before the given time |

updated_after | datetime | no | Return issues updated on or after the given time |

updated_before | datetime | no | Return issues updated on or before the given time |

`bash
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/groups/4/issues
`

Example response:

```json
[



	{
	“project_id” : 4,
“milestone” : {


“due_date” : null,
“project_id” : 4,
“state” : “closed”,
“description” : “Rerum est voluptatem provident consequuntur molestias similique ipsum dolor.”,
“iid” : 3,
“id” : 11,
“title” : “v3.0”,
“created_at” : “2016-01-04T15:31:39.788Z”,
“updated_at” : “2016-01-04T15:31:39.788Z”




},
“author” : {


“state” : “active”,
“web_url” : “https://gitlab.example.com/root”,
“avatar_url” : null,
“username” : “root”,
“id” : 1,
“name” : “Administrator”




},
“description” : “Omnis vero earum sunt corporis dolor et placeat.”,
“state” : “closed”,
“iid” : 1,
“assignees” : [{


“avatar_url” : null,
“web_url” : “https://gitlab.example.com/lennie”,
“state” : “active”,
“username” : “lennie”,
“id” : 9,
“name” : “Dr. Luella Kovacek”




}],
“assignee” : {


“avatar_url” : null,
“web_url” : “https://gitlab.example.com/lennie”,
“state” : “active”,
“username” : “lennie”,
“id” : 9,
“name” : “Dr. Luella Kovacek”




},
“labels” : [],
“id” : 41,
“title” : “Ut commodi ullam eos dolores perferendis nihil sunt.”,
“updated_at” : “2016-01-04T15:31:46.176Z”,
“created_at” : “2016-01-04T15:31:46.176Z”,
“closed_at” : null,
“closed_by” : null,
“user_notes_count”: 1,
“due_date”: null,
“web_url”: “http://example.com/example/example/issues/1”,
“time_stats”: {


“time_estimate”: 0,
“total_time_spent”: 0,
“human_time_estimate”: null,
“human_total_time_spent”: null




},
“confidential”: false,
“discussion_locked”: false





}







]

Note: assignee column is deprecated, now we show it as a single-sized array assignees to conform to the GitLab EE API.

Note: The closed_by attribute was [introduced in GitLab 10.6][ce-17042]. This value will only be present for issues which were closed after GitLab 10.6 and when the user account that closed the issue still exists.

## List project issues

Get a list of a project’s issues.

`
GET /projects/:id/issues
GET /projects/:id/issues?state=opened
GET /projects/:id/issues?state=closed
GET /projects/:id/issues?labels=foo
GET /projects/:id/issues?labels=foo,bar
GET /projects/:id/issues?labels=foo,bar&state=opened
GET /projects/:id/issues?milestone=1.0.0
GET /projects/:id/issues?milestone=1.0.0&state=opened
GET /projects/:id/issues?iids[]=42&iids[]=43
GET /projects/:id/issues?search=issue+title+or+description
GET /projects/:id/issues?author_id=5
GET /projects/:id/issues?assignee_id=5
GET /projects/:id/issues?my_reaction_emoji=star
`


Attribute           | Type             | Required   | Description                                                                                                                   |

——————- | —————- | ———- | —————————————————————————————————————————– |

id                | integer/string   | yes        | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user               |

iids[]            | Array[integer]   | no         | Return only the milestone having the given iid                                                                              |

state             | string           | no         | Return all issues or just those that are opened or closed                                                                 |

labels            | string           | no         | Comma-separated list of label names, issues must have all labels to be returned. No+Label lists all issues with no labels   |

milestone         | string           | no         | The milestone title. No+Milestone lists all issues with no milestone                                                                                                           |

scope             | string           | no         | Return issues for the given scope: created_by_me, assigned_to_me or all.<br> For versions before 11.0, use the now deprecated created-by-me or assigned-to-me scopes instead.<br> _([Introduced][ce-13004] in GitLab 9.5. [Changed to snake_case][ce-18935] in GitLab 11.0)_ |

author_id         | integer          | no         | Return issues created by the given user id _([Introduced][ce-13004] in GitLab 9.5)_                                         |

assignee_id       | integer          | no         | Return issues assigned to the given user id _([Introduced][ce-13004] in GitLab 9.5)_                                        |

my_reaction_emoji | string           | no         | Return issues reacted by the authenticated user by the given emoji _([Introduced][ce-14016] in GitLab 10.0)_                |

order_by          | string           | no         | Return issues ordered by created_at or updated_at fields. Default is created_at                                         |

sort              | string           | no         | Return issues sorted in asc or desc order. Default is desc                                                              |

search            | string           | no         | Search project issues against their title and description                                                                 |

created_after     | datetime         | no         | Return issues created on or after the given time                                                                              |

created_before    | datetime         | no         | Return issues created on or before the given time                                                                             |

updated_after     | datetime         | no         | Return issues updated on or after the given time                                                                              |

updated_before    | datetime         | no         | Return issues updated on or before the given time                                                                             |



`bash
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/4/issues
`

Example response:

```json
[

	{
	“project_id” : 4,
“milestone” : {

“due_date” : null,
“project_id” : 4,
“state” : “closed”,
“description” : “Rerum est voluptatem provident consequuntur molestias similique ipsum dolor.”,
“iid” : 3,
“id” : 11,
“title” : “v3.0”,
“created_at” : “2016-01-04T15:31:39.788Z”,
“updated_at” : “2016-01-04T15:31:39.788Z”

},
“author” : {

“state” : “active”,
“web_url” : “https://gitlab.example.com/root”,
“avatar_url” : null,
“username” : “root”,
“id” : 1,
“name” : “Administrator”

},
“description” : “Omnis vero earum sunt corporis dolor et placeat.”,
“state” : “closed”,
“iid” : 1,
“assignees” : [{

“avatar_url” : null,
“web_url” : “https://gitlab.example.com/lennie”,
“state” : “active”,
“username” : “lennie”,
“id” : 9,
“name” : “Dr. Luella Kovacek”

}],
“assignee” : {

“avatar_url” : null,
“web_url” : “https://gitlab.example.com/lennie”,
“state” : “active”,
“username” : “lennie”,
“id” : 9,
“name” : “Dr. Luella Kovacek”

},
“labels” : [],
“id” : 41,
“title” : “Ut commodi ullam eos dolores perferendis nihil sunt.”,
“updated_at” : “2016-01-04T15:31:46.176Z”,
“created_at” : “2016-01-04T15:31:46.176Z”,
“closed_at” : “2016-01-05T15:31:46.176Z”,
“closed_by” : {

“state” : “active”,
“web_url” : “https://gitlab.example.com/root”,
“avatar_url” : null,
“username” : “root”,
“id” : 1,
“name” : “Administrator”

},
“user_notes_count”: 1,
“due_date”: “2016-07-22”,
“web_url”: “http://example.com/example/example/issues/1”,
“time_stats”: {

“time_estimate”: 0,
“total_time_spent”: 0,
“human_time_estimate”: null,
“human_total_time_spent”: null

},
“confidential”: false,
“discussion_locked”: false

}

]

Note: assignee column is deprecated, now we show it as a single-sized array assignees to conform to the GitLab EE API.

Note: The closed_by attribute was [introduced in GitLab 10.6][ce-17042]. This value will only be present for issues which were closed after GitLab 10.6 and when the user account that closed the issue still exists.

Single issue

Get a single project issue.

`
GET /projects/:id/issues/:issue_iid
`

Attribute | Type | Required | Description |

|-------------|———|----------|————————————–|
| id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |
| issue_iid | integer | yes | The internal ID of a project’s issue |

`bash
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/4/issues/41
`

Example response:

```json
{


“project_id” : 4,
“milestone” : {


“due_date” : null,
“project_id” : 4,
“state” : “closed”,
“description” : “Rerum est voluptatem provident consequuntur molestias similique ipsum dolor.”,
“iid” : 3,
“id” : 11,
“title” : “v3.0”,
“created_at” : “2016-01-04T15:31:39.788Z”,
“updated_at” : “2016-01-04T15:31:39.788Z”,
“closed_at” : “2016-01-05T15:31:46.176Z”




},
“author” : {


“state” : “active”,
“web_url” : “https://gitlab.example.com/root”,
“avatar_url” : null,
“username” : “root”,
“id” : 1,
“name” : “Administrator”




},
“description” : “Omnis vero earum sunt corporis dolor et placeat.”,
“state” : “closed”,
“iid” : 1,
“assignees” : [{


“avatar_url” : null,
“web_url” : “https://gitlab.example.com/lennie”,
“state” : “active”,
“username” : “lennie”,
“id” : 9,
“name” : “Dr. Luella Kovacek”




}],
“assignee” : {


“avatar_url” : null,
“web_url” : “https://gitlab.example.com/lennie”,
“state” : “active”,
“username” : “lennie”,
“id” : 9,
“name” : “Dr. Luella Kovacek”




},
“labels” : [],
“id” : 41,
“title” : “Ut commodi ullam eos dolores perferendis nihil sunt.”,
“updated_at” : “2016-01-04T15:31:46.176Z”,
“created_at” : “2016-01-04T15:31:46.176Z”,
“closed_at” : null,
“closed_by” : null,
“subscribed”: false,
“user_notes_count”: 1,
“due_date”: null,
“web_url”: “http://example.com/example/example/issues/1”,
“time_stats”: {


“time_estimate”: 0,
“total_time_spent”: 0,
“human_time_estimate”: null,
“human_total_time_spent”: null




},
“confidential”: false,
“discussion_locked”: false,
“_links”: {


“self”: “http://example.com/api/v4/projects/1/issues/2”,
“notes”: “http://example.com/api/v4/projects/1/issues/2/notes”,
“award_emoji”: “http://example.com/api/v4/projects/1/issues/2/award_emoji”,
“project”: “http://example.com/api/v4/projects/1”




}







}

Note: assignee column is deprecated, now we show it as a single-sized array assignees to conform to the GitLab EE API.

Note: The closed_by attribute was [introduced in GitLab 10.6][ce-17042]. This value will only be present for issues which were closed after GitLab 10.6 and when the user account that closed the issue still exists.

## New issue

Creates a new project issue.

`
POST /projects/:id/issues
`


Attribute                                 | Type           | Required | Description  |



|-------------------------------------------|—————-|----------|————–|
| id                                      | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |
| iid                                     | integer/string | no       | The internal ID of the project’s issue (requires admin or project owner rights) |
| title                                   | string  | yes      | The title of an issue |
| description                             | string  | no       | The description of an issue  |
| confidential                            | boolean | no       | Set an issue to be confidential. Default is false.  |
| assignee_ids                            | Array[integer] | no       | The ID of the users to assign issue |
| milestone_id                            | integer | no       | The global ID of a milestone to assign issue  |
| labels                                  | string  | no       | Comma-separated label names for an issue  |
| created_at                              | string  | no       | Date time string, ISO 8601 formatted, e.g. 2016-03-11T03:45:40Z (requires admin or project owner rights) |
| due_date                                | string  | no       | Date time string in the format YEAR-MONTH-DAY, e.g. 2016-03-11 |
| merge_request_to_resolve_discussions_of | integer | no       | The IID of a merge request in which to resolve all issues. This will fill the issue with a default description and mark all discussions as resolved. When passing a description or title, these values will take precedence over the default values.|
| discussion_to_resolve                   | string  | no       | The ID of a discussion to resolve. This will fill in the issue with a default description and mark the discussion as resolved. Use in combination with merge_request_to_resolve_discussions_of. |

`bash
curl --request POST --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/4/issues?title=Issues%20with%20auth&labels=bug
`

Example response:

```json
{

“project_id” : 4,
“id” : 84,
“created_at” : “2016-01-07T12:44:33.959Z”,
“iid” : 14,
“title” : “Issues with auth”,
“state” : “opened”,
“assignees” : [],
“assignee” : null,
“labels” : [

“bug”

],
“author” : {

“name” : “Alexandra Bashirian”,
“avatar_url” : null,
“state” : “active”,
“web_url” : “https://gitlab.example.com/eileen.lowe”,
“id” : 18,
“username” : “eileen.lowe”

},
“description” : null,
“updated_at” : “2016-01-07T12:44:33.959Z”,
“closed_at” : null,
“closed_by” : null,
“milestone” : null,
“subscribed” : true,
“user_notes_count”: 0,
“due_date”: null,
“web_url”: “http://example.com/example/example/issues/14”,
“time_stats”: {

“time_estimate”: 0,
“total_time_spent”: 0,
“human_time_estimate”: null,
“human_total_time_spent”: null

},
“confidential”: false,
“discussion_locked”: false,
“_links”: {

“self”: “http://example.com/api/v4/projects/1/issues/2”,
“notes”: “http://example.com/api/v4/projects/1/issues/2/notes”,
“award_emoji”: “http://example.com/api/v4/projects/1/issues/2/award_emoji”,
“project”: “http://example.com/api/v4/projects/1”

}

}

Note: assignee column is deprecated, now we show it as a single-sized array assignees to conform to the GitLab EE API.

Note: The closed_by attribute was [introduced in GitLab 10.6][ce-17042]. This value will only be present for issues which were closed after GitLab 10.6 and when the user account that closed the issue still exists.

Edit issue

Updates an existing project issue. This call is also used to mark an issue as
closed.

`
PUT /projects/:id/issues/:issue_iid
`

Attribute | Type | Required | Description |

|----------------|———|----------|————————————————————————————————————|
| id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |
| issue_iid | integer | yes | The internal ID of a project’s issue |
| title | string | no | The title of an issue |
| description | string | no | The description of an issue |
| confidential | boolean | no | Updates an issue to be confidential |
| assignee_ids | Array[integer] | no | The ID of the user(s) to assign the issue to. Set to 0 or provide an empty value to unassign all assignees. |
| milestone_id | integer | no | The global ID of a milestone to assign the issue to. Set to 0 or provide an empty value to unassign a milestone.|
| labels | string | no | Comma-separated label names for an issue. Set to an empty string to unassign all labels. |
| state_event | string | no | The state event of an issue. Set close to close the issue and reopen to reopen it |
| updated_at | string | no | Date time string, ISO 8601 formatted, e.g. 2016-03-11T03:45:40Z (requires admin or project owner rights) |
| due_date | string | no | Date time string in the format YEAR-MONTH-DAY, e.g. 2016-03-11 |
| discussion_locked | boolean | no | Flag indicating if the issue’s discussion is locked. If the discussion is locked only project members can add or edit comments. |

`bash
curl --request PUT --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/4/issues/85?state_event=close
`

Example response:

```json
{


“created_at” : “2016-01-07T12:46:01.410Z”,
“author” : {


“name” : “Alexandra Bashirian”,
“avatar_url” : null,
“username” : “eileen.lowe”,
“id” : 18,
“state” : “active”,
“web_url” : “https://gitlab.example.com/eileen.lowe”




},
“state” : “closed”,
“title” : “Issues with auth”,
“project_id” : 4,
“description” : null,
“updated_at” : “2016-01-07T12:55:16.213Z”,
“closed_at” : “2016-01-08T12:55:16.213Z”,
“closed_by” : {



“state” : “active”,
“web_url” : “https://gitlab.example.com/root”,
“avatar_url” : null,
“username” : “root”,
“id” : 1,
“name” : “Administrator”




},




“iid” : 15,
“labels” : [


“bug”




],
“id” : 85,
“assignees” : [],
“assignee” : null,
“milestone” : null,
“subscribed” : true,
“user_notes_count”: 0,
“due_date”: “2016-07-22”,
“web_url”: “http://example.com/example/example/issues/15”,
“time_stats”: {


“time_estimate”: 0,
“total_time_spent”: 0,
“human_time_estimate”: null,
“human_total_time_spent”: null




},
“confidential”: false,
“discussion_locked”: false,
“_links”: {


“self”: “http://example.com/api/v4/projects/1/issues/2”,
“notes”: “http://example.com/api/v4/projects/1/issues/2/notes”,
“award_emoji”: “http://example.com/api/v4/projects/1/issues/2/award_emoji”,
“project”: “http://example.com/api/v4/projects/1”




}







}

Note: assignee column is deprecated, now we show it as a single-sized array assignees to conform to the GitLab EE API.

Note: The closed_by attribute was [introduced in GitLab 10.6][ce-17042]. This value will only be present for issues which were closed after GitLab 10.6 and when the user account that closed the issue still exists.

## Delete an issue

Only for admins and project owners. Soft deletes the issue in question.

`
DELETE /projects/:id/issues/:issue_iid
`


Attribute   | Type    | Required | Description                          |



|-------------|———|----------|————————————–|
| id        | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user  |
| issue_iid | integer | yes      | The internal ID of a project’s issue |

`bash
curl --request DELETE --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/4/issues/85
`

## Move an issue

Moves an issue to a different project. If the target project
equals the source project or the user has insufficient permissions to move an
issue, error 400 together with an explaining error message is returned.

If a given label and/or milestone with the same name also exists in the target
project, it will then be assigned to the issue that is being moved.

`
POST /projects/:id/issues/:issue_iid/move
`


Attribute       | Type    | Required | Description                          |



|-----------------|———|----------|————————————–|
| id            | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user  |
| issue_iid     | integer | yes      | The internal ID of a project’s issue |
| to_project_id | integer | yes      | The ID of the new project            |

`bash
curl --request POST --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" --data '{"to_project_id": 5}' https://gitlab.example.com/api/v4/projects/4/issues/85/move
`

Example response:

```json
{

“id”: 92,
“iid”: 11,
“project_id”: 5,
“title”: “Sit voluptas tempora quisquam aut doloribus et.”,
“description”: “Repellat voluptas quibusdam voluptatem exercitationem.”,
“state”: “opened”,
“created_at”: “2016-04-05T21:41:45.652Z”,
“updated_at”: “2016-04-07T12:20:17.596Z”,
“closed_at”: null,
“closed_by”: null,
“labels”: [],
“milestone”: null,
“assignees”: [{

“name”: “Miss Monserrate Beier”,
“username”: “axel.block”,
“id”: 12,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/46f6f7dc858ada7be1853f7fb96e81da?s=80&d=identicon”,
“web_url”: “https://gitlab.example.com/axel.block”

}],
“assignee”: {

“name”: “Miss Monserrate Beier”,
“username”: “axel.block”,
“id”: 12,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/46f6f7dc858ada7be1853f7fb96e81da?s=80&d=identicon”,
“web_url”: “https://gitlab.example.com/axel.block”

},
“author”: {

“name”: “Kris Steuber”,
“username”: “solon.cremin”,
“id”: 10,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/7a190fecbaa68212a4b68aeb6e3acd10?s=80&d=identicon”,
“web_url”: “https://gitlab.example.com/solon.cremin”

},
“due_date”: null,
“web_url”: “http://example.com/example/example/issues/11”,
“time_stats”: {

“time_estimate”: 0,
“total_time_spent”: 0,
“human_time_estimate”: null,
“human_total_time_spent”: null

},
“confidential”: false,
“discussion_locked”: false,
“_links”: {

“self”: “http://example.com/api/v4/projects/1/issues/2”,
“notes”: “http://example.com/api/v4/projects/1/issues/2/notes”,
“award_emoji”: “http://example.com/api/v4/projects/1/issues/2/award_emoji”,
“project”: “http://example.com/api/v4/projects/1”

}

}

Note: assignee column is deprecated, now we show it as a single-sized array assignees to conform to the GitLab EE API.

Note: The closed_by attribute was [introduced in GitLab 10.6][ce-17042]. This value will only be present for issues which were closed after GitLab 10.6 and when the user account that closed the issue still exists.

Subscribe to an issue

Subscribes the authenticated user to an issue to receive notifications.
If the user is already subscribed to the issue, the status code 304
is returned.

`
POST /projects/:id/issues/:issue_iid/subscribe
`

Attribute | Type | Required | Description |

|-------------|———|----------|————————————–|
| id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |
| issue_iid | integer | yes | The internal ID of a project’s issue |

`bash
curl --request POST --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/5/issues/93/subscribe
`

Example response:

```json
{


“id”: 92,
“iid”: 11,
“project_id”: 5,
“title”: “Sit voluptas tempora quisquam aut doloribus et.”,
“description”: “Repellat voluptas quibusdam voluptatem exercitationem.”,
“state”: “opened”,
“created_at”: “2016-04-05T21:41:45.652Z”,
“updated_at”: “2016-04-07T12:20:17.596Z”,
“closed_at”: null,
“closed_by”: null,
“labels”: [],
“milestone”: null,
“assignees”: [{


“name”: “Miss Monserrate Beier”,
“username”: “axel.block”,
“id”: 12,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/46f6f7dc858ada7be1853f7fb96e81da?s=80&d=identicon”,
“web_url”: “https://gitlab.example.com/axel.block”




}],
“assignee”: {


“name”: “Miss Monserrate Beier”,
“username”: “axel.block”,
“id”: 12,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/46f6f7dc858ada7be1853f7fb96e81da?s=80&d=identicon”,
“web_url”: “https://gitlab.example.com/axel.block”




},
“author”: {


“name”: “Kris Steuber”,
“username”: “solon.cremin”,
“id”: 10,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/7a190fecbaa68212a4b68aeb6e3acd10?s=80&d=identicon”,
“web_url”: “https://gitlab.example.com/solon.cremin”




},
“due_date”: null,
“web_url”: “http://example.com/example/example/issues/11”,
“time_stats”: {


“time_estimate”: 0,
“total_time_spent”: 0,
“human_time_estimate”: null,
“human_total_time_spent”: null




},
“confidential”: false,
“discussion_locked”: false,
“_links”: {


“self”: “http://example.com/api/v4/projects/1/issues/2”,
“notes”: “http://example.com/api/v4/projects/1/issues/2/notes”,
“award_emoji”: “http://example.com/api/v4/projects/1/issues/2/award_emoji”,
“project”: “http://example.com/api/v4/projects/1”




}







}

Note: assignee column is deprecated, now we show it as a single-sized array assignees to conform to the GitLab EE API.

Note: The closed_by attribute was [introduced in GitLab 10.6][ce-17042]. This value will only be present for issues which were closed after GitLab 10.6 and when the user account that closed the issue still exists.

## Unsubscribe from an issue

Unsubscribes the authenticated user from the issue to not receive notifications
from it. If the user is not subscribed to the issue, the
status code 304 is returned.

`
POST /projects/:id/issues/:issue_iid/unsubscribe
`


Attribute   | Type    | Required | Description                          |



|-------------|———|----------|————————————–|
| id        | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user  |
| issue_iid | integer | yes      | The internal ID of a project’s issue |

`bash
curl --request POST --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/5/issues/93/unsubscribe
`

Example response:

```json
{

“id”: 93,
“iid”: 12,
“project_id”: 5,
“title”: “Incidunt et rerum ea expedita iure quibusdam.”,
“description”: “Et cumque architecto sed aut ipsam.”,
“state”: “opened”,
“created_at”: “2016-04-05T21:41:45.217Z”,
“updated_at”: “2016-04-07T13:02:37.905Z”,
“labels”: [],
“milestone”: null,
“assignee”: {

“name”: “Edwardo Grady”,
“username”: “keyon”,
“id”: 21,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/3e6f06a86cf27fa8b56f3f74f7615987?s=80&d=identicon”,
“web_url”: “https://gitlab.example.com/keyon”

},
“closed_at”: null,
“closed_by”: null,
“author”: {

“name”: “Vivian Hermann”,
“username”: “orville”,
“id”: 11,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/5224fd70153710e92fb8bcf79ac29d67?s=80&d=identicon”,
“web_url”: “https://gitlab.example.com/orville”

},
“subscribed”: false,
“due_date”: null,
“web_url”: “http://example.com/example/example/issues/12”,
“confidential”: false,
“discussion_locked”: false

}

Create a todo

Manually creates a todo for the current user on an issue. If
there already exists a todo for the user on that issue, status code 304 is
returned.

`
POST /projects/:id/issues/:issue_iid/todo
`

Attribute | Type | Required | Description |

|-------------|———|----------|————————————–|
| id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |
| issue_iid | integer | yes | The internal ID of a project’s issue |

`bash
curl --request POST --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/5/issues/93/todo
`

Example response:

```json
{


“id”: 112,
“project”: {


“id”: 5,
“name”: “Gitlab Ci”,
“name_with_namespace”: “Gitlab Org / Gitlab Ci”,
“path”: “gitlab-ci”,
“path_with_namespace”: “gitlab-org/gitlab-ci”




},
“author”: {


“name”: “Administrator”,
“username”: “root”,
“id”: 1,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”,
“web_url”: “https://gitlab.example.com/root”




},
“action_name”: “marked”,
“target_type”: “Issue”,
“target”: {


“id”: 93,
“iid”: 10,
“project_id”: 5,
“title”: “Vel voluptas atque dicta mollitia adipisci qui at.”,
“description”: “Tempora laboriosam sint magni sed voluptas similique.”,
“state”: “closed”,
“created_at”: “2016-06-17T07:47:39.486Z”,
“updated_at”: “2016-07-01T11:09:13.998Z”,
“labels”: [],
“milestone”: {


“id”: 26,
“iid”: 1,
“project_id”: 5,
“title”: “v0.0”,
“description”: “Accusantium nostrum rerum quae quia quis nesciunt suscipit id.”,
“state”: “closed”,
“created_at”: “2016-06-17T07:47:33.832Z”,
“updated_at”: “2016-06-17T07:47:33.832Z”,
“due_date”: null




},
“assignees”: [{


“name”: “Jarret O’Keefe”,
“username”: “francisca”,
“id”: 14,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/a7fa515d53450023c83d62986d0658a8?s=80&d=identicon”,
“web_url”: “https://gitlab.example.com/francisca”




}],
“assignee”: {


“name”: “Jarret O’Keefe”,
“username”: “francisca”,
“id”: 14,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/a7fa515d53450023c83d62986d0658a8?s=80&d=identicon”,
“web_url”: “https://gitlab.example.com/francisca”




},
“author”: {


“name”: “Maxie Medhurst”,
“username”: “craig_rutherford”,
“id”: 12,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/a0d477b3ea21970ce6ffcbb817b0b435?s=80&d=identicon”,
“web_url”: “https://gitlab.example.com/craig_rutherford”




},
“subscribed”: true,
“user_notes_count”: 7,
“upvotes”: 0,
“downvotes”: 0,
“due_date”: null,
“web_url”: “http://example.com/example/example/issues/110”,
“confidential”: false,
“discussion_locked”: false




},
“target_url”: “https://gitlab.example.com/gitlab-org/gitlab-ci/issues/10”,
“body”: “Vel voluptas atque dicta mollitia adipisci qui at.”,
“state”: “pending”,
“created_at”: “2016-07-01T11:09:13.992Z”







}

Note: assignee column is deprecated, now we show it as a single-sized array assignees to conform to the GitLab EE API.

Note: The closed_by attribute was [introduced in GitLab 10.6][ce-17042]. This value will only be present for issues which were closed after GitLab 10.6 and when the user account that closed the issue still exists.

## Set a time estimate for an issue

Sets an estimated time of work for this issue.

`
POST /projects/:id/issues/:issue_iid/time_estimate
`


Attribute   | Type    | Required | Description                              |



|-------------|———|----------|——————————————|
| id        | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user      |
| issue_iid | integer | yes      | The internal ID of a project’s issue     |
| duration  | string  | yes      | The duration in human format. e.g: 3h30m |

`bash
curl --request POST --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/5/issues/93/time_estimate?duration=3h30m
`

Example response:

```json
{

“human_time_estimate”: “3h 30m”,
“human_total_time_spent”: null,
“time_estimate”: 12600,
“total_time_spent”: 0

}

Reset the time estimate for an issue

Resets the estimated time for this issue to 0 seconds.

`
POST /projects/:id/issues/:issue_iid/reset_time_estimate
`

Attribute | Type | Required | Description |

|-------------|———|----------|————————————–|
| id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |
| issue_iid | integer | yes | The internal ID of a project’s issue |

`bash
curl --request POST --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/5/issues/93/reset_time_estimate
`

Example response:

```json
{


“human_time_estimate”: null,
“human_total_time_spent”: null,
“time_estimate”: 0,
“total_time_spent”: 0







}

## Add spent time for an issue

Adds spent time for this issue

`
POST /projects/:id/issues/:issue_iid/add_spent_time
`


Attribute   | Type    | Required | Description                              |



|-------------|———|----------|——————————————|
| id        | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user      |
| issue_iid | integer | yes      | The internal ID of a project’s issue     |
| duration  | string  | yes      | The duration in human format. e.g: 3h30m |

`bash
curl --request POST --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/5/issues/93/add_spent_time?duration=1h
`

Example response:

```json
{

“human_time_estimate”: null,
“human_total_time_spent”: “1h”,
“time_estimate”: 0,
“total_time_spent”: 3600

}

Reset spent time for an issue

Resets the total spent time for this issue to 0 seconds.

`
POST /projects/:id/issues/:issue_iid/reset_spent_time
`

Attribute | Type | Required | Description |

|-------------|———|----------|————————————–|
| id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |
| issue_iid | integer | yes | The internal ID of a project’s issue |

`bash
curl --request POST --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/5/issues/93/reset_spent_time
`

Example response:

```json
{


“human_time_estimate”: null,
“human_total_time_spent”: null,
“time_estimate”: 0,
“total_time_spent”: 0







}

## Get time tracking stats

`
GET /projects/:id/issues/:issue_iid/time_stats
`


Attribute   | Type    | Required | Description                          |



|-------------|———|----------|————————————–|
| id        | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user  |
| issue_iid | integer | yes      | The internal ID of a project’s issue |

`bash
curl --request GET --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/5/issues/93/time_stats
`

Example response:

```json
{

“human_time_estimate”: “2h”,
“human_total_time_spent”: “1h”,
“time_estimate”: 7200,
“total_time_spent”: 3600

}

List merge requests that will close issue on merge

Get all the merge requests that will close issue when merged.

`
GET /projects/:id/issues/:issue_iid/closed_by
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer | yes | The ID of a project |

issue_iid | integer | yes | The internal ID of a project issue |

`bash
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/1/issues/11/closed_by
`

Example response:

```json
[



	{
	“id”: 6471,
“iid”: 6432,
“project_id”: 1,
“title”: “add a test for cgi lexer options”,
“description”: “closes #11”,
“state”: “opened”,
“created_at”: “2017-04-06T18:33:34.168Z”,
“updated_at”: “2017-04-09T20:10:24.983Z”,
“target_branch”: “master”,
“source_branch”: “feature.custom-highlighting”,
“upvotes”: 0,
“downvotes”: 0,
“author”: {


“name”: “Administrator”,
“username”: “root”,
“id”: 1,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”,
“web_url”: “https://gitlab.example.com/root”




},
“assignee”: null,
“source_project_id”: 1,
“target_project_id”: 1,
“closed_at”: null,
“closed_by”: null,
“labels”: [],
“work_in_progress”: false,
“milestone”: null,
“merge_when_pipeline_succeeds”: false,
“merge_status”: “unchecked”,
“sha”: “5a62481d563af92b8e32d735f2fa63b94e806835”,
“merge_commit_sha”: null,
“user_notes_count”: 1,
“should_remove_source_branch”: null,
“force_remove_source_branch”: false,
“web_url”: “https://gitlab.example.com/gitlab-org/gitlab-test/merge_requests/6432”,
“time_stats”: {


“time_estimate”: 0,
“total_time_spent”: 0,
“human_time_estimate”: null,
“human_total_time_spent”: null




}





}







]

## Participants on issues

`
GET /projects/:id/issues/:issue_iid/participants
`


Attribute   | Type    | Required | Description                          |



|-------------|———|----------|————————————–|
| id        | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user  |
| issue_iid | integer | yes      | The internal ID of a project’s issue |

`bash
curl --request GET --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/5/issues/93/participants
`

Example response:

```json
[

	{
	“id”: 1,
“name”: “John Doe1”,
“username”: “user1”,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/c922747a93b40d1ea88262bf1aebee62?s=80&d=identicon”,
“web_url”: “http://localhost/user1”

},
{

“id”: 5,
“name”: “John Doe5”,
“username”: “user5”,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/4aea8cf834ed91844a2da4ff7ae6b491?s=80&d=identicon”,
“web_url”: “http://localhost/user5”

}

]

Comments on issues

Comments are done via the [notes](notes.md) resource.

Get user agent details

Available only for admins.

`
GET /projects/:id/issues/:issue_iid/user_agent_detail
`

Attribute | Type | Required | Description |

|-------------|———|----------|————————————–|
| id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |
| issue_iid | integer | yes | The internal ID of a project’s issue |

`bash
curl --request GET --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/5/issues/93/user_agent_detail
`

Example response:

```json
{


“user_agent”: “AppleWebKit/537.36”,
“ip_address”: “127.0.0.1”,
“akismet_submitted”: false







}

[ce-13004]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/13004
[ce-14016]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/14016
[ce-17042]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/17042
[ce-18935]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/18935





            

          

      

      

    

  

    
      
          
            
  # Jobs API

## List project jobs

Get a list of jobs in a project.

`
GET /projects/:id/jobs
`


Attribute | Type    | Required | Description         |



|-----------|———|----------|———————|
| id      | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |
| scope   | string or array of strings | no | The scope of jobs to show, one or array of: created, pending, running, failed, success, canceled, skipped, manual; showing all jobs if none provided |

`
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" 'https://gitlab.example.com/api/v4/projects/1/jobs?scope[]=pending&scope[]=running'
`

Example of response

```json
[

	{
	
	“commit”: {
	“author_email”: “admin@example.com”,
“author_name”: “Administrator”,
“created_at”: “2015-12-24T16:51:14.000+01:00”,
“id”: “0ff3ae198f8601a285adcf5c0fff204ee6fba5fd”,
“message”: “Test the CI integration.”,
“short_id”: “0ff3ae19”,
“title”: “Test the CI integration.”

},
“coverage”: null,
“created_at”: “2015-12-24T15:51:21.727Z”,
“artifacts_file”: null,
“finished_at”: “2015-12-24T17:54:24.921Z”,
“artifacts_expire_at”: “2016-01-23T17:54:24.921Z”,
“id”: 6,
“name”: “rspec:other”,
“pipeline”: {

“id”: 6,
“ref”: “master”,
“sha”: “0ff3ae198f8601a285adcf5c0fff204ee6fba5fd”,
“status”: “pending”

},
“ref”: “master”,
“runner”: null,
“stage”: “test”,
“started_at”: “2015-12-24T17:54:24.729Z”,
“status”: “failed”,
“tag”: false,
“web_url”: “https://example.com/foo/bar/-/jobs/6”,
“user”: {

“avatar_url”: “http://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”,
“bio”: null,
“created_at”: “2015-12-21T13:14:24.077Z”,
“id”: 1,
“linkedin”: “”,
“name”: “Administrator”,
“skype”: “”,
“state”: “active”,
“twitter”: “”,
“username”: “root”,
“web_url”: “http://gitlab.dev/root”,
“website_url”: “”

}

},
{

	“commit”: {
	“author_email”: “admin@example.com”,
“author_name”: “Administrator”,
“created_at”: “2015-12-24T16:51:14.000+01:00”,
“id”: “0ff3ae198f8601a285adcf5c0fff204ee6fba5fd”,
“message”: “Test the CI integration.”,
“short_id”: “0ff3ae19”,
“title”: “Test the CI integration.”

},
“coverage”: null,
“created_at”: “2015-12-24T15:51:21.802Z”,
“artifacts_file”: {

“filename”: “artifacts.zip”,
“size”: 1000

},
“finished_at”: “2015-12-24T17:54:27.895Z”,
“artifacts_expire_at”: “2016-01-23T17:54:27.895Z”,
“id”: 7,
“name”: “teaspoon”,
“pipeline”: {

“id”: 6,
“ref”: “master”,
“sha”: “0ff3ae198f8601a285adcf5c0fff204ee6fba5fd”,
“status”: “pending”

},
“ref”: “master”,
“runner”: null,
“stage”: “test”,
“started_at”: “2015-12-24T17:54:27.722Z”,
“status”: “failed”,
“tag”: false,
“web_url”: “https://example.com/foo/bar/-/jobs/7”,
“user”: {

“avatar_url”: “http://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”,
“bio”: null,
“created_at”: “2015-12-21T13:14:24.077Z”,
“id”: 1,
“linkedin”: “”,
“name”: “Administrator”,
“skype”: “”,
“state”: “active”,
“twitter”: “”,
“username”: “root”,
“web_url”: “http://gitlab.dev/root”,
“website_url”: “”

}

}

]

List pipeline jobs

Get a list of jobs for a pipeline.

`
GET /projects/:id/pipelines/:pipeline_id/jobs
`

Attribute | Type | Required | Description |

|---------------|——————————–|----------|———————-|
| id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |
| pipeline_id | integer | yes | The ID of a pipeline |
| scope | string or array of strings | no | The scope of jobs to show, one or array of: created, pending, running, failed, success, canceled, skipped, manual; showing all jobs if none provided |

`
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" 'https://gitlab.example.com/api/v4/projects/1/pipelines/6/jobs?scope[]=pending&scope[]=running'
`

Example of response

```json
[



	{
	
	“commit”: {
	“author_email”: “admin@example.com”,
“author_name”: “Administrator”,
“created_at”: “2015-12-24T16:51:14.000+01:00”,
“id”: “0ff3ae198f8601a285adcf5c0fff204ee6fba5fd”,
“message”: “Test the CI integration.”,
“short_id”: “0ff3ae19”,
“title”: “Test the CI integration.”





},
“coverage”: null,
“created_at”: “2015-12-24T15:51:21.727Z”,
“artifacts_file”: null,
“finished_at”: “2015-12-24T17:54:24.921Z”,
“artifacts_expire_at”: “2016-01-23T17:54:24.921Z”,
“id”: 6,
“name”: “rspec:other”,
“pipeline”: {


“id”: 6,
“ref”: “master”,
“sha”: “0ff3ae198f8601a285adcf5c0fff204ee6fba5fd”,
“status”: “pending”




},
“ref”: “master”,
“runner”: null,
“stage”: “test”,
“started_at”: “2015-12-24T17:54:24.729Z”,
“status”: “failed”,
“tag”: false,
“web_url”: “https://example.com/foo/bar/-/jobs/6”,
“user”: {


“avatar_url”: “http://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”,
“bio”: null,
“created_at”: “2015-12-21T13:14:24.077Z”,
“id”: 1,
“linkedin”: “”,
“name”: “Administrator”,
“skype”: “”,
“state”: “active”,
“twitter”: “”,
“username”: “root”,
“web_url”: “http://gitlab.dev/root”,
“website_url”: “”




}





},
{



	“commit”: {
	“author_email”: “admin@example.com”,
“author_name”: “Administrator”,
“created_at”: “2015-12-24T16:51:14.000+01:00”,
“id”: “0ff3ae198f8601a285adcf5c0fff204ee6fba5fd”,
“message”: “Test the CI integration.”,
“short_id”: “0ff3ae19”,
“title”: “Test the CI integration.”





},
“coverage”: null,
“created_at”: “2015-12-24T15:51:21.802Z”,
“artifacts_file”: {


“filename”: “artifacts.zip”,
“size”: 1000




},
“finished_at”: “2015-12-24T17:54:27.895Z”,
“artifacts_expire_at”: “2016-01-23T17:54:27.895Z”,
“id”: 7,
“name”: “teaspoon”,
“pipeline”: {


“id”: 6,
“ref”: “master”,
“sha”: “0ff3ae198f8601a285adcf5c0fff204ee6fba5fd”,
“status”: “pending”




},
“ref”: “master”,
“runner”: null,
“stage”: “test”,
“started_at”: “2015-12-24T17:54:27.722Z”,
“status”: “failed”,
“tag”: false,
“web_url”: “https://example.com/foo/bar/-/jobs/7”,
“user”: {


“avatar_url”: “http://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”,
“bio”: null,
“created_at”: “2015-12-21T13:14:24.077Z”,
“id”: 1,
“linkedin”: “”,
“name”: “Administrator”,
“skype”: “”,
“state”: “active”,
“twitter”: “”,
“username”: “root”,
“web_url”: “http://gitlab.dev/root”,
“website_url”: “”




}




}







]

## Get a single job

Get a single job of a project

`
GET /projects/:id/jobs/:job_id
`


Attribute  | Type    | Required | Description         |



|------------|———|----------|———————|
| id       | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |
| job_id | integer | yes      | The ID of a job   |

`
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" "https://gitlab.example.com/api/v4/projects/1/jobs/8"
`

Example of response

```json
{

	“commit”: {
	“author_email”: “admin@example.com”,
“author_name”: “Administrator”,
“created_at”: “2015-12-24T16:51:14.000+01:00”,
“id”: “0ff3ae198f8601a285adcf5c0fff204ee6fba5fd”,
“message”: “Test the CI integration.”,
“short_id”: “0ff3ae19”,
“title”: “Test the CI integration.”

},
“coverage”: null,
“created_at”: “2015-12-24T15:51:21.880Z”,
“artifacts_file”: null,
“finished_at”: “2015-12-24T17:54:31.198Z”,
“artifacts_expire_at”: “2016-01-23T17:54:31.198Z”,
“id”: 8,
“name”: “rubocop”,
“pipeline”: {

“id”: 6,
“ref”: “master”,
“sha”: “0ff3ae198f8601a285adcf5c0fff204ee6fba5fd”,
“status”: “pending”

},
“ref”: “master”,
“runner”: null,
“stage”: “test”,
“started_at”: “2015-12-24T17:54:30.733Z”,
“status”: “failed”,
“tag”: false,
“web_url”: “https://example.com/foo/bar/-/jobs/8”,
“user”: {

“avatar_url”: “http://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”,
“bio”: null,
“created_at”: “2015-12-21T13:14:24.077Z”,
“id”: 1,
“linkedin”: “”,
“name”: “Administrator”,
“skype”: “”,
“state”: “active”,
“twitter”: “”,
“username”: “root”,
“web_url”: “http://gitlab.dev/root”,
“website_url”: “”

}

}

Get job artifacts

> Notes:
- [Introduced][ce-2893] in GitLab 8.5.

Get job artifacts of a project.

`
GET /projects/:id/jobs/:job_id/artifacts
`

Attribute | Type | Required | Description |

|------------|———|----------|———————|
| id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |
| job_id | integer | yes | The ID of a job |

Example requests:

`
curl --location --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" "https://gitlab.example.com/api/v4/projects/1/jobs/8/artifacts"
`

Response:

Status | Description |

|-----------|———————————|
| 200 | Serves the artifacts file |
| 404 | Build not found or no artifacts |

[ce-2893]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/2893

Download the artifacts archive

> Notes:
- [Introduced][ce-5347] in GitLab 8.10.

Download the artifacts archive from the given reference name and job provided the
job finished successfully.

`
GET /projects/:id/jobs/artifacts/:ref_name/download?job=name
`

Parameters

Attribute | Type | Required | Description |

|-------------|———|----------|————————– |
| id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |
| ref_name | string | yes | The ref from a repository (can only be branch or tag name, not HEAD or SHA) |
| job | string | yes | The name of the job |

Example requests:

`
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" "https://gitlab.example.com/api/v4/projects/1/jobs/artifacts/master/download?job=test"
`

Example response:

Status | Description |

|-----------|———————————|
| 200 | Serves the artifacts file |
| 404 | Build not found or no artifacts |

[ce-5347]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/5347

Download a single artifact file

> Introduced in GitLab 10.0

Download a single artifact file from within the job’s artifacts archive.

Only a single file is going to be extracted from the archive and streamed to a client.

`
GET /projects/:id/jobs/:job_id/artifacts/*artifact_path
`

Parameters

Attribute | Type | Required | Description |

|-----------------|———|----------|————————– |
| id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |
| job_id ` | integer | yes | The unique job identifier |
| `artifact_path | string | yes | Path to a file inside the artifacts archive |

Example request:

`
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" "https://gitlab.example.com/api/v4/projects/1/jobs/5/artifacts/some/release/file.pdf"
`

Example response:

Status | Description |

|-----------|————————————–|
| 200 | Sends a single artifact file |
| 400 | Invalid path provided |
| 404 | Build not found or no file/artifacts |

Get a trace file

Get a trace of a specific job of a project

`
GET /projects/:id/jobs/:job_id/trace
`

Attribute | Type | Required | Description |

|------------|———|----------|———————|
| id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |
| job_id | integer | yes | The ID of a job |

`
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" "https://gitlab.example.com/api/v4/projects/1/jobs/8/trace"
`

Response:

Status | Description |

|-----------|———————————–|
| 200 | Serves the trace file |
| 404 | Build not found or no trace file |

Cancel a job

Cancel a single job of a project

`
POST /projects/:id/jobs/:job_id/cancel
`

Attribute | Type | Required | Description |

|------------|———|----------|———————|
| id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |
| job_id | integer | yes | The ID of a job |

`
curl --request POST --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" "https://gitlab.example.com/api/v4/projects/1/jobs/1/cancel"
`

Example of response

```json
{



	“commit”: {
	“author_email”: “admin@example.com”,
“author_name”: “Administrator”,
“created_at”: “2015-12-24T16:51:14.000+01:00”,
“id”: “0ff3ae198f8601a285adcf5c0fff204ee6fba5fd”,
“message”: “Test the CI integration.”,
“short_id”: “0ff3ae19”,
“title”: “Test the CI integration.”





},
“coverage”: null,
“created_at”: “2016-01-11T10:13:33.506Z”,
“artifacts_file”: null,
“finished_at”: “2016-01-11T10:14:09.526Z”,
“id”: 42,
“name”: “rubocop”,
“ref”: “master”,
“runner”: null,
“stage”: “test”,
“started_at”: null,
“status”: “canceled”,
“tag”: false,
“web_url”: “https://example.com/foo/bar/-/jobs/42”,
“user”: null







}

## Retry a job

Retry a single job of a project

`
POST /projects/:id/jobs/:job_id/retry
`


Attribute  | Type    | Required | Description         |



|------------|———|----------|———————|
| id       | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |
| job_id   | integer | yes      | The ID of a job     |

`
curl --request POST --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" "https://gitlab.example.com/api/v4/projects/1/jobs/1/retry"
`

Example of response

```json
{

	“commit”: {
	“author_email”: “admin@example.com”,
“author_name”: “Administrator”,
“created_at”: “2015-12-24T16:51:14.000+01:00”,
“id”: “0ff3ae198f8601a285adcf5c0fff204ee6fba5fd”,
“message”: “Test the CI integration.”,
“short_id”: “0ff3ae19”,
“title”: “Test the CI integration.”

},
“coverage”: null,
“created_at”: “2016-01-11T10:13:33.506Z”,
“artifacts_file”: null,
“finished_at”: null,
“id”: 42,
“name”: “rubocop”,
“ref”: “master”,
“runner”: null,
“stage”: “test”,
“started_at”: null,
“status”: “pending”,
“tag”: false,
“web_url”: “https://example.com/foo/bar/-/jobs/42”,
“user”: null

}

Erase a job

Erase a single job of a project (remove job artifacts and a job trace)

`
POST /projects/:id/jobs/:job_id/erase
`

Parameters

Attribute | Type | Required | Description |

|-------------|———|----------|———————|
| id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |
| job_id | integer | yes | The ID of a job |

Example of request

`
curl --request POST --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" "https://gitlab.example.com/api/v4/projects/1/jobs/1/erase"
`

Example of response

```json
{



	“commit”: {
	“author_email”: “admin@example.com”,
“author_name”: “Administrator”,
“created_at”: “2015-12-24T16:51:14.000+01:00”,
“id”: “0ff3ae198f8601a285adcf5c0fff204ee6fba5fd”,
“message”: “Test the CI integration.”,
“short_id”: “0ff3ae19”,
“title”: “Test the CI integration.”





},
“coverage”: null,
“download_url”: null,
“id”: 42,
“name”: “rubocop”,
“ref”: “master”,
“runner”: null,
“stage”: “test”,
“created_at”: “2016-01-11T10:13:33.506Z”,
“started_at”: “2016-01-11T10:13:33.506Z”,
“finished_at”: “2016-01-11T10:15:10.506Z”,
“status”: “failed”,
“tag”: false,
“web_url”: “https://example.com/foo/bar/-/jobs/42”,
“user”: null







}

## Keep artifacts

Prevents artifacts from being deleted when expiration is set.

`
POST /projects/:id/jobs/:job_id/artifacts/keep
`

Parameters


Attribute   | Type    | Required | Description         |



|-------------|———|----------|———————|
| id        | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |
| job_id    | integer | yes      | The ID of a job     |

Example request:

`
curl --request POST --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" "https://gitlab.example.com/api/v4/projects/1/jobs/1/artifacts/keep"
`

Example response:

```json
{

	“commit”: {
	“author_email”: “admin@example.com”,
“author_name”: “Administrator”,
“created_at”: “2015-12-24T16:51:14.000+01:00”,
“id”: “0ff3ae198f8601a285adcf5c0fff204ee6fba5fd”,
“message”: “Test the CI integration.”,
“short_id”: “0ff3ae19”,
“title”: “Test the CI integration.”

},
“coverage”: null,
“download_url”: null,
“id”: 42,
“name”: “rubocop”,
“ref”: “master”,
“runner”: null,
“stage”: “test”,
“created_at”: “2016-01-11T10:13:33.506Z”,
“started_at”: “2016-01-11T10:13:33.506Z”,
“finished_at”: “2016-01-11T10:15:10.506Z”,
“status”: “failed”,
“tag”: false,
“web_url”: “https://example.com/foo/bar/-/jobs/42”,
“user”: null

}

Play a job

Triggers a manual action to start a job.

`
POST /projects/:id/jobs/:job_id/play
`

Attribute | Type | Required | Description |

|-----------|———|----------|———————|
| id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |
| job_id | integer | yes | The ID of a job |

`
curl --request POST --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" "https://gitlab.example.com/api/v4/projects/1/jobs/1/play"
`

Example of response

```json
{



	“commit”: {
	“author_email”: “admin@example.com”,
“author_name”: “Administrator”,
“created_at”: “2015-12-24T16:51:14.000+01:00”,
“id”: “0ff3ae198f8601a285adcf5c0fff204ee6fba5fd”,
“message”: “Test the CI integration.”,
“short_id”: “0ff3ae19”,
“title”: “Test the CI integration.”





},
“coverage”: null,
“created_at”: “2016-01-11T10:13:33.506Z”,
“artifacts_file”: null,
“finished_at”: null,
“id”: 42,
“name”: “rubocop”,
“ref”: “master”,
“runner”: null,
“stage”: “test”,
“started_at”: null,
“status”: “started”,
“tag”: false,
“web_url”: “https://example.com/foo/bar/-/jobs/42”,
“user”: null







}





            

          

      

      

    

  

    
      
          
            
  # Keys API

## Get SSH key with user by ID of an SSH key

Get SSH key with user by ID of an SSH key. Note only administrators can lookup SSH key with user by ID of an SSH key.

`
GET /keys/:id
`

Parameters:


	id (required) - The ID of an SSH key




```json
{

“id”: 1,
“title”: “Sample key 25”,
“key”: “ssh-rsa AAAAB3NzaC1yc2EAAAABJQAAAIEAiPWx6WM4lhHNedGfBpPJNPpZ7yKu+dnn1SJejgt1256k6YjzGGphH2TUxwKzxcKDKKezwkpfnxPkSMkuEspGRt/aZZ9wa++Oi7Qkr8prgHc4soW6NUlfDzpvZK2H5E7eQaSeP3SAwGmQKUFHCddNaP0L+hM7zhFNzjFvpaMgJw0=”,
“created_at”: “2015-09-03T07:24:44.627Z”,
“user”: {

“name”: “John Smith”,
“username”: “john_smith”,
“id”: 25,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/cfa35b8cd2ec278026357769582fa563?s=40u0026d=identicon”,
“web_url”: “http://localhost:3000/john_smith”,
“created_at”: “2015-09-03T07:24:01.670Z”,
“bio”: null,
“skype”: “”,
“linkedin”: “”,
“twitter”: “”,
“website_url”: “”,
“email”: “john@example.com”,
“theme_id”: 2,
“color_scheme_id”: 1,
“projects_limit”: 10,
“current_sign_in_at”: null,
“identities”: [],
“can_create_group”: true,
“can_create_project”: true,
“two_factor_enabled”: false

}

}

 # Labels API

List labels

Get all labels for a given project.

`
GET /projects/:id/labels
`

Attribute | Type | Required | Description |

——— | ——- | ——– | ——————— |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

`bash
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/1/labels
`

Example response:

```json
[



	{
	“id” : 1,
“name” : “bug”,
“color” : “#d9534f”,
“description”: “Bug reported by user”,
“open_issues_count”: 1,
“closed_issues_count”: 0,
“open_merge_requests_count”: 1,
“subscribed”: false,
“priority”: 10





},
{


“id” : 4,
“color” : “#d9534f”,
“name” : “confirmed”,
“description”: “Confirmed issue”,
“open_issues_count”: 2,
“closed_issues_count”: 5,
“open_merge_requests_count”: 0,
“subscribed”: false,
“priority”: null




},
{


“id” : 7,
“name” : “critical”,
“color” : “#d9534f”,
“description”: “Critical issue. Need fix ASAP”,
“open_issues_count”: 1,
“closed_issues_count”: 3,
“open_merge_requests_count”: 1,
“subscribed”: false,
“priority”: null




},
{


“id” : 8,
“name” : “documentation”,
“color” : “#f0ad4e”,
“description”: “Issue about documentation”,
“open_issues_count”: 1,
“closed_issues_count”: 0,
“open_merge_requests_count”: 2,
“subscribed”: false,
“priority”: null




},
{


“id” : 9,
“color” : “#5cb85c”,
“name” : “enhancement”,
“description”: “Enhancement proposal”,
“open_issues_count”: 1,
“closed_issues_count”: 0,
“open_merge_requests_count”: 1,
“subscribed”: true,
“priority”: null




}





]

## Create a new label

Creates a new label for the given repository with the given name and color.

`
POST /projects/:id/labels
`


Attribute     | Type    | Required | Description                  |

————- | ——- | ——– | —————————- |

id      | integer/string    | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

name        | string  | yes      | The name of the label        |

color       | string  | yes      | The color of the label given in 6-digit hex notation with leading ‘#’ sign (e.g. #FFAABB) or one of the [CSS color names](https://developer.mozilla.org/en-US/docs/Web/CSS/color_value#Color_keywords) |

description | string  | no       | The description of the label |

priority    | integer | no       | The priority of the label. Must be greater or equal than zero or null to remove the priority. |



`bash
curl --data "name=feature&color=#5843AD" --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" "https://gitlab.example.com/api/v4/projects/1/labels"
`

Example response:

```json
{

“id” : 10,
“name” : “feature”,
“color” : “#5843AD”,
“description”:null,
“open_issues_count”: 0,
“closed_issues_count”: 0,
“open_merge_requests_count”: 0,
“subscribed”: false,
“priority”: null

}

Delete a label

Deletes a label with a given name.

`
DELETE /projects/:id/labels
`

Attribute | Type | Required | Description |

——— | ——- | ——– | ——————— |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

name | string | yes | The name of the label |

`bash
curl --request DELETE --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" "https://gitlab.example.com/api/v4/projects/1/labels?name=bug"
`

Edit an existing label

Updates an existing label with new name or new color. At least one parameter
is required, to update the label.

`
PUT /projects/:id/labels
`

Attribute | Type | Required | Description |

————— | ——- | ——————————— | ——————————- |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

name | string | yes | The name of the existing label |

new_name | string | yes if color is not provided | The new name of the label |

color | string | yes if new_name is not provided | The color of the label given in 6-digit hex notation with leading ‘#’ sign (e.g. #FFAABB) or one of the [CSS color names](https://developer.mozilla.org/en-US/docs/Web/CSS/color_value#Color_keywords) |

description | string | no | The new description of the label |

priority | integer | no | The new priority of the label. Must be greater or equal than zero or null to remove the priority. |

`bash
curl --request PUT --data "name=documentation&new_name=docs&color=#8E44AD&description=Documentation" --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" "https://gitlab.example.com/api/v4/projects/1/labels"
`

Example response:

```json
{


“id” : 8,
“name” : “docs”,
“color” : “#8E44AD”,
“description”: “Documentation”,
“open_issues_count”: 1,
“closed_issues_count”: 0,
“open_merge_requests_count”: 2,
“subscribed”: false,
“priority”: null







}

## Subscribe to a label

Subscribes the authenticated user to a label to receive notifications.
If the user is already subscribed to the label, the status code 304
is returned.

`
POST /projects/:id/labels/:label_id/subscribe
`


Attribute  | Type              | Required | Description                          |

———- | —————– | ——– | ———————————— |

id      | integer/string    | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

label_id | integer or string | yes      | The ID or title of a project’s label |



`bash
curl --request POST --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/5/labels/1/subscribe
`

Example response:

```json
{

“id” : 1,
“name” : “bug”,
“color” : “#d9534f”,
“description”: “Bug reported by user”,
“open_issues_count”: 1,
“closed_issues_count”: 0,
“open_merge_requests_count”: 1,
“subscribed”: true,
“priority”: null

}

Unsubscribe from a label

Unsubscribes the authenticated user from a label to not receive notifications
from it. If the user is not subscribed to the label, the
status code 304 is returned.

`
POST /projects/:id/labels/:label_id/unsubscribe
`

Attribute | Type | Required | Description |

———- | —————– | ——– | ———————————— |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

label_id | integer or string | yes | The ID or title of a project’s label |

`bash
curl --request POST --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/5/labels/1/unsubscribe
`

 # Validate the .gitlab-ci.yml (API)

> [Introduced][ce-5953] in GitLab 8.12.

Checks if your .gitlab-ci.yml file is valid.

`
POST /lint
`

Attribute | Type | Required | Description |

———- | ——- | ——– | ——– |

content | string | yes | the .gitlab-ci.yaml content|

`bash
curl --header "Content-Type: application/json" https://gitlab.example.com/api/v4/ci/lint --data '{"content": "{ \"image\": \"ruby:2.1\", \"services\": [\"postgres\"], \"before_script\": [\"gem install bundler\", \"bundle install\", \"bundle exec rake db:create\"], \"variables\": {\"DB_NAME\": \"postgres\"}, \"types\": [\"test\", \"deploy\", \"notify\"], \"rspec\": { \"script\": \"rake spec\", \"tags\": [\"ruby\", \"postgres\"], \"only\": [\"branches\"]}}"}'
`

Be sure to copy paste the exact contents of .gitlab-ci.yml as YAML is very picky about indentation and spaces.

Example responses:

	Valid content:


```json
{


“status”: “valid”,
“errors”: []









	Invalid content:


```json
{

“status”: “invalid”,
“errors”: [

“variables config should be a hash of key value pairs”

]

	Without the content attribute:


```json
{


“error”: “content is missing”











[ce-5953]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/5953



            

          

      

      

    

  

    
      
          
            
  # Markdown API

> [Introduced][ce-18926] in GitLab 11.0.

Available only in APIv4.

## Render an arbitrary Markdown document

`
POST /api/v4/markdown
`


Attribute | Type    | Required      | Description                                |

——— | ——- | ————- | —————————————— |

text    | string  | yes           | The markdown text to render                |

gfm     | boolean | no (optional) | Render text using GitLab Flavored Markdown. Default is false |

project | string  | no (optional) | Use project as a context when creating references using GitLab Flavored Markdown. [Authentication](README.html#authentication) is required if a project is not public.  |



`bash
curl --header Content-Type:application/json --data '{"text":"Hello world! :tada:", "gfm":true, "project":"group_example/project_example"}' https://gitlab.example.com/api/v4/markdown
`

Response example:

`json
{ "html": "<p dir=\"auto\">Hello world! <gl-emoji title=\"party popper\" data-name=\"tada\" data-unicode-version=\"6.0\">🎉</gl-emoji></p>" }
`

[ce-18926]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/18926



            

          

      

      

    

  

    
      
          
            
  # Group and project members API

Valid access levels

The access levels are defined in the Gitlab::Access module. Currently, these levels are recognized:

`
10 => Guest access
20 => Reporter access
30 => Developer access
40 => Maintainer access
50 => Owner access # Only valid for groups
`

## List all members of a group or project

Gets a list of group or project members viewable by the authenticated user.

`
GET /groups/:id/members
GET /projects/:id/members
`


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id      | integer/string | yes | The ID or [URL-encoded path of the project or group](README.md#namespaced-path-encoding) owned by the authenticated user |

query   | string | no     | A query string to search for members |



`bash
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/groups/:id/members
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/:id/members
`

Example response:

```json
[

	{
	“id”: 1,
“username”: “raymond_smith”,
“name”: “Raymond Smith”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/c2525a7f58ae3776070e44c106c48e15?s=80&d=identicon”,
“web_url”: “http://192.168.1.8:3000/root”,
“expires_at”: “2012-10-22T14:13:35Z”,
“access_level”: 30

},
{

“id”: 2,
“username”: “john_doe”,
“name”: “John Doe”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/c2525a7f58ae3776070e44c106c48e15?s=80&d=identicon”,
“web_url”: “http://192.168.1.8:3000/root”,
“expires_at”: “2012-10-22T14:13:35Z”,
“access_level”: 30

}

]

List all members of a group or project including inherited members

Gets a list of group or project members viewable by the authenticated user, including inherited members through ancestor groups.

`
GET /groups/:id/members/all
GET /projects/:id/members/all
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project or group](README.md#namespaced-path-encoding) owned by the authenticated user |

query | string | no | A query string to search for members |

`bash
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/groups/:id/members/all
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/:id/members/all
`

Example response:

```json
[



	{
	“id”: 1,
“username”: “raymond_smith”,
“name”: “Raymond Smith”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/c2525a7f58ae3776070e44c106c48e15?s=80&d=identicon”,
“web_url”: “http://192.168.1.8:3000/root”,
“expires_at”: “2012-10-22T14:13:35Z”,
“access_level”: 30





},
{


“id”: 2,
“username”: “john_doe”,
“name”: “John Doe”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/c2525a7f58ae3776070e44c106c48e15?s=80&d=identicon”,
“web_url”: “http://192.168.1.8:3000/root”,
“expires_at”: “2012-10-22T14:13:35Z”,
“access_level”: 30




},
{


“id”: 3,
“username”: “foo_bar”,
“name”: “Foo bar”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/c2525a7f58ae3776070e44c106c48e15?s=80&d=identicon”,
“web_url”: “http://192.168.1.8:3000/root”,
“expires_at”: “2012-11-22T14:13:35Z”,
“access_level”: 30




}







]

## Get a member of a group or project

Gets a member of a group or project.

`
GET /groups/:id/members/:user_id
GET /projects/:id/members/:user_id
`


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id      | integer/string | yes | The ID or [URL-encoded path of the project or group](README.md#namespaced-path-encoding) owned by the authenticated user |

user_id | integer | yes   | The user ID of the member |



`bash
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/groups/:id/members/:user_id
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/:id/members/:user_id
`

Example response:

```json
{

“id”: 1,
“username”: “raymond_smith”,
“name”: “Raymond Smith”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/c2525a7f58ae3776070e44c106c48e15?s=80&d=identicon”,
“web_url”: “http://192.168.1.8:3000/root”,
“access_level”: 30,
“expires_at”: null

}

Add a member to a group or project

Adds a member to a group or project.

`
POST /groups/:id/members
POST /projects/:id/members
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project or group](README.md#namespaced-path-encoding) owned by the authenticated user |

user_id | integer | yes | The user ID of the new member |

access_level | integer | yes | A valid access level |

expires_at | string | no | A date string in the format YEAR-MONTH-DAY |

`bash
curl --request POST --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" --data "user_id=1&access_level=30" https://gitlab.example.com/api/v4/groups/:id/members
curl --request POST --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" --data "user_id=1&access_level=30" https://gitlab.example.com/api/v4/projects/:id/members
`

Example response:

```json
{


“id”: 1,
“username”: “raymond_smith”,
“name”: “Raymond Smith”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/c2525a7f58ae3776070e44c106c48e15?s=80&d=identicon”,
“web_url”: “http://192.168.1.8:3000/root”,
“expires_at”: “2012-10-22T14:13:35Z”,
“access_level”: 30







}

## Edit a member of a group or project

Updates a member of a group or project.

`
PUT /groups/:id/members/:user_id
PUT /projects/:id/members/:user_id
`


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id      | integer/string | yes | The ID or [URL-encoded path of the project or group](README.md#namespaced-path-encoding) owned by the authenticated user |

user_id | integer | yes   | The user ID of the member |

access_level | integer | yes | A valid access level |

expires_at | string | no | A date string in the format YEAR-MONTH-DAY |



`bash
curl --request PUT --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/groups/:id/members/:user_id?access_level=40
curl --request PUT --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/:id/members/:user_id?access_level=40
`

Example response:

```json
{

“id”: 1,
“username”: “raymond_smith”,
“name”: “Raymond Smith”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/c2525a7f58ae3776070e44c106c48e15?s=80&d=identicon”,
“web_url”: “http://192.168.1.8:3000/root”,
“expires_at”: “2012-10-22T14:13:35Z”,
“access_level”: 40

}

Remove a member from a group or project

Removes a user from a group or project.

`
DELETE /groups/:id/members/:user_id
DELETE /projects/:id/members/:user_id
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project or group](README.md#namespaced-path-encoding) owned by the authenticated user |

user_id | integer | yes | The user ID of the member |

`bash
curl --request DELETE --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/groups/:id/members/:user_id
curl --request DELETE --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/:id/members/:user_id
`

Give a group access to a project

Look at [share project with group](projects.md#share-project-with-group)

 # Merge requests API

Every API call to merge requests must be authenticated.

List merge requests

> [Introduced][ce-13060] in GitLab 9.5.

Get all merge requests the authenticated user has access to. By
default it returns only merge requests created by the current user. To
get all merge requests, use parameter scope=all.

The state parameter can be used to get only merge requests with a
given state (opened, closed, locked, or merged) or all of them (all). It should be noted that when searching by locked it will mostly return no results as it is a short-lived, transitional state.
The pagination parameters page and per_page can be used to
restrict the list of merge requests.

`
GET /merge_requests
GET /merge_requests?state=opened
GET /merge_requests?state=all
GET /merge_requests?milestone=release
GET /merge_requests?labels=bug,reproduced
GET /merge_requests?author_id=5
GET /merge_requests?my_reaction_emoji=star
GET /merge_requests?scope=assigned_to_me
`

Parameters:

Attribute | Type | Required | Description |

——————- | ——– | ——– | ———————————————————————————————————————- |

state | string | no | Return all merge requests or just those that are opened, closed, locked, or merged |

order_by | string | no | Return requests ordered by created_at or updated_at fields. Default is created_at |

sort | string | no | Return requests sorted in asc or desc order. Default is desc |

milestone | string | no | Return merge requests for a specific milestone |

view | string | no | If simple, returns the iid, URL, title, description, and basic state of merge request |

labels | string | no | Return merge requests matching a comma separated list of labels |

created_after | datetime | no | Return merge requests created on or after the given time |

created_before | datetime | no | Return merge requests created on or before the given time |

updated_after | datetime | no | Return merge requests updated on or after the given time |

updated_before | datetime | no | Return merge requests updated on or before the given time |

scope | string | no | Return merge requests for the given scope: created_by_me, assigned_to_me or all. Defaults to created_by_me`
 For versions before 11.0, use the now deprecated `created-by-me or assigned-to-me scopes instead. |

author_id | integer | no | Returns merge requests created by the given user id. Combine with scope=all or scope=assigned_to_me |

assignee_id | integer | no | Returns merge requests assigned to the given user id |

my_reaction_emoji | string | no | Return merge requests reacted by the authenticated user by the given emoji _([Introduced][ce-14016] in GitLab 10.0)_ |

source_branch | string | no | Return merge requests with the given source branch |

target_branch | string | no | Return merge requests with the given target branch |

search | string | no | Search merge requests against their title and description |


```json
[



	{
	“id”: 1,
“iid”: 1,
“target_branch”: “master”,
“source_branch”: “test1”,
“project_id”: 3,
“title”: “test1”,
“state”: “opened”,
“created_at”: “2017-04-29T08:46:00Z”,
“updated_at”: “2017-04-29T08:46:00Z”,
“upvotes”: 0,
“downvotes”: 0,
“author”: {


“id”: 1,
“username”: “admin”,
“name”: “Administrator”,
“state”: “active”,
“avatar_url”: null,
“web_url” : “https://gitlab.example.com/admin”




},
“assignee”: {


“id”: 1,
“username”: “admin”,
“name”: “Administrator”,
“state”: “active”,
“avatar_url”: null,
“web_url” : “https://gitlab.example.com/admin”




},
“source_project_id”: 2,
“target_project_id”: 3,
“labels”: [ ],
“description”: “fixed login page css paddings”,
“work_in_progress”: false,
“milestone”: {


“id”: 5,
“iid”: 1,
“project_id”: 3,
“title”: “v2.0”,
“description”: “Assumenda aut placeat expedita exercitationem labore sunt enim earum.”,
“state”: “closed”,
“created_at”: “2015-02-02T19:49:26.013Z”,
“updated_at”: “2015-02-02T19:49:26.013Z”,
“due_date”: null




},
“merge_when_pipeline_succeeds”: true,
“merge_status”: “can_be_merged”,
“sha”: “8888888888888888888888888888888888888888”,
“merge_commit_sha”: null,
“user_notes_count”: 1,
“should_remove_source_branch”: true,
“force_remove_source_branch”: false,
“squash”: false,
“web_url”: “http://example.com/example/example/merge_requests/1”,
“time_stats”: {


“time_estimate”: 0,
“total_time_spent”: 0,
“human_time_estimate”: null,
“human_total_time_spent”: null




}





}





]

## List project merge requests

Get all merge requests for this project.
The state parameter can be used to get only merge requests with a given state (opened, closed, locked, or merged) or all of them (all).
The pagination parameters page and per_page can be used to restrict the list of merge requests.

`
GET /projects/:id/merge_requests
GET /projects/:id/merge_requests?state=opened
GET /projects/:id/merge_requests?state=all
GET /projects/:id/merge_requests?iids[]=42&iids[]=43
GET /projects/:id/merge_requests?milestone=release
GET /projects/:id/merge_requests?labels=bug,reproduced
GET /projects/:id/merge_requests?my_reaction_emoji=star
`

project_id represents the ID of the project where the MR resides.
project_id will always equal target_project_id.

In the case of a merge request from the same project,
source_project_id, target_project_id and project_id
will be the same. In the case of a merge request from a fork,
target_project_id and project_id will be the same and
source_project_id will be the fork project’s ID.

Parameters:


Attribute           | Type           | Required | Description                                                                                                                    |

——————- | ————– | ——– | —————————————————————————————————————————— |

id                | integer        | yes      | The ID of a project                                                                                                            |

iids[]            | Array[integer] | no       | Return the request having the given iid                                                                                      |

state             | string         | no       | Return all merge requests or just those that are opened, closed, locked, or merged                                               |

order_by          | string         | no       | Return requests ordered by created_at or updated_at fields. Default is created_at                                        |

sort              | string         | no       | Return requests sorted in asc or desc order. Default is desc                                                             |

milestone         | string         | no       | Return merge requests for a specific milestone                                                                                 |

view              | string         | no       | If simple, returns the iid, URL, title, description, and basic state of merge request                                      |

labels            | string         | no       | Return merge requests matching a comma separated list of labels                                                                |

created_after     | datetime       | no       | Return merge requests created on or after the given time                                                                       |

created_before    | datetime       | no       | Return merge requests created on or before the given time                                                                      |

updated_after     | datetime       | no       | Return merge requests updated on or after the given time                                                                       |

updated_before    | datetime       | no       | Return merge requests updated on or before the given time                                                                      |

scope             | string         | no       | Return merge requests for the given scope: created_by_me, assigned_to_me or all.<br> For versions before 11.0, use the now deprecated created-by-me or assigned-to-me scopes instead.<br> _([Introduced][ce-13060] in GitLab 9.5. [Changed to snake_case][ce-18935] in GitLab 11.0)_ |

author_id         | integer        | no       | Returns merge requests created by the given user id _([Introduced][ce-13060] in GitLab 9.5)_                                 |

assignee_id       | integer        | no       | Returns merge requests assigned to the given user id _([Introduced][ce-13060] in GitLab 9.5)_                                |

my_reaction_emoji | string         | no       | Return merge requests reacted by the authenticated user by the given emoji _([Introduced][ce-14016] in GitLab 10.0)_         |

source_branch     | string   | no       | Return merge requests with the given source branch                                                                     |

target_branch     | string   | no       | Return merge requests with the given target branch                                                                     |

search            | string         | no       | Search merge requests against their title and description                                                                  |



```json
[

	{
	“id”: 1,
“iid”: 1,
“target_branch”: “master”,
“source_branch”: “test1”,
“project_id”: 3,
“title”: “test1”,
“state”: “opened”,
“created_at”: “2017-04-29T08:46:00Z”,
“updated_at”: “2017-04-29T08:46:00Z”,
“upvotes”: 0,
“downvotes”: 0,
“author”: {

“id”: 1,
“username”: “admin”,
“name”: “Administrator”,
“state”: “active”,
“avatar_url”: null,
“web_url” : “https://gitlab.example.com/admin”

},
“assignee”: {

“id”: 1,
“username”: “admin”,
“name”: “Administrator”,
“state”: “active”,
“avatar_url”: null,
“web_url” : “https://gitlab.example.com/admin”

},
“source_project_id”: 2,
“target_project_id”: 3,
“labels”: [],
“description”: “fixed login page css paddings”,
“work_in_progress”: false,
“milestone”: {

“id”: 5,
“iid”: 1,
“project_id”: 3,
“title”: “v2.0”,
“description”: “Assumenda aut placeat expedita exercitationem labore sunt enim earum.”,
“state”: “closed”,
“created_at”: “2015-02-02T19:49:26.013Z”,
“updated_at”: “2015-02-02T19:49:26.013Z”,
“due_date”: null

},
“merge_when_pipeline_succeeds”: true,
“merge_status”: “can_be_merged”,
“sha”: “88”,
“merge_commit_sha”: null,
“user_notes_count”: 1,
“should_remove_source_branch”: true,
“force_remove_source_branch”: false,
“squash”: false,
“web_url”: “http://example.com/example/example/merge_requests/1”,
“discussion_locked”: false,
“time_stats”: {

“time_estimate”: 0,
“total_time_spent”: 0,
“human_time_estimate”: null,
“human_total_time_spent”: null

}

}

]

List group merge requests

Get all merge requests for this group and its subgroups.
The state parameter can be used to get only merge requests with a given state (opened, closed, locked, or merged) or all of them (all).
The pagination parameters page and per_page can be used to restrict the list of merge requests.

`
GET /groups/:id/merge_requests
GET /groups/:id/merge_requests?state=opened
GET /groups/:id/merge_requests?state=all
GET /groups/:id/merge_requests?milestone=release
GET /groups/:id/merge_requests?labels=bug,reproduced
GET /groups/:id/merge_requests?my_reaction_emoji=star
`

group_id represents the ID of the group which contains the project where the MR resides.

Parameters:

Attribute | Type | Required | Description |

——————- | ————– | ——– | —— |

id | integer | yes | The ID of a group |

state | string | no | Return all merge requests or just those that are opened, closed, locked, or merged |

order_by | string | no | Return merge requests ordered by created_at or updated_at fields. Default is created_at |

sort | string | no | Return merge requests sorted in asc or desc order. Default is desc |

milestone | string | no | Return merge requests for a specific milestone |

view | string | no | If simple, returns the iid, URL, title, description, and basic state of merge request |

labels | string | no | Return merge requests matching a comma separated list of labels |

created_after | datetime | no | Return merge requests created on or after the given time |

created_before | datetime | no | Return merge requests created on or before the given time |

updated_after | datetime | no | Return merge requests updated on or after the given time |

updated_before | datetime | no | Return merge requests updated on or before the given time |

scope | string | no | Return merge requests for the given scope: created_by_me, assigned_to_me or all.
 |

author_id | integer | no | Returns merge requests created by the given user id _([Introduced][ce-13060] in GitLab 9.5)_ |

assignee_id | integer | no | Returns merge requests assigned to the given user id _([Introduced][ce-13060] in GitLab 9.5)_ |

my_reaction_emoji | string | no | Return merge requests reacted by the authenticated user by the given emoji _([Introduced][ce-14016] in GitLab 10.0)_ |

source_branch | string | no | Return merge requests with the given source branch |

target_branch | string | no | Return merge requests with the given target branch |

search | string | no | Search merge requests against their title and description |


```json
[



	{
	“id”: 1,
“iid”: 1,
“target_branch”: “master”,
“source_branch”: “test1”,
“project_id”: 3,
“title”: “test1”,
“state”: “opened”,
“created_at”: “2017-04-29T08:46:00Z”,
“updated_at”: “2017-04-29T08:46:00Z”,
“upvotes”: 0,
“downvotes”: 0,
“author”: {


“id”: 1,
“username”: “admin”,
“name”: “Administrator”,
“state”: “active”,
“avatar_url”: null,
“web_url” : “https://gitlab.example.com/admin”




},
“assignee”: {


“id”: 1,
“username”: “admin”,
“name”: “Administrator”,
“state”: “active”,
“avatar_url”: null,
“web_url” : “https://gitlab.example.com/admin”




},
“source_project_id”: 2,
“target_project_id”: 3,
“labels”: [ ],
“description”: “fixed login page css paddings”,
“work_in_progress”: false,
“milestone”: {


“id”: 5,
“iid”: 1,
“project_id”: 3,
“title”: “v2.0”,
“description”: “Assumenda aut placeat expedita exercitationem labore sunt enim earum.”,
“state”: “closed”,
“created_at”: “2015-02-02T19:49:26.013Z”,
“updated_at”: “2015-02-02T19:49:26.013Z”,
“due_date”: null




},
“merge_when_pipeline_succeeds”: true,
“merge_status”: “can_be_merged”,
“sha”: “8888888888888888888888888888888888888888”,
“merge_commit_sha”: null,
“user_notes_count”: 1,
“should_remove_source_branch”: true,
“force_remove_source_branch”: false,
“web_url”: “http://example.com/example/example/merge_requests/1”,
“discussion_locked”: false,
“time_stats”: {


“time_estimate”: 0,
“total_time_spent”: 0,
“human_time_estimate”: null,
“human_total_time_spent”: null




}





}







]

## Get single MR

Shows information about a single merge request.

Note: the changes_count value in the response is a string, not an
integer. This is because when an MR has too many changes to display and store,
it will be capped at 1,000. In that case, the API will return the string
“1000+” for the changes count.

`
GET /projects/:id/merge_requests/:merge_request_iid
`

Parameters:


	id (required) - The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user


	merge_request_iid (required) - The internal ID of the merge request


	render_html (optional) - If true response includes rendered HTML for title and description




```json
{

“id”: 1,
“iid”: 1,
“target_branch”: “master”,
“source_branch”: “test1”,
“project_id”: 3,
“title”: “test1”,
“state”: “merged”,
“created_at”: “2017-04-29T08:46:00Z”,
“updated_at”: “2017-04-29T08:46:00Z”,
“upvotes”: 0,
“downvotes”: 0,
“author”: {

“state” : “active”,
“web_url” : “https://gitlab.example.com/root”,
“avatar_url” : null,
“username” : “root”,
“id” : 1,
“name” : “Administrator”

},
“assignee”: {

“state” : “active”,
“web_url” : “https://gitlab.example.com/root”,
“avatar_url” : null,
“username” : “root”,
“id” : 1,
“name” : “Administrator”

},
“source_project_id”: 2,
“target_project_id”: 3,
“labels”: [],
“description”: “fixed login page css paddings”,
“work_in_progress”: false,
“milestone”: {

“id”: 5,
“iid”: 1,
“project_id”: 3,
“title”: “v2.0”,
“description”: “Assumenda aut placeat expedita exercitationem labore sunt enim earum.”,
“state”: “closed”,
“created_at”: “2015-02-02T19:49:26.013Z”,
“updated_at”: “2015-02-02T19:49:26.013Z”,
“due_date”: null

},
“merge_when_pipeline_succeeds”: true,
“merge_status”: “can_be_merged”,
“subscribed” : true,
“sha”: “88”,
“merge_commit_sha”: “99”,
“user_notes_count”: 1,
“changes_count”: “1”,
“should_remove_source_branch”: true,
“force_remove_source_branch”: false,
“squash”: false,
“web_url”: “http://example.com/example/example/merge_requests/1”,
“discussion_locked”: false,
“time_stats”: {

“time_estimate”: 0,
“total_time_spent”: 0,
“human_time_estimate”: null,
“human_total_time_spent”: null

},
“closed_at”: “2018-01-19T14:36:11.086Z”,
“latest_build_started_at”: null,
“latest_build_finished_at”: null,
“first_deployed_to_production_at”: null,
“pipeline”: {

“id”: 8,
“ref”: “master”,
“sha”: “2dc6aa325a317eda67812f05600bdf0fcdc70ab0”,
“status”: “created”

},
“merged_by”: null,
“merged_at”: null,
“closed_by”: {

“state” : “active”,
“web_url” : “https://gitlab.example.com/root”,
“avatar_url” : null,
“username” : “root”,
“id” : 1,
“name” : “Administrator”

}

}

Get single MR participants

Get a list of merge request participants.

`
GET /projects/:id/merge_requests/:merge_request_iid/participants
`

Parameters:

	id (required) - The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user

	merge_request_iid (required) - The internal ID of the merge request


```json
[



	{
	“id”: 1,
“name”: “John Doe1”,
“username”: “user1”,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/c922747a93b40d1ea88262bf1aebee62?s=80&d=identicon”,
“web_url”: “http://localhost/user1”





},
{


“id”: 2,
“name”: “John Doe2”,
“username”: “user2”,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/10fc7f102be8de7657fb4d80898bbfe3?s=80&d=identicon”,
“web_url”: “http://localhost/user2”




},







]

## Get single MR commits

Get a list of merge request commits.

`
GET /projects/:id/merge_requests/:merge_request_iid/commits
`

Parameters:


	id (required) - The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user


	merge_request_iid (required) - The internal ID of the merge request




```json
[

	{
	“id”: “ed899a2f4b50b4370feeea94676502b42383c746”,
“short_id”: “ed899a2f4b5”,
“title”: “Replace sanitize with escape once”,
“author_name”: “Dmitriy Zaporozhets”,
“author_email”: “dzaporozhets@sphereconsultinginc.com”,
“created_at”: “2012-09-20T11:50:22+03:00”,
“message”: “Replace sanitize with escape once”

},
{

“id”: “6104942438c14ec7bd21c6cd5bd995272b3faff6”,
“short_id”: “6104942438c”,
“title”: “Sanitize for network graph”,
“author_name”: “randx”,
“author_email”: “dmitriy.zaporozhets@gmail.com”,
“created_at”: “2012-09-20T09:06:12+03:00”,
“message”: “Sanitize for network graph”

}

]

Get single MR changes

Shows information about the merge request including its files and changes.

`
GET /projects/:id/merge_requests/:merge_request_iid/changes
`

Parameters:

	id (required) - The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user

	merge_request_iid (required) - The internal ID of the merge request


```json
{


“id”: 21,
“iid”: 1,
“project_id”: 4,
“title”: “Blanditiis beatae suscipit hic assumenda et molestias nisi asperiores repellat et.”,
“state”: “reopened”,
“created_at”: “2015-02-02T19:49:39.159Z”,
“updated_at”: “2015-02-02T20:08:49.959Z”,
“target_branch”: “secret_token”,
“source_branch”: “version-1-9”,
“upvotes”: 0,
“downvotes”: 0,
“author”: {


“name”: “Chad Hamill”,
“username”: “jarrett”,
“id”: 5,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/b95567800f828948baf5f4160ebb2473?s=40&d=identicon”,
“web_url” : “https://gitlab.example.com/jarrett”




},
“assignee”: {


“name”: “Administrator”,
“username”: “root”,
“id”: 1,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=40&d=identicon”,
“web_url” : “https://gitlab.example.com/root”




},
“source_project_id”: 4,
“target_project_id”: 4,
“labels”: [ ],
“description”: “Qui voluptatibus placeat ipsa alias quasi. Deleniti rem ut sint. Optio velit qui distinctio.”,
“work_in_progress”: false,
“milestone”: {


“id”: 5,
“iid”: 1,
“project_id”: 4,
“title”: “v2.0”,
“description”: “Assumenda aut placeat expedita exercitationem labore sunt enim earum.”,
“state”: “closed”,
“created_at”: “2015-02-02T19:49:26.013Z”,
“updated_at”: “2015-02-02T19:49:26.013Z”,
“due_date”: null




},
“merge_when_pipeline_succeeds”: true,
“merge_status”: “can_be_merged”,
“subscribed” : true,
“sha”: “8888888888888888888888888888888888888888”,
“merge_commit_sha”: null,
“user_notes_count”: 1,
“changes_count”: “1”,
“should_remove_source_branch”: true,
“force_remove_source_branch”: false,
“squash”: false,
“web_url”: “http://example.com/example/example/merge_requests/1”,
“discussion_locked”: false,
“time_stats”: {


“time_estimate”: 0,
“total_time_spent”: 0,
“human_time_estimate”: null,
“human_total_time_spent”: null




}
“changes”: [


{
“old_path”: “VERSION”,
“new_path”: “VERSION”,
“a_mode”: “100644”,
“b_mode”: “100644”,
“diff”: “— a/VERSION+++ b/VERSION@@ -1 +1 @@-1.9.7+1.9.8”,
“new_file”: false,
“renamed_file”: false,
“deleted_file”: false
}




]







}

## List MR pipelines

> [Introduced][ce-15454] in GitLab 10.5.0.

Get a list of merge request pipelines.

`
GET /projects/:id/merge_requests/:merge_request_iid/pipelines
`

Parameters:


	id (required) - The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user


	merge_request_iid (required) - The internal ID of the merge request




```json
[

	{
	“id”: 77,
“sha”: “959e04d7c7a30600c894bd3c0cd0e1ce7f42c11d”,
“ref”: “master”,
“status”: “success”

}

]

Create MR

Creates a new merge request.
`
POST /projects/:id/merge_requests
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

source_branch | string | yes | The source branch |

target_branch | string | yes | The target branch |

title | string | yes | Title of MR |

assignee_id | integer | no | Assignee user ID |

description | string | no | Description of MR |

target_project_id | integer | no | The target project (numeric id) |

labels | string | no | Labels for MR as a comma-separated list |

milestone_id | integer | no | The global ID of a milestone |

remove_source_branch | boolean | no | Flag indicating if a merge request should remove the source branch when merging |

allow_collaboration | boolean | no | Allow commits from members who can merge to the target branch |

allow_maintainer_to_push | boolean | no | Deprecated, see allow_collaboration |

squash | boolean | no | Squash commits into a single commit when merging |


```json
{


“id”: 1,
“iid”: 1,
“target_branch”: “master”,
“source_branch”: “test1”,
“project_id”: 4,
“title”: “test1”,
“state”: “opened”,
“upvotes”: 0,
“downvotes”: 0,
“author”: {


“id”: 1,
“username”: “admin”,
“name”: “Administrator”,
“state”: “active”,
“avatar_url”: null,
“web_url” : “https://gitlab.example.com/admin”




},
“assignee”: {


“id”: 1,
“username”: “admin”,
“name”: “Administrator”,
“state”: “active”,
“avatar_url”: null,
“web_url” : “https://gitlab.example.com/admin”




},
“source_project_id”: 3,
“target_project_id”: 4,
“labels”: [ ],
“description”: “fixed login page css paddings”,
“work_in_progress”: false,
“milestone”: {


“id”: 5,
“iid”: 1,
“project_id”: 4,
“title”: “v2.0”,
“description”: “Assumenda aut placeat expedita exercitationem labore sunt enim earum.”,
“state”: “closed”,
“created_at”: “2015-02-02T19:49:26.013Z”,
“updated_at”: “2015-02-02T19:49:26.013Z”,
“due_date”: null




},
“merge_when_pipeline_succeeds”: true,
“merge_status”: “can_be_merged”,
“subscribed” : true,
“sha”: “8888888888888888888888888888888888888888”,
“merge_commit_sha”: null,
“user_notes_count”: 0,
“changes_count”: “1”,
“should_remove_source_branch”: true,
“force_remove_source_branch”: false,
“squash”: false,
“web_url”: “http://example.com/example/example/merge_requests/1”,
“discussion_locked”: false,
“allow_collaboration”: false,
“allow_maintainer_to_push”: false,
“time_stats”: {


“time_estimate”: 0,
“total_time_spent”: 0,
“human_time_estimate”: null,
“human_total_time_spent”: null




}







}

## Update MR

Updates an existing merge request. You can change the target branch, title, or even close the MR.

`
PUT /projects/:id/merge_requests/:merge_request_iid
`


Attribute                  | Type    | Required | Description                                                                     |

———                  | —-    | ——– | ———–                                                                     |

id                       | integer/string | yes  | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

merge_request_iid        | integer | yes      | The ID of a merge request                                                       |

target_branch            | string  | no       | The target branch                                                               |

title                    | string  | no       | Title of MR                                                                     |

assignee_id              | integer | no       | The ID of the user to assign the merge request to. Set to 0 or provide an empty value to unassign all assignees.  |

milestone_id             | integer | no       | The global ID of a milestone to assign the merge request to. Set to 0 or provide an empty value to unassign a milestone.|

labels                   | string  | no       | Comma-separated label names for a merge request. Set to an empty string to unassign all labels.                    |

description              | string  | no       | Description of MR                                                               |

state_event              | string  | no       | New state (close/reopen)                                                        |

remove_source_branch     | boolean | no       | Flag indicating if a merge request should remove the source branch when merging |

squash                   | boolean | no       | Squash commits into a single commit when merging |

discussion_locked        | boolean | no       | Flag indicating if the merge request’s discussion is locked. If the discussion is locked only project members can add, edit or resolve comments. |

allow_collaboration      | boolean | no       | Allow commits from members who can merge to the target branch                   |

allow_maintainer_to_push | boolean | no       | Deprecated, see allow_collaboration                                             |



Must include at least one non-required attribute from above.

```json
{

“id”: 1,
“iid”: 1,
“target_branch”: “master”,
“project_id”: 4,
“title”: “test1”,
“state”: “opened”,
“upvotes”: 0,
“downvotes”: 0,
“author”: {

“id”: 1,
“username”: “admin”,
“name”: “Administrator”,
“state”: “active”,
“avatar_url”: null,
“web_url” : “https://gitlab.example.com/admin”

},
“assignee”: {

“id”: 1,
“username”: “admin”,
“name”: “Administrator”,
“state”: “active”,
“avatar_url”: null,
“web_url” : “https://gitlab.example.com/admin”

},
“source_project_id”: 3,
“target_project_id”: 4,
“labels”: [],
“description”: “description1”,
“work_in_progress”: false,
“milestone”: {

“id”: 5,
“iid”: 1,
“project_id”: 4,
“title”: “v2.0”,
“description”: “Assumenda aut placeat expedita exercitationem labore sunt enim earum.”,
“state”: “closed”,
“created_at”: “2015-02-02T19:49:26.013Z”,
“updated_at”: “2015-02-02T19:49:26.013Z”,
“due_date”: null

},
“merge_when_pipeline_succeeds”: true,
“merge_status”: “can_be_merged”,
“subscribed” : true,
“sha”: “88”,
“merge_commit_sha”: null,
“user_notes_count”: 1,
“changes_count”: “1”,
“should_remove_source_branch”: true,
“force_remove_source_branch”: false,
“squash”: false,
“web_url”: “http://example.com/example/example/merge_requests/1”,
“discussion_locked”: false,
“allow_collaboration”: false,
“allow_maintainer_to_push”: false,
“time_stats”: {

“time_estimate”: 0,
“total_time_spent”: 0,
“human_time_estimate”: null,
“human_total_time_spent”: null

}

}

Delete a merge request

Only for admins and project owners. Soft deletes the merge request in question.

`
DELETE /projects/:id/merge_requests/:merge_request_iid
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

merge_request_iid | integer | yes | The internal ID of the merge request |

`bash
curl --request DELETE --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/4/merge_requests/85
`

Accept MR

Merge changes submitted with MR using this API.

If it has some conflicts and can not be merged - you’ll get a 405 and the error message ‘Branch cannot be merged’

If merge request is already merged or closed - you’ll get a 406 and the error message ‘Method Not Allowed’

If the sha parameter is passed and does not match the HEAD of the source - you’ll get a 409 and the error message ‘SHA does not match HEAD of source branch’

If you don’t have permissions to accept this merge request - you’ll get a 401

`
PUT /projects/:id/merge_requests/:merge_request_iid/merge
`

Parameters:

	id (required) - The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user

	merge_request_iid (required) - Internal ID of MR

	merge_commit_message (optional) - Custom merge commit message

	should_remove_source_branch (optional) - if true removes the source branch

	merge_when_pipeline_succeeds (optional) - if true the MR is merged when the pipeline succeeds

	sha (optional) - if present, then this SHA must match the HEAD of the source branch, otherwise the merge will fail


```json
{


“id”: 1,
“iid”: 1,
“target_branch”: “master”,
“source_branch”: “test1”,
“project_id”: 3,
“title”: “test1”,
“state”: “merged”,
“upvotes”: 0,
“downvotes”: 0,
“author”: {


“id”: 1,
“username”: “admin”,
“name”: “Administrator”,
“state”: “active”,
“avatar_url”: null,
“web_url” : “https://gitlab.example.com/admin”




},
“assignee”: {


“id”: 1,
“username”: “admin”,
“name”: “Administrator”,
“state”: “active”,
“avatar_url”: null,
“web_url” : “https://gitlab.example.com/admin”




},
“source_project_id”: 4,
“target_project_id”: 4,
“labels”: [ ],
“description”: “fixed login page css paddings”,
“work_in_progress”: false,
“milestone”: {


“id”: 5,
“iid”: 1,
“project_id”: 4,
“title”: “v2.0”,
“description”: “Assumenda aut placeat expedita exercitationem labore sunt enim earum.”,
“state”: “closed”,
“created_at”: “2015-02-02T19:49:26.013Z”,
“updated_at”: “2015-02-02T19:49:26.013Z”,
“due_date”: null




},
“merge_when_pipeline_succeeds”: true,
“merge_status”: “can_be_merged”,
“subscribed” : true,
“sha”: “8888888888888888888888888888888888888888”,
“merge_commit_sha”: “9999999999999999999999999999999999999999”,
“user_notes_count”: 1,
“changes_count”: “1”,
“should_remove_source_branch”: true,
“force_remove_source_branch”: false,
“squash”: false,
“web_url”: “http://example.com/example/example/merge_requests/1”,
“discussion_locked”: false,
“time_stats”: {


“time_estimate”: 0,
“total_time_spent”: 0,
“human_time_estimate”: null,
“human_total_time_spent”: null




}







}

## Cancel Merge When Pipeline Succeeds

If you don’t have permissions to accept this merge request - you’ll get a 401

If the merge request is already merged or closed - you get 405 and error message ‘Method Not Allowed’

In case the merge request is not set to be merged when the pipeline succeeds, you’ll also get a 406 error.
`
PUT /projects/:id/merge_requests/:merge_request_iid/cancel_merge_when_pipeline_succeeds
`
Parameters:


	id (required) - The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user


	merge_request_iid (required)            - Internal ID of MR




```json
{

“id”: 1,
“iid”: 1,
“target_branch”: “master”,
“source_branch”: “test1”,
“project_id”: 3,
“title”: “test1”,
“state”: “opened”,
“upvotes”: 0,
“downvotes”: 0,
“author”: {

“id”: 1,
“username”: “admin”,
“name”: “Administrator”,
“state”: “active”,
“avatar_url”: null,
“web_url” : “https://gitlab.example.com/admin”

},
“assignee”: {

“id”: 1,
“username”: “admin”,
“name”: “Administrator”,
“state”: “active”,
“avatar_url”: null,
“web_url” : “https://gitlab.example.com/admin”

},
“source_project_id”: 4,
“target_project_id”: 4,
“labels”: [],
“description”: “fixed login page css paddings”,
“work_in_progress”: false,
“milestone”: {

“id”: 5,
“iid”: 1,
“project_id”: 4,
“title”: “v2.0”,
“description”: “Assumenda aut placeat expedita exercitationem labore sunt enim earum.”,
“state”: “closed”,
“created_at”: “2015-02-02T19:49:26.013Z”,
“updated_at”: “2015-02-02T19:49:26.013Z”,
“due_date”: null

},
“merge_when_pipeline_succeeds”: true,
“merge_status”: “can_be_merged”,
“subscribed” : true,
“sha”: “88”,
“merge_commit_sha”: null,
“user_notes_count”: 1,
“changes_count”: “1”,
“should_remove_source_branch”: true,
“force_remove_source_branch”: false,
“squash”: false,
“web_url”: “http://example.com/example/example/merge_requests/1”,
“discussion_locked”: false,
“time_stats”: {

“time_estimate”: 0,
“total_time_spent”: 0,
“human_time_estimate”: null,
“human_total_time_spent”: null

}

}

Comments on merge requests

Comments are done via the [notes](notes.md) resource.

List issues that will close on merge

Get all the issues that would be closed by merging the provided merge request.

`
GET /projects/:id/merge_requests/:merge_request_iid/closes_issues
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

merge_request_iid | integer | yes | The internal ID of the merge request |

`bash
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/76/merge_requests/1/closes_issues
`

Example response when the GitLab issue tracker is used:

```json
[



	{
	“state” : “opened”,
“description” : “Ratione dolores corrupti mollitia soluta quia.”,
“author” : {


“state” : “active”,
“id” : 18,
“web_url” : “https://gitlab.example.com/eileen.lowe”,
“name” : “Alexandra Bashirian”,
“avatar_url” : null,
“username” : “eileen.lowe”




},
“milestone” : {


“project_id” : 1,
“description” : “Ducimus nam enim ex consequatur cumque ratione.”,
“state” : “closed”,
“due_date” : null,
“iid” : 2,
“created_at” : “2016-01-04T15:31:39.996Z”,
“title” : “v4.0”,
“id” : 17,
“updated_at” : “2016-01-04T15:31:39.996Z”




},
“project_id” : 1,
“assignee” : {


“state” : “active”,
“id” : 1,
“name” : “Administrator”,
“web_url” : “https://gitlab.example.com/root”,
“avatar_url” : null,
“username” : “root”




},
“updated_at” : “2016-01-04T15:31:51.081Z”,
“id” : 76,
“title” : “Consequatur vero maxime deserunt laboriosam est voluptas dolorem.”,
“created_at” : “2016-01-04T15:31:51.081Z”,
“iid” : 6,
“labels” : [],
“user_notes_count”: 1,
“changes_count”: “1”





},







]

Example response when an external issue tracker (e.g. JIRA) is used:

```json
[

	{
	“id” : “PROJECT-123”,
“title” : “Title of this issue”

}

]

Subscribe to a merge request

Subscribes the authenticated user to a merge request to receive notification. If the user is already subscribed to the merge request, the
status code 304 is returned.

`
POST /projects/:id/merge_requests/:merge_request_iid/subscribe
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

merge_request_iid | integer | yes | The internal ID of the merge request |

`bash
curl --request POST --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/5/merge_requests/17/subscribe
`

Example response:

```json
{


“id”: 17,
“iid”: 1,
“project_id”: 5,
“title”: “Et et sequi est impedit nulla ut rem et voluptatem.”,
“description”: “Consequatur velit eos rerum optio autem. Quia id officia quaerat dolorum optio. Illo laudantium aut ipsum dolorem.”,
“state”: “opened”,
“created_at”: “2016-04-05T21:42:23.233Z”,
“updated_at”: “2016-04-05T22:11:52.900Z”,
“target_branch”: “ui-dev-kit”,
“source_branch”: “version-1-9”,
“upvotes”: 0,
“downvotes”: 0,
“author”: {


“name”: “Eileen Skiles”,
“username”: “leila”,
“id”: 19,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/39ce4a2822cc896933ffbd68c1470e55?s=80&d=identicon”,
“web_url”: “https://gitlab.example.com/leila”




},
“assignee”: {


“name”: “Celine Wehner”,
“username”: “carli”,
“id”: 16,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/f4cd5605b769dd2ce405a27c6e6f2684?s=80&d=identicon”,
“web_url”: “https://gitlab.example.com/carli”




},
“source_project_id”: 5,
“target_project_id”: 5,
“labels”: [],
“work_in_progress”: false,
“milestone”: {


“id”: 7,
“iid”: 1,
“project_id”: 5,
“title”: “v2.0”,
“description”: “Corrupti eveniet et velit occaecati dolorem est rerum aut.”,
“state”: “closed”,
“created_at”: “2016-04-05T21:41:40.905Z”,
“updated_at”: “2016-04-05T21:41:40.905Z”,
“due_date”: null




},
“merge_when_pipeline_succeeds”: false,
“merge_status”: “cannot_be_merged”,
“subscribed”: true,
“sha”: “8888888888888888888888888888888888888888”,
“merge_commit_sha”: null







}

## Unsubscribe from a merge request

Unsubscribes the authenticated user from a merge request to not receive
notifications from that merge request. If the user is
not subscribed to the merge request, the status code 304 is returned.

`
POST /projects/:id/merge_requests/:merge_request_iid/unsubscribe
`


Attribute           | Type    | Required | Description                          |

———           | —-    | ——– | ———–                          |

id                | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user                  |

merge_request_iid | integer | yes      | The internal ID of the merge request |



`bash
curl --request POST --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/5/merge_requests/17/unsubscribe
`

Example response:

```json
{

“id”: 17,
“iid”: 1,
“project_id”: 5,
“title”: “Et et sequi est impedit nulla ut rem et voluptatem.”,
“description”: “Consequatur velit eos rerum optio autem. Quia id officia quaerat dolorum optio. Illo laudantium aut ipsum dolorem.”,
“state”: “opened”,
“created_at”: “2016-04-05T21:42:23.233Z”,
“updated_at”: “2016-04-05T22:11:52.900Z”,
“target_branch”: “ui-dev-kit”,
“source_branch”: “version-1-9”,
“upvotes”: 0,
“downvotes”: 0,
“author”: {

“name”: “Eileen Skiles”,
“username”: “leila”,
“id”: 19,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/39ce4a2822cc896933ffbd68c1470e55?s=80&d=identicon”,
“web_url”: “https://gitlab.example.com/leila”

},
“assignee”: {

“name”: “Celine Wehner”,
“username”: “carli”,
“id”: 16,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/f4cd5605b769dd2ce405a27c6e6f2684?s=80&d=identicon”,
“web_url”: “https://gitlab.example.com/carli”

},
“source_project_id”: 5,
“target_project_id”: 5,
“labels”: [],
“work_in_progress”: false,
“milestone”: {

“id”: 7,
“iid”: 1,
“project_id”: 5,
“title”: “v2.0”,
“description”: “Corrupti eveniet et velit occaecati dolorem est rerum aut.”,
“state”: “closed”,
“created_at”: “2016-04-05T21:41:40.905Z”,
“updated_at”: “2016-04-05T21:41:40.905Z”,
“due_date”: null

},
“merge_when_pipeline_succeeds”: false,
“merge_status”: “cannot_be_merged”,
“subscribed”: false,
“sha”: “88”,
“merge_commit_sha”: null

}

Create a todo

Manually creates a todo for the current user on a merge request.
If there already exists a todo for the user on that merge request,
status code 304 is returned.

`
POST /projects/:id/merge_requests/:merge_request_iid/todo
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

merge_request_iid | integer | yes | The internal ID of the merge request |

`bash
curl --request POST --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/5/merge_requests/27/todo
`

Example response:

```json
{


“id”: 113,
“project”: {


“id”: 3,
“name”: “Gitlab Ci”,
“name_with_namespace”: “Gitlab Org / Gitlab Ci”,
“path”: “gitlab-ci”,
“path_with_namespace”: “gitlab-org/gitlab-ci”




},
“author”: {


“name”: “Administrator”,
“username”: “root”,
“id”: 1,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”,
“web_url”: “https://gitlab.example.com/root”




},
“action_name”: “marked”,
“target_type”: “MergeRequest”,
“target”: {


“id”: 27,
“iid”: 7,
“project_id”: 3,
“title”: “Et voluptas laudantium minus nihil recusandae ut accusamus earum aut non.”,
“description”: “Veniam sunt nihil modi earum cumque illum delectus. Nihil ad quis distinctio quia. Autem eligendi at quibusdam repellendus.”,
“state”: “opened”,
“created_at”: “2016-06-17T07:48:04.330Z”,
“updated_at”: “2016-07-01T11:14:15.537Z”,
“target_branch”: “allow_regex_for_project_skip_ref”,
“source_branch”: “backup”,
“upvotes”: 0,
“downvotes”: 0,
“author”: {


“name”: “Jarret O’Keefe”,
“username”: “francisca”,
“id”: 14,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/a7fa515d53450023c83d62986d0658a8?s=80&d=identicon”,
“web_url”: “https://gitlab.example.com/francisca”,
“discussion_locked”: false




},
“assignee”: {


“name”: “Dr. Gabrielle Strosin”,
“username”: “barrett.krajcik”,
“id”: 4,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/733005fcd7e6df12d2d8580171ccb966?s=80&d=identicon”,
“web_url”: “https://gitlab.example.com/barrett.krajcik”




},
“source_project_id”: 3,
“target_project_id”: 3,
“labels”: [],
“work_in_progress”: false,
“milestone”: {


“id”: 27,
“iid”: 2,
“project_id”: 3,
“title”: “v1.0”,
“description”: “Quis ea accusantium animi hic fuga assumenda.”,
“state”: “active”,
“created_at”: “2016-06-17T07:47:33.840Z”,
“updated_at”: “2016-06-17T07:47:33.840Z”,
“due_date”: null




},
“merge_when_pipeline_succeeds”: false,
“merge_status”: “unchecked”,
“subscribed”: true,
“sha”: “8888888888888888888888888888888888888888”,
“merge_commit_sha”: null,
“user_notes_count”: 7,
“changes_count”: “1”,
“should_remove_source_branch”: true,
“force_remove_source_branch”: false,
“squash”: false,
“web_url”: “http://example.com/example/example/merge_requests/1”




},
“target_url”: “https://gitlab.example.com/gitlab-org/gitlab-ci/merge_requests/7”,
“body”: “Et voluptas laudantium minus nihil recusandae ut accusamus earum aut non.”,
“state”: “pending”,
“created_at”: “2016-07-01T11:14:15.530Z”







}

## Get MR diff versions

Get a list of merge request diff versions.

`
GET /projects/:id/merge_requests/:merge_request_iid/versions
`


Attribute           | Type    | Required | Description                 |

———           | ——- | ——– | ———————       |

id                | String  | yes      | The ID of the project       |

merge_request_iid | integer | yes      | The internal ID of the merge request |



`bash
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/1/merge_requests/1/versions
`

Example response:

```json
[{

“id”: 110,
“head_commit_sha”: “33e2ee8579fda5bc36accc9c6fbd0b4fefda9e30”,
“base_commit_sha”: “eeb57dffe83deb686a60a71c16c32f71046868fd”,
“start_commit_sha”: “eeb57dffe83deb686a60a71c16c32f71046868fd”,
“created_at”: “2016-07-26T14:44:48.926Z”,
“merge_request_id”: 105,
“state”: “collected”,
“real_size”: “1”

	}, {
	“id”: 108,
“head_commit_sha”: “3eed087b29835c48015768f839d76e5ea8f07a24”,
“base_commit_sha”: “eeb57dffe83deb686a60a71c16c32f71046868fd”,
“start_commit_sha”: “eeb57dffe83deb686a60a71c16c32f71046868fd”,
“created_at”: “2016-07-25T14:21:33.028Z”,
“merge_request_id”: 105,
“state”: “collected”,
“real_size”: “1”

}]

Get a single MR diff version

Get a single merge request diff version.

`
GET /projects/:id/merge_requests/:merge_request_iid/versions/:version_id
`

Attribute | Type | Required | Description |

——— | ——- | ——– | ——————— |

id | String | yes | The ID of the project |

merge_request_iid | integer | yes | The internal ID of the merge request |

version_id | integer | yes | The ID of the merge request diff version |

`bash
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/1/merge_requests/1/versions/1
`

Example response:

```json
{


“id”: 110,
“head_commit_sha”: “33e2ee8579fda5bc36accc9c6fbd0b4fefda9e30”,
“base_commit_sha”: “eeb57dffe83deb686a60a71c16c32f71046868fd”,
“start_commit_sha”: “eeb57dffe83deb686a60a71c16c32f71046868fd”,
“created_at”: “2016-07-26T14:44:48.926Z”,
“merge_request_id”: 105,
“state”: “collected”,
“real_size”: “1”,
“commits”: [{


“id”: “33e2ee8579fda5bc36accc9c6fbd0b4fefda9e30”,
“short_id”: “33e2ee85”,
“title”: “Change year to 2018”,
“author_name”: “Administrator”,
“author_email”: “admin@example.com”,
“created_at”: “2016-07-26T17:44:29.000+03:00”,
“message”: “Change year to 2018”





	}, {
	“id”: “aa24655de48b36335556ac8a3cd8bb521f977cbd”,
“short_id”: “aa24655d”,
“title”: “Update LICENSE”,
“author_name”: “Administrator”,
“author_email”: “admin@example.com”,
“created_at”: “2016-07-25T17:21:53.000+03:00”,
“message”: “Update LICENSE”



	}, {
	“id”: “3eed087b29835c48015768f839d76e5ea8f07a24”,
“short_id”: “3eed087b”,
“title”: “Add license”,
“author_name”: “Administrator”,
“author_email”: “admin@example.com”,
“created_at”: “2016-07-25T17:21:20.000+03:00”,
“message”: “Add license”





}],
“diffs”: [{


“old_path”: “LICENSE”,
“new_path”: “LICENSE”,
“a_mode”: “0”,
“b_mode”: “100644”,
“diff”: “— /dev/nulln+++ b/LICENSEn@@ -0,0 +1,21 @@n+The MIT License (MIT)n+n+Copyright (c) 2018 Administratorn+n+Permission is hereby granted, free of charge, to any person obtaining a copyn+of this software and associated documentation files (the "Software"), to dealn+in the Software without restriction, including without limitation the rightsn+to use, copy, modify, merge, publish, distribute, sublicense, and/or selln+copies of the Software, and to permit persons to whom the Software isn+furnished to do so, subject to the following conditions:n+n+The above copyright notice and this permission notice shall be included in alln+copies or substantial portions of the Software.n+n+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS ORn+IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,n+FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THEn+AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHERn+LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,n+OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THEn+SOFTWARE.n”,
“new_file”: true,
“renamed_file”: false,
“deleted_file”: false




}]







}

## Set a time estimate for a merge request

Sets an estimated time of work for this merge request.

`
POST /projects/:id/merge_requests/:merge_request_iid/time_estimate
`


Attribute           | Type    | Required | Description                              |

———           | —-    | ——– | ———–                              |

id                | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user                      |

merge_request_iid | integer | yes      | The internal ID of the merge request     |

duration          | string  | yes      | The duration in human format. e.g: 3h30m |



`bash
curl --request POST --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/5/merge_requests/93/time_estimate?duration=3h30m
`

Example response:

```json
{

“human_time_estimate”: “3h 30m”,
“human_total_time_spent”: null,
“time_estimate”: 12600,
“total_time_spent”: 0

}

Reset the time estimate for a merge request

Resets the estimated time for this merge request to 0 seconds.

`
POST /projects/:id/merge_requests/:merge_request_iid/reset_time_estimate
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

merge_request_iid | integer | yes | The internal ID of a project’s merge_request |

`bash
curl --request POST --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/5/merge_requests/93/reset_time_estimate
`

Example response:

```json
{


“human_time_estimate”: null,
“human_total_time_spent”: null,
“time_estimate”: 0,
“total_time_spent”: 0







}

## Add spent time for a merge request

Adds spent time for this merge request

`
POST /projects/:id/merge_requests/:merge_request_iid/add_spent_time
`


Attribute           | Type    | Required | Description                              |

———           | —-    | ——– | ———–                              |

id                | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user                      |

merge_request_iid | integer | yes      | The internal ID of the merge request     |

duration          | string  | yes      | The duration in human format. e.g: 3h30m |



`bash
curl --request POST --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/5/merge_requests/93/add_spent_time?duration=1h
`

Example response:

```json
{

“human_time_estimate”: null,
“human_total_time_spent”: “1h”,
“time_estimate”: 0,
“total_time_spent”: 3600

}

Reset spent time for a merge request

Resets the total spent time for this merge request to 0 seconds.

`
POST /projects/:id/merge_requests/:merge_request_iid/reset_spent_time
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

merge_request_iid | integer | yes | The internal ID of a project’s merge_request |

`bash
curl --request POST --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/5/merge_requests/93/reset_spent_time
`

Example response:

```json
{


“human_time_estimate”: null,
“human_total_time_spent”: null,
“time_estimate”: 0,
“total_time_spent”: 0







}

## Get time tracking stats

`
GET /projects/:id/merge_requests/:merge_request_iid/time_stats
`


Attribute           | Type    | Required | Description                          |

———           | —-    | ——– | ———–                          |

id                | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user                  |

merge_request_iid | integer | yes      | The internal ID of the merge request |



`bash
curl --request GET --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/5/merge_requests/93/time_stats
`

Example response:

```json
{

“human_time_estimate”: “2h”,
“human_total_time_spent”: “1h”,
“time_estimate”: 7200,
“total_time_spent”: 3600

}

[ce-13060]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/13060
[ce-14016]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/14016
[ce-15454]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/15454
[ce-18935]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/18935

 # Milestones API

List project milestones

Returns a list of project milestones.

`
GET /projects/:id/milestones
GET /projects/:id/milestones?iids[]=42
GET /projects/:id/milestones?iids[]=42&iids[]=43
GET /projects/:id/milestones?state=active
GET /projects/:id/milestones?state=closed
GET /projects/:id/milestones?search=version
`

Parameters:

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

iids[] | Array[integer] | optional | Return only the milestones having the given iid |

state | string | optional | Return only active or closed milestones` |

search | string | optional | Return only milestones with a title or description matching the provided string |

`bash
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/5/milestones
`

Example Response:

```json
[



	{
	“id”: 12,
“iid”: 3,
“project_id”: 16,
“title”: “10.0”,
“description”: “Version”,
“due_date”: “2013-11-29”,
“start_date”: “2013-11-10”,
“state”: “active”,
“updated_at”: “2013-10-02T09:24:18Z”,
“created_at”: “2013-10-02T09:24:18Z”





}





]

## Get single milestone

Gets a single project milestone.

`
GET /projects/:id/milestones/:milestone_id
`

Parameters:


	id (required) - The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user


	milestone_id (required) - The ID of the project’s milestone




## Create new milestone

Creates a new project milestone.

`
POST /projects/:id/milestones
`

Parameters:


	id (required) - The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user


	title (required) - The title of a milestone


	description (optional) - The description of the milestone


	due_date (optional) - The due date of the milestone


	start_date (optional) - The start date of the milestone




## Edit milestone

Updates an existing project milestone.

`
PUT /projects/:id/milestones/:milestone_id
`

Parameters:


	id (required) - The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user


	milestone_id (required) - The ID of a project milestone


	title (optional) - The title of a milestone


	description (optional) - The description of a milestone


	due_date (optional) - The due date of the milestone


	start_date (optional) - The start date of the milestone


	state_event (optional) - The state event of the milestone (close|activate)




## Delete project milestone

Only for user with developer access to the project.

`
DELETE /projects/:id/milestones/:milestone_id
`

Parameters:


	id (required) - The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user


	milestone_id (required) - The ID of the project’s milestone




## Get all issues assigned to a single milestone

Gets all issues assigned to a single project milestone.

`
GET /projects/:id/milestones/:milestone_id/issues
`

Parameters:


	id (required) - The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user


	milestone_id (required) - The ID of a project milestone




## Get all merge requests assigned to a single milestone

Gets all merge requests assigned to a single project milestone.

`
GET /projects/:id/milestones/:milestone_id/merge_requests
`

Parameters:


	id (required) - The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user


	milestone_id (required) - The ID of a project milestone








            

          

      

      

    

  

    
      
          
            
  # Namespaces API

Usernames and groupnames fall under a special category called namespaces.

For users and groups supported API calls see the [users](users.md) and
[groups](groups.md) documentation respectively.

[Pagination](README.md#pagination) is used.

## List namespaces

Get a list of the namespaces of the authenticated user. If the user is an
administrator, a list of all namespaces in the GitLab instance is shown.

`
GET /namespaces
`

Example request:

`bash
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/namespaces
`

Example response:

```json
[

	{
	“id”: 1,
“name”: “user1”,
“path”: “user1”,
“kind”: “user”,
“full_path”: “user1”

},
{

“id”: 2,
“name”: “group1”,
“path”: “group1”,
“kind”: “group”,
“full_path”: “group1”,
“parent_id”: null,
“members_count_with_descendants”: 2

},
{

“id”: 3,
“name”: “bar”,
“path”: “bar”,
“kind”: “group”,
“full_path”: “foo/bar”,
“parent_id”: 9,
“members_count_with_descendants”: 5

}

]

Note: members_count_with_descendants are presented only for group maintainers/owners.

Search for namespace

Get all namespaces that match a string in their name or path.

`
GET /namespaces?search=foobar
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

search | string | no | Returns a list of namespaces the user is authorized to see based on the search criteria |

Example request:

`bash
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/namespaces?search=twitter
`

Example response:

```json
[



	{
	“id”: 4,
“name”: “twitter”,
“path”: “twitter”,
“kind”: “group”,
“full_path”: “twitter”,
“parent_id”: null,
“members_count_with_descendants”: 2





}







]

## Get namespace by ID

Get a namespace by ID.

`
GET /namespaces/:id
`


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id      | integer/string | yes | ID or path of the namespace |



Example request:

`bash
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/namespaces/2
`

Example response:

```json
{

“id”: 2,
“name”: “group1”,
“path”: “group1”,
“kind”: “group”,
“full_path”: “group1”,
“parent_id”: null,
“members_count_with_descendants”: 2

}

Example request:

`bash
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/namespaces/group1
`

Example response:

```json
{


“id”: 2,
“name”: “group1”,
“path”: “group1”,
“kind”: “group”,
“full_path”: “group1”,
“parent_id”: null,
“members_count_with_descendants”: 2







}





            

          

      

      

    

  

    
      
          
            
  # Notes API

Notes are comments on snippets, issues or merge requests.

## Issues

### List project issue notes

Gets a list of all notes for a single issue.

`
GET /projects/:id/issues/:issue_iid/notes
GET /projects/:id/issues/:issue_iid/notes?sort=asc&order_by=updated_at
`


Attribute           | Type             | Required   | Description                                                                                                                                         |

——————- | —————- | ———- | ————————————————————————————————————————————————— |

id                | integer/string   | yes        | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding)

issue_iid         | integer          | yes        | The IID of an issue

sort              | string           | no         | Return issue notes sorted in asc or desc order. Default is desc

order_by          | string           | no         | Return issue notes ordered by created_at or updated_at fields. Default is created_at



```json
[

	{
	“id”: 302,
“body”: “closed”,
“attachment”: null,
“author”: {

“id”: 1,
“username”: “pipin”,
“email”: “admin@example.com”,
“name”: “Pip”,
“state”: “active”,
“created_at”: “2013-09-30T13:46:01Z”

},
“created_at”: “2013-10-02T09:22:45Z”,
“updated_at”: “2013-10-02T10:22:45Z”,
“system”: true,
“noteable_id”: 377,
“noteable_type”: “Issue”,
“noteable_iid”: 377,
“resolvable”: false

},
{

“id”: 305,
“body”: “Text of the commentrn”,
“attachment”: null,
“author”: {

“id”: 1,
“username”: “pipin”,
“email”: “admin@example.com”,
“name”: “Pip”,
“state”: “active”,
“created_at”: “2013-09-30T13:46:01Z”

},
“created_at”: “2013-10-02T09:56:03Z”,
“updated_at”: “2013-10-02T09:56:03Z”,
“system”: true,
“noteable_id”: 121,
“noteable_type”: “Issue”,
“noteable_iid”: 121,
“resolvable”: false

}

]

`bash
curl --request GET --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/5/issues/11/notes
`

Get single issue note

Returns a single note for a specific project issue

`
GET /projects/:id/issues/:issue_iid/notes/:note_id
`

Parameters:

	id (required) - The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding)

	issue_iid (required) - The IID of a project issue

	note_id (required) - The ID of an issue note

`bash
curl --request GET --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/5/issues/11/notes/1
`

Create new issue note

Creates a new note to a single project issue.

`
POST /projects/:id/issues/:issue_iid/notes
`

Parameters:

	id (required) - The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding)

	issue_id (required) - The IID of an issue

	body (required) - The content of a note

	created_at (optional) - Date time string, ISO 8601 formatted, e.g. 2016-03-11T03:45:40Z

`bash
curl --request POST --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/5/issues/11/notes?body=note
`

Modify existing issue note

Modify existing note of an issue.

`
PUT /projects/:id/issues/:issue_iid/notes/:note_id
`

Parameters:

	id (required) - The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding)

	issue_iid (required) - The IID of an issue

	note_id (required) - The ID of a note

	body (required) - The content of a note

`bash
curl --request PUT --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/5/issues/11/notes?body=note
`

Delete an issue note

Deletes an existing note of an issue.

`
DELETE /projects/:id/issues/:issue_iid/notes/:note_id
`

Parameters:

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |

issue_iid | integer | yes | The IID of an issue |

note_id | integer | yes | The ID of a note |

`bash
curl --request DELETE --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/5/issues/11/notes/636
`

Snippets

List all snippet notes

Gets a list of all notes for a single snippet. Snippet notes are comments users can post to a snippet.

`
GET /projects/:id/snippets/:snippet_id/notes
GET /projects/:id/snippets/:snippet_id/notes?sort=asc&order_by=updated_at
`

Attribute | Type | Required | Description |

——————- | —————- | ———- | ——— |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding)

snippet_id | integer | yes | The ID of a project snippet

sort | string | no | Return snippet notes sorted in asc or desc order. Default is desc

order_by | string | no | Return snippet notes ordered by created_at or updated_at fields. Default is created_at

`bash
curl --request GET --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/5/snippets/11/notes
`

Get single snippet note

Returns a single note for a given snippet.

`
GET /projects/:id/snippets/:snippet_id/notes/:note_id
`

Parameters:

	id (required) - The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding)

	snippet_id (required) - The ID of a project snippet

	note_id (required) - The ID of a snippet note


```json
{


“id”: 52,
“title”: “Snippet”,
“file_name”: “snippet.rb”,
“author”: {


“id”: 1,
“username”: “pipin”,
“email”: “admin@example.com”,
“name”: “Pip”,
“state”: “active”,
“created_at”: “2013-09-30T13:46:01Z”




},
“expires_at”: null,
“updated_at”: “2013-10-02T07:34:20Z”,
“created_at”: “2013-10-02T07:34:20Z”







}

`bash
curl --request GET --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/5/snippets/11/notes/11
`

### Create new snippet note

Creates a new note for a single snippet. Snippet notes are comments users can post to a snippet.
If you create a note where the body only contains an Award Emoji, you’ll receive this object back.

`
POST /projects/:id/snippets/:snippet_id/notes
`

Parameters:


	id (required) - The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding)


	snippet_id (required) - The ID of a snippet


	body (required) - The content of a note


	created_at (optional) - Date time string, ISO 8601 formatted, e.g. 2016-03-11T03:45:40Z




`bash
curl --request POST --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/5/snippet/11/notes?body=note
`

### Modify existing snippet note

Modify existing note of a snippet.

`
PUT /projects/:id/snippets/:snippet_id/notes/:note_id
`

Parameters:


	id (required) - The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding)


	snippet_id (required) - The ID of a snippet


	note_id (required) - The ID of a note


	body (required) - The content of a note




`bash
curl --request PUT --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/5/snippets/11/notes?body=note
`

### Delete a snippet note

Deletes an existing note of a snippet.

`
DELETE /projects/:id/snippets/:snippet_id/notes/:note_id
`

Parameters:


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |

snippet_id | integer | yes | The ID of a snippet |

note_id | integer | yes | The ID of a note |



`bash
curl --request DELETE --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/5/snippets/52/notes/1659
`

## Merge Requests

### List all merge request notes

Gets a list of all notes for a single merge request.

`
GET /projects/:id/merge_requests/:merge_request_iid/notes
GET /projects/:id/merge_requests/:merge_request_iid/notes?sort=asc&order_by=updated_at
`


Attribute           | Type             | Required   | Description                                                                                                                                         |

——————- | —————- | ———- | ————————————————————————————————————————————————— |

id                | integer/string   | yes        | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding)

merge_request_iid | integer          | yes        | The IID of a project merge request

sort              | string           | no         | Return merge request notes sorted in asc or desc order. Default is desc

order_by          | string           | no         | Return merge request notes ordered by created_at or updated_at fields. Default is created_at



`bash
curl --request GET --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/5/merge_requests/11/notes
`

### Get single merge request note

Returns a single note for a given merge request.

`
GET /projects/:id/merge_requests/:merge_request_iid/notes/:note_id
`

Parameters:


	id (required) - The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding)


	merge_request_iid (required) - The IID of a project merge request


	note_id (required) - The ID of a merge request note




```json
{

“id”: 301,
“body”: “Comment for MR”,
“attachment”: null,
“author”: {

“id”: 1,
“username”: “pipin”,
“email”: “admin@example.com”,
“name”: “Pip”,
“state”: “active”,
“created_at”: “2013-09-30T13:46:01Z”

},
“created_at”: “2013-10-02T08:57:14Z”,
“updated_at”: “2013-10-02T08:57:14Z”,
“system”: false,
“noteable_id”: 2,
“noteable_type”: “MergeRequest”,
“noteable_iid”: 2,
“resolvable”: false

}

`bash
curl --request GET --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/5/merge_requests/11/notes/1
`

Create new merge request note

Creates a new note for a single merge request.
If you create a note where the body only contains an Award Emoji, you’ll receive
this object back.

`
POST /projects/:id/merge_requests/:merge_request_iid/notes
`

Parameters:

	id (required) - The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding)

	merge_request_iid (required) - The IID of a merge request

	body (required) - The content of a note

	created_at (optional) - Date time string, ISO 8601 formatted, e.g. 2016-03-11T03:45:40Z

Modify existing merge request note

Modify existing note of a merge request.

`
PUT /projects/:id/merge_requests/:merge_request_iid/notes/:note_id
`

Parameters:

	id (required) - The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding)

	merge_request_iid (required) - The IID of a merge request

	note_id (required) - The ID of a note

	body (required) - The content of a note

`bash
curl --request PUT --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/5/merge_requests/11/notes?body=note
`

Delete a merge request note

Deletes an existing note of a merge request.

`
DELETE /projects/:id/merge_requests/:merge_request_iid/notes/:note_id
`

Parameters:

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |

merge_request_iid | integer | yes | The IID of a merge request |

note_id | integer | yes | The ID of a note |

`bash
curl --request DELETE --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/5/merge_requests/7/notes/1602
`

 # Notification settings API

>**Note:** This feature was [introduced][ce-5632] in GitLab 8.12.

Valid notification levels

The notification levels are defined in the NotificationSetting.level model enumeration. Currently, these levels are recognized:

`
disabled
participating
watch
global
mention
custom
`

If the custom level is used, specific email events can be controlled. Notification email events are defined in the NotificationSetting::EMAIL_EVENTS model variable. Currently, these events are recognized:

`
new_note
new_issue
reopen_issue
close_issue
reassign_issue
issue_due
new_merge_request
push_to_merge_request
reopen_merge_request
close_merge_request
reassign_merge_request
merge_merge_request
failed_pipeline
success_pipeline
`

Global notification settings

Get current notification settings and email address.

`
GET /notification_settings
`

`bash
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/notification_settings
`

Example response:

```json
{


“level”: “participating”,
“notification_email”: “admin@example.com”





}

## Update global notification settings

Update current notification settings and email address.

`
PUT /notification_settings
`

`bash
curl --request PUT --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/notification_settings?level=watch
`


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

level | string | no | The global notification level |

notification_email | string | no | The email address to send notifications |

new_note | boolean | no | Enable/disable this notification |

new_issue | boolean | no | Enable/disable this notification |

reopen_issue | boolean | no | Enable/disable this notification |

close_issue | boolean | no | Enable/disable this notification |

reassign_issue | boolean | no | Enable/disable this notification |

issue_due | boolean | no | Enable/disable this notification |

new_merge_request | boolean | no | Enable/disable this notification |

push_to_merge_request | boolean | no | Enable/disable this notification |

reopen_merge_request | boolean | no | Enable/disable this notification |

close_merge_request | boolean | no | Enable/disable this notification |

reassign_merge_request | boolean | no | Enable/disable this notification |

merge_merge_request | boolean | no | Enable/disable this notification |

failed_pipeline | boolean | no | Enable/disable this notification |

success_pipeline | boolean | no | Enable/disable this notification |



Example response:

```json
{

“level”: “watch”,
“notification_email”: “admin@example.com”

}

Group / project level notification settings

Get current group or project notification settings.

`
GET /groups/:id/notification_settings
GET /projects/:id/notification_settings
`

`bash
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/groups/5/notification_settings
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/8/notification_settings
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The group/project ID or path |

Example response:

```json
{


“level”: “global”







}

## Update group/project level notification settings

Update current group/project notification settings.

`
PUT /groups/:id/notification_settings
PUT /projects/:id/notification_settings
`

`bash
curl --request PUT --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/groups/5/notification_settings?level=watch
curl --request PUT --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/8/notification_settings?level=custom&new_note=true
`


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The group/project ID or path |

level | string | no | The global notification level |

new_note | boolean | no | Enable/disable this notification |

new_issue | boolean | no | Enable/disable this notification |

reopen_issue | boolean | no | Enable/disable this notification |

close_issue | boolean | no | Enable/disable this notification |

reassign_issue | boolean | no | Enable/disable this notification |

issue_due | boolean | no | Enable/disable this notification |

new_merge_request | boolean | no | Enable/disable this notification |

push_to_merge_request | boolean | no | Enable/disable this notification |

reopen_merge_request | boolean | no | Enable/disable this notification |

close_merge_request | boolean | no | Enable/disable this notification |

reassign_merge_request | boolean | no | Enable/disable this notification |

merge_merge_request | boolean | no | Enable/disable this notification |

failed_pipeline | boolean | no | Enable/disable this notification |

success_pipeline | boolean | no | Enable/disable this notification |



Example responses:

```json
{

“level”: “watch”

}

	{
	“level”: “custom”,
“events”: {

“new_note”: true,
“new_issue”: false,
“reopen_issue”: false,
“close_issue”: false,
“reassign_issue”: false,
“issue_due”: false,
“new_merge_request”: false,
“push_to_merge_request”: false,
“reopen_merge_request”: false,
“close_merge_request”: false,
“reassign_merge_request”: false,
“merge_merge_request”: false,
“failed_pipeline”: false,
“success_pipeline”: false

}

}

[ce-5632]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/5632

 # GitLab as an OAuth2 provider

This document covers using the [OAuth2](https://oauth.net/2/) protocol to allow other services access Gitlab resources on user’s behalf.

If you want GitLab to be an OAuth authentication service provider to sign into other services please see the [OAuth2 provider](../integration/oauth_provider.md)
documentation.

This functionality is based on [doorkeeper gem](https://github.com/doorkeeper-gem/doorkeeper).

Supported OAuth2 Flows

Gitlab currently supports following authorization flows:

	Web Application Flow - Most secure and common type of flow, designed for the applications with secure server-side.

	Implicit Flow - This flow is designed for user-agent only apps (e.g. single page web application running on GitLab Pages).

	Resource Owner Password Credentials Flow - To be used only for securely hosted, first-party services.

Please refer to [OAuth RFC](https://tools.ietf.org/html/rfc6749) to find out in details how all those flows work and pick the right one for your use case.

Both web application and implicit flows require application to be registered first via /profile/applications page
in your user’s account. During registration, by enabling proper scopes you can limit the range of resources which the application can access. Upon creation
you’ll obtain application credentials: _Application ID_ and _Client Secret_ - keep them secure.

>**Important:** OAuth specification advises sending state parameter with each request to /oauth/authorize. We highly recommended to send a unique
value with each request and validate it against the one in redirect request. This is important to prevent [CSRF attacks]. The state param really should
have been a requirement in the standard!

In the following sections you will find detailed instructions on how to obtain authorization with each flow.

Web Application Flow

Check [RFC spec](http://tools.ietf.org/html/rfc6749#section-4.1) for a detailed flow description

1. Requesting authorization code

To request the authorization code, you should redirect the user to the /oauth/authorize endpoint with following GET parameters:

`
https://gitlab.example.com/oauth/authorize?client_id=APP_ID&redirect_uri=REDIRECT_URI&response_type=code&state=YOUR_UNIQUE_STATE_HASH
`

This will ask the user to approve the applications access to their account and then redirect back to the REDIRECT_URI you provided. The redirect will
include the GET code parameter, for example:

http://myapp.com/oauth/redirect?code=1234567890&state=YOUR_UNIQUE_STATE_HASH

You should then use the code to request an access token.

2. Requesting access token

Once you have the authorization code you can request an access_token using the code, to do that you can use any HTTP client. In the following example,
we are using Ruby’s rest-client:

```
parameters = ‘client_id=APP_ID&client_secret=APP_SECRET&code=RETURNED_CODE&grant_type=authorization_code&redirect_uri=REDIRECT_URI’
RestClient.post ‘http://gitlab.example.com/oauth/token’, parameters

# The response will be
{


“access_token”: “de6780bc506a0446309bd9362820ba8aed28aa506c71eedbe1c5c4f9dd350e54”,
“token_type”: “bearer”,
“expires_in”: 7200,
“refresh_token”: “8257e65c97202ed1726cf9571600918f3bffb2544b26e00a61df9897668c33a1”





}

>**Note:**
The redirect_uri must match the redirect_uri used in the original authorization request.

You can now make requests to the API with the access token returned.

### Implicit Grant

Check [RFC spec](http://tools.ietf.org/html/rfc6749#section-4.2) for a detailed flow description.

Unlike the web flow, the client receives an access token immediately as a result of the authorization request. The flow does not use client secret
or authorization code because all of the application code and storage is easily accessible, therefore __secrets__ can leak easily.

>**Important:** Avoid using this flow for applications that store data outside of the Gitlab instance. If you do, make sure to verify application id
associated with access token before granting access to the data
(see [/oauth/token/info](https://github.com/doorkeeper-gem/doorkeeper/wiki/API-endpoint-descriptions-and-examples#get—-oauthtokeninfo [https://github.com/doorkeeper-gem/doorkeeper/wiki/API-endpoint-descriptions-and-examples#get----oauthtokeninfo])).

#### 1. Requesting access token

To request the access token, you should redirect the user to the /oauth/authorize endpoint using token response type:

`
https://gitlab.example.com/oauth/authorize?client_id=APP_ID&redirect_uri=REDIRECT_URI&response_type=token&state=YOUR_UNIQUE_STATE_HASH
`

This will ask the user to approve the applications access to their account and then redirect back to the REDIRECT_URI you provided. The redirect
will include a fragment with access_token as well as token details in GET parameters, for example:

`
http://myapp.com/oauth/redirect#access_token=ABCDExyz123&state=YOUR_UNIQUE_STATE_HASH&token_type=bearer&expires_in=3600
`

### Resource Owner Password Credentials

Check [RFC spec](http://tools.ietf.org/html/rfc6749#section-4.3) for a detailed flow description.

> Deprecation notice: Starting in GitLab 8.11, the Resource Owner Password Credentials has been disabled for users with two-factor authentication
turned on. These users can access the API using [personal access tokens] instead.

In this flow, a token is requested in exchange for the resource owner credentials (username and password).
The credentials should only be used when there is a high degree of trust between the resource owner and the client (e.g. the
client is part of the device operating system or a highly privileged application), and when other authorization grant types are not
available (such as an authorization code).

>**Important:**
Never store the users credentials and only use this grant type when your client is deployed to a trusted environment, in 99% of cases [personal access tokens]
are a better choice.

Even though this grant type requires direct client access to the resource owner credentials, the resource owner credentials are used
for a single request and are exchanged for an access token.  This grant type can eliminate the need for the client to store the
resource owner credentials for future use, by exchanging the credentials with a long-lived access token or refresh token.

#### 1. Requesting access token

POST request to /oauth/token with parameters:

```
{

“grant_type” : “password”,
“username” : “user@example.com”,
“password” : “secret”

}

Then, you’ll receive the access token back in the response:

```
{


“access_token”: “1f0af717251950dbd4d73154fdf0a474a5c5119adad999683f5b450c460726aa”,
“token_type”: “bearer”,
“expires_in”: 7200







}

For testing you can use the oauth2 ruby gem:

`
client = OAuth2::Client.new('the_client_id', 'the_client_secret', :site => "http://example.com")
access_token = client.password.get_token('user@example.com', 'secret')
puts access_token.token
`

##  Access Gitlab API with access token

The access token allows you to make requests to the API on a behalf of a user. You can pass the token either as GET parameter
`
GET https://gitlab.example.com/api/v4/user?access_token=OAUTH-TOKEN
`

or you can put the token to the Authorization header:

`
curl --header "Authorization: Bearer OAUTH-TOKEN" https://gitlab.example.com/api/v4/user
`

[personal access tokens]: ../user/profile/personal_access_tokens.md
[CSRF attacks]: http://www.oauthsecurity.com/#user-content-authorization-code-flow





            

          

      

      

    

  

    
      
          
            
  # Pages domains API

Endpoints for connecting custom domain(s) and TLS certificates in [GitLab Pages](https://about.gitlab.com/features/pages/).

The GitLab Pages feature must be enabled to use these endpoints. Find out more about [administering](../administration/pages/index.md) and [using](../user/project/pages/index.md) the feature.

## List all pages domains

Get a list of all pages domains. The user must have admin permissions.

`http
GET /pages/domains
`

`bash
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/pages/domains
`

```json
[

	{
	“domain”: “ssl.domain.example”,
“url”: “https://ssl.domain.example”,
“project_id”: 1337,
“certificate”: {

“expired”: false,
“expiration”: “2020-04-12T14:32:00.000Z”

}

}

]

List pages domains

Get a list of project pages domains. The user must have permissions to view pages domains.

`http
GET /projects/:id/pages/domains
`

Attribute | Type | Required | Description |

——— | ————– | ——– | —————————————- |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

`bash
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/5/pages/domains
`

```json
[



	{
	“domain”: “www.domain.example”,
“url”: “http://www.domain.example”





},
{


“domain”: “ssl.domain.example”,
“url”: “https://ssl.domain.example”,
“certificate”: {


“subject”: “/O=Example, Inc./OU=Example Origin CA/CN=Example Origin Certificate”,
“expired”: false,
“certificate”: “—–BEGIN CERTIFICATE—–n … n—–END CERTIFICATE—–”,
“certificate_text”: “Certificate:n … n”




}




}







]

## Single pages domain

Get a single project pages domain. The user must have permissions to view pages domains.

`http
GET /projects/:id/pages/domains/:domain
`


Attribute | Type           | Required | Description                              |

——— | ————– | ——– | —————————————- |

id      | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

domain  | string         | yes      | The domain                               |



`bash
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/5/pages/domains/www.domain.example
`

```json
{

“domain”: “www.domain.example”,
“url”: “http://www.domain.example”

}

`bash
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/5/pages/domains/ssl.domain.example
`

```json
{


“domain”: “ssl.domain.example”,
“url”: “https://ssl.domain.example”,
“certificate”: {


“subject”: “/O=Example, Inc./OU=Example Origin CA/CN=Example Origin Certificate”,
“expired”: false,
“certificate”: “—–BEGIN CERTIFICATE—–n … n—–END CERTIFICATE—–”,
“certificate_text”: “Certificate:n … n”




}







}

## Create new pages domain

Creates a new pages domain. The user must have permissions to create new pages domains.

`http
POST /projects/:id/pages/domains
`


Attribute     | Type           | Required | Description                              |

————- | ————– | ——– | —————————————- |

id          | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

domain      | string         | yes      | The domain                               |

certificate | file/string    | no       | The certificate in PEM format with intermediates following in most specific to least specific order.|

key         | file/string    | no       | The certificate key in PEM format.       |



`bash
curl --request POST --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" --form "domain=ssl.domain.example" --form "certificate=@/path/to/cert.pem" --form "key=@/path/to/key.pem" https://gitlab.example.com/api/v4/projects/5/pages/domains
`

`bash
curl --request POST --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" --form "domain=ssl.domain.example" --form "certificate=$CERT_PEM" --form "key=$KEY_PEM" https://gitlab.example.com/api/v4/projects/5/pages/domains
`

```json
{

“domain”: “ssl.domain.example”,
“url”: “https://ssl.domain.example”,
“certificate”: {

“subject”: “/O=Example, Inc./OU=Example Origin CA/CN=Example Origin Certificate”,
“expired”: false,
“certificate”: “—–BEGIN CERTIFICATE—–n … n—–END CERTIFICATE—–”,
“certificate_text”: “Certificate:n … n”

}

}

Update pages domain

Updates an existing project pages domain. The user must have permissions to change an existing pages domains.

`http
PUT /projects/:id/pages/domains/:domain
`

Attribute | Type | Required | Description |

————- | ————– | ——– | —————————————- |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

domain | string | yes | The domain |

certificate | file/string | no | The certificate in PEM format with intermediates following in most specific to least specific order.|

key | file/string | no | The certificate key in PEM format. |

`bash
curl --request PUT --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" --form "certificate=@/path/to/cert.pem" --form "key=@/path/to/key.pem" https://gitlab.example.com/api/v4/projects/5/pages/domains/ssl.domain.example
`

`bash
curl --request PUT --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" --form "certificate=$CERT_PEM" --form "key=$KEY_PEM" https://gitlab.example.com/api/v4/projects/5/pages/domains/ssl.domain.example
`

```json
{


“domain”: “ssl.domain.example”,
“url”: “https://ssl.domain.example”,
“certificate”: {


“subject”: “/O=Example, Inc./OU=Example Origin CA/CN=Example Origin Certificate”,
“expired”: false,
“certificate”: “—–BEGIN CERTIFICATE—–n … n—–END CERTIFICATE—–”,
“certificate_text”: “Certificate:n … n”




}







}

## Delete pages domain

Deletes an existing project pages domain.

`http
DELETE /projects/:id/pages/domains/:domain
`


Attribute | Type           | Required | Description                              |

——— | ————– | ——– | —————————————- |

id      | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

domain  | string         | yes      | The domain                               |



`bash
curl --request DELETE --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/5/pages/domains/ssl.domain.example
`





            

          

      

      

    

  

    
      
          
            
  # Pipeline schedules

You can read more about [pipeline schedules](../user/project/pipelines/schedules.md).

## Get all pipeline schedules

Get a list of the pipeline schedules of a project.

`
GET /projects/:id/pipeline_schedules
`


Attribute | Type    | required | Description         |



|-----------|———|----------|———————|
| id      | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |
| scope   | string  | no       | The scope of pipeline schedules, one of: active, inactive |

`sh
curl --header "PRIVATE-TOKEN: k5ESFgWY2Qf5xEvDcFxZ" "https://gitlab.example.com/api/v4/projects/29/pipeline_schedules"
`

```json
[

	{
	“id”: 13,
“description”: “Test schedule pipeline”,
“ref”: “master”,
“cron”: “* * * * *”,
“cron_timezone”: “Asia/Tokyo”,
“next_run_at”: “2017-05-19T13:41:00.000Z”,
“active”: true,
“created_at”: “2017-05-19T13:31:08.849Z”,
“updated_at”: “2017-05-19T13:40:17.727Z”,
“owner”: {

“name”: “Administrator”,
“username”: “root”,
“id”: 1,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”,
“web_url”: “https://gitlab.example.com/root”

}

}

]

Get a single pipeline schedule

Get the pipeline schedule of a project.

`
GET /projects/:id/pipeline_schedules/:pipeline_schedule_id
`

Attribute | Type | required | Description |

|--------------|———|----------|————————–|
| id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |
| pipeline_schedule_id | integer | yes | The pipeline schedule id |

`sh
curl --header "PRIVATE-TOKEN: k5ESFgWY2Qf5xEvDcFxZ" "https://gitlab.example.com/api/v4/projects/29/pipeline_schedules/13"
`

```json
{


“id”: 13,
“description”: “Test schedule pipeline”,
“ref”: “master”,
“cron”: “* * * * *”,
“cron_timezone”: “Asia/Tokyo”,
“next_run_at”: “2017-05-19T13:41:00.000Z”,
“active”: true,
“created_at”: “2017-05-19T13:31:08.849Z”,
“updated_at”: “2017-05-19T13:40:17.727Z”,
“last_pipeline”: {


“id”: 332,
“sha”: “0e788619d0b5ec17388dffb973ecd505946156db”,
“ref”: “master”,
“status”: “pending”




},
“owner”: {


“name”: “Administrator”,
“username”: “root”,
“id”: 1,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”,
“web_url”: “https://gitlab.example.com/root”




},
“variables”: [



	{
	“key”: “TEST_VARIABLE_1”,
“value”: “TEST_1”





}




]







}

## Create a new pipeline schedule

Create a new pipeline schedule of a project.

`
POST /projects/:id/pipeline_schedules
`


Attribute     | Type    | required | Description              |



|---------------|———|----------|————————–|
| id          | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user      |
| description | string  | yes      | The description of pipeline schedule         |
| ref | string  | yes      | The branch/tag name will be triggered         |
| cron ` | string  | yes      | The cron (e.g. `0 1 * * *) ([Cron syntax](https://en.wikipedia.org/wiki/Cron))       |
| cron_timezone ` | string  | no      | The timezone supported by `ActiveSupport::TimeZone (e.g. Pacific Time (US & Canada)) (default: ‘UTC’)     |
| active ` | boolean  | no      | The activation of pipeline schedule. If false is set, the pipeline schedule will deactivated initially (default: `true) |

`sh
curl --request POST --header "PRIVATE-TOKEN: k5ESFgWY2Qf5xEvDcFxZ" --form description="Build packages" --form ref="master" --form cron="0 1 * * 5" --form cron_timezone="UTC" --form active="true" "https://gitlab.example.com/api/v4/projects/29/pipeline_schedules"
`

```json
{

“id”: 14,
“description”: “Build packages”,
“ref”: “master”,
“cron”: “0 1 * * 5”,
“cron_timezone”: “UTC”,
“next_run_at”: “2017-05-26T01:00:00.000Z”,
“active”: true,
“created_at”: “2017-05-19T13:43:08.169Z”,
“updated_at”: “2017-05-19T13:43:08.169Z”,
“last_pipeline”: null,
“owner”: {

“name”: “Administrator”,
“username”: “root”,
“id”: 1,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”,
“web_url”: “https://gitlab.example.com/root”

}

}

Edit a pipeline schedule

Updates the pipeline schedule of a project. Once the update is done, it will be rescheduled automatically.

`
PUT /projects/:id/pipeline_schedules/:pipeline_schedule_id
`

Attribute | Type | required | Description |

|---------------|———|----------|————————–|
| id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |
| pipeline_schedule_id | integer | yes | The pipeline schedule id |
| description | string | no | The description of pipeline schedule |
| ref | string | no | The branch/tag name will be triggered |
| cron ` | string | no | The cron (e.g. `0 1 * * *) ([Cron syntax](https://en.wikipedia.org/wiki/Cron)) |
| cron_timezone ` | string | no | The timezone supported by `ActiveSupport::TimeZone (e.g. Pacific Time (US & Canada)) or TZInfo::Timezone (e.g. America/Los_Angeles) |
| `active ` | boolean | no | The activation of pipeline schedule. If false is set, the pipeline schedule will deactivated initially. |

`sh
curl --request PUT --header "PRIVATE-TOKEN: k5ESFgWY2Qf5xEvDcFxZ" --form cron="0 2 * * *" "https://gitlab.example.com/api/v4/projects/29/pipeline_schedules/13"
`

```json
{


“id”: 13,
“description”: “Test schedule pipeline”,
“ref”: “master”,
“cron”: “0 2 * * *”,
“cron_timezone”: “Asia/Tokyo”,
“next_run_at”: “2017-05-19T17:00:00.000Z”,
“active”: true,
“created_at”: “2017-05-19T13:31:08.849Z”,
“updated_at”: “2017-05-19T13:44:16.135Z”,
“last_pipeline”: {


“id”: 332,
“sha”: “0e788619d0b5ec17388dffb973ecd505946156db”,
“ref”: “master”,
“status”: “pending”




},
“owner”: {


“name”: “Administrator”,
“username”: “root”,
“id”: 1,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”,
“web_url”: “https://gitlab.example.com/root”




}







}

## Take ownership of a pipeline schedule

Update the owner of the pipeline schedule of a project.

`
POST /projects/:id/pipeline_schedules/:pipeline_schedule_id/take_ownership
`


Attribute     | Type    | required | Description              |



|---------------|———|----------|————————–|
| id          | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user      |
| pipeline_schedule_id  | integer | yes      | The pipeline schedule id           |

`sh
curl --request POST --header "PRIVATE-TOKEN: hf2CvZXB9w8Uc5pZKpSB" "https://gitlab.example.com/api/v4/projects/29/pipeline_schedules/13/take_ownership"
`

```json
{

“id”: 13,
“description”: “Test schedule pipeline”,
“ref”: “master”,
“cron”: “0 2 * * *”,
“cron_timezone”: “Asia/Tokyo”,
“next_run_at”: “2017-05-19T17:00:00.000Z”,
“active”: true,
“created_at”: “2017-05-19T13:31:08.849Z”,
“updated_at”: “2017-05-19T13:46:37.468Z”,
“last_pipeline”: {

“id”: 332,
“sha”: “0e788619d0b5ec17388dffb973ecd505946156db”,
“ref”: “master”,
“status”: “pending”

},
“owner”: {

“name”: “shinya”,
“username”: “maeda”,
“id”: 50,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/8ca0a796a679c292e3a11da50f99e801?s=80&d=identicon”,
“web_url”: “https://gitlab.example.com/maeda”

}

}

Delete a pipeline schedule

Delete the pipeline schedule of a project.

`
DELETE /projects/:id/pipeline_schedules/:pipeline_schedule_id
`

Attribute | Type | required | Description |

|----------------|———|----------|————————–|
| id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |
| pipeline_schedule_id | integer | yes | The pipeline schedule id |

`sh
curl --request DELETE --header "PRIVATE-TOKEN: k5ESFgWY2Qf5xEvDcFxZ" "https://gitlab.example.com/api/v4/projects/29/pipeline_schedules/13"
`

```json
{


“id”: 13,
“description”: “Test schedule pipeline”,
“ref”: “master”,
“cron”: “0 2 * * *”,
“cron_timezone”: “Asia/Tokyo”,
“next_run_at”: “2017-05-19T17:00:00.000Z”,
“active”: true,
“created_at”: “2017-05-19T13:31:08.849Z”,
“updated_at”: “2017-05-19T13:46:37.468Z”,
“last_pipeline”: {


“id”: 332,
“sha”: “0e788619d0b5ec17388dffb973ecd505946156db”,
“ref”: “master”,
“status”: “pending”




},
“owner”: {


“name”: “shinya”,
“username”: “maeda”,
“id”: 50,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/8ca0a796a679c292e3a11da50f99e801?s=80&d=identicon”,
“web_url”: “https://gitlab.example.com/maeda”




}







}

## Pipeline schedule variable

> [Introduced][ce-34518] in GitLab 10.0.

## Create a new pipeline schedule variable

Create a new variable of a pipeline schedule.

`
POST /projects/:id/pipeline_schedules/:pipeline_schedule_id/variables
`


Attribute              | Type           | required | Description              |



|------------------------|—————-|----------|————————–|
| id                   | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user      |
| pipeline_schedule_id | integer        | yes      | The pipeline schedule id |
| key                  | string         | yes      | The key of a variable; must have no more than 255 characters; only A-Z, a-z, 0-9, and _ are allowed |
| value                | string         | yes      | The value of a variable |

`sh
curl --request POST --header "PRIVATE-TOKEN: k5ESFgWY2Qf5xEvDcFxZ" --form "key=NEW_VARIABLE" --form "value=new value" "https://gitlab.example.com/api/v4/projects/29/pipeline_schedules/13/variables"
`

```json
{

“key”: “NEW_VARIABLE”,
“value”: “new value”

}

Edit a pipeline schedule variable

Updates the variable of a pipeline schedule.

`
PUT /projects/:id/pipeline_schedules/:pipeline_schedule_id/variables/:key
`

Attribute | Type | required | Description |

|------------------------|—————-|----------|————————–|
| id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |
| pipeline_schedule_id | integer | yes | The pipeline schedule id |
| key | string | yes | The key of a variable |
| value | string | yes | The value of a variable |

`sh
curl --request PUT --header "PRIVATE-TOKEN: k5ESFgWY2Qf5xEvDcFxZ" --form "value=updated value" "https://gitlab.example.com/api/v4/projects/29/pipeline_schedules/13/variables/NEW_VARIABLE"
`

```json
{


“key”: “NEW_VARIABLE”,
“value”: “updated value”







}

## Delete a pipeline schedule variable

Delete the variable of a pipeline schedule.

`
DELETE /projects/:id/pipeline_schedules/:pipeline_schedule_id/variables/:key
`


Attribute              | Type           | required | Description              |



|------------------------|—————-|----------|————————–|
| id                   | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user      |
| pipeline_schedule_id | integer        | yes      | The pipeline schedule id |
| key                  | string         | yes      | The key of a variable |

`sh
curl --request DELETE --header "PRIVATE-TOKEN: k5ESFgWY2Qf5xEvDcFxZ" "https://gitlab.example.com/api/v4/projects/29/pipeline_schedules/13/variables/NEW_VARIABLE"
`

```json
{

“key”: “NEW_VARIABLE”,
“value”: “updated value”

}

[ce-34518]: https://gitlab.com/gitlab-org/gitlab-ce/issues/34518

 # Pipeline triggers API

You can read more about [triggering pipelines through the API](../ci/triggers/README.md).

List project triggers

Get a list of project’s build triggers.

`
GET /projects/:id/triggers
`

Attribute | Type | required | Description |

|-----------|———|----------|———————|
| id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

`
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" "https://gitlab.example.com/api/v4/projects/1/triggers"
`

```json
[



	{
	“id”: 10,
“description”: “my trigger”,
“created_at”: “2016-01-07T09:53:58.235Z”,
“last_used”: null,
“token”: “6d056f63e50fe6f8c5f8f4aa10edb7”,
“updated_at”: “2016-01-07T09:53:58.235Z”,
“owner”: null





}





]

## Get trigger details

Get details of project’s build trigger.

`
GET /projects/:id/triggers/:trigger_id
`


Attribute    | Type    | required | Description              |



|--------------|———|----------|————————–|
| id         | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user      |
| trigger_id | integer | yes      | The trigger id           |

`
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" "https://gitlab.example.com/api/v4/projects/1/triggers/5"
`

```json
{

“id”: 10,
“description”: “my trigger”,
“created_at”: “2016-01-07T09:53:58.235Z”,
“last_used”: null,
“token”: “6d056f63e50fe6f8c5f8f4aa10edb7”,
“updated_at”: “2016-01-07T09:53:58.235Z”,
“owner”: null

}

Create a project trigger

Create a trigger for a project.

`
POST /projects/:id/triggers
`

Attribute | Type | required | Description |

|---------------|———|----------|————————–|
| id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |
| description | string | yes | The trigger name |

`
curl --request POST --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" --form description="my description" "https://gitlab.example.com/api/v4/projects/1/triggers"
`

```json
{


“id”: 10,
“description”: “my trigger”,
“created_at”: “2016-01-07T09:53:58.235Z”,
“last_used”: null,
“token”: “6d056f63e50fe6f8c5f8f4aa10edb7”,
“updated_at”: “2016-01-07T09:53:58.235Z”,
“owner”: null







}

## Update a project trigger

Update a trigger for a project.

`
PUT /projects/:id/triggers/:trigger_id
`


Attribute     | Type    | required | Description              |



|---------------|———|----------|————————–|
| id          | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user      |
| trigger_id  | integer | yes      | The trigger id           |
| description | string  | no       | The trigger name         |

`
curl --request PUT --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" --form description="my description" "https://gitlab.example.com/api/v4/projects/1/triggers/10"
`

```json
{

“id”: 10,
“description”: “my trigger”,
“created_at”: “2016-01-07T09:53:58.235Z”,
“last_used”: null,
“token”: “6d056f63e50fe6f8c5f8f4aa10edb7”,
“updated_at”: “2016-01-07T09:53:58.235Z”,
“owner”: null

}

Take ownership of a project trigger

Update an owner of a project trigger.

`
POST /projects/:id/triggers/:trigger_id/take_ownership
`

Attribute | Type | required | Description |

|---------------|———|----------|————————–|
| id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |
| trigger_id | integer | yes | The trigger id |

`
curl --request POST --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" "https://gitlab.example.com/api/v4/projects/1/triggers/10/take_ownership"
`

```json
{


“id”: 10,
“description”: “my trigger”,
“created_at”: “2016-01-07T09:53:58.235Z”,
“last_used”: null,
“token”: “6d056f63e50fe6f8c5f8f4aa10edb7”,
“updated_at”: “2016-01-07T09:53:58.235Z”,
“owner”: null







}

## Remove a project trigger

Remove a project’s build trigger.

`
DELETE /projects/:id/triggers/:trigger_id
`


Attribute      | Type    | required | Description              |



|----------------|———|----------|————————–|
| id           | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user      |
| trigger_id   | integer | yes      | The trigger id           |

`
curl --request DELETE --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" "https://gitlab.example.com/api/v4/projects/1/triggers/5"
`





            

          

      

      

    

  

    
      
          
            
  # Pipelines API

## List project pipelines

> [Introduced][ce-5837] in GitLab 8.11

`
GET /projects/:id/pipelines
`


Attribute | Type    | Required | Description         |



|-----------|———|----------|———————|
| id      | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |
| scope   | string  | no       | The scope of pipelines, one of: running, pending, finished, branches, tags |
| status  | string  | no       | The status of pipelines, one of: running, pending, success, failed, canceled, skipped |
| ref     | string  | no       | The ref of pipelines |
| sha     | string  | no       | The sha or pipelines |
| yaml_errors`| boolean  | no       | Returns pipelines with invalid configurations |
| `name`| string  | no       | The name of the user who triggered pipelines |
| `username`| string  | no       | The username of the user who triggered pipelines |
| `order_by`| string  | no       | Order pipelines by `id, status, ref, or user_id (default: id) |
| sort    | string  | no       | Sort pipelines in asc or desc order (default: desc) |

`
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" "https://gitlab.example.com/api/v4/projects/1/pipelines"
`

Example of response

```json
[

	{
	“id”: 47,
“status”: “pending”,
“ref”: “new-pipeline”,
“sha”: “a91957a858320c0e17f3a0eca7cfacbff50ea29a”,
“web_url”: “https://example.com/foo/bar/pipelines/47”

},
{

“id”: 48,
“status”: “pending”,
“ref”: “new-pipeline”,
“sha”: “eb94b618fb5865b26e80fdd8ae531b7a63ad851a”,
“web_url”: “https://example.com/foo/bar/pipelines/48”

}

]

Get a single pipeline

> [Introduced][ce-5837] in GitLab 8.11

`
GET /projects/:id/pipelines/:pipeline_id
`

Attribute | Type | Required | Description |

|------------|———|----------|———————|
| id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |
| pipeline_id | integer | yes | The ID of a pipeline |

`
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" "https://gitlab.example.com/api/v4/projects/1/pipelines/46"
`

Example of response

```json
{


“id”: 46,
“status”: “success”,
“ref”: “master”,
“sha”: “a91957a858320c0e17f3a0eca7cfacbff50ea29a”,
“before_sha”: “a91957a858320c0e17f3a0eca7cfacbff50ea29a”,
“tag”: false,
“yaml_errors”: null,
“user”: {


“name”: “Administrator”,
“username”: “root”,
“id”: 1,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”,
“web_url”: “http://localhost:3000/root”




},
“created_at”: “2016-08-11T11:28:34.085Z”,
“updated_at”: “2016-08-11T11:32:35.169Z”,
“started_at”: null,
“finished_at”: “2016-08-11T11:32:35.145Z”,
“committed_at”: null,
“duration”: null,
“coverage”: “30.0”,
“web_url”: “https://example.com/foo/bar/pipelines/46”







}

## Create a new pipeline

> [Introduced][ce-7209] in GitLab 8.14

`
POST /projects/:id/pipeline
`


Attribute  | Type    | Required | Description         |



|------------|———|----------|———————|
| id       | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |
| ref       | string | yes      | Reference to commit |
| variables | array | no | An array containing the variables available in the pipeline, matching the structure [{ ‘key’ => ‘UPLOAD_TO_S3’, ‘value’ => ‘true’ }] |

`
curl --request POST --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" "https://gitlab.example.com/api/v4/projects/1/pipeline?ref=master"
`

Example of response

```json
{

“id”: 61,
“sha”: “384c444e840a515b23f21915ee5766b87068a70d”,
“ref”: “master”,
“status”: “pending”,
“before_sha”: “00”,
“tag”: false,
“yaml_errors”: null,
“user”: {

“name”: “Administrator”,
“username”: “root”,
“id”: 1,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”,
“web_url”: “http://localhost:3000/root”

},
“created_at”: “2016-11-04T09:36:13.747Z”,
“updated_at”: “2016-11-04T09:36:13.977Z”,
“started_at”: null,
“finished_at”: null,
“committed_at”: null,
“duration”: null,
“coverage”: null,
“web_url”: “https://example.com/foo/bar/pipelines/61”

}

Retry jobs in a pipeline

> [Introduced][ce-5837] in GitLab 8.11

`
POST /projects/:id/pipelines/:pipeline_id/retry
`

Attribute | Type | Required | Description |

|------------|———|----------|———————|
| id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |
| pipeline_id | integer | yes | The ID of a pipeline |

`
curl --request POST --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" "https://gitlab.example.com/api/v4/projects/1/pipelines/46/retry"
`

Response:

```json
{


“id”: 46,
“status”: “pending”,
“ref”: “master”,
“sha”: “a91957a858320c0e17f3a0eca7cfacbff50ea29a”,
“before_sha”: “a91957a858320c0e17f3a0eca7cfacbff50ea29a”,
“tag”: false,
“yaml_errors”: null,
“user”: {


“name”: “Administrator”,
“username”: “root”,
“id”: 1,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”,
“web_url”: “http://localhost:3000/root”




},
“created_at”: “2016-08-11T11:28:34.085Z”,
“updated_at”: “2016-08-11T11:32:35.169Z”,
“started_at”: null,
“finished_at”: “2016-08-11T11:32:35.145Z”,
“committed_at”: null,
“duration”: null,
“coverage”: null,
“web_url”: “https://example.com/foo/bar/pipelines/46”







}

## Cancel a pipelines jobs

> [Introduced][ce-5837] in GitLab 8.11

`
POST /projects/:id/pipelines/:pipeline_id/cancel
`


Attribute  | Type    | Required | Description         |



|------------|———|----------|———————|
| id       | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |
| pipeline_id | integer | yes   | The ID of a pipeline |

`
curl --request POST --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" "https://gitlab.example.com/api/v4/projects/1/pipelines/46/cancel"
`

Response:

```json
{

“id”: 46,
“status”: “canceled”,
“ref”: “master”,
“sha”: “a91957a858320c0e17f3a0eca7cfacbff50ea29a”,
“before_sha”: “a91957a858320c0e17f3a0eca7cfacbff50ea29a”,
“tag”: false,
“yaml_errors”: null,
“user”: {

“name”: “Administrator”,
“username”: “root”,
“id”: 1,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”,
“web_url”: “http://localhost:3000/root”

},
“created_at”: “2016-08-11T11:28:34.085Z”,
“updated_at”: “2016-08-11T11:32:35.169Z”,
“started_at”: null,
“finished_at”: “2016-08-11T11:32:35.145Z”,
“committed_at”: null,
“duration”: null,
“coverage”: null,
“web_url”: “https://example.com/foo/bar/pipelines/46”

}

[ce-5837]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/5837
[ce-7209]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/7209

 # Project badges API

> [Introduced](https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/17082)
in GitLab 10.6.

Placeholder tokens

Badges support placeholders that will be replaced in real time in both the link and image URL. The allowed placeholders are:

	%{project_path}: will be replaced by the project path.

	%{project_id}: will be replaced by the project id.

	%{default_branch}: will be replaced by the project default branch.

	%{commit_sha}: will be replaced by the last project’s commit sha.

List all badges of a project

Gets a list of a project’s badges and its group badges.

`
GET /projects/:id/badges
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

`bash
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/:id/badges
`

Example response:

```json
[



	{
	“id”: 1,
“link_url”: “http://example.com/ci_status.svg?project=%{project_path}&ref=%{default_branch}”,
“image_url”: “https://shields.io/my/badge”,
“rendered_link_url”: “http://example.com/ci_status.svg?project=example-org/example-project&ref=master”,
“rendered_image_url”: “https://shields.io/my/badge”,
“kind”: “project”





},
{


“id”: 2,
“link_url”: “http://example.com/ci_status.svg?project=%{project_path}&ref=%{default_branch}”,
“image_url”: “https://shields.io/my/badge”,
“rendered_link_url”: “http://example.com/ci_status.svg?project=example-org/example-project&ref=master”,
“rendered_image_url”: “https://shields.io/my/badge”,
“kind”: “group”




},





]

## Get a badge of a project

Gets a badge of a project.

`
GET /projects/:id/badges/:badge_id
`


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id      | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

badge_id | integer | yes   | The badge ID |



`bash
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/:id/badges/:badge_id
`

Example response:

```json
{

“id”: 1,
“link_url”: “http://example.com/ci_status.svg?project=%{project_path}&ref=%{default_branch}”,
“image_url”: “https://shields.io/my/badge”,
“rendered_link_url”: “http://example.com/ci_status.svg?project=example-org/example-project&ref=master”,
“rendered_image_url”: “https://shields.io/my/badge”,
“kind”: “project”

}

Add a badge to a project

Adds a badge to a project.

`
POST /projects/:id/badges
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

link_url | string | yes | URL of the badge link |

image_url | string | yes | URL of the badge image |

`bash
curl --request POST --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" --data "link_url=https://gitlab.com/gitlab-org/gitlab-ce/commits/master&image_url=https://shields.io/my/badge1&position=0" https://gitlab.example.com/api/v4/projects/:id/badges
`

Example response:

```json
{


“id”: 1,
“link_url”: “https://gitlab.com/gitlab-org/gitlab-ce/commits/master”,
“image_url”: “https://shields.io/my/badge1”,
“rendered_link_url”: “https://gitlab.com/gitlab-org/gitlab-ce/commits/master”,
“rendered_image_url”: “https://shields.io/my/badge1”,
“kind”: “project”







}

## Edit a badge of a project

Updates a badge of a project.

`
PUT /projects/:id/badges/:badge_id
`


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id      | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

badge_id | integer | yes   | The badge ID |

link_url | string         | no | URL of the badge link |

image_url | string | no | URL of the badge image |



`bash
curl --request PUT --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/:id/badges/:badge_id
`

Example response:

```json
{

“id”: 1,
“link_url”: “https://gitlab.com/gitlab-org/gitlab-ce/commits/master”,
“image_url”: “https://shields.io/my/badge”,
“rendered_link_url”: “https://gitlab.com/gitlab-org/gitlab-ce/commits/master”,
“rendered_image_url”: “https://shields.io/my/badge”,
“kind”: “project”

}

Remove a badge from a project

Removes a badge from a project. Only project’s badges will be removed by using this endpoint.

`
DELETE /projects/:id/badges/:badge_id
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

badge_id | integer | yes | The badge ID |

`bash
curl --request DELETE --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/:id/badges/:badge_id
`

Preview a badge from a project

Returns how the link_url and image_url final URLs would be after resolving the placeholder interpolation.

`
GET /projects/:id/badges/render
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

link_url | string | yes | URL of the badge link|

image_url | string | yes | URL of the badge image |

`bash
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/:id/badges/render?link_url=http%3A%2F%2Fexample.com%2Fci_status.svg%3Fproject%3D%25%7Bproject_path%7D%26ref%3D%25%7Bdefault_branch%7D&image_url=https%3A%2F%2Fshields.io%2Fmy%2Fbadge
`

Example response:

```json
{


“link_url”: “http://example.com/ci_status.svg?project=%{project_path}&ref=%{default_branch}”,
“image_url”: “https://shields.io/my/badge”,
“rendered_link_url”: “http://example.com/ci_status.svg?project=example-org/example-project&ref=master”,
“rendered_image_url”: “https://shields.io/my/badge”,







}





            

          

      

      

    

  

    
      
          
            
  # Project import/export API

[Introduced][ce-41899] in GitLab 10.6

[See also the project import/export documentation](../user/project/settings/import_export.md)

## Schedule an export

Start a new export.

The endpoint also accepts an upload param. This param is a hash that contains
all the necessary information to upload the exported project to a web server or
to any S3-compatible platform. At the moment we only support binary
data file uploads to the final server.


	If the upload params is present, upload[url] param is required.
	(Note: This feature was introduced in GitLab 10.7)





`http
POST /projects/:id/export
`


Attribute | Type           | Required | Description                              |

——— | ————– | ——– | —————————————- |

id      | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

description      | string | no | Overrides the project description |

upload      | hash | no | Hash that contains the information to upload the exported project to a web server |

upload[url]      | string | yes      | The URL to upload the project |

upload[http_method]      | string | no      | The HTTP method to upload the exported project. Only PUT and POST methods allowed. Default is PUT |



```console
curl –request POST –header “PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK” https://gitlab.example.com/api/v4/projects/1/export

–data “upload[http_method]=PUT” –data-urlencode “upload[url]=https://example-bucket.s3.eu-west-3.amazonaws.com/backup?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIAIMBJHN2O62W8IELQ%2F20180312%2Feu-west-3%2Fs3%2Faws4_request&X-Amz-Date=20180312T110328Z&X-Amz-Expires=900&X-Amz-SignedHeaders=host&X-Amz-Signature=8413facb20ff33a49a147a0b4abcff4c8487cc33ee1f7e450c46e8f695569dbd”


```

```json
{

“message”: “202 Accepted”

}

Export status

Get the status of export.

`http
GET /projects/:id/export
`

Attribute | Type | Required | Description |

——— | ————– | ——– | —————————————- |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

`console
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/1/export
`

Status can be one of none, started, after_export_action or finished. The
after_export_action state represents that the export process has been completed successfully and
the platform is performing some actions on the resulted file. For example, sending
an email notifying the user to download the file, uploading the exported file
to a web server, etc.

_links are only present when export has finished.

```json
{


“id”: 1,
“description”: “Itaque perspiciatis minima aspernatur corporis consequatur.”,
“name”: “Gitlab Test”,
“name_with_namespace”: “Gitlab Org / Gitlab Test”,
“path”: “gitlab-test”,
“path_with_namespace”: “gitlab-org/gitlab-test”,
“created_at”: “2017-08-29T04:36:44.383Z”,
“export_status”: “finished”,
“_links”: {


“api_url”: “https://gitlab.example.com/api/v4/projects/1/export/download”,
“web_url”: “https://gitlab.example.com/gitlab-org/gitlab-test/download_export”,




}







}

## Export download

Download the finished export.

`http
GET /projects/:id/export/download
`


Attribute | Type           | Required | Description                              |

——— | ————– | ——– | —————————————- |

id      | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |



`console
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" --remote-header-name --remote-name https://gitlab.example.com/api/v4/projects/5/export/download
`

`console
ls *export.tar.gz
2017-12-05_22-11-148_namespace_project_export.tar.gz
`

## Import a file

`http
POST /projects/import
`


Attribute | Type           | Required | Description                              |

——— | ————– | ——– | —————————————- |

namespace | integer/string | no | The ID or path of the namespace that the project will be imported to. Defaults to the current user’s namespace |

file | string | yes | The file to be uploaded |

path | string | yes | Name and path for new project |

overwrite | boolean | no | If there is a project with the same path the import will overwrite it. Default to false |

override_params | Hash | no | Supports all fields defined in the [Project API](projects.md) |



The override params passed will take precedence over all values defined inside the export file.

To upload a file from your file system, use the –form argument. This causes
cURL to post data using the header Content-Type: multipart/form-data.
The file= parameter must point to a file on your file system and be preceded
by @. For example:

`console
curl --request POST --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" --form "path=api-project" --form "file=@/path/to/file" https://gitlab.example.com/api/v4/projects/import
`

cURL doesn’t support posting a file from a remote server. Importing a project from a remote server can be accomplished through something like the following:

```python
import requests
import urllib
import json
import sys

s3_file = urllib.urlopen(presigned_url)

url = ‘https://gitlab.example.com/api/v4/projects/import’
files = {‘file’: s3_file}
data = {

“path”: “example-project”,
“namespace”: “example-group”

}
headers = {

‘Private-Token’: “9koXpg98eAheJpvBs5tK”

}

requests.post(url, headers=headers, data=data, files=files)
```

```json
{

“id”: 1,
“description”: null,
“name”: “api-project”,
“name_with_namespace”: “Administrator / api-project”,
“path”: “api-project”,
“path_with_namespace”: “root/api-project”,
“created_at”: “2018-02-13T09:05:58.023Z”,
“import_status”: “scheduled”

}

Import status

Get the status of an import.

`http
GET /projects/:id/import
`

Attribute | Type | Required | Description |

——— | ————– | ——– | —————————————- |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

`console
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/1/import
`

Status can be one of none, scheduled, failed, started, or finished.

If the status is failed, it will include the import error message under import_error.

```json
{


“id”: 1,
“description”: “Itaque perspiciatis minima aspernatur corporis consequatur.”,
“name”: “Gitlab Test”,
“name_with_namespace”: “Gitlab Org / Gitlab Test”,
“path”: “gitlab-test”,
“path_with_namespace”: “gitlab-org/gitlab-test”,
“created_at”: “2017-08-29T04:36:44.383Z”,
“import_status”: “started”







}

[ce-41899]: https://gitlab.com/gitlab-org/gitlab-ce/issues/41899





            

          

      

      

    

  

    
      
          
            
  # Project-level Variables  API

## List project variables

Get list of a project’s variables.

`
GET /projects/:id/variables
`


Attribute | Type    | required | Description         |



|-----------|———|----------|———————|
| id      | integer/string | yes      | The ID of a project or [urlencoded NAMESPACE/PROJECT_NAME of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

`
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" "https://gitlab.example.com/api/v4/projects/1/variables"
`

```json
[

	{
	“key”: “TEST_VARIABLE_1”,
“value”: “TEST_1”

},
{

“key”: “TEST_VARIABLE_2”,
“value”: “TEST_2”

}

]

Show variable details

Get the details of a project’s specific variable.

`
GET /projects/:id/variables/:key
`

Attribute | Type | required | Description |

|-----------|———|----------|———————–|
| id | integer/string | yes | The ID of a project or [urlencoded NAMESPACE/PROJECT_NAME of the project](README.md#namespaced-path-encoding) owned by the authenticated user |
| key | string | yes | The key of a variable |

`
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" "https://gitlab.example.com/api/v4/projects/1/variables/TEST_VARIABLE_1"
`

```json
{


“key”: “TEST_VARIABLE_1”,
“value”: “TEST_1”







}

## Create variable

Create a new variable.

`
POST /projects/:id/variables
`


Attribute   | Type    | required | Description           |



|-------------|———|----------|———————–|
| id        | integer/string | yes      | The ID of a project or [urlencoded NAMESPACE/PROJECT_NAME of the project](README.md#namespaced-path-encoding) owned by the authenticated user   |
| key       | string  | yes      | The key of a variable; must have no more than 255 characters; only A-Z, a-z, 0-9, and _ are allowed |
| value     | string  | yes      | The value of a variable |
| protected | boolean | no       | Whether the variable is protected |

`
curl --request POST --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" "https://gitlab.example.com/api/v4/projects/1/variables" --form "key=NEW_VARIABLE" --form "value=new value"
`

```json
{

“key”: “NEW_VARIABLE”,
“value”: “new value”,
“protected”: false

}

Update variable

Update a project’s variable.

`
PUT /projects/:id/variables/:key
`

Attribute | Type | required | Description |

|-------------|———|----------|————————-|
| id | integer/string | yes | The ID of a project or [urlencoded NAMESPACE/PROJECT_NAME of the project](README.md#namespaced-path-encoding) owned by the authenticated user |
| key | string | yes | The key of a variable |
| value | string | yes | The value of a variable |
| protected | boolean | no | Whether the variable is protected |

`
curl --request PUT --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" "https://gitlab.example.com/api/v4/projects/1/variables/NEW_VARIABLE" --form "value=updated value"
`

```json
{


“key”: “NEW_VARIABLE”,
“value”: “updated value”,
“protected”: true







}

## Remove variable

Remove a project’s variable.

`
DELETE /projects/:id/variables/:key
`


Attribute | Type    | required | Description             |



|-----------|———|----------|————————-|
| id      | integer/string | yes      | The ID of a project or [urlencoded NAMESPACE/PROJECT_NAME of the project](README.md#namespaced-path-encoding) owned by the authenticated user     |
| key     | string  | yes      | The key of a variable |

`
curl --request DELETE --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" "https://gitlab.example.com/api/v4/projects/1/variables/VARIABLE_1"
`





            

          

      

      

    

  

    
      
          
            
  # Project snippets

### Snippet visibility level

Snippets in GitLab can be either private, internal or public.
You can set it with the visibility field in the snippet.

Constants for snippet visibility levels are:


visibility | Description |

———- | ———– |

private  | The snippet is visible only the snippet creator |

internal | The snippet is visible for any logged in user |

public   | The snippet can be accessed without any authentication |



## List snippets

Get a list of project snippets.

`
GET /projects/:id/snippets
`

Parameters:


	id (required) - The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user




## Single snippet

Get a single project snippet.

`
GET /projects/:id/snippets/:snippet_id
`

Parameters:


	id (required) - The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user


	snippet_id (required) - The ID of a project’s snippet




```json
{

“id”: 1,
“title”: “test”,
“file_name”: “add.rb”,
“description”: “Ruby test snippet”,
“author”: {

“id”: 1,
“username”: “john_smith”,
“email”: “john@example.com”,
“name”: “John Smith”,
“state”: “active”,
“created_at”: “2012-05-23T08:00:58Z”

},
“updated_at”: “2012-06-28T10:52:04Z”,
“created_at”: “2012-06-28T10:52:04Z”,
“web_url”: “http://example.com/example/example/snippets/1”

}

Create new snippet

Creates a new project snippet. The user must have permission to create new snippets.

`
POST /projects/:id/snippets
`

Parameters:

	id (required) - The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user

	title (required) - The title of a snippet

	file_name (required) - The name of a snippet file

	description (optional) - The description of a snippet

	code (required) - The content of a snippet

	visibility (required) - The snippet’s visibility

Update snippet

Updates an existing project snippet. The user must have permission to change an existing snippet.

`
PUT /projects/:id/snippets/:snippet_id
`

Parameters:

	id (required) - The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user

	snippet_id (required) - The ID of a project’s snippet

	title (optional) - The title of a snippet

	file_name (optional) - The name of a snippet file

	description (optional) - The description of a snippet

	code (optional) - The content of a snippet

	visibility (optional) - The snippet’s visibility

Delete snippet

Deletes an existing project snippet. This returns a 204 No Content status code if the operation was successfully or 404 if the resource was not found.

`
DELETE /projects/:id/snippets/:snippet_id
`

Parameters:

	id (required) - The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user

	snippet_id (required) - The ID of a project’s snippet

Snippet content

Returns the raw project snippet as plain text.

`
GET /projects/:id/snippets/:snippet_id/raw
`

Parameters:

	id (required) - The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user

	snippet_id (required) - The ID of a project’s snippet

Get user agent details

> Notes:
> [Introduced][ce-29508] in GitLab 9.4.

Available only for admins.

`
GET /projects/:id/snippets/:snippet_id/user_agent_detail
`

Attribute | Type | Required | Description |

|---------------|———|----------|————————————–|
| id | Integer | yes | The ID of a project |
| snippet_id | Integer | yes | The ID of a snippet |

`bash
curl --request GET --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/1/snippets/2/user_agent_detail
`

Example response:

```json
{


“user_agent”: “AppleWebKit/537.36”,
“ip_address”: “127.0.0.1”,
“akismet_submitted”: false







}

[ce-29508]: https://gitlab.com/gitlab-org/gitlab-ce/issues/29508





            

          

      

      

    

  

    
      
          
            
  # Projects API

## Project visibility level

Project in GitLab can be either private, internal or public.
This is determined by the visibility field in the project.

Values for the project visibility level are:


	private:
Project access must be granted explicitly for each user.


	internal:
The project can be cloned by any logged in user.


	public:
The project can be cloned without any authentication.




## Project merge method

There are currently three options for merge_method to choose from:


	merge:
A merge commit is created for every merge, and merging is allowed as long as there are no conflicts.


	rebase_merge:
A merge commit is created for every merge, but merging is only allowed if fast-forward merge is possible.
This way you could make sure that if this merge request would build, after merging to target branch it would also build.


	ff:
No merge commits are created and all merges are fast-forwarded, which means that merging is only allowed if the branch could be fast-forwarded.




## List all projects

Get a list of all visible projects across GitLab for the authenticated user.
When accessed without authentication, only public projects with “simple” fields are returned.

`
GET /projects
`


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

archived | boolean | no | Limit by archived status |

visibility | string | no | Limit by visibility public, internal, or private |

order_by | string | no | Return projects ordered by id, name, path, created_at, updated_at, or last_activity_at fields. Default is created_at |

sort | string | no | Return projects sorted in asc or desc order. Default is desc |

search | string | no | Return list of projects matching the search criteria |

simple | boolean | no | Return only limited fields for each project. This is a no-op without authentication as then _only_ simple fields are returned. |

owned | boolean | no | Limit by projects explicitly owned by the current user |

membership | boolean | no | Limit by projects that the current user is a member of |

starred | boolean | no | Limit by projects starred by the current user |

statistics | boolean | no | Include project statistics |

with_custom_attributes | boolean | no | Include [custom attributes](custom_attributes.md) in response (admins only) |

with_issues_enabled | boolean | no | Limit by enabled issues feature |

with_merge_requests_enabled | boolean | no | Limit by enabled merge requests feature |

wiki_checksum_failed | boolean | no | Limit projects where the wiki checksum calculation has failed _([Introduced][ee-6137] in [GitLab Premium][eep] 11.2)_ |

repository_checksum_failed | boolean | no | Limit projects where the repository checksum calculation has failed _([Introduced][ee-6137] in [GitLab Premium][eep] 11.2)_ |

min_access_level | integer | no | Limit by current user minimal [access level](members.md) |



When simple=true or the user is unauthenticated this returns something like:

```json
[

	{
	“id”: 4,
“description”: null,
“default_branch”: “master”,
“ssh_url_to_repo”: “git@example.com:diaspora/diaspora-client.git”,
“http_url_to_repo”: “http://example.com/diaspora/diaspora-client.git”,
“web_url”: “http://example.com/diaspora/diaspora-client”,
“readme_url”: “http://example.com/diaspora/diaspora-client/blob/master/README.md”,
“tag_list”: [

“example”,
“disapora client”

],
“name”: “Diaspora Client”,
“name_with_namespace”: “Diaspora / Diaspora Client”,
“path”: “diaspora-client”,
“path_with_namespace”: “diaspora/diaspora-client”,
“created_at”: “2013-09-30T13:46:02Z”,
“last_activity_at”: “2013-09-30T13:46:02Z”,
“forks_count”: 0,
“avatar_url”: “http://example.com/uploads/project/avatar/4/uploads/avatar.png”,
“star_count”: 0,

},
{

“id”: 6,
“description”: null,
“default_branch”: “master”,

…

When the user is authenticated and simple is not set this returns something like:

```json
[



	{
	“id”: 4,
“description”: null,
“default_branch”: “master”,
“visibility”: “private”,
“ssh_url_to_repo”: “git@example.com:diaspora/diaspora-client.git”,
“http_url_to_repo”: “http://example.com/diaspora/diaspora-client.git”,
“web_url”: “http://example.com/diaspora/diaspora-client”,
“readme_url”: “http://example.com/diaspora/diaspora-client/blob/master/README.md”,
“tag_list”: [


“example”,
“disapora client”




],
“owner”: {


“id”: 3,
“name”: “Diaspora”,
“created_at”: “2013-09-30T13:46:02Z”




},
“name”: “Diaspora Client”,
“name_with_namespace”: “Diaspora / Diaspora Client”,
“path”: “diaspora-client”,
“path_with_namespace”: “diaspora/diaspora-client”,
“issues_enabled”: true,
“open_issues_count”: 1,
“merge_requests_enabled”: true,
“jobs_enabled”: true,
“wiki_enabled”: true,
“snippets_enabled”: false,
“resolve_outdated_diff_discussions”: false,
“container_registry_enabled”: false,
“created_at”: “2013-09-30T13:46:02Z”,
“last_activity_at”: “2013-09-30T13:46:02Z”,
“creator_id”: 3,
“namespace”: {


“id”: 3,
“name”: “Diaspora”,
“path”: “diaspora”,
“kind”: “group”,
“full_path”: “diaspora”




},
“import_status”: “none”,
“archived”: false,
“avatar_url”: “http://example.com/uploads/project/avatar/4/uploads/avatar.png”,
“shared_runners_enabled”: true,
“forks_count”: 0,
“star_count”: 0,
“runners_token”: “b8547b1dc37721d05889db52fa2f02”,
“public_jobs”: true,
“shared_with_groups”: [],
“only_allow_merge_if_pipeline_succeeds”: false,
“only_allow_merge_if_all_discussions_are_resolved”: false,
“request_access_enabled”: false,
“merge_method”: “merge”,
“statistics”: {


“commit_count”: 37,
“storage_size”: 1038090,
“repository_size”: 1038090,
“lfs_objects_size”: 0,
“job_artifacts_size”: 0




},
“_links”: {


“self”: “http://example.com/api/v4/projects”,
“issues”: “http://example.com/api/v4/projects/1/issues”,
“merge_requests”: “http://example.com/api/v4/projects/1/merge_requests”,
“repo_branches”: “http://example.com/api/v4/projects/1/repository_branches”,
“labels”: “http://example.com/api/v4/projects/1/labels”,
“events”: “http://example.com/api/v4/projects/1/events”,
“members”: “http://example.com/api/v4/projects/1/members”




},





},
{


“id”: 6,
“description”: null,
“default_branch”: “master”,
“visibility”: “private”,
“ssh_url_to_repo”: “git@example.com:brightbox/puppet.git”,
“http_url_to_repo”: “http://example.com/brightbox/puppet.git”,
“web_url”: “http://example.com/brightbox/puppet”,
“readme_url”: “http://example.com/brightbox/puppet/blob/master/README.md”,
“tag_list”: [


“example”,
“puppet”




],
“owner”: {


“id”: 4,
“name”: “Brightbox”,
“created_at”: “2013-09-30T13:46:02Z”




},
“name”: “Puppet”,
“name_with_namespace”: “Brightbox / Puppet”,
“path”: “puppet”,
“path_with_namespace”: “brightbox/puppet”,
“issues_enabled”: true,
“open_issues_count”: 1,
“merge_requests_enabled”: true,
“jobs_enabled”: true,
“wiki_enabled”: true,
“snippets_enabled”: false,
“resolve_outdated_diff_discussions”: false,
“container_registry_enabled”: false,
“created_at”: “2013-09-30T13:46:02Z”,
“last_activity_at”: “2013-09-30T13:46:02Z”,
“creator_id”: 3,
“namespace”: {


“id”: 4,
“name”: “Brightbox”,
“path”: “brightbox”,
“kind”: “group”,
“full_path”: “brightbox”




},
“import_status”: “none”,
“import_error”: null,
“permissions”: {



	“project_access”: {
	“access_level”: 10,
“notification_level”: 3





},
“group_access”: {


“access_level”: 50,
“notification_level”: 3




}




},
“archived”: false,
“avatar_url”: null,
“shared_runners_enabled”: true,
“forks_count”: 0,
“star_count”: 0,
“runners_token”: “b8547b1dc37721d05889db52fa2f02”,
“public_jobs”: true,
“shared_with_groups”: [],
“only_allow_merge_if_pipeline_succeeds”: false,
“only_allow_merge_if_all_discussions_are_resolved”: false,
“request_access_enabled”: false,
“merge_method”: “merge”,
“statistics”: {


“commit_count”: 12,
“storage_size”: 2066080,
“repository_size”: 2066080,
“lfs_objects_size”: 0,
“job_artifacts_size”: 0




},
“_links”: {


“self”: “http://example.com/api/v4/projects”,
“issues”: “http://example.com/api/v4/projects/1/issues”,
“merge_requests”: “http://example.com/api/v4/projects/1/merge_requests”,
“repo_branches”: “http://example.com/api/v4/projects/1/repository_branches”,
“labels”: “http://example.com/api/v4/projects/1/labels”,
“events”: “http://example.com/api/v4/projects/1/events”,
“members”: “http://example.com/api/v4/projects/1/members”




}




}







]

You can filter by [custom attributes](custom_attributes.md) with:

`
GET /projects?custom_attributes[key]=value&custom_attributes[other_key]=other_value
`

## List user projects

Get a list of visible projects for the given user. When accessed without
authentication, only public projects are returned.

`
GET /users/:user_id/projects
`


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

user_id | string | yes | The ID or username of the user |

archived | boolean | no | Limit by archived status |

visibility | string | no | Limit by visibility public, internal, or private |

order_by | string | no | Return projects ordered by id, name, path, created_at, updated_at, or last_activity_at fields. Default is created_at |

sort | string | no | Return projects sorted in asc or desc order. Default is desc |

search | string | no | Return list of projects matching the search criteria |

simple | boolean | no | Return only limited fields for each project. This is a no-op without authentication as then _only_ simple fields are returned. |

owned | boolean | no | Limit by projects explicitly owned by the current user |

membership | boolean | no | Limit by projects that the current user is a member of |

starred | boolean | no | Limit by projects starred by the current user |

statistics | boolean | no | Include project statistics |

with_custom_attributes | boolean | no | Include [custom attributes](custom_attributes.md) in response (admins only) |

with_issues_enabled | boolean | no | Limit by enabled issues feature |

with_merge_requests_enabled | boolean | no | Limit by enabled merge requests feature |

min_access_level | integer | no | Limit by current user minimal [access level](members.md) |



```json
[

	{
	“id”: 4,
“description”: null,
“default_branch”: “master”,
“visibility”: “private”,
“ssh_url_to_repo”: “git@example.com:diaspora/diaspora-client.git”,
“http_url_to_repo”: “http://example.com/diaspora/diaspora-client.git”,
“web_url”: “http://example.com/diaspora/diaspora-client”,
“readme_url”: “http://example.com/diaspora/diaspora-client/blob/master/README.md”,
“tag_list”: [

“example”,
“disapora client”

],
“owner”: {

“id”: 3,
“name”: “Diaspora”,
“created_at”: “2013-09-30T13:46:02Z”

},
“name”: “Diaspora Client”,
“name_with_namespace”: “Diaspora / Diaspora Client”,
“path”: “diaspora-client”,
“path_with_namespace”: “diaspora/diaspora-client”,
“issues_enabled”: true,
“open_issues_count”: 1,
“merge_requests_enabled”: true,
“jobs_enabled”: true,
“wiki_enabled”: true,
“snippets_enabled”: false,
“resolve_outdated_diff_discussions”: false,
“container_registry_enabled”: false,
“created_at”: “2013-09-30T13:46:02Z”,
“last_activity_at”: “2013-09-30T13:46:02Z”,
“creator_id”: 3,
“namespace”: {

“id”: 3,
“name”: “Diaspora”,
“path”: “diaspora”,
“kind”: “group”,
“full_path”: “diaspora”

},
“import_status”: “none”,
“archived”: false,
“avatar_url”: “http://example.com/uploads/project/avatar/4/uploads/avatar.png”,
“shared_runners_enabled”: true,
“forks_count”: 0,
“star_count”: 0,
“runners_token”: “b8547b1dc37721d05889db52fa2f02”,
“public_jobs”: true,
“shared_with_groups”: [],
“only_allow_merge_if_pipeline_succeeds”: false,
“only_allow_merge_if_all_discussions_are_resolved”: false,
“request_access_enabled”: false,
“merge_method”: “merge”,
“statistics”: {

“commit_count”: 37,
“storage_size”: 1038090,
“repository_size”: 1038090,
“lfs_objects_size”: 0,
“job_artifacts_size”: 0

},
“_links”: {

“self”: “http://example.com/api/v4/projects”,
“issues”: “http://example.com/api/v4/projects/1/issues”,
“merge_requests”: “http://example.com/api/v4/projects/1/merge_requests”,
“repo_branches”: “http://example.com/api/v4/projects/1/repository_branches”,
“labels”: “http://example.com/api/v4/projects/1/labels”,
“events”: “http://example.com/api/v4/projects/1/events”,
“members”: “http://example.com/api/v4/projects/1/members”

}

},
{

“id”: 6,
“description”: null,
“default_branch”: “master”,
“visibility”: “private”,
“ssh_url_to_repo”: “git@example.com:brightbox/puppet.git”,
“http_url_to_repo”: “http://example.com/brightbox/puppet.git”,
“web_url”: “http://example.com/brightbox/puppet”,
“readme_url”: “http://example.com/brightbox/puppet/blob/master/README.md”,
“tag_list”: [

“example”,
“puppet”

],
“owner”: {

“id”: 4,
“name”: “Brightbox”,
“created_at”: “2013-09-30T13:46:02Z”

},
“name”: “Puppet”,
“name_with_namespace”: “Brightbox / Puppet”,
“path”: “puppet”,
“path_with_namespace”: “brightbox/puppet”,
“issues_enabled”: true,
“open_issues_count”: 1,
“merge_requests_enabled”: true,
“jobs_enabled”: true,
“wiki_enabled”: true,
“snippets_enabled”: false,
“resolve_outdated_diff_discussions”: false,
“container_registry_enabled”: false,
“created_at”: “2013-09-30T13:46:02Z”,
“last_activity_at”: “2013-09-30T13:46:02Z”,
“creator_id”: 3,
“namespace”: {

“id”: 4,
“name”: “Brightbox”,
“path”: “brightbox”,
“kind”: “group”,
“full_path”: “brightbox”

},
“import_status”: “none”,
“import_error”: null,
“permissions”: {

	“project_access”: {
	“access_level”: 10,
“notification_level”: 3

},
“group_access”: {

“access_level”: 50,
“notification_level”: 3

}

},
“archived”: false,
“avatar_url”: null,
“shared_runners_enabled”: true,
“forks_count”: 0,
“star_count”: 0,
“runners_token”: “b8547b1dc37721d05889db52fa2f02”,
“public_jobs”: true,
“shared_with_groups”: [],
“only_allow_merge_if_pipeline_succeeds”: false,
“only_allow_merge_if_all_discussions_are_resolved”: false,
“request_access_enabled”: false,
“merge_method”: “merge”,
“statistics”: {

“commit_count”: 12,
“storage_size”: 2066080,
“repository_size”: 2066080,
“lfs_objects_size”: 0,
“job_artifacts_size”: 0

},
“_links”: {

“self”: “http://example.com/api/v4/projects”,
“issues”: “http://example.com/api/v4/projects/1/issues”,
“merge_requests”: “http://example.com/api/v4/projects/1/merge_requests”,
“repo_branches”: “http://example.com/api/v4/projects/1/repository_branches”,
“labels”: “http://example.com/api/v4/projects/1/labels”,
“events”: “http://example.com/api/v4/projects/1/events”,
“members”: “http://example.com/api/v4/projects/1/members”

}

}

]

Get single project

Get a specific project. This endpoint can be accessed without authentication if
the project is publicly accessible.

`
GET /projects/:id
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |

statistics | boolean | no | Include project statistics |

with_custom_attributes | boolean | no | Include [custom attributes](custom_attributes.md) in response (admins only) |


```json
{


“id”: 3,
“description”: null,
“default_branch”: “master”,
“visibility”: “private”,
“ssh_url_to_repo”: “git@example.com:diaspora/diaspora-project-site.git”,
“http_url_to_repo”: “http://example.com/diaspora/diaspora-project-site.git”,
“web_url”: “http://example.com/diaspora/diaspora-project-site”,
“readme_url”: “http://example.com/diaspora/diaspora-project-site/blob/master/README.md”,
“tag_list”: [


“example”,
“disapora project”




],
“owner”: {


“id”: 3,
“name”: “Diaspora”,
“created_at”: “2013-09-30T13:46:02Z”




},
“name”: “Diaspora Project Site”,
“name_with_namespace”: “Diaspora / Diaspora Project Site”,
“path”: “diaspora-project-site”,
“path_with_namespace”: “diaspora/diaspora-project-site”,
“issues_enabled”: true,
“open_issues_count”: 1,
“merge_requests_enabled”: true,
“jobs_enabled”: true,
“wiki_enabled”: true,
“snippets_enabled”: false,
“resolve_outdated_diff_discussions”: false,
“container_registry_enabled”: false,
“created_at”: “2013-09-30T13:46:02Z”,
“last_activity_at”: “2013-09-30T13:46:02Z”,
“creator_id”: 3,
“namespace”: {


“id”: 3,
“name”: “Diaspora”,
“path”: “diaspora”,
“kind”: “group”,
“full_path”: “diaspora”




},
“import_status”: “none”,
“import_error”: null,
“permissions”: {



	“project_access”: {
	“access_level”: 10,
“notification_level”: 3





},
“group_access”: {


“access_level”: 50,
“notification_level”: 3




}




},
“archived”: false,
“avatar_url”: “http://example.com/uploads/project/avatar/3/uploads/avatar.png”,
“shared_runners_enabled”: true,
“forks_count”: 0,
“star_count”: 0,
“runners_token”: “b8bc4a7a29eb76ea83cf79e4908c2b”,
“public_jobs”: true,
“shared_with_groups”: [



	{
	“group_id”: 4,
“group_name”: “Twitter”,
“group_access_level”: 30





},
{


“group_id”: 3,
“group_name”: “Gitlab Org”,
“group_access_level”: 10




}




],
“only_allow_merge_if_pipeline_succeeds”: false,
“only_allow_merge_if_all_discussions_are_resolved”: false,
“printing_merge_requests_link_enabled”: true,
“request_access_enabled”: false,
“merge_method”: “merge”,
“statistics”: {


“commit_count”: 37,
“storage_size”: 1038090,
“repository_size”: 1038090,
“lfs_objects_size”: 0,
“job_artifacts_size”: 0




},
“_links”: {


“self”: “http://example.com/api/v4/projects”,
“issues”: “http://example.com/api/v4/projects/1/issues”,
“merge_requests”: “http://example.com/api/v4/projects/1/merge_requests”,
“repo_branches”: “http://example.com/api/v4/projects/1/repository_branches”,
“labels”: “http://example.com/api/v4/projects/1/labels”,
“events”: “http://example.com/api/v4/projects/1/events”,
“members”: “http://example.com/api/v4/projects/1/members”




}







}

If the project is a fork, and you provide a valid token to authenticate, the
forked_from_project field will appear in the response.

```json
{

“id”:3,

…

	“forked_from_project”:{
	“id”:13083,
“description”:”GitLab Community Edition”,
“name”:”GitLab Community Edition”,
“name_with_namespace”:”GitLab.org / GitLab Community Edition”,
“path”:”gitlab-ce”,
“path_with_namespace”:”gitlab-org/gitlab-ce”,
“created_at”:”2013-09-26T06:02:36.000Z”,
“default_branch”:”master”,
“tag_list”:[],
“ssh_url_to_repo”:”git@gitlab.com:gitlab-org/gitlab-ce.git”,
“http_url_to_repo”:”https://gitlab.com/gitlab-org/gitlab-ce.git”,
“web_url”:”https://gitlab.com/gitlab-org/gitlab-ce”,
“avatar_url”:”https://assets.gitlab-static.net/uploads/-/system/project/avatar/13083/logo-extra-whitespace.png”,
“star_count”:3812,
“forks_count”:3561,
“last_activity_at”:”2018-01-02T11:40:26.570Z”,
“namespace”: {

“id”: 72,
“name”: “GitLab.org”,
“path”: “gitlab-org”,
“kind”: “group”,
“full_path”: “gitlab-org”,
“parent_id”: null

}

}

…

}

Get project users

Get the users list of a project.

`
GET /projects/:id/users
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

search | string | no | Search for specific users |


```json
[



	{
	“id”: 1,
“username”: “john_smith”,
“name”: “John Smith”,
“state”: “active”,
“avatar_url”: “http://localhost:3000/uploads/user/avatar/1/cd8.jpeg”,
“web_url”: “http://localhost:3000/john_smith”





},
{


“id”: 2,
“username”: “jack_smith”,
“name”: “Jack Smith”,
“state”: “blocked”,
“avatar_url”: “http://gravatar.com/../e32131cd8.jpeg”,
“web_url”: “http://localhost:3000/jack_smith”




}







]

## Get project events

Please refer to the [Events API documentation](events.md#list-a-projects-visible-events).

## Create project

Creates a new project owned by the authenticated user.

`
POST /projects
`


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

name | string | yes if path is not provided | The name of the new project. Equals path if not provided. |

path | string | yes if name is not provided | Repository name for new project. Generated based on name if not provided (generated lowercased with dashes). |

namespace_id | integer | no | Namespace for the new project (defaults to the current user’s namespace) |

description | string | no | Short project description |

issues_enabled | boolean | no | Enable issues for this project |

merge_requests_enabled | boolean | no | Enable merge requests for this project |

jobs_enabled | boolean | no | Enable jobs for this project |

wiki_enabled | boolean | no | Enable wiki for this project |

snippets_enabled | boolean | no | Enable snippets for this project |

resolve_outdated_diff_discussions | boolean | no | Automatically resolve merge request diffs discussions on lines changed with a push |

container_registry_enabled | boolean | no | Enable container registry for this project |

shared_runners_enabled | boolean | no | Enable shared runners for this project |

visibility | string | no | See [project visibility level](#project-visibility-level) |

import_url | string | no | URL to import repository from |

public_jobs | boolean | no | If true, jobs can be viewed by non-project-members |

only_allow_merge_if_pipeline_succeeds | boolean | no | Set whether merge requests can only be merged with successful jobs |

only_allow_merge_if_all_discussions_are_resolved | boolean | no | Set whether merge requests can only be merged when all the discussions are resolved |

merge_method | string | no | Set the merge method used |

lfs_enabled | boolean | no | Enable LFS |

request_access_enabled | boolean | no | Allow users to request member access |

tag_list    | array   | no       | The list of tags for a project; put array of tags, that should be finally assigned to a project |

avatar    | mixed   | no      | Image file for avatar of the project                |

printing_merge_request_link_enabled | boolean | no | Show link to create/view merge request when pushing from the command line |

ci_config_path | string | no | The path to CI config file |



## Create project for user

Creates a new project owned by the specified user. Available only for admins.

`
POST /projects/user/:user_id
`


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

user_id | integer | yes | The user ID of the project owner |

name | string | yes | The name of the new project |

path | string | no | Custom repository name for new project. By default generated based on name |

default_branch | string | no | master by default |

namespace_id | integer | no | Namespace for the new project (defaults to the current user’s namespace) |

description | string | no | Short project description |

issues_enabled | boolean | no | Enable issues for this project |

merge_requests_enabled | boolean | no | Enable merge requests for this project |

jobs_enabled | boolean | no | Enable jobs for this project |

wiki_enabled | boolean | no | Enable wiki for this project |

snippets_enabled | boolean | no | Enable snippets for this project |

resolve_outdated_diff_discussions | boolean | no | Automatically resolve merge request diffs discussions on lines changed with a push |

container_registry_enabled | boolean | no | Enable container registry for this project |

shared_runners_enabled | boolean | no | Enable shared runners for this project |

visibility | string | no | See [project visibility level](#project-visibility-level) |

import_url | string | no | URL to import repository from |

public_jobs | boolean | no | If true, jobs can be viewed by non-project-members |

only_allow_merge_if_pipeline_succeeds | boolean | no | Set whether merge requests can only be merged with successful jobs |

only_allow_merge_if_all_discussions_are_resolved | boolean | no | Set whether merge requests can only be merged when all the discussions are resolved |

merge_method | string | no | Set the merge method used |

lfs_enabled | boolean | no | Enable LFS |

request_access_enabled | boolean | no | Allow users to request member access |

tag_list    | array   | no       | The list of tags for a project; put array of tags, that should be finally assigned to a project |

avatar    | mixed   | no      | Image file for avatar of the project                |

printing_merge_request_link_enabled | boolean | no | Show link to create/view merge request when pushing from the command line |

ci_config_path | string | no | The path to CI config file |



## Edit project

Updates an existing project.

`
PUT /projects/:id
`


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |

name | string | yes | The name of the project |

path | string | no | Custom repository name for the project. By default generated based on name |

default_branch | string | no | master by default |

description | string | no | Short project description |

issues_enabled | boolean | no | Enable issues for this project |

merge_requests_enabled | boolean | no | Enable merge requests for this project |

jobs_enabled | boolean | no | Enable jobs for this project |

wiki_enabled | boolean | no | Enable wiki for this project |

snippets_enabled | boolean | no | Enable snippets for this project |

resolve_outdated_diff_discussions | boolean | no | Automatically resolve merge request diffs discussions on lines changed with a push |

container_registry_enabled | boolean | no | Enable container registry for this project |

shared_runners_enabled | boolean | no | Enable shared runners for this project |

visibility | string | no | See [project visibility level](#project-visibility-level) |

import_url | string | no | URL to import repository from |

public_jobs | boolean | no | If true, jobs can be viewed by non-project-members |

only_allow_merge_if_pipeline_succeeds | boolean | no | Set whether merge requests can only be merged with successful jobs |

only_allow_merge_if_all_discussions_are_resolved | boolean | no | Set whether merge requests can only be merged when all the discussions are resolved |

merge_method | string | no | Set the merge method used |

lfs_enabled | boolean | no | Enable LFS |

request_access_enabled | boolean | no | Allow users to request member access |

tag_list    | array   | no       | The list of tags for a project; put array of tags, that should be finally assigned to a project |

avatar    | mixed   | no      | Image file for avatar of the project                |

ci_config_path | string | no | The path to CI config file |



## Fork project

Forks a project into the user namespace of the authenticated user or the one provided.

The forking operation for a project is asynchronous and is completed in a
background job. The request will return immediately. To determine whether the
fork of the project has completed, query the import_status for the new project.

`
POST /projects/:id/fork
`


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |

namespace | integer/string | yes | The ID or path of the namespace that the project will be forked to |



## List Forks of a project

>**Note:** This feature was introduced in GitLab 10.1

List the projects accessible to the calling user that have an established, forked relationship with the specified project

`
GET /projects/:id/forks
`


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |

archived | boolean | no | Limit by archived status |

visibility | string | no | Limit by visibility public, internal, or private |

order_by | string | no | Return projects ordered by id, name, path, created_at, updated_at, or last_activity_at fields. Default is created_at |

sort | string | no | Return projects sorted in asc or desc order. Default is desc |

search | string | no | Return list of projects matching the search criteria |

simple | boolean | no | Return only limited fields for each project. This is a no-op without authentication as then _only_ simple fields are returned. |

owned | boolean | no | Limit by projects explicitly owned by the current user |

membership | boolean | no | Limit by projects that the current user is a member of |

starred | boolean | no | Limit by projects starred by the current user |

statistics | boolean | no | Include project statistics |

with_custom_attributes | boolean | no | Include [custom attributes](custom_attributes.md) in response (admins only) |

with_issues_enabled | boolean | no | Limit by enabled issues feature |

with_merge_requests_enabled | boolean | no | Limit by enabled merge requests feature |

min_access_level | integer | no | Limit by current user minimal [access level](members.md) |



`bash
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" "https://gitlab.example.com/api/v4/projects/5/forks"
`

Example responses:

```json
[

	{
	“id”: 3,
“description”: null,
“default_branch”: “master”,
“visibility”: “internal”,
“ssh_url_to_repo”: “git@example.com:diaspora/diaspora-project-site.git”,
“http_url_to_repo”: “http://example.com/diaspora/diaspora-project-site.git”,
“web_url”: “http://example.com/diaspora/diaspora-project-site”,
“readme_url”: “http://example.com/diaspora/diaspora-project-site/blob/master/README.md”,
“tag_list”: [

“example”,
“disapora project”

],
“name”: “Diaspora Project Site”,
“name_with_namespace”: “Diaspora / Diaspora Project Site”,
“path”: “diaspora-project-site”,
“path_with_namespace”: “diaspora/diaspora-project-site”,
“issues_enabled”: true,
“open_issues_count”: 1,
“merge_requests_enabled”: true,
“jobs_enabled”: true,
“wiki_enabled”: true,
“snippets_enabled”: false,
“resolve_outdated_diff_discussions”: false,
“container_registry_enabled”: false,
“created_at”: “2013-09-30T13:46:02Z”,
“last_activity_at”: “2013-09-30T13:46:02Z”,
“creator_id”: 3,
“namespace”: {

“id”: 3,
“name”: “Diaspora”,
“path”: “diaspora”,
“kind”: “group”,
“full_path”: “diaspora”

},
“import_status”: “none”,
“archived”: true,
“avatar_url”: “http://example.com/uploads/project/avatar/3/uploads/avatar.png”,
“shared_runners_enabled”: true,
“forks_count”: 0,
“star_count”: 1,
“public_jobs”: true,
“shared_with_groups”: [],
“only_allow_merge_if_pipeline_succeeds”: false,
“only_allow_merge_if_all_discussions_are_resolved”: false,
“request_access_enabled”: false,
“merge_method”: “merge”,
“_links”: {

“self”: “http://example.com/api/v4/projects”,
“issues”: “http://example.com/api/v4/projects/1/issues”,
“merge_requests”: “http://example.com/api/v4/projects/1/merge_requests”,
“repo_branches”: “http://example.com/api/v4/projects/1/repository_branches”,
“labels”: “http://example.com/api/v4/projects/1/labels”,
“events”: “http://example.com/api/v4/projects/1/events”,
“members”: “http://example.com/api/v4/projects/1/members”

}

}

]

Star a project

Stars a given project. Returns status code 304 if the project is already starred.

`
POST /projects/:id/star
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |

`bash
curl --request POST --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" "https://gitlab.example.com/api/v4/projects/5/star"
`

Example response:

```json
{


“id”: 3,
“description”: null,
“default_branch”: “master”,
“visibility”: “internal”,
“ssh_url_to_repo”: “git@example.com:diaspora/diaspora-project-site.git”,
“http_url_to_repo”: “http://example.com/diaspora/diaspora-project-site.git”,
“web_url”: “http://example.com/diaspora/diaspora-project-site”,
“readme_url”: “http://example.com/diaspora/diaspora-project-site/blob/master/README.md”,
“tag_list”: [


“example”,
“disapora project”




],
“name”: “Diaspora Project Site”,
“name_with_namespace”: “Diaspora / Diaspora Project Site”,
“path”: “diaspora-project-site”,
“path_with_namespace”: “diaspora/diaspora-project-site”,
“issues_enabled”: true,
“open_issues_count”: 1,
“merge_requests_enabled”: true,
“jobs_enabled”: true,
“wiki_enabled”: true,
“snippets_enabled”: false,
“resolve_outdated_diff_discussions”: false,
“container_registry_enabled”: false,
“created_at”: “2013-09-30T13:46:02Z”,
“last_activity_at”: “2013-09-30T13:46:02Z”,
“creator_id”: 3,
“namespace”: {


“id”: 3,
“name”: “Diaspora”,
“path”: “diaspora”,
“kind”: “group”,
“full_path”: “diaspora”




},
“import_status”: “none”,
“archived”: true,
“avatar_url”: “http://example.com/uploads/project/avatar/3/uploads/avatar.png”,
“shared_runners_enabled”: true,
“forks_count”: 0,
“star_count”: 1,
“public_jobs”: true,
“shared_with_groups”: [],
“only_allow_merge_if_pipeline_succeeds”: false,
“only_allow_merge_if_all_discussions_are_resolved”: false,
“request_access_enabled”: false,
“merge_method”: “merge”,
“_links”: {


“self”: “http://example.com/api/v4/projects”,
“issues”: “http://example.com/api/v4/projects/1/issues”,
“merge_requests”: “http://example.com/api/v4/projects/1/merge_requests”,
“repo_branches”: “http://example.com/api/v4/projects/1/repository_branches”,
“labels”: “http://example.com/api/v4/projects/1/labels”,
“events”: “http://example.com/api/v4/projects/1/events”,
“members”: “http://example.com/api/v4/projects/1/members”




}







}

## Unstar a project

Unstars a given project. Returns status code 304 if the project is not starred.

`
POST /projects/:id/unstar
`


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |



`bash
curl --request POST --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" "https://gitlab.example.com/api/v4/projects/5/unstar"
`

Example response:

```json
{

“id”: 3,
“description”: null,
“default_branch”: “master”,
“visibility”: “internal”,
“ssh_url_to_repo”: “git@example.com:diaspora/diaspora-project-site.git”,
“http_url_to_repo”: “http://example.com/diaspora/diaspora-project-site.git”,
“web_url”: “http://example.com/diaspora/diaspora-project-site”,
“readme_url”: “http://example.com/diaspora/diaspora-project-site/blob/master/README.md”,
“tag_list”: [

“example”,
“disapora project”

],
“name”: “Diaspora Project Site”,
“name_with_namespace”: “Diaspora / Diaspora Project Site”,
“path”: “diaspora-project-site”,
“path_with_namespace”: “diaspora/diaspora-project-site”,
“issues_enabled”: true,
“open_issues_count”: 1,
“merge_requests_enabled”: true,
“jobs_enabled”: true,
“wiki_enabled”: true,
“snippets_enabled”: false,
“resolve_outdated_diff_discussions”: false,
“container_registry_enabled”: false,
“created_at”: “2013-09-30T13:46:02Z”,
“last_activity_at”: “2013-09-30T13:46:02Z”,
“creator_id”: 3,
“namespace”: {

“id”: 3,
“name”: “Diaspora”,
“path”: “diaspora”,
“kind”: “group”,
“full_path”: “diaspora”

},
“import_status”: “none”,
“archived”: true,
“avatar_url”: “http://example.com/uploads/project/avatar/3/uploads/avatar.png”,
“shared_runners_enabled”: true,
“forks_count”: 0,
“star_count”: 0,
“public_jobs”: true,
“shared_with_groups”: [],
“only_allow_merge_if_pipeline_succeeds”: false,
“only_allow_merge_if_all_discussions_are_resolved”: false,
“request_access_enabled”: false,
“merge_method”: “merge”,
“_links”: {

“self”: “http://example.com/api/v4/projects”,
“issues”: “http://example.com/api/v4/projects/1/issues”,
“merge_requests”: “http://example.com/api/v4/projects/1/merge_requests”,
“repo_branches”: “http://example.com/api/v4/projects/1/repository_branches”,
“labels”: “http://example.com/api/v4/projects/1/labels”,
“events”: “http://example.com/api/v4/projects/1/events”,
“members”: “http://example.com/api/v4/projects/1/members”

}

}

Languages

Get languages used in a project with percentage value.

`
GET /projects/:id/languages
`

`bash
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" "https://gitlab.example.com/api/v4/projects/5/languages"
`

Example response:

```json
{


“Ruby”: 66.69,
“JavaScript”: 22.98,
“HTML”: 7.91,
“CoffeeScript”: 2.42







}

## Archive a project

Archives the project if the user is either admin or the project owner of this project. This action is
idempotent, thus archiving an already archived project will not change the project.

`
POST /projects/:id/archive
`


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |



`bash
curl --request POST --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" "https://gitlab.example.com/api/v4/projects/5/archive"
`

Example response:

```json
{

“id”: 3,
“description”: null,
“default_branch”: “master”,
“visibility”: “private”,
“ssh_url_to_repo”: “git@example.com:diaspora/diaspora-project-site.git”,
“http_url_to_repo”: “http://example.com/diaspora/diaspora-project-site.git”,
“web_url”: “http://example.com/diaspora/diaspora-project-site”,
“readme_url”: “http://example.com/diaspora/diaspora-project-site/blob/master/README.md”,
“tag_list”: [

“example”,
“disapora project”

],
“owner”: {

“id”: 3,
“name”: “Diaspora”,
“created_at”: “2013-09-30T13:46:02Z”

},
“name”: “Diaspora Project Site”,
“name_with_namespace”: “Diaspora / Diaspora Project Site”,
“path”: “diaspora-project-site”,
“path_with_namespace”: “diaspora/diaspora-project-site”,
“issues_enabled”: true,
“open_issues_count”: 1,
“merge_requests_enabled”: true,
“jobs_enabled”: true,
“wiki_enabled”: true,
“snippets_enabled”: false,
“resolve_outdated_diff_discussions”: false,
“container_registry_enabled”: false,
“created_at”: “2013-09-30T13:46:02Z”,
“last_activity_at”: “2013-09-30T13:46:02Z”,
“creator_id”: 3,
“namespace”: {

“id”: 3,
“name”: “Diaspora”,
“path”: “diaspora”,
“kind”: “group”,
“full_path”: “diaspora”

},
“import_status”: “none”,
“import_error”: null,
“permissions”: {

	“project_access”: {
	“access_level”: 10,
“notification_level”: 3

},
“group_access”: {

“access_level”: 50,
“notification_level”: 3

}

},
“archived”: true,
“avatar_url”: “http://example.com/uploads/project/avatar/3/uploads/avatar.png”,
“shared_runners_enabled”: true,
“forks_count”: 0,
“star_count”: 0,
“runners_token”: “b8bc4a7a29eb76ea83cf79e4908c2b”,
“public_jobs”: true,
“shared_with_groups”: [],
“only_allow_merge_if_pipeline_succeeds”: false,
“only_allow_merge_if_all_discussions_are_resolved”: false,
“request_access_enabled”: false,
“merge_method”: “merge”,
“_links”: {

“self”: “http://example.com/api/v4/projects”,
“issues”: “http://example.com/api/v4/projects/1/issues”,
“merge_requests”: “http://example.com/api/v4/projects/1/merge_requests”,
“repo_branches”: “http://example.com/api/v4/projects/1/repository_branches”,
“labels”: “http://example.com/api/v4/projects/1/labels”,
“events”: “http://example.com/api/v4/projects/1/events”,
“members”: “http://example.com/api/v4/projects/1/members”

}

}

Unarchive a project

Unarchives the project if the user is either admin or the project owner of this project. This action is
idempotent, thus unarchiving a non-archived project will not change the project.

`
POST /projects/:id/unarchive
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |

`bash
curl --request POST --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" "https://gitlab.example.com/api/v4/projects/5/unarchive"
`

Example response:

```json
{


“id”: 3,
“description”: null,
“default_branch”: “master”,
“visibility”: “private”,
“ssh_url_to_repo”: “git@example.com:diaspora/diaspora-project-site.git”,
“http_url_to_repo”: “http://example.com/diaspora/diaspora-project-site.git”,
“web_url”: “http://example.com/diaspora/diaspora-project-site”,
“readme_url”: “http://example.com/diaspora/diaspora-project-site/blob/master/README.md”,
“tag_list”: [


“example”,
“disapora project”




],
“owner”: {


“id”: 3,
“name”: “Diaspora”,
“created_at”: “2013-09-30T13:46:02Z”




},
“name”: “Diaspora Project Site”,
“name_with_namespace”: “Diaspora / Diaspora Project Site”,
“path”: “diaspora-project-site”,
“path_with_namespace”: “diaspora/diaspora-project-site”,
“issues_enabled”: true,
“open_issues_count”: 1,
“merge_requests_enabled”: true,
“jobs_enabled”: true,
“wiki_enabled”: true,
“snippets_enabled”: false,
“resolve_outdated_diff_discussions”: false,
“container_registry_enabled”: false,
“created_at”: “2013-09-30T13:46:02Z”,
“last_activity_at”: “2013-09-30T13:46:02Z”,
“creator_id”: 3,
“namespace”: {


“id”: 3,
“name”: “Diaspora”,
“path”: “diaspora”,
“kind”: “group”,
“full_path”: “diaspora”




},
“import_status”: “none”,
“import_error”: null,
“permissions”: {



	“project_access”: {
	“access_level”: 10,
“notification_level”: 3





},
“group_access”: {


“access_level”: 50,
“notification_level”: 3




}




},
“archived”: false,
“avatar_url”: “http://example.com/uploads/project/avatar/3/uploads/avatar.png”,
“shared_runners_enabled”: true,
“forks_count”: 0,
“star_count”: 0,
“runners_token”: “b8bc4a7a29eb76ea83cf79e4908c2b”,
“public_jobs”: true,
“shared_with_groups”: [],
“only_allow_merge_if_pipeline_succeeds”: false,
“only_allow_merge_if_all_discussions_are_resolved”: false,
“request_access_enabled”: false,
“merge_method”: “merge”,
“_links”: {


“self”: “http://example.com/api/v4/projects”,
“issues”: “http://example.com/api/v4/projects/1/issues”,
“merge_requests”: “http://example.com/api/v4/projects/1/merge_requests”,
“repo_branches”: “http://example.com/api/v4/projects/1/repository_branches”,
“labels”: “http://example.com/api/v4/projects/1/labels”,
“events”: “http://example.com/api/v4/projects/1/events”,
“members”: “http://example.com/api/v4/projects/1/members”




}







}

## Remove project

Removes a project including all associated resources (issues, merge requests etc.)

`
DELETE /projects/:id
`


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |



## Upload a file

Uploads a file to the specified project to be used in an issue or merge request description, or a comment.

`
POST /projects/:id/uploads
`


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |

file | string | yes | The file to be uploaded |



To upload a file from your filesystem, use the –form argument. This causes
cURL to post data using the header Content-Type: multipart/form-data.
The file= parameter must point to a file on your filesystem and be preceded
by @. For example:

`bash
curl --request POST --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" --form "file=@dk.png" https://gitlab.example.com/api/v4/projects/5/uploads
`

Returned object:

```json
{

“alt”: “dk”,
“url”: “/uploads/66dbcd21ec5d24ed6ea225176098d52b/dk.png”,
“markdown”: “![dk](/uploads/66dbcd21ec5d24ed6ea225176098d52b/dk.png)”

}

>**Note**: The returned url is relative to the project path.
In Markdown contexts, the link is automatically expanded when the format in
markdown is used.

Share project with group

Allow to share project with group.

`
POST /projects/:id/share
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |

group_id | integer | yes | The ID of the group to share with |

group_access | integer | yes | The [permissions level](members.md) to grant the group |

expires_at | string | no | Share expiration date in ISO 8601 format: 2016-09-26 |

Delete a shared project link within a group

Unshare the project from the group. Returns 204 and no content on success.

`
DELETE /projects/:id/share/:group_id
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |

group_id | integer | yes | The ID of the group |

`bash
curl --request DELETE --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/5/share/17
`

Hooks

Also called Project Hooks and Webhooks.
These are different for [System Hooks](system_hooks.md) that are system wide.

List project hooks

Get a list of project hooks.

`
GET /projects/:id/hooks
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |

Get project hook

Get a specific hook for a project.

`
GET /projects/:id/hooks/:hook_id
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |

hook_id | integer | yes | The ID of a project hook |


```json
{


“id”: 1,
“url”: “http://example.com/hook”,
“project_id”: 3,
“push_events”: true,
“issues_events”: true,
“confidential_issues_events”: true,
“merge_requests_events”: true,
“tag_push_events”: true,
“note_events”: true,
“job_events”: true,
“pipeline_events”: true,
“wiki_page_events”: true,
“enable_ssl_verification”: true,
“created_at”: “2012-10-12T17:04:47Z”







}

### Add project hook

Adds a hook to a specified project.

`
POST /projects/:id/hooks
`


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |

url | string | yes | The hook URL |

push_events | boolean | no | Trigger hook on push events |

issues_events | boolean | no | Trigger hook on issues events |

confidential_issues_events | boolean | no | Trigger hook on confidential issues events |

merge_requests_events | boolean | no | Trigger hook on merge requests events |

tag_push_events | boolean | no | Trigger hook on tag push events |

note_events | boolean | no | Trigger hook on note events |

job_events | boolean | no | Trigger hook on job events |

pipeline_events | boolean | no | Trigger hook on pipeline events |

wiki_page_events | boolean | no | Trigger hook on wiki events |

enable_ssl_verification | boolean | no | Do SSL verification when triggering the hook |

token | string | no | Secret token to validate received payloads; this will not be returned in the response |



### Edit project hook

Edits a hook for a specified project.

`
PUT /projects/:id/hooks/:hook_id
`


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |

hook_id | integer | yes | The ID of the project hook |

url | string | yes | The hook URL |

push_events | boolean | no | Trigger hook on push events |

issues_events | boolean | no | Trigger hook on issues events |

confidential_issues_events | boolean | no | Trigger hook on confidential issues events |

merge_requests_events | boolean | no | Trigger hook on merge requests events |

tag_push_events | boolean | no | Trigger hook on tag push events |

note_events | boolean | no | Trigger hook on note events |

job_events | boolean | no | Trigger hook on job events |

pipeline_events | boolean | no | Trigger hook on pipeline events |

wiki_events | boolean | no | Trigger hook on wiki events |

enable_ssl_verification | boolean | no | Do SSL verification when triggering the hook |

token | string | no | Secret token to validate received payloads; this will not be returned in the response |



### Delete project hook

Removes a hook from a project. This is an idempotent method and can be called multiple times.
Either the hook is available or not.

`
DELETE /projects/:id/hooks/:hook_id
`


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |

hook_id | integer | yes | The ID of the project hook |



Note the JSON response differs if the hook is available or not. If the project hook
is available before it is returned in the JSON response or an empty response is returned.

## Admin fork relation

Allows modification of the forked relationship between existing projects. Available only for admins.

### Create a forked from/to relation between existing projects

`
POST /projects/:id/fork/:forked_from_id
`


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |

forked_from_id | ID | yes | The ID of the project that was forked from |



### Delete an existing forked from relationship

`
DELETE /projects/:id/fork
`


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |



## Search for projects by name

Search for projects by name which are accessible to the authenticated user. This
endpoint can be accessed without authentication if the project is publicly
accessible.

`
GET /projects
`


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

search | string | yes | A string contained in the project name |

order_by | string | no | Return requests ordered by id, name, created_at or last_activity_at fields |

sort | string | no | Return requests sorted in asc or desc order |



`bash
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects?search=test
`

## Start the Housekeeping task for a Project

> Introduced in GitLab 9.0.

`
POST /projects/:id/housekeeping
`


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |



### Transfer a project to a new namespace

`
PUT /projects/:id/transfer
`


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

namespace | integer/string | yes | The ID or path of the namespace to transfer to project to |



## Branches

Read more in the [Branches](branches.md) documentation.

## Project Import/Export

Read more in the [Project import/export](project_import_export.md) documentation.

## Project members

Read more in the [Project members](members.md) documentation.

## Project badges

Read more in the [Project Badges](project_badges.md) documentation.

## Issue and merge request description templates

The non-default [issue and merge request description templates](../user/project/description_templates.md) are managed inside the project’s repository. So you can manage them via the API through the [Repositories API](repositories.md) and the [Repository Files API](repository_files.md).

## Download snapshot of a git repository

> Introduced in GitLab 10.7

This endpoint may only be accessed by an administrative user.

Download a snapshot of the project (or wiki, if requested) git repository. This
snapshot is always in uncompressed [tar](https://en.wikipedia.org/wiki/Tar_(computing))
format.

If a repository is corrupted to the point where git clone does not work, the
snapshot may allow some of the data to be retrieved.

`
GET /projects/:id/snapshot
`


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id      | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |

wiki    | boolean | no | Whether to download the wiki, rather than project, repository |



[eep]: https://about.gitlab.com/pricing/ “Available only in GitLab Premium”
[ee-6137]: https://gitlab.com/gitlab-org/gitlab-ee/merge_requests/6137





            

          

      

      

    

  

    
      
          
            
  # Protected branches API

>**Note:** This feature was introduced in GitLab 9.5

Valid access levels

The access levels are defined in the ProtectedRefAccess::ALLOWED_ACCESS_LEVELS constant. Currently, these levels are recognized:
`
0  => No access
30 => Developer access
40 => Maintainer access
`

## List protected branches

Gets a list of protected branches from a project.

`
GET /projects/:id/protected_branches
`


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |



`bash
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" 'https://gitlab.example.com/api/v4/projects/5/protected_branches'
`

Example response:

```json
[

	{
	“name”: “master”,
“push_access_levels”: [

	{
	“access_level”: 40,
“access_level_description”: “Maintainers”

}

],
“merge_access_levels”: [

	{
	“access_level”: 40,
“access_level_description”: “Maintainers”

}

]

]

Get a single protected branch or wildcard protected branch

Gets a single protected branch or wildcard protected branch.

`
GET /projects/:id/protected_branches/:name
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

name | string | yes | The name of the branch or wildcard |

`bash
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" 'https://gitlab.example.com/api/v4/projects/5/protected_branches/master'
`

Example response:

```json
{


“name”: “master”,
“push_access_levels”: [



	{
	“access_level”: 40,
“access_level_description”: “Maintainers”





}




],
“merge_access_levels”: [



	{
	“access_level”: 40,
“access_level_description”: “Maintainers”





}




]







}

## Protect repository branches

Protects a single repository branch or several project repository
branches using a wildcard protected branch.

`
POST /projects/:id/protected_branches
`

`bash
curl --request POST --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" 'https://gitlab.example.com/api/v4/projects/5/protected_branches?name=*-stable&push_access_level=30&merge_access_level=30'
`


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

name | string | yes | The name of the branch or wildcard |

push_access_level | string | no | Access levels allowed to push (defaults: 40, maintainer access level) |

merge_access_level | string | no | Access levels allowed to merge (defaults: 40, maintainer access level) |



Example response:

```json
{

“name”: “*-stable”,
“push_access_levels”: [

	{
	“access_level”: 30,
“access_level_description”: “Developers + Maintainers”

}

],
“merge_access_levels”: [

	{
	“access_level”: 30,
“access_level_description”: “Developers + Maintainers”

}

]

}

Unprotect repository branches

Unprotects the given protected branch or wildcard protected branch.

`
DELETE /projects/:id/protected_branches/:name
`

`bash
curl --request DELETE --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" 'https://gitlab.example.com/api/v4/projects/5/protected_branches/*-stable'
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

name | string | yes | The name of the branch |

 # Repositories API

List repository tree

Get a list of repository files and directories in a project. This endpoint can
be accessed without authentication if the repository is publicly accessible.

This command provides essentially the same functionality as the git ls-tree command. For more information, see the section _Tree Objects_ in the [Git internals documentation](https://git-scm.com/book/en/v2/Git-Internals-Git-Objects/#_tree_objects).

`
GET /projects/:id/repository/tree
`

Parameters:

	id (required) - The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user

	path (optional) - The path inside repository. Used to get contend of subdirectories

	ref (optional) - The name of a repository branch or tag or if not given the default branch

	recursive (optional) - Boolean value used to get a recursive tree (false by default)


```json
[



	{
	“id”: “a1e8f8d745cc87e3a9248358d9352bb7f9a0aeba”,
“name”: “html”,
“type”: “tree”,
“path”: “files/html”,
“mode”: “040000”





},
{


“id”: “4535904260b1082e14f867f7a24fd8c21495bde3”,
“name”: “images”,
“type”: “tree”,
“path”: “files/images”,
“mode”: “040000”




},
{


“id”: “31405c5ddef582c5a9b7a85230413ff90e2fe720”,
“name”: “js”,
“type”: “tree”,
“path”: “files/js”,
“mode”: “040000”




},
{


“id”: “cc71111cfad871212dc99572599a568bfe1e7e00”,
“name”: “lfs”,
“type”: “tree”,
“path”: “files/lfs”,
“mode”: “040000”




},
{


“id”: “fd581c619bf59cfdfa9c8282377bb09c2f897520”,
“name”: “markdown”,
“type”: “tree”,
“path”: “files/markdown”,
“mode”: “040000”




},
{


“id”: “23ea4d11a4bdd960ee5320c5cb65b5b3fdbc60db”,
“name”: “ruby”,
“type”: “tree”,
“path”: “files/ruby”,
“mode”: “040000”




},
{


“id”: “7d70e02340bac451f281cecf0a980907974bd8be”,
“name”: “whitespace”,
“type”: “blob”,
“path”: “files/whitespace”,
“mode”: “100644”




}





]

## Get a blob from repository

Allows you to receive information about blob in repository like size and
content. Note that blob content is Base64 encoded. This endpoint can be accessed
without authentication if the repository is publicly accessible.

`
GET /projects/:id/repository/blobs/:sha
`

Parameters:


	id (required) - The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user


	sha (required) - The blob SHA




## Raw blob content

Get the raw file contents for a blob by blob SHA. This endpoint can be accessed
without authentication if the repository is publicly accessible.

`
GET /projects/:id/repository/blobs/:sha/raw
`

Parameters:


	id (required) - The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user


	sha (required) - The blob SHA




## Get file archive

Get an archive of the repository. This endpoint can be accessed without
authentication if the repository is publicly accessible.

`
GET /projects/:id/repository/archive
`

Parameters:


	id (required) - The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user


	sha (optional) - The commit SHA to download. A tag, branch reference or sha can be used. This defaults to the tip of the default branch if not specified


	format (optional) - The archive format. Default is tar.gz. Options are tar.gz, tar.bz2, tbz, tbz2, tb2, bz2, tar, zip




## Compare branches, tags or commits

This endpoint can be accessed without authentication if the repository is
publicly accessible.

`
GET /projects/:id/repository/compare
`

Parameters:


	id (required) - The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user


	from (required) - the commit SHA or branch name


	to (required) - the commit SHA or branch name


	straight (optional) - comparison method, true for direct comparison between from and to (from..`to`), false to compare using merge base (from…`to`)’. Default is false.




`
GET /projects/:id/repository/compare?from=master&to=feature
`

Response:

```json


	{
	
	“commit”: {
	“id”: “12d65c8dd2b2676fa3ac47d955accc085a37a9c1”,
“short_id”: “12d65c8dd2b”,
“title”: “JS fix”,
“author_name”: “Dmitriy Zaporozhets”,
“author_email”: “dmitriy.zaporozhets@gmail.com”,
“created_at”: “2014-02-27T10:27:00+02:00”

},
“commits”: [{

“id”: “12d65c8dd2b2676fa3ac47d955accc085a37a9c1”,
“short_id”: “12d65c8dd2b”,
“title”: “JS fix”,
“author_name”: “Dmitriy Zaporozhets”,
“author_email”: “dmitriy.zaporozhets@gmail.com”,
“created_at”: “2014-02-27T10:27:00+02:00”

}],
“diffs”: [{

“old_path”: “files/js/application.js”,
“new_path”: “files/js/application.js”,
“a_mode”: null,
“b_mode”: “100644”,
“diff”: “— a/files/js/application.jsn+++ b/files/js/application.jsn@@ -24,8 +24,10 @@n //= require g.raphael-minn //= require g.bar-minn //= require branch-graphn-//= require highlightjs.minn-//= require ace/acen //= require_tree .n //= require d3n //= require underscoren+n+function fix() { n+ alert("Fixed")n+}”,
“new_file”: false,
“renamed_file”: false,
“deleted_file”: false

}],
“compare_timeout”: false,
“compare_same_ref”: false

}

Contributors

Get repository contributors list. This endpoint can be accessed without
authentication if the repository is publicly accessible.

`
GET /projects/:id/repository/contributors
`

Parameters:

	id (required) - The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user

	order_by (optional) - Return contributors ordered by name, email, or commits (orders by commit date) fields. Default is commits

	sort (optional) - Return contributors sorted in asc or desc order. Default is asc

Response:

```
[{


“name”: “Dmitriy Zaporozhets”,
“email”: “dmitriy.zaporozhets@gmail.com”,
“commits”: 117,
“additions”: 2097,
“deletions”: 517





	}, {
	“name”: “Jacob Vosmaer”,
“email”: “contact@jacobvosmaer.nl”,
“commits”: 33,
“additions”: 338,
“deletions”: 244








}]





            

          

      

      

    

  

    
      
          
            
  # Repository files API

CRUD for repository files

Create, read, update and delete repository files using this API

## Get file from repository

Allows you to receive information about file in repository like name, size,
content. Note that file content is Base64 encoded. This endpoint can be accessed
without authentication if the repository is publicly accessible.

`
GET /projects/:id/repository/files/:file_path
`

`bash
curl --request GET --header 'PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK' 'https://gitlab.example.com/api/v4/projects/13083/repository/files/app%2Fmodels%2Fkey%2Erb?ref=master'
`

Example response:

```json
{

“file_name”: “key.rb”,
“file_path”: “app/models/key.rb”,
“size”: 1476,
“encoding”: “base64”,
“content”: “IyA9PSBTY2hlbWEgSW5mb3…”,
“content_sha256”: “4c294617b60715c1d218e61164a3abd4808a4284cbc30e6728a01ad9aada4481”,
“ref”: “master”,
“blob_id”: “79f7bbd25901e8334750839545a9bd021f0e4c83”,
“commit_id”: “d5a3ff139356ce33e37e73add446f16869741b50”,
“last_commit_id”: “570e7b2abdd848b95f2f578043fc23bd6f6fd24d”

}

Parameters:

	file_path (required) - Url encoded full path to new file. Ex. lib%2Fclass%2Erb

	ref (required) - The name of branch, tag or commit

NOTE: Note:
blob_id is the blob sha, see [repositories - Get a blob from repository](repositories.md#get-a-blob-from-repository)

In addition to the GET method, you can also use HEAD to get just file metadata.

`
HEAD /projects/:id/repository/files/:file_path
`

`bash
curl --head --header 'PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK' 'https://gitlab.example.com/api/v4/projects/13083/repository/files/app%2Fmodels%2Fkey%2Erb?ref=master'
`

Example response:

`text
HTTP/1.1 200 OK
...
X-Gitlab-Blob-Id: 79f7bbd25901e8334750839545a9bd021f0e4c83
X-Gitlab-Commit-Id: d5a3ff139356ce33e37e73add446f16869741b50
X-Gitlab-Content-Sha256: 4c294617b60715c1d218e61164a3abd4808a4284cbc30e6728a01ad9aada4481
X-Gitlab-Encoding: base64
X-Gitlab-File-Name: key.rb
X-Gitlab-File-Path: app/models/key.rb
X-Gitlab-Last-Commit-Id: 570e7b2abdd848b95f2f578043fc23bd6f6fd24d
X-Gitlab-Ref: master
X-Gitlab-Size: 1476
...
`

Get raw file from repository

`
GET /projects/:id/repository/files/:file_path/raw
`

`bash
curl --request GET --header 'PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK' 'https://gitlab.example.com/api/v4/projects/13083/repository/files/app%2Fmodels%2Fkey%2Erb/raw?ref=master'
`

Parameters:

	file_path (required) - Url encoded full path to new file. Ex. lib%2Fclass%2Erb

	ref (required) - The name of branch, tag or commit

NOTE: Note:
Like [Get file from repository](repository_files.md#get-file-from-repository) you can use HEAD to get just file metadata.

Create new file in repository

`
POST /projects/:id/repository/files/:file_path
`

`bash
curl --request POST --header 'PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK' 'https://gitlab.example.com/api/v4/projects/13083/repository/files/app%2Fprojectrb%2E?branch=master&author_email=author%40example.com&author_name=Firstname%20Lastname&content=some%20content&commit_message=create%20a%20new%20file'
`

Example response:

```json
{


“file_path”: “app/project.rb”,
“branch”: “master”







}

Parameters:


	file_path (required) - Url encoded full path to new file. Ex. lib%2Fclass%2Erb


	branch (required) - Name of the branch


	start_branch (optional) - Name of the branch to start the new commit from


	encoding (optional) - Change encoding to ‘base64’. Default is text.


	author_email (optional) - Specify the commit author’s email address


	author_name (optional) - Specify the commit author’s name


	content (required) - File content


	commit_message (required) - Commit message




## Update existing file in repository

`
PUT /projects/:id/repository/files/:file_path
`

`bash
curl --request PUT --header 'PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK' 'https://gitlab.example.com/api/v4/projects/13083/repository/files/app%2Fproject%2Erb?branch=master&author_email=author%40example.com&author_name=Firstname%20Lastname&content=some%20other%20content&commit_message=update%20file'
`

Example response:

```json
{

“file_path”: “app/project.rb”,
“branch”: “master”

}

Parameters:

	file_path (required) - Url encoded full path to new file. Ex. lib%2Fclass%2Erb

	branch (required) - Name of the branch

	start_branch (optional) - Name of the branch to start the new commit from

	encoding (optional) - Change encoding to ‘base64’. Default is text.

	author_email (optional) - Specify the commit author’s email address

	author_name (optional) - Specify the commit author’s name

	content (required) - New file content

	commit_message (required) - Commit message

	last_commit_id (optional) - Last known file commit id

If the commit fails for any reason we return a 400 error with a non-specific
error message. Possible causes for a failed commit include:
- the file_path contained /../ (attempted directory traversal);
- the new file contents were identical to the current file contents, i.e. the

user tried to make an empty commit;

	the branch was updated by a Git push while the file edit was in progress.

Currently gitlab-shell has a boolean return code, preventing GitLab from specifying the error.

Delete existing file in repository

`
DELETE /projects/:id/repository/files/:file_path
`

`bash
curl --request DELETE --header 'PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK' 'https://gitlab.example.com/api/v4/projects/13083/repository/files/app%2Fproject%2Erb?branch=master&author_email=author%40example.com&author_name=Firstname%20Lastname&commit_message=delete%20file'
`

Parameters:

	file_path (required) - Url encoded full path to new file. Ex. lib%2Fclass%2Erb

	branch (required) - Name of the branch

	start_branch (optional) - Name of the branch to start the new commit from

	author_email (optional) - Specify the commit author’s email address

	author_name (optional) - Specify the commit author’s name

	commit_message (required) - Commit message

	last_commit_id (optional) - Last known file commit id

 # Circuitbreaker API

> [Introduced][ce-11449] in GitLab 9.5.

The Circuitbreaker API is only accessible to administrators. All requests by
guests will respond with 401 Unauthorized, and all requests by normal users
will respond with 403 Forbidden.

Repository Storages

Get all storage information

Returns of all currently configured storages and their health information.

`
GET /circuit_breakers/repository_storage
`

`bash
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/circuit_breakers/repository_storage
`

```json
[



	{
	“storage_name”: “default”,
“failing_on_hosts”: [],
“total_failures”: 0





},
{


“storage_name”: “broken”,
“failing_on_hosts”: [


“web01”, “worker01”




],
“total_failures”: 1




}





]

### Get failing storages

This returns a list of all currently failing storages.

`
GET /circuit_breakers/repository_storage/failing
`

`bash
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/circuit_breakers/repository_storage/failing
`

```json
[

	{
	“storage_name”:”broken”,
“failing_on_hosts”:[“web01”, “worker01”],
“total_failures”:2

}

]

Reset failing storage information

Use this remove all failing storage information and allow access to the storage again.

`
DELETE /circuit_breakers/repository_storage
`

`bash
curl --request DELETE --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/circuit_breakers/repository_storage
`

[ce-11449]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/11449

 # Runners API

> [Introduced][ce-2640] in GitLab 8.5

[ce-2640]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/2640

List owned runners

Get a list of specific runners available to the user.

`
GET /runners
GET /runners?scope=active
`

Attribute | Type | Required | Description |

|-----------|———|----------|———————|
| scope | string | no | The scope of specific runners to show, one of: active, paused, online; showing all runners if none provided |

`
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" "https://gitlab.example.com/api/v4/runners"
`

Example response:

```json
[



	{
	“active”: true,
“description”: “test-1-20150125”,
“id”: 6,
“is_shared”: false,
“ip_address”: “127.0.0.1”,
“name”: null,
“online”: true,
“status”: “online”





},
{


“active”: true,
“description”: “test-2-20150125”,
“id”: 8,
“ip_address”: “127.0.0.1”,
“is_shared”: false,
“name”: null,
“online”: false,
“status”: “offline”




}





]

## List all runners

Get a list of all runners in the GitLab instance (specific and shared). Access
is restricted to users with admin privileges.

`
GET /runners/all
GET /runners/all?scope=online
`


Attribute | Type    | Required | Description         |



|-----------|———|----------|———————|
| scope   | string  | no       | The scope of runners to show, one of: specific, shared, active, paused, online; showing all runners if none provided |

`
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" "https://gitlab.example.com/api/v4/runners/all"
`

Example response:

```json
[

	{
	“active”: true,
“description”: “shared-runner-1”,
“id”: 1,
“ip_address”: “127.0.0.1”,
“is_shared”: true,
“name”: null,
“online”: true,
“status”: “online”

},
{

“active”: true,
“description”: “shared-runner-2”,
“id”: 3,
“ip_address”: “127.0.0.1”,
“is_shared”: true,
“name”: null,
“online”: false
“status”: “offline”

},
{

“active”: true,
“description”: “test-1-20150125”,
“id”: 6,
“ip_address”: “127.0.0.1”,
“is_shared”: false,
“name”: null,
“online”: true
“status”: “paused”

},
{

“active”: true,
“description”: “test-2-20150125”,
“id”: 8,
“ip_address”: “127.0.0.1”,
“is_shared”: false,
“name”: null,
“online”: false,
“status”: “offline”

}

]

Get runner’s details

Get details of a runner.

`
GET /runners/:id
`

Attribute | Type | Required | Description |

|-----------|———|----------|———————|
| id | integer | yes | The ID of a runner |

`
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" "https://gitlab.example.com/api/v4/runners/6"
`

Example response:

```json
{


“active”: true,
“architecture”: null,
“description”: “test-1-20150125”,
“id”: 6,
“ip_address”: “127.0.0.1”,
“is_shared”: false,
“contacted_at”: “2016-01-25T16:39:48.066Z”,
“name”: null,
“online”: true,
“status”: “online”,
“platform”: null,
“projects”: [



	{
	“id”: 1,
“name”: “GitLab Community Edition”,
“name_with_namespace”: “GitLab.org / GitLab Community Edition”,
“path”: “gitlab-ce”,
“path_with_namespace”: “gitlab-org/gitlab-ce”





}




],
“token”: “205086a8e3b9a2b818ffac9b89d102”,
“revision”: null,
“tag_list”: [


“ruby”,
“mysql”




],
“version”: null,
“access_level”: “ref_protected”,
“maximum_timeout”: 3600







}

## Update runner’s details

Update details of a runner.

`
PUT /runners/:id
`


Attribute     | Type    | Required | Description         |



|---------------|———|----------|———————|
| id          | integer | yes      | The ID of a runner  |
| description | string  | no       | The description of a runner |
| active      | boolean | no       | The state of a runner; can be set to true or false |
| tag_list    | array   | no       | The list of tags for a runner; put array of tags, that should be finally assigned to a runner |
| run_untagged    | boolean   | no       | Flag indicating the runner can execute untagged jobs |
| locked    | boolean   | no       | Flag indicating the runner is locked |
| access_level    | string   | no       | The access_level of the runner; not_protected or ref_protected |
| maximum_timeout | integer | no | Maximum timeout set when this Runner will handle the job |

`
curl --request PUT --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" "https://gitlab.example.com/api/v4/runners/6" --form "description=test-1-20150125-test" --form "tag_list=ruby,mysql,tag1,tag2"
`

Example response:

```json
{

“active”: true,
“architecture”: null,
“description”: “test-1-20150125-test”,
“id”: 6,
“ip_address”: “127.0.0.1”,
“is_shared”: false,
“contacted_at”: “2016-01-25T16:39:48.066Z”,
“name”: null,
“online”: true,
“status”: “online”,
“platform”: null,
“projects”: [

	{
	“id”: 1,
“name”: “GitLab Community Edition”,
“name_with_namespace”: “GitLab.org / GitLab Community Edition”,
“path”: “gitlab-ce”,
“path_with_namespace”: “gitlab-org/gitlab-ce”

}

],
“token”: “205086a8e3b9a2b818ffac9b89d102”,
“revision”: null,
“tag_list”: [

“ruby”,
“mysql”,
“tag1”,
“tag2”

],
“version”: null,
“access_level”: “ref_protected”,
“maximum_timeout”: null

}

Remove a runner

Remove a runner.

`
DELETE /runners/:id
`

Attribute | Type | Required | Description |

|-----------|———|----------|———————|
| id | integer | yes | The ID of a runner |

`
curl --request DELETE --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" "https://gitlab.example.com/api/v4/runners/6"
`

List runner’s jobs

List jobs that are being processed or were processed by specified Runner.

`
GET /runners/:id/jobs
`

Attribute | Type | Required | Description |

|-----------|———|----------|———————|
| id | integer | yes | The ID of a runner |
| status | string | no | Status of the job; one of: running, success, failed, canceled |

`
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" "https://gitlab.example.com/api/v4/runners/1/jobs?status=running"
`

Example response:

```json
[



	{
	“id”: 2,
“ip_address”: “127.0.0.1”,
“status”: “running”,
“stage”: “test”,
“name”: “test”,
“ref”: “master”,
“tag”: false,
“coverage”: null,
“created_at”: “2017-11-16T08:50:29.000Z”,
“started_at”: “2017-11-16T08:51:29.000Z”,
“finished_at”: “2017-11-16T08:53:29.000Z”,
“duration”: 120,
“user”: {


“id”: 1,
“name”: “John Doe2”,
“username”: “user2”,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/c922747a93b40d1ea88262bf1aebee62?s=80&d=identicon”,
“web_url”: “http://localhost/user2”,
“created_at”: “2017-11-16T18:38:46.000Z”,
“bio”: null,
“location”: null,
“skype”: “”,
“linkedin”: “”,
“twitter”: “”,
“website_url”: “”,
“organization”: null




},
“commit”: {


“id”: “97de212e80737a608d939f648d959671fb0a0142”,
“short_id”: “97de212e”,
“title”: “Update configurationr”,
“created_at”: “2017-11-16T08:50:28.000Z”,
“parent_ids”: [


“1b12f15a11fc6e62177bef08f47bc7b5ce50b141”,
“498214de67004b1da3d820901307bed2a68a8ef6”




],
“message”: “See merge request !123”,
“author_name”: “John Doe2”,
“author_email”: “user2@example.org”,
“authored_date”: “2017-11-16T08:50:27.000Z”,
“committer_name”: “John Doe2”,
“committer_email”: “user2@example.org”,
“committed_date”: “2017-11-16T08:50:27.000Z”




},
“pipeline”: {


“id”: 2,
“sha”: “97de212e80737a608d939f648d959671fb0a0142”,
“ref”: “master”,
“status”: “running”




},
“project”: {


“id”: 1,
“description”: null,
“name”: “project1”,
“name_with_namespace”: “John Doe2 / project1”,
“path”: “project1”,
“path_with_namespace”: “namespace1/project1”,
“created_at”: “2017-11-16T18:38:46.620Z”




}





}







]

## List project’s runners

List all runners (specific and shared) available in the project. Shared runners
are listed if at least one shared runner is defined and shared runners
usage is enabled in the project’s settings.

`
GET /projects/:id/runners
`


Attribute | Type    | Required | Description         |



|-----------|———|----------|———————|
| id      | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

`
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" "https://gitlab.example.com/api/v4/projects/9/runners"
`

Example response:

```json
[

	{
	“active”: true,
“description”: “test-2-20150125”,
“id”: 8,
“ip_address”: “127.0.0.1”,
“is_shared”: false,
“name”: null,
“online”: false,
“status”: “offline”

},
{

“active”: true,
“description”: “development_runner”,
“id”: 5,
“ip_address”: “127.0.0.1”,
“is_shared”: true,
“name”: null,
“online”: true
“status”: “paused”

}

]

Enable a runner in project

Enable an available specific runner in the project.

`
POST /projects/:id/runners
`

Attribute | Type | Required | Description |

|-------------|———|----------|———————|
| id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |
| runner_id | integer | yes | The ID of a runner |

`
curl --request POST --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" "https://gitlab.example.com/api/v4/projects/9/runners" --form "runner_id=9"
`

Example response:

```json
{


“active”: true,
“description”: “test-2016-02-01”,
“id”: 9,
“ip_address”: “127.0.0.1”,
“is_shared”: false,
“name”: null,
“online”: true,
“status”: “online”







}

## Disable a runner from project

Disable a specific runner from the project. It works only if the project isn’t
the only project associated with the specified runner. If so, an error is
returned. Use the [Remove a runner](#remove-a-runner) call instead.

`
DELETE /projects/:id/runners/:runner_id
`


Attribute   | Type    | Required | Description         |



|-------------|———|----------|———————|
| id        | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |
| runner_id | integer | yes      | The ID of a runner  |

`
curl --request DELETE --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" "https://gitlab.example.com/api/v4/projects/9/runners/9"
`

## Register a new Runner

Register a new Runner for the instance.

`
POST /runners
`


Attribute   | Type    | Required | Description         |



|-------------|———|----------|———————|
| token     | string  | yes      | Registration token ([Read how to obtain a token](../ci/runners/README.md)) |
| description`| string | no       | Runner’s description|
| `info       | hash   | no       | Runner’s metadata   |
| active     | boolean| no       | Whether the Runner is active   |
| locked     | boolean| no       | Whether the Runner should be locked for current project |
| run_untagged | boolean | no | Whether the Runner should handle untagged jobs |
| tag_list | Array[String] | no | List of Runner’s tags |
| maximum_timeout | integer | no | Maximum timeout set when this Runner will handle the job |

`
curl --request POST "https://gitlab.example.com/api/v4/runners" --form "token=ipzXrMhuyyJPifUt6ANz" --form "description=test-1-20150125-test" --form "tag_list=ruby,mysql,tag1,tag2"
`

Response:


Status    | Description                     |



|-----------|———————————|
| 201       | Runner was created              |

Example response:

```json
{

“id”: “12345”,
“token”: “6337ff461c94fd3fa32ba3b1ff4125”

}

Delete a registered Runner

Deletes a registed Runner.

`
DELETE /runners
`

Attribute | Type | Required | Description |

|-------------|———|----------|———————|
| token | string | yes | Runner’s authentication token |

`
curl --request DELETE "https://gitlab.example.com/api/v4/runners" --form "token=ebb6fc00521627750c8bb750f2490e"
`

Response:

Status | Description |

|-----------|———————————|
| 204 | Runner was deleted |

Verify authentication for a registered Runner

Validates authentication credentials for a registered Runner.

`
POST /runners/verify
`

Attribute | Type | Required | Description |

|-------------|———|----------|———————|
| token | string | yes | Runner’s authentication token |

`
curl --request POST "https://gitlab.example.com/api/v4/runners/verify" --form "token=ebb6fc00521627750c8bb750f2490e"
`

Response:

Status | Description |

|-----------|———————————|
| 200 | Credentials are valid |
| 403 | Credentials are invalid |

 # Search API

[Introduced][ce-41763] in GitLab 10.5

Every API call to search must be authenticated.

Global Search API

Search globally across the GitLab instance.

`
GET /search
`

Attribute | Type | Required | Description |

——————- | —————- | ———- | —————————————————————————————|

scope | string | yes | The scope to search in |

search | string | yes | The search query |

Search the expression within the specified scope. Currently these scopes are supported: projects, issues, merge_requests, milestones, snippet_titles, snippet_blobs.

The response depends on the requested scope.

Scope: projects

`bash
curl --request GET --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/search?scope=projects&search=flight
`

Example response:

```json
[



	{
	“id”: 6,
“description”: “Nobis sed ipsam vero quod cupiditate veritatis hic.”,
“name”: “Flight”,
“name_with_namespace”: “Twitter / Flight”,
“path”: “flight”,
“path_with_namespace”: “twitter/flight”,
“created_at”: “2017-09-05T07:58:01.621Z”,
“default_branch”: “master”,
“tag_list”:[],
“ssh_url_to_repo”: “ssh://jarka@localhost:2222/twitter/flight.git”,
“http_url_to_repo”: “http://localhost:3000/twitter/flight.git”,
“web_url”: “http://localhost:3000/twitter/flight”,
“avatar_url”: null,
“star_count”: 0,
“forks_count”: 0,
“last_activity_at”: “2018-01-31T09:56:30.902Z”





}





]

### Scope: issues

`bash
curl --request GET --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/search?scope=issues&search=file
`

Example response:

```json
[

	{
	“id”: 83,
“iid”: 1,
“project_id”: 12,
“title”: “Add file”,
“description”: “Add first file”,
“state”: “opened”,
“created_at”: “2018-01-24T06:02:15.514Z”,
“updated_at”: “2018-02-06T12:36:23.263Z”,
“closed_at”: null,
“labels”:[],
“milestone”: null,
“assignees”: [{

“id”: 20,
“name”: “Ceola Deckow”,
“username”: “sammy.collier”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/c23d85a4f50e0ea76ab739156c639231?s=80&d=identicon”,
“web_url”: “http://localhost:3000/sammy.collier”

}],
“author”: {

“id”: 1,
“name”: “Administrator”,
“username”: “root”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”,
“web_url”: “http://localhost:3000/root”

},
“assignee”: {

“id”: 20,
“name”: “Ceola Deckow”,
“username”: “sammy.collier”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/c23d85a4f50e0ea76ab739156c639231?s=80&d=identicon”,
“web_url”: “http://localhost:3000/sammy.collier”

},
“user_notes_count”: 0,
“upvotes”: 0,
“downvotes”: 0,
“due_date”: null,
“confidential”: false,
“discussion_locked”: null,
“web_url”: “http://localhost:3000/h5bp/7bp/subgroup-prj/issues/1”,
“time_stats”: {

“time_estimate”: 0,
“total_time_spent”: 0,
“human_time_estimate”: null,
“human_total_time_spent”: null

}

}

]

Note: assignee column is deprecated, now we show it as a single-sized array assignees to conform to the GitLab EE API.

Scope: merge_requests

`bash
curl --request GET --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/search?scope=merge_requests&search=file
`

Example response:

```json
[



	{
	“id”: 56,
“iid”: 8,
“project_id”: 6,
“title”: “Add first file”,
“description”: “This is a test MR to add file”,
“state”: “opened”,
“created_at”: “2018-01-22T14:21:50.830Z”,
“updated_at”: “2018-02-06T12:40:33.295Z”,
“target_branch”: “master”,
“source_branch”: “jaja-test”,
“upvotes”: 0,
“downvotes”: 0,
“author”: {


“id”: 1,
“name”: “Administrator”,
“username”: “root”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”,
“web_url”: “http://localhost:3000/root”




},
“assignee”: {


“id”: 5,
“name”: “Jacquelyn Kutch”,
“username”: “abigail”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/3138c66095ee4bd11a508c2f7f7772da?s=80&d=identicon”,
“web_url”: “http://localhost:3000/abigail”




},
“source_project_id”: 6,
“target_project_id”: 6,
“labels”: [


“ruby”,
“tests”




],
“work_in_progress”: false,
“milestone”: {


“id”: 13,
“iid”: 3,
“project_id”: 6,
“title”: “v2.0”,
“description”: “Qui aut qui eos dolor beatae itaque tempore molestiae.”,
“state”: “active”,
“created_at”: “2017-09-05T07:58:29.099Z”,
“updated_at”: “2017-09-05T07:58:29.099Z”,
“due_date”: null,
“start_date”: null




},
“merge_when_pipeline_succeeds”: false,
“merge_status”: “can_be_merged”,
“sha”: “78765a2d5e0a43585945c58e61ba2f822e4d090b”,
“merge_commit_sha”: null,
“user_notes_count”: 0,
“discussion_locked”: null,
“should_remove_source_branch”: null,
“force_remove_source_branch”: true,
“web_url”: “http://localhost:3000/twitter/flight/merge_requests/8”,
“time_stats”: {


“time_estimate”: 0,
“total_time_spent”: 0,
“human_time_estimate”: null,
“human_total_time_spent”: null




}





}







]

### Scope: milestones

`bash
curl --request GET --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/search?scope=milestones&search=release
`

Example response:

```json
[

	{
	“id”: 44,
“iid”: 1,
“project_id”: 12,
“title”: “next release”,
“description”: “Next release milestone”,
“state”: “active”,
“created_at”: “2018-02-06T12:43:39.271Z”,
“updated_at”: “2018-02-06T12:44:01.298Z”,
“due_date”: “2018-04-18”,
“start_date”: “2018-02-04”

}

]

Scope: snippet_titles

`bash
curl --request GET --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/search?scope=snippet_titles&search=sample
`

Example response:

```json
[



	{
	“id”: 50,
“title”: “Sample file”,
“file_name”: “file.rb”,
“description”: “Simple ruby file”,
“author”: {


“id”: 1,
“name”: “Administrator”,
“username”: “root”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”,
“web_url”: “http://localhost:3000/root”




},
“updated_at”: “2018-02-06T12:49:29.104Z”,
“created_at”: “2017-11-28T08:20:18.071Z”,
“project_id”: 9,
“web_url”: “http://localhost:3000/root/jira-test/snippets/50”





}







]

### Scope: snippet_blobs

`bash
curl --request GET --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/search?scope=snippet_blos&search=test
`

Example response:

```json
[

	{
	“id”: 50,
“title”: “Sample file”,
“file_name”: “file.rb”,
“description”: “Simple ruby file”,
“author”: {

“id”: 1,
“name”: “Administrator”,
“username”: “root”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”,
“web_url”: “http://localhost:3000/root”

},
“updated_at”: “2018-02-06T12:49:29.104Z”,
“created_at”: “2017-11-28T08:20:18.071Z”,
“project_id”: 9,
“web_url”: “http://localhost:3000/root/jira-test/snippets/50”

}

]

Group Search API

Search within the specified group.

If a user is not a member of a group and the group is private, a GET request on that group will result to a 404 status code.

`
GET /groups/:id/search
`

Attribute | Type | Required | Description |

——————- | —————- | ———- | —————————————————————————————|

id | integer/string | yes | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) owned by the authenticated user |

scope | string | yes | The scope to search in |

search | string | yes | The search query |

Search the expression within the specified scope. Currently these scopes are supported: projects, issues, merge_requests, milestones.

The response depends on the requested scope.

Scope: projects

`bash
curl --request GET --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/groups/3/search?scope=projects&search=flight
`

Example response:

```json
[



	{
	“id”: 6,
“description”: “Nobis sed ipsam vero quod cupiditate veritatis hic.”,
“name”: “Flight”,
“name_with_namespace”: “Twitter / Flight”,
“path”: “flight”,
“path_with_namespace”: “twitter/flight”,
“created_at”: “2017-09-05T07:58:01.621Z”,
“default_branch”: “master”,
“tag_list”:[],
“ssh_url_to_repo”: “ssh://jarka@localhost:2222/twitter/flight.git”,
“http_url_to_repo”: “http://localhost:3000/twitter/flight.git”,
“web_url”: “http://localhost:3000/twitter/flight”,
“avatar_url”: null,
“star_count”: 0,
“forks_count”: 0,
“last_activity_at”: “2018-01-31T09:56:30.902Z”





}







]

### Scope: issues

`bash
curl --request GET --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/groups/3/search?scope=issues&search=file
`

Example response:

```json
[

	{
	“id”: 83,
“iid”: 1,
“project_id”: 12,
“title”: “Add file”,
“description”: “Add first file”,
“state”: “opened”,
“created_at”: “2018-01-24T06:02:15.514Z”,
“updated_at”: “2018-02-06T12:36:23.263Z”,
“closed_at”: null,
“labels”:[],
“milestone”: null,
“assignees”: [{

“id”: 20,
“name”: “Ceola Deckow”,
“username”: “sammy.collier”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/c23d85a4f50e0ea76ab739156c639231?s=80&d=identicon”,
“web_url”: “http://localhost:3000/sammy.collier”

}],
“author”: {

“id”: 1,
“name”: “Administrator”,
“username”: “root”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”,
“web_url”: “http://localhost:3000/root”

},
“assignee”: {

“id”: 20,
“name”: “Ceola Deckow”,
“username”: “sammy.collier”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/c23d85a4f50e0ea76ab739156c639231?s=80&d=identicon”,
“web_url”: “http://localhost:3000/sammy.collier”

},
“user_notes_count”: 0,
“upvotes”: 0,
“downvotes”: 0,
“due_date”: null,
“confidential”: false,
“discussion_locked”: null,
“web_url”: “http://localhost:3000/h5bp/7bp/subgroup-prj/issues/1”,
“time_stats”: {

“time_estimate”: 0,
“total_time_spent”: 0,
“human_time_estimate”: null,
“human_total_time_spent”: null

}

}

]

Note: assignee column is deprecated, now we show it as a single-sized array assignees to conform to the GitLab EE API.

Scope: merge_requests

`bash
curl --request GET --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/groups/3/search?scope=merge_requests&search=file
`

Example response:

```json
[



	{
	“id”: 56,
“iid”: 8,
“project_id”: 6,
“title”: “Add first file”,
“description”: “This is a test MR to add file”,
“state”: “opened”,
“created_at”: “2018-01-22T14:21:50.830Z”,
“updated_at”: “2018-02-06T12:40:33.295Z”,
“target_branch”: “master”,
“source_branch”: “jaja-test”,
“upvotes”: 0,
“downvotes”: 0,
“author”: {


“id”: 1,
“name”: “Administrator”,
“username”: “root”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”,
“web_url”: “http://localhost:3000/root”




},
“assignee”: {


“id”: 5,
“name”: “Jacquelyn Kutch”,
“username”: “abigail”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/3138c66095ee4bd11a508c2f7f7772da?s=80&d=identicon”,
“web_url”: “http://localhost:3000/abigail”




},
“source_project_id”: 6,
“target_project_id”: 6,
“labels”: [


“ruby”,
“tests”




],
“work_in_progress”: false,
“milestone”: {


“id”: 13,
“iid”: 3,
“project_id”: 6,
“title”: “v2.0”,
“description”: “Qui aut qui eos dolor beatae itaque tempore molestiae.”,
“state”: “active”,
“created_at”: “2017-09-05T07:58:29.099Z”,
“updated_at”: “2017-09-05T07:58:29.099Z”,
“due_date”: null,
“start_date”: null




},
“merge_when_pipeline_succeeds”: false,
“merge_status”: “can_be_merged”,
“sha”: “78765a2d5e0a43585945c58e61ba2f822e4d090b”,
“merge_commit_sha”: null,
“user_notes_count”: 0,
“discussion_locked”: null,
“should_remove_source_branch”: null,
“force_remove_source_branch”: true,
“web_url”: “http://localhost:3000/twitter/flight/merge_requests/8”,
“time_stats”: {


“time_estimate”: 0,
“total_time_spent”: 0,
“human_time_estimate”: null,
“human_total_time_spent”: null




}





}







]

### Scope: milestones

`bash
curl --request GET --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/groups/3/search?scope=milestones&search=release
`

Example response:

```json
[

	{
	“id”: 44,
“iid”: 1,
“project_id”: 12,
“title”: “next release”,
“description”: “Next release milestone”,
“state”: “active”,
“created_at”: “2018-02-06T12:43:39.271Z”,
“updated_at”: “2018-02-06T12:44:01.298Z”,
“due_date”: “2018-04-18”,
“start_date”: “2018-02-04”

}

]

Project Search API

Search within the specified project.

If a user is not a member of a project and the project is private, a GET request on that project will result to a 404 status code.

`
GET /projects/:id/search
`

Attribute | Type | Required | Description |

——————- | —————- | ———- | —————————————————————————————|

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

scope | string | yes | The scope to search in |

search | string | yes | The search query |

Search the expression within the specified scope. Currently these scopes are supported: issues, merge_requests, milestones, notes, wiki_blobs, commits, blobs.

The response depends on the requested scope.

Scope: issues

`bash
curl --request GET --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/12/search?scope=issues&search=file
`

Example response:

```json
[



	{
	“id”: 83,
“iid”: 1,
“project_id”: 12,
“title”: “Add file”,
“description”: “Add first file”,
“state”: “opened”,
“created_at”: “2018-01-24T06:02:15.514Z”,
“updated_at”: “2018-02-06T12:36:23.263Z”,
“closed_at”: null,
“labels”:[],
“milestone”: null,
“assignees”: [{


“id”: 20,
“name”: “Ceola Deckow”,
“username”: “sammy.collier”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/c23d85a4f50e0ea76ab739156c639231?s=80&d=identicon”,
“web_url”: “http://localhost:3000/sammy.collier”




}],
“author”: {


“id”: 1,
“name”: “Administrator”,
“username”: “root”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”,
“web_url”: “http://localhost:3000/root”




},
“assignee”: {


“id”: 20,
“name”: “Ceola Deckow”,
“username”: “sammy.collier”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/c23d85a4f50e0ea76ab739156c639231?s=80&d=identicon”,
“web_url”: “http://localhost:3000/sammy.collier”




},
“user_notes_count”: 0,
“upvotes”: 0,
“downvotes”: 0,
“due_date”: null,
“confidential”: false,
“discussion_locked”: null,
“web_url”: “http://localhost:3000/h5bp/7bp/subgroup-prj/issues/1”,
“time_stats”: {


“time_estimate”: 0,
“total_time_spent”: 0,
“human_time_estimate”: null,
“human_total_time_spent”: null




}





}







]

Note: assignee column is deprecated, now we show it as a single-sized array assignees to conform to the GitLab EE API.

### Scope: merge_requests

`bash
curl --request GET --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/6/search?scope=merge_requests&search=file
`

Example response:

```json
[

	{
	“id”: 56,
“iid”: 8,
“project_id”: 6,
“title”: “Add first file”,
“description”: “This is a test MR to add file”,
“state”: “opened”,
“created_at”: “2018-01-22T14:21:50.830Z”,
“updated_at”: “2018-02-06T12:40:33.295Z”,
“target_branch”: “master”,
“source_branch”: “jaja-test”,
“upvotes”: 0,
“downvotes”: 0,
“author”: {

“id”: 1,
“name”: “Administrator”,
“username”: “root”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”,
“web_url”: “http://localhost:3000/root”

},
“assignee”: {

“id”: 5,
“name”: “Jacquelyn Kutch”,
“username”: “abigail”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/3138c66095ee4bd11a508c2f7f7772da?s=80&d=identicon”,
“web_url”: “http://localhost:3000/abigail”

},
“source_project_id”: 6,
“target_project_id”: 6,
“labels”: [

“ruby”,
“tests”

],
“work_in_progress”: false,
“milestone”: {

“id”: 13,
“iid”: 3,
“project_id”: 6,
“title”: “v2.0”,
“description”: “Qui aut qui eos dolor beatae itaque tempore molestiae.”,
“state”: “active”,
“created_at”: “2017-09-05T07:58:29.099Z”,
“updated_at”: “2017-09-05T07:58:29.099Z”,
“due_date”: null,
“start_date”: null

},
“merge_when_pipeline_succeeds”: false,
“merge_status”: “can_be_merged”,
“sha”: “78765a2d5e0a43585945c58e61ba2f822e4d090b”,
“merge_commit_sha”: null,
“user_notes_count”: 0,
“discussion_locked”: null,
“should_remove_source_branch”: null,
“force_remove_source_branch”: true,
“web_url”: “http://localhost:3000/twitter/flight/merge_requests/8”,
“time_stats”: {

“time_estimate”: 0,
“total_time_spent”: 0,
“human_time_estimate”: null,
“human_total_time_spent”: null

}

}

]

Scope: milestones

`bash
curl --request GET --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/12/search?scope=milestones&search=release
`

Example response:

```json
[



	{
	“id”: 44,
“iid”: 1,
“project_id”: 12,
“title”: “next release”,
“description”: “Next release milestone”,
“state”: “active”,
“created_at”: “2018-02-06T12:43:39.271Z”,
“updated_at”: “2018-02-06T12:44:01.298Z”,
“due_date”: “2018-04-18”,
“start_date”: “2018-02-04”





}







]

### Scope: notes

`bash
curl --request GET --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/6/search?scope=notes&search=maxime
`

Example response:

```json
[

	{
	“id”: 191,
“body”: “Harum maxime consequuntur et et deleniti assumenda facilis.”,
“attachment”: null,
“author”: {

“id”: 23,
“name”: “User 1”,
“username”: “user1”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/111d68d06e2d317b5a59c2c6c5bad808?s=80&d=identicon”,
“web_url”: “http://localhost:3000/user1”

},
“created_at”: “2017-09-05T08:01:32.068Z”,
“updated_at”: “2017-09-05T08:01:32.068Z”,
“system”: false,
“noteable_id”: 22,
“noteable_type”: “Issue”,
“noteable_iid”: 2

}

]

Scope: wiki_blobs

`bash
curl --request GET --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/6/search?scope=wiki_blobs&search=bye
`

Example response:

```json


	[
	
	{
	“basename”: “home”,
“data”: “hellonnand byennend”,
“filename”: “home.md”,
“id”: null,
“ref”: “master”,
“startline”: 5,
“project_id”: 6





}








]

### Scope: commits

`bash
curl --request GET --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/6/search?scope=commits&search=bye
`

Example response:

```json


	[
	{
“id”: “4109c2d872d5fdb1ed057400d103766aaea97f98”,
“short_id”: “4109c2d8”,
“title”: “goodbye $.browser”,
“created_at”: “2013-02-18T22:02:54.000Z”,
“parent_ids”: [

“59d05353ab575bcc2aa958fe1782e93297de64c9”

],
“message”: “goodbye $.browsern”,
“author_name”: “angus croll”,
“author_email”: “anguscroll@gmail.com”,
“authored_date”: “2013-02-18T22:02:54.000Z”,
“committer_name”: “angus croll”,
“committer_email”: “anguscroll@gmail.com”,
“committed_date”: “2013-02-18T22:02:54.000Z”,
“project_id”: 6
}

]

Scope: blobs

Filters are available for this scope:
- filename
- path
- extension

to use a filter simply include it in your query like so: a query filename:some_name*.

You may use wildcards (*) to use glob matching.

`bash
curl --request GET --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/6/search?scope=blobs&search=installation
`

Example response:

```json


	[
	
	{
	“basename”: “README”,
“data”: “```nn## InstallationnnQuick start using the [pre-built”,
“filename”: “README.md”,
“id”: null,
“ref”: “master”,
“startline”: 46,
“project_id”: 6





}








]

[ce-41763]: https://gitlab.com/gitlab-org/gitlab-ce/issues/41763





            

          

      

      

    

  

    
      
          
            
  # Services API

>**Note:** This API requires an access token with Maintainer or Owner permissions

## Asana

Asana - Teamwork without email

### Create/Edit Asana service

Set Asana service for a project.

> This service adds commit messages as comments to Asana tasks. Once enabled, commit messages are checked for Asana task URLs (for example, https://app.asana.com/0/123456/987654) or task IDs starting with # (for example, #987654). Every task ID found will get the commit comment added to it.  You can also close a task with a message containing: fix #123456.  You can find your Api Keys here: https://asana.com/developers/documentation/getting-started/auth#api-key

`
PUT /projects/:id/services/asana
`

Parameters:


Parameter | Type | Required | Description |

——— | —- | ——– | ———– |

api_key | string | true | User API token. User must have access to task, all comments will be attributed to this user. |

restrict_to_branch | string | false | Comma-separated list of branches which will be automatically inspected. Leave blank to include all branches. |



### Delete Asana service

Delete Asana service for a project.

`
DELETE /projects/:id/services/asana
`

### Get Asana service settings

Get Asana service settings for a project.

`
GET /projects/:id/services/asana
`

## Assembla

Project Management Software (Source Commits Endpoint)

### Create/Edit Assembla service

Set Assembla service for a project.

`
PUT /projects/:id/services/assembla
`

Parameters:


Parameter | Type | Required | Description |

——— | —- | ——– | ———– |

token | string | true | The authentication token

subdomain | string | false | The subdomain setting |



### Delete Assembla service

Delete Assembla service for a project.

`
DELETE /projects/:id/services/assembla
`

### Get Assembla service settings

Get Assembla service settings for a project.

`
GET /projects/:id/services/assembla
`

## Atlassian Bamboo CI

A continuous integration and build server

### Create/Edit Atlassian Bamboo CI service

Set Atlassian Bamboo CI service for a project.

> You must set up automatic revision labeling and a repository trigger in Bamboo.

`
PUT /projects/:id/services/bamboo
`

Parameters:


Parameter | Type | Required | Description |

——— | —- | ——– | ———– |

bamboo_url | string | true | Bamboo root URL like https://bamboo.example.com |

build_key | string | true | Bamboo build plan key like KEY |

username | string | true | A user with API access, if applicable |

password | string | true | Password of the user |



### Delete Atlassian Bamboo CI service

Delete Atlassian Bamboo CI service for a project.

`
DELETE /projects/:id/services/bamboo
`

### Get Atlassian Bamboo CI service settings

Get Atlassian Bamboo CI service settings for a project.

`
GET /projects/:id/services/bamboo
`

## Bugzilla

Bugzilla Issue Tracker

### Create/Edit Buildkite service

Set Bugzilla service for a project.

`
PUT /projects/:id/services/bugzilla
`

Parameters:


Parameter | Type | Required | Description |

——— | —- | ——– | ———– |

new_issue_url | string | true |  New Issue url |

issues_url | string | true | Issue url |

project_url | string | true | Project url |

description | string | false | Description |

title | string | false | Title |



### Delete Bugzilla Service

Delete Bugzilla service for a project.

`
DELETE /projects/:id/services/bugzilla
`

### Get Bugzilla Service Settings

Get Bugzilla service settings for a project.

`
GET /projects/:id/services/bugzilla
`

## Buildkite

Continuous integration and deployments

### Create/Edit Buildkite service

Set Buildkite service for a project.

`
PUT /projects/:id/services/buildkite
`

Parameters:


Parameter | Type | Required | Description |

——— | —- | ——– | ———– |

token | string | true | Buildkite project GitLab token |

project_url | string | true | https://buildkite.com/example/project |

enable_ssl_verification | boolean | false | Enable SSL verification |



### Delete Buildkite service

Delete Buildkite service for a project.

`
DELETE /projects/:id/services/buildkite
`

### Get Buildkite service settings

Get Buildkite service settings for a project.

`
GET /projects/:id/services/buildkite
`

## Campfire

Simple web-based real-time group chat

### Create/Edit Campfire service

Set Campfire service for a project.

`
PUT /projects/:id/services/campfire
`

Parameters:


Parameter | Type | Required | Description |

——— | —- | ——– | ———– |

token | string | true | Campfire token |

subdomain | string | false | Campfire subdomain |

room  | string | false | Campfire room |



### Delete Campfire service

Delete Campfire service for a project.

`
DELETE /projects/:id/services/campfire
`

### Get Campfire service settings

Get Campfire service settings for a project.

`
GET /projects/:id/services/campfire
`

## Custom Issue Tracker

Custom issue tracker

### Create/Edit Custom Issue Tracker service

Set Custom Issue Tracker service for a project.

`
PUT /projects/:id/services/custom-issue-tracker
`

Parameters:


Parameter | Type | Required | Description |

——— | —- | ——– | ———– |

new_issue_url | string | true |  New Issue url

issues_url | string | true | Issue url

project_url | string | true | Project url

description | string | false | Description

title | string | false | Title



### Delete Custom Issue Tracker service

Delete Custom Issue Tracker service for a project.

`
DELETE /projects/:id/services/custom-issue-tracker
`

### Get Custom Issue Tracker service settings

Get Custom Issue Tracker service settings for a project.

`
GET /projects/:id/services/custom-issue-tracker
`

## Drone CI

Drone is a Continuous Integration platform built on Docker, written in Go

### Create/Edit Drone CI service

Set Drone CI service for a project.

`
PUT /projects/:id/services/drone-ci
`

Parameters:


Parameter | Type | Required | Description |

——— | —- | ——– | ———– |

token | string | true | Drone CI project specific token |

drone_url | string | true | http://drone.example.com |

enable_ssl_verification | boolean | false | Enable SSL verification |



### Delete Drone CI service

Delete Drone CI service for a project.

`
DELETE /projects/:id/services/drone-ci
`

### Get Drone CI service settings

Get Drone CI service settings for a project.

`
GET /projects/:id/services/drone-ci
`

## Emails on push

Email the commits and diff of each push to a list of recipients.

### Create/Edit Emails on push service

Set Emails on push service for a project.

`
PUT /projects/:id/services/emails-on-push
`

Parameters:


Parameter | Type | Required | Description |

——— | —- | ——– | ———– |

recipients | string | true | Emails separated by whitespace |

disable_diffs | boolean | false | Disable code diffs |

send_from_committer_email | boolean | false | Send from committer |



### Delete Emails on push service

Delete Emails on push service for a project.

`
DELETE /projects/:id/services/emails-on-push
`

### Get Emails on push service settings

Get Emails on push service settings for a project.

`
GET /projects/:id/services/emails-on-push
`

## External Wiki

Replaces the link to the internal wiki with a link to an external wiki.

### Create/Edit External Wiki service

Set External Wiki service for a project.

`
PUT /projects/:id/services/external-wiki
`

Parameters:


Parameter | Type | Required | Description |

——— | —- | ——– | ———– |

external_wiki_url | string | true | The URL of the external Wiki |



### Delete External Wiki service

Delete External Wiki service for a project.

`
DELETE /projects/:id/services/external-wiki
`

### Get External Wiki service settings

Get External Wiki service settings for a project.

`
GET /projects/:id/services/external-wiki
`

## Flowdock

Flowdock is a collaboration web app for technical teams.

### Create/Edit Flowdock service

Set Flowdock service for a project.

`
PUT /projects/:id/services/flowdock
`

Parameters:


Parameter | Type | Required | Description |

——— | —- | ——– | ———– |

token | string | true | Flowdock Git source token |



### Delete Flowdock service

Delete Flowdock service for a project.

`
DELETE /projects/:id/services/flowdock
`

### Get Flowdock service settings

Get Flowdock service settings for a project.

`
GET /projects/:id/services/flowdock
`

## Gemnasium

Gemnasium monitors your project dependencies and alerts you about updates and security vulnerabilities.

CAUTION: Warning:
Gemnasium service integration has been deprecated in GitLab 11.0. Gemnasium has been
[acquired by GitLab](https://about.gitlab.com/press/releases/2018-01-30-gemnasium-acquisition.html)
in January 2018 and since May 15, 2018, the service provided by Gemnasium is no longer available.
You can [migrate from Gemnasium to GitLab](https://docs.gitlab.com/ee/user/project/import/gemnasium.html)
to keep monitoring your dependencies.

### Create/Edit Gemnasium service

Set Gemnasium service for a project.

`
PUT /projects/:id/services/gemnasium
`

Parameters:


Parameter | Type | Required | Description |

——— | —- | ——– | ———– |

api_key | string | true | Your personal API KEY on gemnasium.com |

token  | string | true | The project’s slug on gemnasium.com |



### Delete Gemnasium service

Delete Gemnasium service for a project.

`
DELETE /projects/:id/services/gemnasium
`

### Get Gemnasium service settings

Get Gemnasium service settings for a project.

`
GET /projects/:id/services/gemnasium
`

## Hangouts Chat

Google GSuite team collaboration tool.

>**Note:** This service was [introduced in v11.2](https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/20290)

### Create/Edit Hangouts Chat service

Set Hangouts Chat service for a project.

`
PUT /projects/:id/services/hangouts_chat
`

>**Note:** Specific event parameters (e.g. push_events flag) were [introduced in v10.4][11435]

Parameters:


Parameter | Type | Required | Description |

——— | —- | ——– | ———– |

webhook | string | true | The Hangouts Chat webhook. e.g. https://chat.googleapis.com/v1/spaces… |

notify_only_broken_pipelines | boolean | false | Send notifications for broken pipelines |

notify_only_default_branch | boolean | false | Send notifications only for the default branch |

push_events | boolean | false | Enable notifications for push events |

issues_events | boolean | false | Enable notifications for issue events |

confidential_issues_events | boolean | false | Enable notifications for confidential issue events |

merge_requests_events | boolean | false | Enable notifications for merge request events |

tag_push_events | boolean | false | Enable notifications for tag push events |

note_events | boolean | false | Enable notifications for note events |

pipeline_events | boolean | false | Enable notifications for pipeline events |

wiki_page_events | boolean | false | Enable notifications for wiki page events |



### Delete Hangouts Chat service

Delete Hangouts Chat service for a project.

`
DELETE /projects/:id/services/hangouts_chat
`

### Get Hangouts Chat service settings

Get Hangouts Chat service settings for a project.

`
GET /projects/:id/services/hangouts_chat
`

## HipChat

Private group chat and IM

### Create/Edit HipChat service

Set HipChat service for a project.

`
PUT /projects/:id/services/hipchat
`

Parameters:


Parameter | Type | Required | Description |

——— | —- | ——– | ———– |

token | string | true | Room token |

color | string | false | The room color |

notify | boolean | false | Enable notifications |

room | string | false |Room name or ID |

api_version | string | false | Leave blank for default (v2) |

server | string | false | Leave blank for default. https://hipchat.example.com |



### Delete HipChat service

Delete HipChat service for a project.

`
DELETE /projects/:id/services/hipchat
`

### Get HipChat service settings

Get HipChat service settings for a project.

`
GET /projects/:id/services/hipchat
`

## Irker (IRC gateway)

Send IRC messages, on update, to a list of recipients through an Irker gateway.

### Create/Edit Irker (IRC gateway) service

Set Irker (IRC gateway) service for a project.

>  NOTE: Irker does NOT have built-in authentication, which makes it vulnerable to spamming IRC channels if it is hosted outside of a  firewall. Please make sure you run the daemon within a secured network  to prevent abuse. For more details, read: http://www.catb.org/~esr/irker/security.html.

`
PUT /projects/:id/services/irker
`

Parameters:


Parameter | Type | Required | Description |

——— | —- | ——– | ———– |

recipients | string | true | Recipients/channels separated by whitespaces |

default_irc_uri | string | false | irc://irc.network.net:6697/ |

server_host | string | false | localhost |

server_port | integer | false | 6659 |

colorize_messages | boolean | false | Colorize messages |



### Delete Irker (IRC gateway) service

Delete Irker (IRC gateway) service for a project.

`
DELETE /projects/:id/services/irker
`

### Get Irker (IRC gateway) service settings

Get Irker (IRC gateway) service settings for a project.

`
GET /projects/:id/services/irker
`

## JIRA

JIRA issue tracker.

### Get JIRA service settings

Get JIRA service settings for a project.

`
GET /projects/:id/services/jira
`

### Create/Edit JIRA service

Set JIRA service for a project.

>**Notes:**
- Starting with GitLab 8.14, api_url, issues_url, new_issue_url and


project_url are replaced by project_key, url.  If you are using an
older version, [follow this documentation][old-jira-api].




`
PUT /projects/:id/services/jira
`

Parameters:


Parameter | Type | Required | Description |

——— | —- | ——– | ———– |

url           | string | yes | The URL to the JIRA project which is being linked to this GitLab project, e.g., https://jira.example.com. |

project_key   | string | yes | The short identifier for your JIRA project, all uppercase, e.g., PROJ. |

username      | string | yes  | The username of the user created to be used with GitLab/JIRA. |

password      | string | yes  | The password of the user created to be used with GitLab/JIRA. |

jira_issue_transition_id | integer | no | The ID of a transition that moves issues to a closed state. You can find this number under the JIRA workflow administration (Administration > Issues > Workflows) by selecting View under Operations of the desired workflow of your project. The ID of each state can be found inside the parenthesis of each transition name under the Transitions (id) column ([see screenshot][trans]). By default, this ID is set to 2. |



### Delete JIRA service

Remove all previously JIRA settings from a project.

`
DELETE /projects/:id/services/jira
`

## Kubernetes

Kubernetes / Openshift integration

CAUTION: Warning:
Kubernetes service integration has been deprecated in GitLab 10.3. API service endpoints will continue to work as long as the Kubernetes service is active, however if the service is inactive API endpoints will automatically return a 400 Bad Request. Read [GitLab 10.3 release post](https://about.gitlab.com/2017/12/22/gitlab-10-3-released/#kubernetes-integration-service) for more information.

### Create/Edit Kubernetes service

Set Kubernetes service for a project.

`
PUT /projects/:id/services/kubernetes
`

Parameters:


	namespace (required) - The Kubernetes namespace to use


	api_url (required) - The URL to the Kubernetes cluster API, e.g., https://kubernetes.example.com


	token (required) - The service token to authenticate against the Kubernetes cluster with


	ca_pem (optional) - A custom certificate authority bundle to verify the Kubernetes cluster with (PEM format)




### Delete Kubernetes service

Delete Kubernetes service for a project.

`
DELETE /projects/:id/services/kubernetes
`

### Get Kubernetes service settings

Get Kubernetes service settings for a project.

`
GET /projects/:id/services/kubernetes
`

## Slack slash commands

Ability to receive slash commands from a Slack chat instance.

### Get Slack slash command service settings

Get Slack slash command service settings for a project.

`
GET /projects/:id/services/slack-slash-commands
`

Example response:

```json
{

“id”: 4,
“title”: “Slack slash commands”,
“created_at”: “2017-06-27T05:51:39-07:00”,
“updated_at”: “2017-06-27T05:51:39-07:00”,
“active”: true,
“push_events”: true,
“issues_events”: true,
“confidential_issues_events”: true,
“merge_requests_events”: true,
“tag_push_events”: true,
“note_events”: true,
“job_events”: true,
“pipeline_events”: true,
“properties”: {

“token”: “9koXpg98eAheJpvBs5tK”

}

}

Create/Edit Slack slash command service

Set Slack slash command for a project.

`
PUT /projects/:id/services/slack-slash-commands
`

Parameters:

Parameter | Type | Required | Description |

——— | —- | ——– | ———– |

token | string | yes | The Slack token |

Delete Slack slash command service

Delete Slack slash command service for a project.

`
DELETE /projects/:id/services/slack-slash-commands
`

Mattermost slash commands

Ability to receive slash commands from a Mattermost chat instance.

Get Mattermost slash command service settings

Get Mattermost slash command service settings for a project.

`
GET /projects/:id/services/mattermost-slash-commands
`

Create/Edit Mattermost slash command service

Set Mattermost slash command for a project.

`
PUT /projects/:id/services/mattermost-slash-commands
`

Parameters:

Parameter | Type | Required | Description |

——— | —- | ——– | ———– |

token | string | yes | The Mattermost token |

username | string | no | The username to use to post the message |

Delete Mattermost slash command service

Delete Mattermost slash command service for a project.

`
DELETE /projects/:id/services/mattermost-slash-commands
`

Packagist

Update your project on Packagist, the main Composer repository, when commits or tags are pushed to GitLab.

Create/Edit Packagist service

Set Packagist service for a project.

`
PUT /projects/:id/services/packagist
`

Parameters:

	username (required)

	token (required)

	server (optional)

Delete Packagist service

Delete Packagist service for a project.

`
DELETE /projects/:id/services/packagist
`

Get Packagist service settings

Get Packagist service settings for a project.

`
GET /projects/:id/services/packagist
`

Pipeline-Emails

Get emails for GitLab CI pipelines.

Create/Edit Pipeline-Emails service

Set Pipeline-Emails service for a project.

`
PUT /projects/:id/services/pipelines-email
`

Parameters:

Parameter | Type | Required | Description |

——— | —- | ——– | ———– |

recipients | string | yes | Comma-separated list of recipient email addresses |

add_pusher | boolean | no | Add pusher to recipients list |

notify_only_broken_pipelines | boolean | no | Notify only broken pipelines |

Delete Pipeline-Emails service

Delete Pipeline-Emails service for a project.

`
DELETE /projects/:id/services/pipelines-email
`

Get Pipeline-Emails service settings

Get Pipeline-Emails service settings for a project.

`
GET /projects/:id/services/pipelines-email
`

PivotalTracker

Project Management Software (Source Commits Endpoint)

Create/Edit PivotalTracker service

Set PivotalTracker service for a project.

`
PUT /projects/:id/services/pivotaltracker
`

Parameters:

Parameter | Type | Required | Description |

——— | —- | ——– | ———– |

token | string | true | The PivotalTracker token |

restrict_to_branch | boolean | false | Comma-separated list of branches which will be automatically inspected. Leave blank to include all branches. |

Delete PivotalTracker service

Delete PivotalTracker service for a project.

`
DELETE /projects/:id/services/pivotaltracker
`

Get PivotalTracker service settings

Get PivotalTracker service settings for a project.

`
GET /projects/:id/services/pivotaltracker
`

Prometheus

Prometheus is a powerful time-series monitoring service.

Create/Edit Prometheus service

Set Prometheus service for a project.

`
PUT /projects/:id/services/prometheus
`

Parameters:

Parameter | Type | Required | Description |

——— | —- | ——– | ———– |

api_url | string | true | Prometheus API Base URL, like http://prometheus.example.com/ |

Delete Prometheus service

Delete Prometheus service for a project.

`
DELETE /projects/:id/services/prometheus
`

Get Prometheus service settings

Get Prometheus service settings for a project.

`
GET /projects/:id/services/prometheus
`

Pushover

Pushover makes it easy to get real-time notifications on your Android device, iPhone, iPad, and Desktop.

Create/Edit Pushover service

Set Pushover service for a project.

`
PUT /projects/:id/services/pushover
`

Parameters:

Parameter | Type | Required | Description |

——— | —- | ——– | ———– |

api_key | string | true | Your application key |

user_key | string | true | Your user key |

priority | string | true | The priority |

device | string | false | Leave blank for all active devices |

sound | string | false | The sound of the notification |

Delete Pushover service

Delete Pushover service for a project.

`
DELETE /projects/:id/services/pushover
`

Get Pushover service settings

Get Pushover service settings for a project.

`
GET /projects/:id/services/pushover
`

Redmine

Redmine issue tracker

Create/Edit Redmine service

Set Redmine service for a project.

`
PUT /projects/:id/services/redmine
`

Parameters:

Parameter | Type | Required | Description |

——— | —- | ——– | ———– |

new_issue_url | string | true | New Issue url |

project_url | string | true | Project url |

issues_url | string | true | Issue url |

description | string | false | Description |

Delete Redmine service

Delete Redmine service for a project.

`
DELETE /projects/:id/services/redmine
`

Get Redmine service settings

Get Redmine service settings for a project.

`
GET /projects/:id/services/redmine
`

Slack notifications

Receive event notifications in Slack

Create/Edit Slack service

Set Slack service for a project.

`
PUT /projects/:id/services/slack
`

>**Note:** Specific event parameters (e.g. push_events flag and push_channel) were [introduced in v10.4][11435]

Parameters:

Parameter | Type | Required | Description |

——— | —- | ——– | ———– |

webhook | string | true | https://hooks.slack.com/services/… |

username | string | false | username |

channel | string | false | Default channel to use if others are not configured |

notify_only_broken_pipelines | boolean | false | Send notifications for broken pipelines |

notify_only_default_branch | boolean | false | Send notifications only for the default branch |

push_events | boolean | false | Enable notifications for push events |

issues_events | boolean | false | Enable notifications for issue events |

confidential_issues_events | boolean | false | Enable notifications for confidential issue events |

merge_requests_events | boolean | false | Enable notifications for merge request events |

tag_push_events | boolean | false | Enable notifications for tag push events |

note_events | boolean | false | Enable notifications for note events |

pipeline_events | boolean | false | Enable notifications for pipeline events |

wiki_page_events | boolean | false | Enable notifications for wiki page events |

push_channel | string | false | The name of the channel to receive push events notifications |

issue_channel | string | false | The name of the channel to receive issues events notifications |

confidential_issue_channel | string | false | The name of the channel to receive confidential issues events notifications |

merge_request_channel | string | false | The name of the channel to receive merge request events notifications |

note_channel | string | false | The name of the channel to receive note events notifications |

tag_push_channel | string | false | The name of the channel to receive tag push events notifications |

pipeline_channel | string | false | The name of the channel to receive pipeline events notifications |

wiki_page_channel | string | false | The name of the channel to receive wiki page events notifications |

Delete Slack service

Delete Slack service for a project.

`
DELETE /projects/:id/services/slack
`

Get Slack service settings

Get Slack service settings for a project.

`
GET /projects/:id/services/slack
`

Microsoft Teams

Group Chat Software

Create/Edit Microsoft Teams service

Set Microsoft Teams service for a project.

`
PUT /projects/:id/services/microsoft-teams
`

Parameters:

Parameter | Type | Required | Description |

——— | —- | ——– | ———– |

webhook | string | true | The Microsoft Teams webhook. e.g. https://outlook.office.com/webhook/… |

Delete Microsoft Teams service

Delete Microsoft Teams service for a project.

`
DELETE /projects/:id/services/microsoft-teams
`

Get Microsoft Teams service settings

Get Microsoft Teams service settings for a project.

`
GET /projects/:id/services/microsoft-teams
`

Mattermost notifications

Receive event notifications in Mattermost

Create/Edit Mattermost notifications service

Set Mattermost service for a project.

`
PUT /projects/:id/services/mattermost
`

>**Note:** Specific event parameters (e.g. push_events flag and push_channel) were [introduced in v10.4][11435]

Parameters:

Parameter | Type | Required | Description |

——— | —- | ——– | ———– |

webhook | string | true | The Mattermost webhook. e.g. http://mattermost_host/hooks/… |

username | string | false | username |

channel | string | false | Default channel to use if others are not configured |

notify_only_broken_pipelines | boolean | false | Send notifications for broken pipelines |

notify_only_default_branch | boolean | false | Send notifications only for the default branch |

push_events | boolean | false | Enable notifications for push events |

issues_events | boolean | false | Enable notifications for issue events |

confidential_issues_events | boolean | false | Enable notifications for confidential issue events |

merge_requests_events | boolean | false | Enable notifications for merge request events |

tag_push_events | boolean | false | Enable notifications for tag push events |

note_events | boolean | false | Enable notifications for note events |

pipeline_events | boolean | false | Enable notifications for pipeline events |

wiki_page_events | boolean | false | Enable notifications for wiki page events |

push_channel | string | false | The name of the channel to receive push events notifications |

issue_channel | string | false | The name of the channel to receive issues events notifications |

confidential_issue_channel | string | false | The name of the channel to receive confidential issues events notifications |

merge_request_channel | string | false | The name of the channel to receive merge request events notifications |

note_channel | string | false | The name of the channel to receive note events notifications |

tag_push_channel | string | false | The name of the channel to receive tag push events notifications |

pipeline_channel | string | false | The name of the channel to receive pipeline events notifications |

wiki_page_channel | string | false | The name of the channel to receive wiki page events notifications |

Delete Mattermost notifications service

Delete Mattermost Notifications service for a project.

`
DELETE /projects/:id/services/mattermost
`

Get Mattermost notifications service settings

Get Mattermost notifications service settings for a project.

`
GET /projects/:id/services/mattermost
`

JetBrains TeamCity CI

A continuous integration and build server

Create/Edit JetBrains TeamCity CI service

Set JetBrains TeamCity CI service for a project.

> The build configuration in Teamcity must use the build format number %build.vcs.number% you will also want to configure monitoring of all branches so merge requests build, that setting is in the vsc root advanced settings.

`
PUT /projects/:id/services/teamcity
`

Parameters:

Parameter | Type | Required | Description |

——— | —- | ——– | ———– |

teamcity_url | string | true | TeamCity root URL like https://teamcity.example.com |

build_type | string | true | Build configuration ID |

username | string | true | A user with permissions to trigger a manual build |

password | string | true | The password of the user |

Delete JetBrains TeamCity CI service

Delete JetBrains TeamCity CI service for a project.

`
DELETE /projects/:id/services/teamcity
`

Get JetBrains TeamCity CI service settings

Get JetBrains TeamCity CI service settings for a project.

`
GET /projects/:id/services/teamcity
`

[jira-doc]: ../user/project/integrations/jira.md
[old-jira-api]: https://gitlab.com/gitlab-org/gitlab-ce/blob/8-13-stable/doc/api/services.md#jira

MockCI

Mock an external CI. See [gitlab-org/gitlab-mock-ci-service](https://gitlab.com/gitlab-org/gitlab-mock-ci-service) for an example of a companion mock service.

This service is only available when your environment is set to development.

Create/Edit MockCI service

Set MockCI service for a project.

`
PUT /projects/:id/services/mock-ci
`

Parameters:

Parameter | Type | Required | Description |

——— | —- | ——– | ———– |

mock_service_url | string | true | http://localhost:4004 |

Delete MockCI service

Delete MockCI service for a project.

`
DELETE /projects/:id/services/mock-ci
`

Get MockCI service settings

Get MockCI service settings for a project.

`
GET /projects/:id/services/mock-ci
`

[11435]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/11435

 # Application settings API

These API calls allow you to read and modify GitLab instance application
settings as appear in /admin/application_settings. You have to be an
administrator in order to perform this action.

Get current application settings

List the current application settings of the GitLab instance.

`
GET /application/settings
`

`bash
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/application/settings
`

Example response:

```json
{


“default_projects_limit” : 100000,
“signup_enabled” : true,
“id” : 1,
“default_branch_protection” : 2,
“restricted_visibility_levels” : [],
“password_authentication_enabled_for_web” : true,
“after_sign_out_path” : null,
“max_attachment_size” : 10,
“user_oauth_applications” : true,
“updated_at” : “2016-01-04T15:44:55.176Z”,
“session_expire_delay” : 10080,
“home_page_url” : null,
“default_snippet_visibility” : “private”,
“domain_whitelist” : [],
“domain_blacklist_enabled” : false,
“domain_blacklist” : [],
“created_at” : “2016-01-04T15:44:55.176Z”,
“default_project_visibility” : “private”,
“default_group_visibility” : “private”,
“gravatar_enabled” : true,
“sign_in_text” : null,
“container_registry_token_expire_delay”: 5,
“repository_storages”: [“default”],
“koding_enabled”: false,
“koding_url”: null,
“plantuml_enabled”: false,
“plantuml_url”: null,
“terminal_max_session_time”: 0,
“polling_interval_multiplier”: 1.0,
“rsa_key_restriction”: 0,
“dsa_key_restriction”: 0,
“ecdsa_key_restriction”: 0,
“ed25519_key_restriction”: 0,
“enforce_terms”: true,
“terms”: “Hello world!”,
“performance_bar_allowed_group_id”: 42,
“instance_statistics_visibility_private”: false





}

## Change application settings

`
PUT /application/settings
`


Attribute | Type | Required | Description |

——— | —- | :——: | ———– |

admin_notification_email               | string           | no                                            | Abuse reports will be sent to this address if it is set. Abuse reports are always available in the admin area.                                                                                                                                                                                                                                                                                                                                            |

after_sign_out_path                    | string           | no                                            | Where to redirect users after logout                                                                                                                                                                                                                                                                                                                                                                                                                      |

after_sign_up_text                     | string           | no                                            | Text shown to the user after signing up                                                                                                                                                                                                                                                                                                                                                                                                                   |

akismet_api_key                        | string           | no                                            | API key for akismet spam protection                                                                                                                                                                                                                                                                                                                                                                                                                       |

akismet_enabled                        | boolean          | no                                            | Enable or disable akismet spam protection                                                                                                                                                                                                                                                                                                                                                                                                                 |

circuitbreaker_access_retries          | integer          | no                                            | The number of attempts GitLab will make to access a storage.                                                                                                                                                                                                                                                                                                                                                                                              |

circuitbreaker_check_interval          | integer          | no                                            | Number of seconds in between storage checks.                                                                                                                                                                                                                                                                                                                                                                                                              |

circuitbreaker_failure_count_threshold | integer          | no                                            | The number of failures of after which GitLab will completely prevent access to the storage.                                                                                                                                                                                                                                                                                                                                                               |

circuitbreaker_failure_reset_time      | integer          | no                                            | Time in seconds GitLab will keep storage failure information. When no failures occur during this time, the failure information is reset.                                                                                                                                                                                                                                                                                                                  |

circuitbreaker_storage_timeout         | integer          | no                                            | Seconds to wait for a storage access attempt                                                                                                                                                                                                                                                                                                                                                                                                              |

clientside_sentry_dsn                  | string           | no                                            | Required if clientside_sentry_dsn is enabled                                                                                                                                                                                                                                                                                                                                                                                                            |

clientside_sentry_enabled              | boolean          | no                                            | Enable Sentry error reporting for the client side                                                                                                                                                                                                                                                                                                                                                                                                         |

container_registry_token_expire_delay  | integer          | no                                            | Container Registry token duration in minutes                                                                                                                                                                                                                                                                                                                                                                                                              |

default_artifacts_expire_in            | string           | no                                            | Set the default expiration time for each job’s artifacts                                                                                                                                                                                                                                                                                                                                                                                                  |

default_branch_protection              | integer          | no                                            | Determine if developers can push to master. Can take 0 _(not protected, both developers and maintainers can push new commits, force push, or delete the branch)_, 1 _(partially protected, developers and maintainers can push new commits, but cannot force push or delete the branch)_ or 2 _(fully protected, developers cannot push new commits, but maintainers can; no-one can force push or delete the branch)_ as a parameter. Default is 2. |

default_group_visibility               | string           | no                                            | What visibility level new groups receive. Can take private, internal and public as a parameter. Default is private.                                                                                                                                                                                                                                                                                                                               |

default_project_visibility             | string           | no                                            | What visibility level new projects receive. Can take private, internal and public as a parameter. Default is private.                                                                                                                                                                                                                                                                                                                             |

default_projects_limit                 | integer          | no                                            | Project limit per user. Default is 100000                                                                                                                                                                                                                                                                                                                                                                                                               |

default_snippet_visibility             | string           | no                                            | What visibility level new snippets receive. Can take private, internal and public as a parameter. Default is private.                                                                                                                                                                                                                                                                                                                             |

disabled_oauth_sign_in_sources         | Array of strings | no                                            | Disabled OAuth sign-in sources                                                                                                                                                                                                                                                                                                                                                                                                                            |

domain_blacklist_enabled               | boolean          | no                                            | Enable/disable the domain_blacklist                                                                                                                                                                                                                                                                                                                                                                                                                     |

domain_blacklist                       | array of strings | yes (if domain_blacklist_enabled is true) | People trying to sign-up with emails from this domain will not be allowed to do so.                                                                                                                                                                                                                                                                                                                                                                       |

domain_whitelist                       | array of strings | no                                            | Force people to use only corporate emails for sign-up. Default is null, meaning there is no restriction.                                                                                                                                                                                                                                                                                                                                                  |

dsa_key_restriction                    | integer          | no                                            | The minimum allowed bit length of an uploaded DSA key. Default is 0 (no restriction). -1 disables DSA keys.                                                                                                                                                                                                                                                                                                                                           |

ecdsa_key_restriction                  | integer          | no                                            | The minimum allowed curve size (in bits) of an uploaded ECDSA key. Default is 0 (no restriction). -1 disables ECDSA keys.                                                                                                                                                                                                                                                                                                                             |

ed25519_key_restriction                | integer          | no                                            | The minimum allowed curve size (in bits) of an uploaded ED25519 key. Default is 0 (no restriction). -1 disables ED25519 keys.                                                                                                                                                                                                                                                                                                                         |

email_author_in_body                   | boolean          | no                                            | Some email servers do not support overriding the email sender name. Enable this option to include the name of the author of the issue, merge request or comment in the email body instead.                                                                                                                                                                                                                                                                |

enabled_git_access_protocol            | string           | no                                            | Enabled protocols for Git access. Allowed values are: ssh, http, and nil to allow both protocols.                                                                                                                                                                                                                                                                                                                                                   |

gravatar_enabled                       | boolean          | no                                            | Enable Gravatar                                                                                                                                                                                                                                                                                                                                                                                                                                           |

help_page_hide_commercial_content      | boolean          | no                                            | Hide marketing-related entries from help                                                                                                                                                                                                                                                                                                                                                                                                                  |

help_page_support_url                  | string           | no                                            | Alternate support URL for help page                                                                                                                                                                                                                                                                                                                                                                                                                       |

home_page_url                          | string           | no                                            | Redirect to this URL when not logged in                                                                                                                                                                                                                                                                                                                                                                                                                   |

housekeeping_bitmaps_enabled           | boolean          | no                                            | Enable Git pack file bitmap creation                                                                                                                                                                                                                                                                                                                                                                                                                      |

housekeeping_enabled                   | boolean          | no                                            | Enable or disable git housekeeping                                                                                                                                                                                                                                                                                                                                                                                                                        |

housekeeping_full_repack_period        | integer          | no                                            | Number of Git pushes after which an incremental ‘git repack’ is run.                                                                                                                                                                                                                                                                                                                                                                                      |

housekeeping_gc_period                 | integer          | no                                            | Number of Git pushes after which ‘git gc’ is run.                                                                                                                                                                                                                                                                                                                                                                                                         |

housekeeping_incremental_repack_period | integer          | no                                            | Number of Git pushes after which an incremental ‘git repack’ is run.                                                                                                                                                                                                                                                                                                                                                                                      |

html_emails_enabled                    | boolean          | no                                            | Enable HTML emails                                                                                                                                                                                                                                                                                                                                                                                                                                        |

import_sources                         | Array of strings | no                                            | Sources to allow project import from, possible values: “github bitbucket gitlab google_code fogbugz git gitlab_project manifest                                                                                                                                                                                                                                                                                                                           |

koding_enabled                         | boolean          | no                                            | Enable Koding integration. Default is false.                                                                                                                                                                                                                                                                                                                                                                                                            |

koding_url                             | string           | yes (if koding_enabled is true)           | The Koding instance URL for integration.                                                                                                                                                                                                                                                                                                                                                                                                                  |

max_artifacts_size                     | integer          | no                                            | Maximum artifacts size in MB                                                                                                                                                                                                                                                                                                                                                                                                                              |

max_attachment_size                    | integer          | no                                            | Limit attachment size in MB                                                                                                                                                                                                                                                                                                                                                                                                                               |

max_pages_size                         | integer          | no                                            | Maximum size of pages repositories in MB                                                                                                                                                                                                                                                                                                                                                                                                                  |

metrics_enabled                        | boolean          | no                                            | Enable influxDB metrics                                                                                                                                                                                                                                                                                                                                                                                                                                   |

metrics_host                           | string           | yes (if metrics_enabled is true)          | InfluxDB host                                                                                                                                                                                                                                                                                                                                                                                                                                             |

metrics_method_call_threshold          | integer          | yes (if metrics_enabled is true)          | A method call is only tracked when it takes longer than the given amount of milliseconds                                                                                                                                                                                                                                                                                                                                                                  |

metrics_packet_size                    | integer          | yes (if metrics_enabled is true)          | The amount of datapoints to send in a single UDP packet.                                                                                                                                                                                                                                                                                                                                                                                                  |

metrics_pool_size                      | integer          | yes (if metrics_enabled is true)          | The amount of InfluxDB connections to keep open                                                                                                                                                                                                                                                                                                                                                                                                           |

metrics_port                           | integer          | no                                            | The UDP port to use for connecting to InfluxDB                                                                                                                                                                                                                                                                                                                                                                                                            |

metrics_sample_interval                | integer          | yes (if metrics_enabled is true)          | The sampling interval in seconds.                                                                                                                                                                                                                                                                                                                                                                                                                         |

metrics_timeout                        | integer          | yes (if metrics_enabled is true)          | The amount of seconds after which InfluxDB will time out.                                                                                                                                                                                                                                                                                                                                                                                                 |

password_authentication_enabled_for_web | boolean         | no                                            | Enable authentication for the web interface via a GitLab account password. Default is true.                                                                                                                                                                                                                                                                                                                                                                                   |

password_authentication_enabled_for_git | boolean         | no                                            | Enable authentication for Git over HTTP(S) via a GitLab account password. Default is true.                                                                                                                                                                                                                                                                                                                                                                                   |

performance_bar_allowed_group_path      | string          | no                                            | Path of the group that is allowed to toggle the performance bar                                                                                                                                                                                                                                                                                                                                                                                                   |

performance_bar_allowed_group_id       | string           | no                                            | Deprecated: Use performance_bar_allowed_group_path instead. Path of the group that is allowed to toggle the performance bar                                                                                                                                                                                                                                                                                                                                                                                                   |

performance_bar_enabled                | boolean          | no                                            | Deprecated: Pass performance_bar_allowed_group_path: nil instead. Allow enabling the performance bar                                                                                                                                                                                                                                                                                                                                                                                                                        |

plantuml_enabled                       | boolean          | no                                            | Enable PlantUML integration. Default is false.                                                                                                                                                                                                                                                                                                                                                                                                          |

plantuml_url                           | string           | yes (if plantuml_enabled is true)         | The PlantUML instance URL for integration.                                                                                                                                                                                                                                                                                                                                                                                                                |

polling_interval_multiplier            | decimal          | no                                            | Interval multiplier used by endpoints that perform polling. Set to 0 to disable polling.                                                                                                                                                                                                                                                                                                                                                                  |

project_export_enabled                 | boolean          | no                                            | Enable project export                                                                                                                                                                                                                                                                                                                                                                                                                                     |

prometheus_metrics_enabled             | boolean          | no                                            | Enable prometheus metrics                                                                                                                                                                                                                                                                                                                                                                                                                                 |

recaptcha_enabled                      | boolean          | no                                            | Enable recaptcha                                                                                                                                                                                                                                                                                                                                                                                                                                          |

recaptcha_private_key                  | string           | yes (if recaptcha_enabled is true)          | Private key for recaptcha                                                                                                                                                                                                                                                                                                                                                                                                                                 |

recaptcha_site_key                     | string           | yes (if recaptcha_enabled is true)          | Site key for recaptcha                                                                                                                                                                                                                                                                                                                                                                                                                                    |

repository_checks_enabled              | boolean          | no                                            | GitLab will periodically run ‘git fsck’ in all project and wiki repositories to look for silent disk corruption issues.                                                                                                                                                                                                                                                                                                                                   |

repository_storages                    | array of strings | no                                            | A list of names of enabled storage paths, taken from gitlab.yml. New projects will be created in one of these stores, chosen at random.                                                                                                                                                                                                                                                                                                                 |

require_two_factor_authentication      | boolean          | no                                            | Require all users to setup Two-factor authentication                                                                                                                                                                                                                                                                                                                                                                                                      |

restricted_visibility_levels           | array of strings | no                                            | Selected levels cannot be used by non-admin users for groups, projects or snippets. Can take private, internal and public as a parameter. Default is null which means there is no restriction.                                                                                                                                                                                                                                                              |

rsa_key_restriction                    | integer          | no                                            | The minimum allowed bit length of an uploaded RSA key. Default is 0 (no restriction). -1 disables RSA keys.                                                                                                                                                                                                                                                                                                                                           |

send_user_confirmation_email           | boolean          | no                                            | Send confirmation email on sign-up                                                                                                                                                                                                                                                                                                                                                                                                                        |

sentry_dsn                             | string           | yes (if sentry_enabled is true)             | Sentry Data Source Name                                                                                                                                                                                                                                                                                                                                                                                                                                   |

sentry_enabled                         | boolean          | no                                            | Sentry is an error reporting and logging tool which is currently not shipped with GitLab, get it here: https://getsentry.com                                                                                                                                                                                                                                                                                                                              |

session_expire_delay                   | integer          | no                                            | Session duration in minutes. GitLab restart is required to apply changes                                                                                                                                                                                                                                                                                                                                                                                  |

shared_runners_enabled                 | true             | no                                            | Enable shared runners for new projects                                                                                                                                                                                                                                                                                                                                                                                                                    |

shared_runners_text                    | string           | no                                            | Shared runners text                                                                                                                                                                                                                                                                                                                                                                                                                                       |

sidekiq_throttling_enabled             | boolean          | no                                            | Enable Sidekiq Job Throttling                                                                                                                                                                                                                                                                                                                                                                                                                             |

sidekiq_throttling_factor              | decimal          | yes (if sidekiq_throttling_enabled is true) | The factor by which the queues should be throttled. A value between 0.0 and 1.0, exclusive.                                                                                                                                                                                                                                                                                                                                                               |

sidekiq_throttling_queues              | array of strings | yes (if sidekiq_throttling_enabled is true) | Choose which queues you wish to throttle                                                                                                                                                                                                                                                                                                                                                                                                                  |

sign_in_text                           | string           | no                                            | Text on login page                                                                                                                                                                                                                                                                                                                                                                                                                                        |

signup_enabled                         | boolean          | no                                            | Enable registration. Default is true.                                                                                                                                                                                                                                                                                                                                                                                                                   |

terminal_max_session_time              | integer          | no                                            | Maximum time for web terminal websocket connection (in seconds). Set to 0 for unlimited time.                                                                                                                                                                                                                                                                                                                                                             |

two_factor_grace_period                | integer          | no                                            | Amount of time (in hours) that users are allowed to skip forced configuration of two-factor authentication                                                                                                                                                                                                                                                                                                                                                |

unique_ips_limit_enabled               | boolean          | no                                            | Limit sign in from multiple ips                                                                                                                                                                                                                                                                                                                                                                                                                           |

unique_ips_limit_per_user              | integer          | yes (if unique_ips_limit_enabled is true)   | Maximum number of ips per user                                                                                                                                                                                                                                                                                                                                                                                                                            |

unique_ips_limit_time_window           | integer          | yes (if unique_ips_limit_enabled is true)   | How many seconds an IP will be counted towards the limit                                                                                                                                                                                                                                                                                                                                                                                                  |

usage_ping_enabled                     | boolean          | no                                            | Every week GitLab will report license usage back to GitLab, Inc.                                                                                                                                                                                                                                                                                                                                                                                          |

user_default_external                  | boolean          | no                                            | Newly registered users will by default be external                                                                                                                                                                                                                                                                                                                                                                                                        |

user_oauth_applications                | boolean          | no                                            | Allow users to register any application to use GitLab as an OAuth provider                                                                                                                                                                                                                                                                                                                                                                                |

version_check_enabled                  | boolean          | no                                            | Let GitLab inform you when an update is available.                                                                                                                                                                                                                                                                                                                                                                                                        |

enforce_terms                          | boolean          | no                                            | Enforce application ToS to all users                                                                                                                                                                                                                                                                                                                                                                                                         |

terms                                  | text             | yes (if enforce_terms is true)              | Markdown content for the ToS                                                                                                                                                                                                                                                                                                                                                                                                                 |

instance_statistics_visibility_private | boolean          | no                                            | When set to true Instance statistics will only be available to admins                                                                                                                                                                                                                                                                                                                                                                      |



`bash
curl --request PUT --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/application/settings?signup_enabled=false&default_project_visibility=internal
`

Example response:

```json
{

“id”: 1,
“default_projects_limit”: 100000,
“signup_enabled”: true,
“password_authentication_enabled_for_web”: true,
“gravatar_enabled”: true,
“sign_in_text”: “”,
“created_at”: “2015-06-12T15:51:55.432Z”,
“updated_at”: “2015-06-30T13:22:42.210Z”,
“home_page_url”: “”,
“default_branch_protection”: 2,
“restricted_visibility_levels”: [],
“max_attachment_size”: 10,
“session_expire_delay”: 10080,
“default_project_visibility”: “internal”,
“default_snippet_visibility”: “private”,
“default_group_visibility”: “private”,
“domain_whitelist”: [],
“domain_blacklist_enabled” : false,
“domain_blacklist” : [],
“user_oauth_applications”: true,
“after_sign_out_path”: “”,
“container_registry_token_expire_delay”: 5,
“repository_storages”: [“default”],
“koding_enabled”: false,
“koding_url”: null,
“plantuml_enabled”: false,
“plantuml_url”: null,
“terminal_max_session_time”: 0,
“polling_interval_multiplier”: 1.0,
“rsa_key_restriction”: 0,
“dsa_key_restriction”: 0,
“ecdsa_key_restriction”: 0,
“ed25519_key_restriction”: 0,
“enforce_terms”: true,
“terms”: “Hello world!”,
“performance_bar_allowed_group_id”: 42,
“instance_statistics_visibility_private”: false

}

 # Sidekiq Metrics API

>**Note:** This endpoint is only available on GitLab 8.9 and above.

This API endpoint allows you to retrieve some information about the current state
of Sidekiq, its jobs, queues, and processes.

Get the current Queue Metrics

List information about all the registered queues, their backlog and their
latency.

`
GET /sidekiq/queue_metrics
`

`bash
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/sidekiq/queue_metrics
`

Example response:

```json
{



	“queues”: {
	
	“default”: {
	“backlog”: 0,
“latency”: 0





}





}





}

## Get the current Process Metrics

List information about all the Sidekiq workers registered to process your queues.

`
GET /sidekiq/process_metrics
`

`bash
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/sidekiq/process_metrics
`

Example response:

```json
{

	“processes”: [
	
	{
	“hostname”: “gitlab.example.com”,
“pid”: 5649,
“tag”: “gitlab”,
“started_at”: “2016-06-14T10:45:07.159-05:00”,
“queues”: [

“post_receive”,
“mailers”,
“archive_repo”,
“system_hook”,
“project_web_hook”,
“gitlab_shell”,
“incoming_email”,
“runner”,
“common”,
“default”

],
“labels”: [],
“concurrency”: 25,
“busy”: 0

}

]

}

Get the current Job Statistics

List information about the jobs that Sidekiq has performed.

`
GET /sidekiq/job_stats
`

`bash
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/sidekiq/job_stats
`

Example response:

```json
{



	“jobs”: {
	“processed”: 2,
“failed”: 0,
“enqueued”: 0





}







}

## Get a compound response of all the previously mentioned metrics

List all the currently available information about Sidekiq.

`
GET /sidekiq/compound_metrics
`

`bash
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/sidekiq/compound_metrics
`

Example response:

```json
{

	“queues”: {
	
	“default”: {
	“backlog”: 0,
“latency”: 0

}

},
“processes”: [

	{
	“hostname”: “gitlab.example.com”,
“pid”: 5649,
“tag”: “gitlab”,
“started_at”: “2016-06-14T10:45:07.159-05:00”,
“queues”: [

“post_receive”,
“mailers”,
“archive_repo”,
“system_hook”,
“project_web_hook”,
“gitlab_shell”,
“incoming_email”,
“runner”,
“common”,
“default”

],
“labels”: [],
“concurrency”: 25,
“busy”: 0

}

],
“jobs”: {

“processed”: 2,
“failed”: 0,
“enqueued”: 0

}

}

 # Snippets API

> [Introduced][ce-6373] in GitLab 8.15.

Snippet visibility level

Snippets in GitLab can be either private, internal, or public.
You can set it with the visibility field in the snippet.

Constants for snippet visibility levels are:

Visibility | Description |

———- | ———– |

private | The snippet is visible only to the snippet creator |

internal | The snippet is visible for any logged in user |

public | The snippet can be accessed without any authentication |

List snippets

Get a list of current user’s snippets.

`
GET /snippets
`

Single snippet

Get a single snippet.

`
GET /snippets/:id
`

Parameters:

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | Integer | yes | The ID of a snippet |

` bash
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/snippets/1
`

Example response:

``` json
{


“id”: 1,
“title”: “test”,
“file_name”: “add.rb”,
“description”: “Ruby test snippet”,
“visibility”: “private”,
“author”: {


“id”: 1,
“username”: “john_smith”,
“email”: “john@example.com”,
“name”: “John Smith”,
“state”: “active”,
“created_at”: “2012-05-23T08:00:58Z”




},
“expires_at”: null,
“updated_at”: “2012-06-28T10:52:04Z”,
“created_at”: “2012-06-28T10:52:04Z”,
“web_url”: “http://example.com/snippets/1”,





}

## Create new snippet

Creates a new snippet. The user must have permission to create new snippets.

`
POST /snippets
`

Parameters:


Attribute          | Type    | Required | Description                  |

———          | —-    | ——– | ———–                  |

title            | String  | yes      | The title of a snippet       |

file_name        | String  | yes      | The name of a snippet file   |

content          | String  | yes      | The content of a snippet     |

description      | String  | no       | The description of a snippet |

visibility       | String  | no       | The snippet’s visibility     |



``` bash
curl –request POST

–data ‘{“title”: “This is a snippet”, “content”: “Hello world”, “description”: “Hello World snippet”, “file_name”: “test.txt”, “visibility”: “internal” }’ –header ‘Content-Type: application/json’ –header “PRIVATE-TOKEN: valid_api_token” https://gitlab.example.com/api/v4/snippets


```

Example response:

``` json
{

“id”: 1,
“title”: “This is a snippet”,
“file_name”: “test.txt”,
“description”: “Hello World snippet”,
“visibility”: “internal”,
“author”: {

“id”: 1,
“username”: “john_smith”,
“email”: “john@example.com”,
“name”: “John Smith”,
“state”: “active”,
“created_at”: “2012-05-23T08:00:58Z”

},
“expires_at”: null,
“updated_at”: “2012-06-28T10:52:04Z”,
“created_at”: “2012-06-28T10:52:04Z”,
“web_url”: “http://example.com/snippets/1”,

}

Update snippet

Updates an existing snippet. The user must have permission to change an existing snippet.

`
PUT /snippets/:id
`

Parameters:

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | Integer | yes | The ID of a snippet |

title | String | no | The title of a snippet |

file_name | String | no | The name of a snippet file |

description | String | no | The description of a snippet |

content | String | no | The content of a snippet |

visibility | String | no | The snippet’s visibility |


``` bash
curl –request PUT 


–data ‘{“title”: “foo”, “content”: “bar”}’ –header ‘Content-Type: application/json’ –header “PRIVATE-TOKEN: valid_api_token” https://gitlab.example.com/api/v4/snippets/1




```

Example response:

``` json
{


“id”: 1,
“title”: “test”,
“file_name”: “add.rb”,
“description”: “description of snippet”,
“visibility”: “internal”,
“author”: {


“id”: 1,
“username”: “john_smith”,
“email”: “john@example.com”,
“name”: “John Smith”,
“state”: “active”,
“created_at”: “2012-05-23T08:00:58Z”




},
“expires_at”: null,
“updated_at”: “2012-06-28T10:52:04Z”,
“created_at”: “2012-06-28T10:52:04Z”,
“web_url”: “http://example.com/snippets/1”,







}

## Delete snippet

Deletes an existing snippet.

`
DELETE /snippets/:id
`

Parameters:


Attribute          | Type    | Required | Description                   |

———          | —-    | ——– | ———–                   |

id               | Integer | yes      | The ID of a snippet           |



`
curl --request DELETE --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" "https://gitlab.example.com/api/v4/snippets/1"
`

upon successful delete a 204 No content HTTP code shall be expected, with no data,
but if the snippet is non-existent, a 404 Not Found will be returned.

## Explore all public snippets

`
GET /snippets/public
`


Attribute  | Type    | Required | Description                           |

———  | —-    | ——– | ———–                           |

per_page | Integer | no       | number of snippets to return per page |

page     | Integer | no       | the page to retrieve                  |



` bash
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/snippets/public?per_page=2&page=1
`

Example response:

``` json
[

	{
	
	“author”: {
	“avatar_url”: “http://www.gravatar.com/avatar/edaf55a9e363ea263e3b981d09e0f7f7?s=80&d=identicon”,
“id”: 12,
“name”: “Libby Rolfson”,
“state”: “active”,
“username”: “elton_wehner”,
“web_url”: “http://localhost:3000/elton_wehner”

},
“created_at”: “2016-11-25T16:53:34.504Z”,
“file_name”: “oconnerrice.rb”,
“id”: 49,
“raw_url”: “http://localhost:3000/snippets/49/raw”,
“title”: “Ratione cupiditate et laborum temporibus.”,
“updated_at”: “2016-11-25T16:53:34.504Z”,
“web_url”: “http://localhost:3000/snippets/49”

},
{

	“author”: {
	“avatar_url”: “http://www.gravatar.com/avatar/36583b28626de71061e6e5a77972c3bd?s=80&d=identicon”,
“id”: 16,
“name”: “Llewellyn Flatley”,
“state”: “active”,
“username”: “adaline”,
“web_url”: “http://localhost:3000/adaline”

},
“created_at”: “2016-11-25T16:53:34.479Z”,
“file_name”: “muellershields.rb”,
“id”: 48,
“raw_url”: “http://localhost:3000/snippets/48/raw”,
“title”: “Minus similique nesciunt vel fugiat qui ullam sunt.”,
“updated_at”: “2016-11-25T16:53:34.479Z”,
“web_url”: “http://localhost:3000/snippets/48”,
“visibility”: “public”

}

]

Get user agent details

> Notes:
> [Introduced][ce-29508] in GitLab 9.4.

Available only for admins.

`
GET /snippets/:id/user_agent_detail
`

Attribute | Type | Required | Description |

|-------------|———|----------|————————————–|
| id | Integer | yes | The ID of a snippet |

`bash
curl --request GET --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/snippets/1/user_agent_detail
`

Example response:

```json
{


“user_agent”: “AppleWebKit/537.36”,
“ip_address”: “127.0.0.1”,
“akismet_submitted”: false







}

[ce-6373]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/6373
[ce-29508]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/12655





            

          

      

      

    

  

    
      
          
            
  # System hooks API

All methods require administrator authorization.

The URL endpoint of the system hooks can also be configured using the UI in
the admin area under Hooks (/admin/hooks).

Read more about [system hooks](../system_hooks/system_hooks.md).

## List system hooks

Get a list of all system hooks.

—

`
GET /hooks
`

Example request:

`bash
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/hooks
`

Example response:

```json
[

	{
	“id”:1,
“url”:”https://gitlab.example.com/hook”,
“created_at”:”2016-10-31T12:32:15.192Z”,
“push_events”:true,
“tag_push_events”:false,
“merge_requests_events”: true,
“enable_ssl_verification”:true

}

]

Add new system hook

Add a new system hook.

—

`
POST /hooks
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

url | string | yes | The hook URL |

token | string | no | Secret token to validate received payloads; this will not be returned in the response |

push_events | boolean | no | When true, the hook will fire on push events |

tag_push_events | boolean | no | When true, the hook will fire on new tags being pushed |

merge_requests_events | boolean | no | Trigger hook on merge requests events |

enable_ssl_verification | boolean | no | Do SSL verification when triggering the hook |

Example request:

`bash
curl --request POST --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" "https://gitlab.example.com/api/v4/hooks?url=https://gitlab.example.com/hook"
`

Example response:

```json
[



	{
	“id”:1,
“url”:”https://gitlab.example.com/hook”,
“created_at”:”2016-10-31T12:32:15.192Z”,
“push_events”:true,
“tag_push_events”:false,
“merge_requests_events”: true,
“enable_ssl_verification”:true





}







]

## Test system hook

`
GET /hooks/:id
`


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer | yes | The ID of the hook |



Example request:

`bash
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/hooks/2
`

Example response:

```json
{

“project_id” : 1,
“owner_email” : “example@gitlabhq.com”,
“owner_name” : “Someone”,
“name” : “Ruby”,
“path” : “ruby”,
“event_name” : “project_create”

}

Delete system hook

Deletes a system hook.

—

`
DELETE /hooks/:id
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer | yes | The ID of the hook |

Example request:

`bash
curl --request DELETE --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/hooks/2
`

 # Tags API

List project repository tags

Get a list of repository tags from a project, sorted by name in reverse
alphabetical order. This endpoint can be accessed without authentication if the
repository is publicly accessible.

`
GET /projects/:id/repository/tags
`

Parameters:

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string| yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user|

order_by | string | no | Return tags ordered by name or updated fields. Default is updated |

sort | string | no | Return tags sorted in asc or desc order. Default is desc |


```json
[



	{
	
	“commit”: {
	“id”: “2695effb5807a22ff3d138d593fd856244e155e7”,
“short_id”: “2695effb”,
“title”: “Initial commit”,
“created_at”: “2017-07-26T11:08:53.000+02:00”,
“parent_ids”: [


“2a4b78934375d7f53875269ffd4f45fd83a84ebe”




],
“message”: “Initial commit”,
“author_name”: “John Smith”,
“author_email”: “john@example.com”,
“authored_date”: “2012-05-28T04:42:42-07:00”,
“committer_name”: “Jack Smith”,
“committer_email”: “jack@example.com”,
“committed_date”: “2012-05-28T04:42:42-07:00”





},
“release”: {


“tag_name”: “1.0.0”,
“description”: “Amazing release. Wow”




},
“name”: “v1.0.0”,
“target”: “2695effb5807a22ff3d138d593fd856244e155e7”,
“message”: null





}





]

## Get a single repository tag

Get a specific repository tag determined by its name. This endpoint can be
accessed without authentication if the repository is publicly accessible.

`
GET /projects/:id/repository/tags/:tag_name
`

Parameters:


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

tag_name | string | yes | The name of the tag |



`bash
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/5/repository/tags/v1.0.0
`

Example Response:

```json
{

“name”: “v5.0.0”,
“message”: null,
“target”: “60a8ff033665e1207714d6670fcd7b65304ec02f”,
“commit”: {

“id”: “60a8ff033665e1207714d6670fcd7b65304ec02f”,
“short_id”: “60a8ff03”,
“title”: “Initial commit”,
“created_at”: “2017-07-26T11:08:53.000+02:00”,
“parent_ids”: [

“f61c062ff8bcbdb00e0a1b3317a91aed6ceee06b”

],
“message”: “v5.0.0n”,
“author_name”: “Arthur Verschaeve”,
“author_email”: “contact@arthurverschaeve.be”,
“authored_date”: “2015-02-01T21:56:31.000+01:00”,
“committer_name”: “Arthur Verschaeve”,
“committer_email”: “contact@arthurverschaeve.be”,
“committed_date”: “2015-02-01T21:56:31.000+01:00”

},
“release”: null

}

Create a new tag

Creates a new tag in the repository that points to the supplied ref.

`
POST /projects/:id/repository/tags
`

Parameters:

	id (required) - The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user

	tag_name (required) - The name of a tag

	ref (required) - Create tag using commit SHA, another tag name, or branch name.

	message (optional) - Creates annotated tag.

	release_description (optional) - Add release notes to the git tag and store it in the GitLab database.


```json
{



	“commit”: {
	“id”: “2695effb5807a22ff3d138d593fd856244e155e7”,
“short_id”: “2695effb”,
“title”: “Initial commit”,
“created_at”: “2017-07-26T11:08:53.000+02:00”,
“parent_ids”: [


“2a4b78934375d7f53875269ffd4f45fd83a84ebe”




],
“message”: “Initial commit”,
“author_name”: “John Smith”,
“author_email”: “john@example.com”,
“authored_date”: “2012-05-28T04:42:42-07:00”,
“committer_name”: “Jack Smith”,
“committer_email”: “jack@example.com”,
“committed_date”: “2012-05-28T04:42:42-07:00”





},
“release”: {


“tag_name”: “1.0.0”,
“description”: “Amazing release. Wow”




},
“name”: “v1.0.0”,
“target: “2695effb5807a22ff3d138d593fd856244e155e7”,
“message”: null







}

The message will be null when creating a lightweight tag otherwise
it will contain the annotation.

The target will contain the tag objects ID when creating annotated tags,
otherwise it will contain the commit ID when creating lightweight tags.

In case of an error,
status code 405 with an explaining error message is returned.

## Delete a tag

Deletes a tag of a repository with given name.

`
DELETE /projects/:id/repository/tags/:tag_name
`

Parameters:


	id (required) - The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user


	tag_name (required) - The name of a tag




## Create a new release

Add release notes to the existing git tag. If there
already exists a release for the given tag, status code 409 is returned.

`
POST /projects/:id/repository/tags/:tag_name/release
`

Parameters:


	id (required) - The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user


	tag_name (required) - The name of a tag


	description (required) - Release notes with markdown support




```json
{

“tag_name”: “1.0.0”,
“description”: “Amazing release. Wow”

}

Update a release

Updates the release notes of a given release.

`
PUT /projects/:id/repository/tags/:tag_name/release
`

Parameters:

	id (required) - The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user

	tag_name (required) - The name of a tag

	description (required) - Release notes with markdown support


```json
{


“tag_name”: “1.0.0”,
“description”: “Amazing release. Wow”







}





            

          

      

      

    

  

    
      
          
            
  # Todos API

> [Introduced][ce-3188] in GitLab 8.10.

## Get a list of todos

Returns a list of todos. When no filter is applied, it returns all pending todos
for the current user. Different filters allow the user to precise the request.

`
GET /todos
`

Parameters:


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

action | string | no | The action to be filtered. Can be assigned, mentioned, build_failed, marked, approval_required, unmergeable or directly_addressed. |

author_id | integer | no | The ID of an author |

project_id | integer | no | The ID of a project |

group_id | integer | no | The ID of a group |

state | string | no | The state of the todo. Can be either pending or done |

type | string | no | The type of a todo. Can be either Issue or MergeRequest |



`bash
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/todos
`

Example Response:

```json
[

	{
	“id”: 102,
“project”: {

“id”: 2,
“name”: “Gitlab Ce”,
“name_with_namespace”: “Gitlab Org / Gitlab Ce”,
“path”: “gitlab-ce”,
“path_with_namespace”: “gitlab-org/gitlab-ce”

},
“author”: {

“name”: “Administrator”,
“username”: “root”,
“id”: 1,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”,
“web_url”: “https://gitlab.example.com/root”

},
“action_name”: “marked”,
“target_type”: “MergeRequest”,
“target”: {

“id”: 34,
“iid”: 7,
“project_id”: 2,
“title”: “Dolores in voluptatem tenetur praesentium omnis repellendus voluptatem quaerat.”,
“description”: “Et ea et omnis illum cupiditate. Dolor aspernatur tenetur ducimus facilis est nihil. Quo esse cupiditate molestiae illo corrupti qui quidem dolor.”,
“state”: “opened”,
“created_at”: “2016-06-17T07:49:24.419Z”,
“updated_at”: “2016-06-17T07:52:43.484Z”,
“target_branch”: “tutorials_git_tricks”,
“source_branch”: “DNSBL_docs”,
“upvotes”: 0,
“downvotes”: 0,
“author”: {

“name”: “Maxie Medhurst”,
“username”: “craig_rutherford”,
“id”: 12,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/a0d477b3ea21970ce6ffcbb817b0b435?s=80&d=identicon”,
“web_url”: “https://gitlab.example.com/craig_rutherford”

},
“assignee”: {

“name”: “Administrator”,
“username”: “root”,
“id”: 1,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”,
“web_url”: “https://gitlab.example.com/root”

},
“source_project_id”: 2,
“target_project_id”: 2,
“labels”: [],
“work_in_progress”: false,
“milestone”: {

“id”: 32,
“iid”: 2,
“project_id”: 2,
“title”: “v1.0”,
“description”: “Assumenda placeat ea voluptatem voluptate qui.”,
“state”: “active”,
“created_at”: “2016-06-17T07:47:34.163Z”,
“updated_at”: “2016-06-17T07:47:34.163Z”,
“due_date”: null

},
“merge_when_pipeline_succeeds”: false,
“merge_status”: “cannot_be_merged”,
“subscribed”: true,
“user_notes_count”: 7

},
“target_url”: “https://gitlab.example.com/gitlab-org/gitlab-ce/merge_requests/7”,
“body”: “Dolores in voluptatem tenetur praesentium omnis repellendus voluptatem quaerat.”,
“state”: “pending”,
“created_at”: “2016-06-17T07:52:35.225Z”

},
{

“id”: 98,
“project”: {

“id”: 2,
“name”: “Gitlab Ce”,
“name_with_namespace”: “Gitlab Org / Gitlab Ce”,
“path”: “gitlab-ce”,
“path_with_namespace”: “gitlab-org/gitlab-ce”

},
“author”: {

“name”: “Maxie Medhurst”,
“username”: “craig_rutherford”,
“id”: 12,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/a0d477b3ea21970ce6ffcbb817b0b435?s=80&d=identicon”,
“web_url”: “https://gitlab.example.com/craig_rutherford”

},
“action_name”: “assigned”,
“target_type”: “MergeRequest”,
“target”: {

“id”: 34,
“iid”: 7,
“project_id”: 2,
“title”: “Dolores in voluptatem tenetur praesentium omnis repellendus voluptatem quaerat.”,
“description”: “Et ea et omnis illum cupiditate. Dolor aspernatur tenetur ducimus facilis est nihil. Quo esse cupiditate molestiae illo corrupti qui quidem dolor.”,
“state”: “opened”,
“created_at”: “2016-06-17T07:49:24.419Z”,
“updated_at”: “2016-06-17T07:52:43.484Z”,
“target_branch”: “tutorials_git_tricks”,
“source_branch”: “DNSBL_docs”,
“upvotes”: 0,
“downvotes”: 0,
“author”: {

“name”: “Maxie Medhurst”,
“username”: “craig_rutherford”,
“id”: 12,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/a0d477b3ea21970ce6ffcbb817b0b435?s=80&d=identicon”,
“web_url”: “https://gitlab.example.com/craig_rutherford”

},
“assignee”: {

“name”: “Administrator”,
“username”: “root”,
“id”: 1,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”,
“web_url”: “https://gitlab.example.com/root”

},
“source_project_id”: 2,
“target_project_id”: 2,
“labels”: [],
“work_in_progress”: false,
“milestone”: {

“id”: 32,
“iid”: 2,
“project_id”: 2,
“title”: “v1.0”,
“description”: “Assumenda placeat ea voluptatem voluptate qui.”,
“state”: “active”,
“created_at”: “2016-06-17T07:47:34.163Z”,
“updated_at”: “2016-06-17T07:47:34.163Z”,
“due_date”: null

},
“merge_when_pipeline_succeeds”: false,
“merge_status”: “cannot_be_merged”,
“subscribed”: true,
“user_notes_count”: 7

},
“target_url”: “https://gitlab.example.com/gitlab-org/gitlab-ce/merge_requests/7”,
“body”: “Dolores in voluptatem tenetur praesentium omnis repellendus voluptatem quaerat.”,
“state”: “pending”,
“created_at”: “2016-06-17T07:49:24.624Z”

}

]

Mark a todo as done

Marks a single pending todo given by its ID for the current user as done. The
todo marked as done is returned in the response.

`
POST /todos/:id/mark_as_done
`

Parameters:

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer | yes | The ID of a todo |

`bash
curl --request POST --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/todos/130/mark_as_done
`

Example Response:

```json
{


“id”: 102,
“project”: {


“id”: 2,
“name”: “Gitlab Ce”,
“name_with_namespace”: “Gitlab Org / Gitlab Ce”,
“path”: “gitlab-ce”,
“path_with_namespace”: “gitlab-org/gitlab-ce”




},
“author”: {


“name”: “Administrator”,
“username”: “root”,
“id”: 1,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”,
“web_url”: “https://gitlab.example.com/root”




},
“action_name”: “marked”,
“target_type”: “MergeRequest”,
“target”: {


“id”: 34,
“iid”: 7,
“project_id”: 2,
“title”: “Dolores in voluptatem tenetur praesentium omnis repellendus voluptatem quaerat.”,
“description”: “Et ea et omnis illum cupiditate. Dolor aspernatur tenetur ducimus facilis est nihil. Quo esse cupiditate molestiae illo corrupti qui quidem dolor.”,
“state”: “opened”,
“created_at”: “2016-06-17T07:49:24.419Z”,
“updated_at”: “2016-06-17T07:52:43.484Z”,
“target_branch”: “tutorials_git_tricks”,
“source_branch”: “DNSBL_docs”,
“upvotes”: 0,
“downvotes”: 0,
“author”: {


“name”: “Maxie Medhurst”,
“username”: “craig_rutherford”,
“id”: 12,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/a0d477b3ea21970ce6ffcbb817b0b435?s=80&d=identicon”,
“web_url”: “https://gitlab.example.com/craig_rutherford”




},
“assignee”: {


“name”: “Administrator”,
“username”: “root”,
“id”: 1,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”,
“web_url”: “https://gitlab.example.com/root”




},
“source_project_id”: 2,
“target_project_id”: 2,
“labels”: [],
“work_in_progress”: false,
“milestone”: {


“id”: 32,
“iid”: 2,
“project_id”: 2,
“title”: “v1.0”,
“description”: “Assumenda placeat ea voluptatem voluptate qui.”,
“state”: “active”,
“created_at”: “2016-06-17T07:47:34.163Z”,
“updated_at”: “2016-06-17T07:47:34.163Z”,
“due_date”: null




},
“merge_when_pipeline_succeeds”: false,
“merge_status”: “cannot_be_merged”,
“subscribed”: true,
“user_notes_count”: 7




},
“target_url”: “https://gitlab.example.com/gitlab-org/gitlab-ce/merge_requests/7”,
“body”: “Dolores in voluptatem tenetur praesentium omnis repellendus voluptatem quaerat.”,
“state”: “done”,
“created_at”: “2016-06-17T07:52:35.225Z”







}

## Mark all todos as done

Marks all pending todos for the current user as done. It returns the HTTP status code 204 with an empty response.

`
POST /todos/mark_as_done
`

`bash
curl --request POST --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/todos/donmark_as_donee
`

[ce-3188]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/3188





            

          

      

      

    

  

    
      
          
            
  # Users API

## List users

Get a list of users.

This function takes pagination parameters page and per_page to restrict the list of users.

### For normal users

`
GET /users
`

```json
[

	{
	“id”: 1,
“username”: “john_smith”,
“name”: “John Smith”,
“state”: “active”,
“avatar_url”: “http://localhost:3000/uploads/user/avatar/1/cd8.jpeg”,
“web_url”: “http://localhost:3000/john_smith”

},
{

“id”: 2,
“username”: “jack_smith”,
“name”: “Jack Smith”,
“state”: “blocked”,
“avatar_url”: “http://gravatar.com/../e32131cd8.jpeg”,
“web_url”: “http://localhost:3000/jack_smith”

}

]

You can also search for users by email or username with: /users?search=John

In addition, you can lookup users by username:

`
GET /users?username=:username
`

For example:

`
GET /users?username=jack_smith
`

In addition, you can filter users based on states eg. blocked, active
This works only to filter users who are blocked or active.
It does not support active=false or blocked=false.

`
GET /users?active=true
`

`
GET /users?blocked=true
`

For admins

`
GET /users
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

order_by | string | no | Return projects ordered by id, name, username, created_at, or updated_at fields. Default is id |

sort | string | no | Return projects sorted in asc or desc order. Default is desc |

two_factor | string | no | Filter users by Two-factor authentication. Filter values are enabled or disabled. By default it returns all users |


```json
[



	{
	“id”: 1,
“username”: “john_smith”,
“email”: “john@example.com”,
“name”: “John Smith”,
“state”: “active”,
“avatar_url”: “http://localhost:3000/uploads/user/avatar/1/index.jpg”,
“web_url”: “http://localhost:3000/john_smith”,
“created_at”: “2012-05-23T08:00:58Z”,
“is_admin”: false,
“bio”: null,
“location”: null,
“skype”: “”,
“linkedin”: “”,
“twitter”: “”,
“website_url”: “”,
“organization”: “”,
“last_sign_in_at”: “2012-06-01T11:41:01Z”,
“confirmed_at”: “2012-05-23T09:05:22Z”,
“theme_id”: 1,
“last_activity_on”: “2012-05-23”,
“color_scheme_id”: 2,
“projects_limit”: 100,
“current_sign_in_at”: “2012-06-02T06:36:55Z”,
“identities”: [


{“provider”: “github”, “extern_uid”: “2435223452345”},
{“provider”: “bitbucket”, “extern_uid”: “john.smith”},
{“provider”: “google_oauth2”, “extern_uid”: “8776128412476123468721346”}




],
“can_create_group”: true,
“can_create_project”: true,
“two_factor_enabled”: true,
“external”: false,
“private_profile”: false





},
{


“id”: 2,
“username”: “jack_smith”,
“email”: “jack@example.com”,
“name”: “Jack Smith”,
“state”: “blocked”,
“avatar_url”: “http://localhost:3000/uploads/user/avatar/2/index.jpg”,
“web_url”: “http://localhost:3000/jack_smith”,
“created_at”: “2012-05-23T08:01:01Z”,
“is_admin”: false,
“bio”: null,
“location”: null,
“skype”: “”,
“linkedin”: “”,
“twitter”: “”,
“website_url”: “”,
“organization”: “”,
“last_sign_in_at”: null,
“confirmed_at”: “2012-05-30T16:53:06.148Z”,
“theme_id”: 1,
“last_activity_on”: “2012-05-23”,
“color_scheme_id”: 3,
“projects_limit”: 100,
“current_sign_in_at”: “2014-03-19T17:54:13Z”,
“identities”: [],
“can_create_group”: true,
“can_create_project”: true,
“two_factor_enabled”: true,
“external”: false,
“private_profile”: false




}







]

You can lookup users by external UID and provider:

`
GET /users?extern_uid=:extern_uid&provider=:provider
`

For example:

`
GET /users?extern_uid=1234567&provider=github
`

You can search for users who are external with: /users?external=true

You can search users by creation date time range with:

`
GET /users?created_before=2001-01-02T00:00:00.060Z&created_after=1999-01-02T00:00:00.060
`

You can filter by [custom attributes](custom_attributes.md) with:

`
GET /users?custom_attributes[key]=value&custom_attributes[other_key]=other_value
`

You can include the users’ [custom attributes](custom_attributes.md) in the response with:

`
GET /users?with_custom_attributes=true
`

## Single user

Get a single user.

### For user

`
GET /users/:id
`

Parameters:


	id (required) - The ID of a user




```json
{

“id”: 1,
“username”: “john_smith”,
“name”: “John Smith”,
“state”: “active”,
“avatar_url”: “http://localhost:3000/uploads/user/avatar/1/cd8.jpeg”,
“web_url”: “http://localhost:3000/john_smith”,
“created_at”: “2012-05-23T08:00:58Z”,
“bio”: null,
“location”: null,
“skype”: “”,
“linkedin”: “”,
“twitter”: “”,
“website_url”: “”,
“organization”: “”

}

For admin

`
GET /users/:id
`

Parameters:

	id (required) - The ID of a user


```json
{


“id”: 1,
“username”: “john_smith”,
“email”: “john@example.com”,
“name”: “John Smith”,
“state”: “active”,
“avatar_url”: “http://localhost:3000/uploads/user/avatar/1/index.jpg”,
“web_url”: “http://localhost:3000/john_smith”,
“created_at”: “2012-05-23T08:00:58Z”,
“is_admin”: false,
“bio”: null,
“location”: null,
“skype”: “”,
“linkedin”: “”,
“twitter”: “”,
“website_url”: “”,
“organization”: “”,
“last_sign_in_at”: “2012-06-01T11:41:01Z”,
“confirmed_at”: “2012-05-23T09:05:22Z”,
“theme_id”: 1,
“last_activity_on”: “2012-05-23”,
“color_scheme_id”: 2,
“projects_limit”: 100,
“current_sign_in_at”: “2012-06-02T06:36:55Z”,
“identities”: [


{“provider”: “github”, “extern_uid”: “2435223452345”},
{“provider”: “bitbucket”, “extern_uid”: “john.smith”},
{“provider”: “google_oauth2”, “extern_uid”: “8776128412476123468721346”}




],
“can_create_group”: true,
“can_create_project”: true,
“two_factor_enabled”: true,
“external”: false,
“private_profile”: false







}

You can include the user’s [custom attributes](custom_attributes.md) in the response with:

`
GET /users/:id?with_custom_attributes=true
`

## User creation

Creates a new user. Note only administrators can create new users. Either password or reset_password should be specified (reset_password takes priority).

`
POST /users
`

Parameters:


	email (required)             - Email


	password (optional)          - Password


	reset_password (optional)    - Send user password reset link - true or false(default)


	username (required)          - Username


	name (required)              - Name


	skype (optional)             - Skype ID


	linkedin (optional)          - LinkedIn


	twitter (optional)           - Twitter account


	website_url (optional)       - Website URL


	organization (optional)      - Organization name


	projects_limit (optional)    - Number of projects user can create


	extern_uid (optional)        - External UID


	provider (optional)          - External provider name


	bio (optional)               - User’s biography


	location (optional)          - User’s location


	admin (optional)             - User is admin - true or false (default)


	can_create_group (optional)  - User can create groups - true or false


	skip_confirmation (optional) - Skip confirmation - true or false (default)


	external (optional)          - Flags the user as external - true or false(default)


	avatar (optional)            - Image file for user’s avatar


	private_profile (optional)   - User’s profile is private - true or false




## User modification

Modifies an existing user. Only administrators can change attributes of a user.

`
PUT /users/:id
`

Parameters:


	email                       - Email


	username                    - Username


	name                        - Name


	password                    - Password


	skype                       - Skype ID


	linkedin                    - LinkedIn


	twitter                     - Twitter account


	website_url                 - Website URL


	organization                - Organization name


	projects_limit              - Limit projects each user can create


	extern_uid                  - External UID


	provider                    - External provider name


	bio                         - User’s biography


	location (optional)         - User’s location


	admin (optional)            - User is admin - true or false (default)


	can_create_group (optional) - User can create groups - true or false


	skip_reconfirmation (optional) - Skip reconfirmation - true or false (default)


	external (optional)         - Flags the user as external - true or false(default)


	avatar (optional)           - Image file for user’s avatar


	private_profile (optional)  - User’s profile is private - true or false




On password update, user will be forced to change it upon next login.
Note, at the moment this method does only return a 404 error,
even in cases where a 409 (Conflict) would be more appropriate,
e.g. when renaming the email address to some existing one.

## User deletion

Deletes a user. Available only for administrators.
This returns a 204 No Content status code if the operation was successfully or 404 if the resource was not found.

`
DELETE /users/:id
`

Parameters:


	id (required) - The ID of the user


	hard_delete (optional) - If true, contributions that would usually be
[moved to the ghost user](../user/profile/account/delete_account.md#associated-records)
will be deleted instead, as well as groups owned solely by this user.




## User

### For normal users

Gets currently authenticated user.

`
GET /user
`

```json
{

“id”: 1,
“username”: “john_smith”,
“email”: “john@example.com”,
“name”: “John Smith”,
“state”: “active”,
“avatar_url”: “http://localhost:3000/uploads/user/avatar/1/index.jpg”,
“web_url”: “http://localhost:3000/john_smith”,
“created_at”: “2012-05-23T08:00:58Z”,
“bio”: null,
“location”: null,
“skype”: “”,
“linkedin”: “”,
“twitter”: “”,
“website_url”: “”,
“organization”: “”,
“last_sign_in_at”: “2012-06-01T11:41:01Z”,
“confirmed_at”: “2012-05-23T09:05:22Z”,
“theme_id”: 1,
“last_activity_on”: “2012-05-23”,
“color_scheme_id”: 2,
“projects_limit”: 100,
“current_sign_in_at”: “2012-06-02T06:36:55Z”,
“identities”: [

{“provider”: “github”, “extern_uid”: “2435223452345”},
{“provider”: “bitbucket”, “extern_uid”: “john_smith”},
{“provider”: “google_oauth2”, “extern_uid”: “8776128412476123468721346”}

],
“can_create_group”: true,
“can_create_project”: true,
“two_factor_enabled”: true,
“external”: false,
“private_profile”: false

}

For admins

Parameters:

	sudo (optional) - the ID of a user to make the call in their place

`
GET /user
`

```json
{


“id”: 1,
“username”: “john_smith”,
“email”: “john@example.com”,
“name”: “John Smith”,
“state”: “active”,
“avatar_url”: “http://localhost:3000/uploads/user/avatar/1/index.jpg”,
“web_url”: “http://localhost:3000/john_smith”,
“created_at”: “2012-05-23T08:00:58Z”,
“is_admin”: false,
“bio”: null,
“location”: null,
“skype”: “”,
“linkedin”: “”,
“twitter”: “”,
“website_url”: “”,
“organization”: “”,
“last_sign_in_at”: “2012-06-01T11:41:01Z”,
“confirmed_at”: “2012-05-23T09:05:22Z”,
“theme_id”: 1,
“last_activity_on”: “2012-05-23”,
“color_scheme_id”: 2,
“projects_limit”: 100,
“current_sign_in_at”: “2012-06-02T06:36:55Z”,
“identities”: [


{“provider”: “github”, “extern_uid”: “2435223452345”},
{“provider”: “bitbucket”, “extern_uid”: “john_smith”},
{“provider”: “google_oauth2”, “extern_uid”: “8776128412476123468721346”}




],
“can_create_group”: true,
“can_create_project”: true,
“two_factor_enabled”: true,
“external”: false,
“private_profile”: false







}

## User status

Get the status of the currently signed in user.

`
GET /user/status
`

`bash
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" "https://gitlab.example.com/user/status"
`

Example response:

```json
{

“emoji”:”coffee”,
“message”:”I crave coffee :coffee:”,
“message_html”: “I crave coffee <gl-emoji title="hot beverage" data-name="coffee" data-unicode-version="4.0">☕</gl-emoji>”

}

Get the status of a user

Get the status of a user.

`
GET /users/:id_or_username/status
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id_or_username | string | yes | The id or username of the user to get a status of |

`bash
curl "https://gitlab.example.com/users/janedoe/status"
`

Example response:

```json
{


“emoji”:”coffee”,
“message”:”I crave coffee :coffee:”,
“message_html”: “I crave coffee <gl-emoji title="hot beverage" data-name="coffee" data-unicode-version="4.0">☕</gl-emoji>”







}

## Set user status

Set the status of the current user.

`
PUT /user/status
`


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

emoji   | string | no     | The name of the emoji to use as status, if omitted speech_balloon is used. Emoji name can be one of the specified names in the [Gemojione index][gemojione-index]. |

message | string | no     | The message to set as a status. It can also contain emoji codes. |



When both parameters emoji and message are empty, the status will be cleared.

`bash
curl --request PUT --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" --data "emoji=coffee" --data "emoji=I crave coffee" https://gitlab.example.com/api/v4/user/status
`

Example responses

```json
{

“emoji”:”coffee”,
“message”:”I crave coffee”,
“message_html”: “I crave coffee”

}

List user projects

Please refer to the [List of user projects](projects.md#list-user-projects).

List SSH keys

Get a list of currently authenticated user’s SSH keys.

`
GET /user/keys
`

```json
[



	{
	“id”: 1,
“title”: “Public key”,
“key”: “ssh-rsa AAAAB3NzaC1yc2EAAAABJQAAAIEAiPWx6WM4lhHNedGfBpPJNPpZ7yKu+dnn1SJejgt4596k6YjzGGphH2TUxwKzxcKDKKezwkpfnxPkSMkuEspGRt/aZZ9wa++Oi7Qkr8prgHc4soW6NUlfDzpvZK2H5E7eQaSeP3SAwGmQKUFHCddNaP0L+hM7zhFNzjFvpaMgJw0=”,
“created_at”: “2014-08-01T14:47:39.080Z”





},
{


“id”: 3,
“title”: “Another Public key”,
“key”: “ssh-rsa AAAAB3NzaC1yc2EAAAABJQAAAIEAiPWx6WM4lhHNedGfBpPJNPpZ7yKu+dnn1SJejgt4596k6YjzGGphH2TUxwKzxcKDKKezwkpfnxPkSMkuEspGRt/aZZ9wa++Oi7Qkr8prgHc4soW6NUlfDzpvZK2H5E7eQaSeP3SAwGmQKUFHCddNaP0L+hM7zhFNzjFvpaMgJw0=”,
“created_at”: “2014-08-01T14:47:39.080Z”




}







]

Parameters:


	none




## List SSH keys for user

Get a list of a specified user’s SSH keys. Available only for admin

`
GET /users/:id/keys
`

Parameters:


	id (required) - id of specified user




## Single SSH key

Get a single key.

`
GET /user/keys/:key_id
`

Parameters:


	key_id (required) - The ID of an SSH key




```json
{

“id”: 1,
“title”: “Public key”,
“key”: “ssh-rsa AAAAB3NzaC1yc2EAAAABJQAAAIEAiPWx6WM4lhHNedGfBpPJNPpZ7yKu+dnn1SJejgt4596k6YjzGGphH2TUxwKzxcKDKKezwkpfnxPkSMkuEspGRt/aZZ9wa++Oi7Qkr8prgHc4soW6NUlfDzpvZK2H5E7eQaSeP3SAwGmQKUFHCddNaP0L+hM7zhFNzjFvpaMgJw0=”,
“created_at”: “2014-08-01T14:47:39.080Z”

}

Add SSH key

Creates a new key owned by the currently authenticated user.

`
POST /user/keys
`

Parameters:

	title (required) - new SSH Key’s title

	key (required) - new SSH key


```json
{


“created_at”: “2015-01-21T17:44:33.512Z”,
“key”: “ssh-dss AAAAB3NzaC1kc3MAAACBAMLrhYgI3atfrSD6KDas1b/3n6R/HP+bLaHHX6oh+L1vg31mdUqK0Ac/NjZoQunavoyzqdPYhFz9zzOezCrZKjuJDS3NRK9rspvjgM0xYR4d47oNZbdZbwkI4cTv/gcMlquRy0OvpfIvJtjtaJWMwTLtM5VhRusRuUlpH99UUVeXAAAAFQCVyX+92hBEjInEKL0v13c/egDCTQAAAIEAvFdWGq0ccOPbw4f/F8LpZqvWDydAcpXHV3thwb7WkFfppvm4SZte0zds1FJ+Hr8Xzzc5zMHe6J4Nlay/rP4ewmIW7iFKNBEYb/yWa+ceLrs+TfR672TaAgO6o7iSRofEq5YLdwgrwkMmIawa21FrZ2D9SPao/IwvENzk/xcHu7YAAACAQFXQH6HQnxOrw4dqf0NqeKy1tfIPxYYUZhPJfo9O0AmBW2S36pD2l14kS89fvz6Y1g8gN/FwFnRncMzlLY/hX70FSc/3hKBSbH6C6j8hwlgFKfizav21eS358JJz93leOakJZnGb8XlWvz1UJbwCsnR2VEY8Dz90uIk1l/UqHkA= loic@call”,
“title”: “ABC”,
“id”: 4







}

Will return created key with status 201 Created on success. If an
error occurs a 400 Bad Request is returned with a message explaining the error:

```json
{

	“message”: {
	
	“fingerprint”: [
	“has already been taken”

],
“key”: [

“has already been taken”

]

}

}

Add SSH key for user

Create new key owned by specified user. Available only for admin

`
POST /users/:id/keys
`

Parameters:

	id (required) - id of specified user

	title (required) - new SSH Key’s title

	key (required) - new SSH key

Delete SSH key for current user

Deletes key owned by currently authenticated user.
This returns a 204 No Content status code if the operation was successfully or 404 if the resource was not found.

`
DELETE /user/keys/:key_id
`

Parameters:

	key_id (required) - SSH key ID

Delete SSH key for given user

Deletes key owned by a specified user. Available only for admin.

`
DELETE /users/:id/keys/:key_id
`

Parameters:

	id (required) - id of specified user

	key_id (required) - SSH key ID

List all GPG keys

Get a list of currently authenticated user’s GPG keys.

`
GET /user/gpg_keys
`

`bash
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/user/gpg_keys
`

Example response:

```json
[



	{
	“id”: 1,
“key”: “—–BEGIN PGP PUBLIC KEY BLOCK—–rnrnxsBNBFVjnlIBCACibzXOLCiZiL2oyzYUaTOCkYnSUhymg3pdbfKtd4mpBa58xKBjrnt1pTHVpw3Sk03wmzhM/Ndlt1AV2YhLv++83WKr+gAHFYFiCV/tnY8bx3HqvVoy8OrnCfxWhw4QZK7+oYzVmJj8ZJm3ZjOC4pzuegNWlNLCUdZDx9OKlHVXLCX1iUbjdYWarnqKV6tdV8hZolkbyjedQgrpvoWyeSHHpwHF7yk4gNJWMMI5rpcssL7i6mMXb/sDzOrnVaAtU5wiVducsOa01InRFf7QSTxoAm6Xy0PGv/k48M6xCALa9nY+BzlOv47jUT57rnvilf4Szy9dKD0v9S0mQ+IHB+gNukWrnwtXx5ABEBAAHNFm5hbWUgKGNvbW1lbnQprnIDxlbUBpbD7CwHUEEwECACkFAlVjnlIJEINgJNgv009/AhsDAhkBBgsJCAcDAgYVrnCAIJCgsEFgIDAQAAxqMIAFBHuBA8P1v8DtHonIK8Lx2qU23t8Mh68HBIkSjk2H7/rnoO2cDWCw50jZ9D91PXOOyMPvBWV2IE3tARzCvnNGtzEFRtpIEtZ0cuctxeIF1id5rncrfzdMDsmZyRHAOoZ9VtuD6mzj0ybQWMACb7eIHjZDCee3Slh3TVrLy06YRdq2I4rnbjMOPePtK5xnIpHGpAXkB3IONxyITpSLKsA4hCeP7gVvm7r7TuQg1ygiUBlWbBYnrniE5ROzqZjG1s7dQNZK/riiU2umGqGuwAb2IPvNiyuGR3cIgRE4llXH/rLuUlspAprno4nlxaz65VucmNbN1aMbDXLJVSqR1DuE00vEsL1AItI=rn=XQoyrn—–END PGP PUBLIC KEY BLOCK—–”,
“created_at”: “2017-09-05T09:17:46.264Z”





}







]

## Get a specific GPG key

Get a specific GPG key of currently authenticated user.

`
GET /user/gpg_keys/:key_id
`

Parameters:


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

key_id  | integer | yes   | The ID of the GPG key |



`bash
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/user/gpg_keys/1
`

Example response:


	```json
	
	{
	“id”: 1,
“key”: “—–BEGIN PGP PUBLIC KEY BLOCK—–rnrnxsBNBFVjnlIBCACibzXOLCiZiL2oyzYUaTOCkYnSUhymg3pdbfKtd4mpBa58xKBjrnt1pTHVpw3Sk03wmzhM/Ndlt1AV2YhLv++83WKr+gAHFYFiCV/tnY8bx3HqvVoy8OrnCfxWhw4QZK7+oYzVmJj8ZJm3ZjOC4pzuegNWlNLCUdZDx9OKlHVXLCX1iUbjdYWarnqKV6tdV8hZolkbyjedQgrpvoWyeSHHpwHF7yk4gNJWMMI5rpcssL7i6mMXb/sDzOrnVaAtU5wiVducsOa01InRFf7QSTxoAm6Xy0PGv/k48M6xCALa9nY+BzlOv47jUT57rnvilf4Szy9dKD0v9S0mQ+IHB+gNukWrnwtXx5ABEBAAHNFm5hbWUgKGNvbW1lbnQprnIDxlbUBpbD7CwHUEEwECACkFAlVjnlIJEINgJNgv009/AhsDAhkBBgsJCAcDAgYVrnCAIJCgsEFgIDAQAAxqMIAFBHuBA8P1v8DtHonIK8Lx2qU23t8Mh68HBIkSjk2H7/rnoO2cDWCw50jZ9D91PXOOyMPvBWV2IE3tARzCvnNGtzEFRtpIEtZ0cuctxeIF1id5rncrfzdMDsmZyRHAOoZ9VtuD6mzj0ybQWMACb7eIHjZDCee3Slh3TVrLy06YRdq2I4rnbjMOPePtK5xnIpHGpAXkB3IONxyITpSLKsA4hCeP7gVvm7r7TuQg1ygiUBlWbBYnrniE5ROzqZjG1s7dQNZK/riiU2umGqGuwAb2IPvNiyuGR3cIgRE4llXH/rLuUlspAprno4nlxaz65VucmNbN1aMbDXLJVSqR1DuE00vEsL1AItI=rn=XQoyrn—–END PGP PUBLIC KEY BLOCK—–”,
“created_at”: “2017-09-05T09:17:46.264Z”

}


```

## Add a GPG key

Creates a new GPG key owned by the currently authenticated user.

`
POST /user/gpg_keys
`

Parameters:


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

key       | string | yes    | The new GPG key |



`bash
curl --data "key=-----BEGIN PGP PUBLIC KEY BLOCK-----\r\n\r\nxsBNBFV..."  --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/user/gpg_keys
`

Example response:

```json
[

	{
	“id”: 1,
“key”: “—–BEGIN PGP PUBLIC KEY BLOCK—–rnrnxsBNBFVjnlIBCACibzXOLCiZiL2oyzYUaTOCkYnSUhymg3pdbfKtd4mpBa58xKBjrnt1pTHVpw3Sk03wmzhM/Ndlt1AV2YhLv++83WKr+gAHFYFiCV/tnY8bx3HqvVoy8OrnCfxWhw4QZK7+oYzVmJj8ZJm3ZjOC4pzuegNWlNLCUdZDx9OKlHVXLCX1iUbjdYWarnqKV6tdV8hZolkbyjedQgrpvoWyeSHHpwHF7yk4gNJWMMI5rpcssL7i6mMXb/sDzOrnVaAtU5wiVducsOa01InRFf7QSTxoAm6Xy0PGv/k48M6xCALa9nY+BzlOv47jUT57rnvilf4Szy9dKD0v9S0mQ+IHB+gNukWrnwtXx5ABEBAAHNFm5hbWUgKGNvbW1lbnQprnIDxlbUBpbD7CwHUEEwECACkFAlVjnlIJEINgJNgv009/AhsDAhkBBgsJCAcDAgYVrnCAIJCgsEFgIDAQAAxqMIAFBHuBA8P1v8DtHonIK8Lx2qU23t8Mh68HBIkSjk2H7/rnoO2cDWCw50jZ9D91PXOOyMPvBWV2IE3tARzCvnNGtzEFRtpIEtZ0cuctxeIF1id5rncrfzdMDsmZyRHAOoZ9VtuD6mzj0ybQWMACb7eIHjZDCee3Slh3TVrLy06YRdq2I4rnbjMOPePtK5xnIpHGpAXkB3IONxyITpSLKsA4hCeP7gVvm7r7TuQg1ygiUBlWbBYnrniE5ROzqZjG1s7dQNZK/riiU2umGqGuwAb2IPvNiyuGR3cIgRE4llXH/rLuUlspAprno4nlxaz65VucmNbN1aMbDXLJVSqR1DuE00vEsL1AItI=rn=XQoyrn—–END PGP PUBLIC KEY BLOCK—–”,
“created_at”: “2017-09-05T09:17:46.264Z”

}

]

Delete a GPG key

Delete a GPG key owned by currently authenticated user.

`
DELETE /user/gpg_keys/:key_id
`

Parameters:

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

key_id | integer | yes | The ID of the GPG key |

`bash
curl --request DELETE --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/user/gpg_keys/1
`

Returns 204 No Content on success, or 404 Not found if the key cannot be found.

List all GPG keys for given user

Get a list of a specified user’s GPG keys. Available only for admins.

`
GET /users/:id/gpg_keys
`

Parameters:

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer | yes | The ID of the user |

`bash
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/users/2/gpg_keys
`

Example response:

```json
[



	{
	“id”: 1,
“key”: “—–BEGIN PGP PUBLIC KEY BLOCK—–rnrnxsBNBFVjnlIBCACibzXOLCiZiL2oyzYUaTOCkYnSUhymg3pdbfKtd4mpBa58xKBjrnt1pTHVpw3Sk03wmzhM/Ndlt1AV2YhLv++83WKr+gAHFYFiCV/tnY8bx3HqvVoy8OrnCfxWhw4QZK7+oYzVmJj8ZJm3ZjOC4pzuegNWlNLCUdZDx9OKlHVXLCX1iUbjdYWarnqKV6tdV8hZolkbyjedQgrpvoWyeSHHpwHF7yk4gNJWMMI5rpcssL7i6mMXb/sDzOrnVaAtU5wiVducsOa01InRFf7QSTxoAm6Xy0PGv/k48M6xCALa9nY+BzlOv47jUT57rnvilf4Szy9dKD0v9S0mQ+IHB+gNukWrnwtXx5ABEBAAHNFm5hbWUgKGNvbW1lbnQprnIDxlbUBpbD7CwHUEEwECACkFAlVjnlIJEINgJNgv009/AhsDAhkBBgsJCAcDAgYVrnCAIJCgsEFgIDAQAAxqMIAFBHuBA8P1v8DtHonIK8Lx2qU23t8Mh68HBIkSjk2H7/rnoO2cDWCw50jZ9D91PXOOyMPvBWV2IE3tARzCvnNGtzEFRtpIEtZ0cuctxeIF1id5rncrfzdMDsmZyRHAOoZ9VtuD6mzj0ybQWMACb7eIHjZDCee3Slh3TVrLy06YRdq2I4rnbjMOPePtK5xnIpHGpAXkB3IONxyITpSLKsA4hCeP7gVvm7r7TuQg1ygiUBlWbBYnrniE5ROzqZjG1s7dQNZK/riiU2umGqGuwAb2IPvNiyuGR3cIgRE4llXH/rLuUlspAprno4nlxaz65VucmNbN1aMbDXLJVSqR1DuE00vEsL1AItI=rn=XQoyrn—–END PGP PUBLIC KEY BLOCK—–”,
“created_at”: “2017-09-05T09:17:46.264Z”





}







]

## Get a specific GPG key for a given user

Get a specific GPG key for a given user. Available only for admins.

`
GET /users/:id/gpg_keys/:key_id
`

Parameters:


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id      | integer | yes   | The ID of the user |

key_id  | integer | yes   | The ID of the GPG key |



`bash
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/users/2/gpg_keys/1
`

Example response:


	```json
	
	{
	“id”: 1,
“key”: “—–BEGIN PGP PUBLIC KEY BLOCK—–rnrnxsBNBFVjnlIBCACibzXOLCiZiL2oyzYUaTOCkYnSUhymg3pdbfKtd4mpBa58xKBjrnt1pTHVpw3Sk03wmzhM/Ndlt1AV2YhLv++83WKr+gAHFYFiCV/tnY8bx3HqvVoy8OrnCfxWhw4QZK7+oYzVmJj8ZJm3ZjOC4pzuegNWlNLCUdZDx9OKlHVXLCX1iUbjdYWarnqKV6tdV8hZolkbyjedQgrpvoWyeSHHpwHF7yk4gNJWMMI5rpcssL7i6mMXb/sDzOrnVaAtU5wiVducsOa01InRFf7QSTxoAm6Xy0PGv/k48M6xCALa9nY+BzlOv47jUT57rnvilf4Szy9dKD0v9S0mQ+IHB+gNukWrnwtXx5ABEBAAHNFm5hbWUgKGNvbW1lbnQprnIDxlbUBpbD7CwHUEEwECACkFAlVjnlIJEINgJNgv009/AhsDAhkBBgsJCAcDAgYVrnCAIJCgsEFgIDAQAAxqMIAFBHuBA8P1v8DtHonIK8Lx2qU23t8Mh68HBIkSjk2H7/rnoO2cDWCw50jZ9D91PXOOyMPvBWV2IE3tARzCvnNGtzEFRtpIEtZ0cuctxeIF1id5rncrfzdMDsmZyRHAOoZ9VtuD6mzj0ybQWMACb7eIHjZDCee3Slh3TVrLy06YRdq2I4rnbjMOPePtK5xnIpHGpAXkB3IONxyITpSLKsA4hCeP7gVvm7r7TuQg1ygiUBlWbBYnrniE5ROzqZjG1s7dQNZK/riiU2umGqGuwAb2IPvNiyuGR3cIgRE4llXH/rLuUlspAprno4nlxaz65VucmNbN1aMbDXLJVSqR1DuE00vEsL1AItI=rn=XQoyrn—–END PGP PUBLIC KEY BLOCK—–”,
“created_at”: “2017-09-05T09:17:46.264Z”

}


```

## Add a GPG key for a given user

Create new GPG key owned by the specified user. Available only for admins.

`
POST /users/:id/gpg_keys
`

Parameters:


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id      | integer | yes   | The ID of the user |

key_id  | integer | yes   | The ID of the GPG key |



`bash
curl --data "key=-----BEGIN PGP PUBLIC KEY BLOCK-----\r\n\r\nxsBNBFV..."  --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/users/2/gpg_keys
`

Example response:

```json
[

	{
	“id”: 1,
“key”: “—–BEGIN PGP PUBLIC KEY BLOCK—–rnrnxsBNBFVjnlIBCACibzXOLCiZiL2oyzYUaTOCkYnSUhymg3pdbfKtd4mpBa58xKBjrnt1pTHVpw3Sk03wmzhM/Ndlt1AV2YhLv++83WKr+gAHFYFiCV/tnY8bx3HqvVoy8OrnCfxWhw4QZK7+oYzVmJj8ZJm3ZjOC4pzuegNWlNLCUdZDx9OKlHVXLCX1iUbjdYWarnqKV6tdV8hZolkbyjedQgrpvoWyeSHHpwHF7yk4gNJWMMI5rpcssL7i6mMXb/sDzOrnVaAtU5wiVducsOa01InRFf7QSTxoAm6Xy0PGv/k48M6xCALa9nY+BzlOv47jUT57rnvilf4Szy9dKD0v9S0mQ+IHB+gNukWrnwtXx5ABEBAAHNFm5hbWUgKGNvbW1lbnQprnIDxlbUBpbD7CwHUEEwECACkFAlVjnlIJEINgJNgv009/AhsDAhkBBgsJCAcDAgYVrnCAIJCgsEFgIDAQAAxqMIAFBHuBA8P1v8DtHonIK8Lx2qU23t8Mh68HBIkSjk2H7/rnoO2cDWCw50jZ9D91PXOOyMPvBWV2IE3tARzCvnNGtzEFRtpIEtZ0cuctxeIF1id5rncrfzdMDsmZyRHAOoZ9VtuD6mzj0ybQWMACb7eIHjZDCee3Slh3TVrLy06YRdq2I4rnbjMOPePtK5xnIpHGpAXkB3IONxyITpSLKsA4hCeP7gVvm7r7TuQg1ygiUBlWbBYnrniE5ROzqZjG1s7dQNZK/riiU2umGqGuwAb2IPvNiyuGR3cIgRE4llXH/rLuUlspAprno4nlxaz65VucmNbN1aMbDXLJVSqR1DuE00vEsL1AItI=rn=XQoyrn—–END PGP PUBLIC KEY BLOCK—–”,
“created_at”: “2017-09-05T09:17:46.264Z”

}

]

Delete a GPG key for a given user

Delete a GPG key owned by a specified user. Available only for admins.

`
DELETE /users/:id/gpg_keys/:key_id
`

Parameters:

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer | yes | The ID of the user |

key_id | integer | yes | The ID of the GPG key |

`bash
curl --request DELETE --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/users/2/gpg_keys/1
`

List emails

Get a list of currently authenticated user’s emails.

`
GET /user/emails
`

```json
[



	{
	“id”: 1,
“email”: “email@example.com”





},
{


“id”: 3,
“email”: “email2@example.com”




}







]

Parameters:


	none




## List emails for user

Get a list of a specified user’s emails. Available only for admin

`
GET /users/:id/emails
`

Parameters:


	id (required) - id of specified user




## Single email

Get a single email.

`
GET /user/emails/:email_id
`

Parameters:


	email_id (required) - email ID




```json
{

“id”: 1,
“email”: “email@example.com”

}

Add email

Creates a new email owned by the currently authenticated user.

`
POST /user/emails
`

Parameters:

	email (required) - email address


```json
{


“id”: 4,
“email”: “email@example.com”







}

Will return created email with status 201 Created on success. If an
error occurs a 400 Bad Request is returned with a message explaining the error:

```json
{

	“message”: {
	
	“email”: [
	“has already been taken”

]

}

}

Add email for user

Create new email owned by specified user. Available only for admin

`
POST /users/:id/emails
`

Parameters:

	id (required) - id of specified user

	email (required) - email address

Delete email for current user

Deletes email owned by currently authenticated user.
This returns a 204 No Content status code if the operation was successfully or 404 if the resource was not found.

`
DELETE /user/emails/:email_id
`

Parameters:

	email_id (required) - email ID

Delete email for given user

Deletes email owned by a specified user. Available only for admin.

`
DELETE /users/:id/emails/:email_id
`

Parameters:

	id (required) - id of specified user

	email_id (required) - email ID

Block user

Blocks the specified user. Available only for admin.

`
POST /users/:id/block
`

Parameters:

	id (required) - id of specified user

Will return 201 OK on success, 404 User Not Found is user cannot be found or
403 Forbidden when trying to block an already blocked user by LDAP synchronization.

Unblock user

Unblocks the specified user. Available only for admin.

`
POST /users/:id/unblock
`

Parameters:

	id (required) - id of specified user

Will return 201 OK on success, 404 User Not Found is user cannot be found or
403 Forbidden when trying to unblock a user blocked by LDAP synchronization.

Get user contribution events

Please refer to the [Events API documentation](events.md#get-user-contribution-events)

Get all impersonation tokens of a user

> Requires admin permissions.

It retrieves every impersonation token of the user. Use the pagination
parameters page and per_page to restrict the list of impersonation tokens.

`
GET /users/:user_id/impersonation_tokens
`

Parameters:

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

user_id | integer | yes | The ID of the user |

state | string | no | filter tokens based on state (all, active, inactive) |

`
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/users/42/impersonation_tokens
`

Example response:

```json
[



	{
	“active” : true,
“token” : “EsMo-vhKfXGwX9RKrwiy”,
“scopes” : [


“api”




],
“revoked” : false,
“name” : “mytoken”,
“id” : 2,
“created_at” : “2017-03-17T17:18:09.283Z”,
“impersonation” : true,
“expires_at” : “2017-04-04”





},
{


“active” : false,
“scopes” : [


“read_user”




],
“revoked” : true,
“token” : “ZcZRpLeEuQRprkRjYydY”,
“name” : “mytoken2”,
“created_at” : “2017-03-17T17:19:28.697Z”,
“id” : 3,
“impersonation” : true,
“expires_at” : “2017-04-14”




}







]

## Get an impersonation token of a user

> Requires admin permissions.

It shows a user’s impersonation token.

`
GET /users/:user_id/impersonation_tokens/:impersonation_token_id
`

Parameters:


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

user_id | integer | yes | The ID of the user |

impersonation_token_id | integer | yes | The ID of the impersonation token |



`
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/users/42/impersonation_tokens/2
`

Example response:

```json
{

“active” : true,
“token” : “EsMo-vhKfXGwX9RKrwiy”,
“scopes” : [

“api”

],
“revoked” : false,
“name” : “mytoken”,
“id” : 2,
“created_at” : “2017-03-17T17:18:09.283Z”,
“impersonation” : true,
“expires_at” : “2017-04-04”

}

Create an impersonation token

> Requires admin permissions.

It creates a new impersonation token. Note that only administrators can do this.
You are only able to create impersonation tokens to impersonate the user and perform
both API calls and Git reads and writes. The user will not see these tokens in their profile
settings page.

`
POST /users/:user_id/impersonation_tokens
`

Parameters:

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

user_id | integer | yes | The ID of the user |

name | string | yes | The name of the impersonation token |

expires_at | date | no | The expiration date of the impersonation token in ISO format (YYYY-MM-DD)|

scopes | array | yes | The array of scopes of the impersonation token (api, read_user) |

`
curl --request POST --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" --data "name=mytoken" --data "expires_at=2017-04-04" --data "scopes[]=api" https://gitlab.example.com/api/v4/users/42/impersonation_tokens
`

Example response:

```json
{


“id” : 2,
“revoked” : false,
“scopes” : [


“api”




],
“token” : “EsMo-vhKfXGwX9RKrwiy”,
“active” : true,
“impersonation” : true,
“name” : “mytoken”,
“created_at” : “2017-03-17T17:18:09.283Z”,
“expires_at” : “2017-04-04”







}

## Revoke an impersonation token

> Requires admin permissions.

It revokes an impersonation token.

`
DELETE /users/:user_id/impersonation_tokens/:impersonation_token_id
`

`
curl --request DELETE --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/users/42/impersonation_tokens/1
`

Parameters:


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

user_id | integer | yes | The ID of the user |

impersonation_token_id | integer | yes | The ID of the impersonation token |



### Get user activities (admin only)

>**Note:** This API endpoint is only available on 8.15 (EE) and 9.1 (CE) and above.

Get the last activity date for all users, sorted from oldest to newest.

The activities that update the timestamp are:



	Git HTTP/SSH activities (such as clone, push)


	User logging in into GitLab







By default, it shows the activity for all users in the last 6 months, but this can be
amended by using the from parameter.

`
GET /user/activities
`

Parameters:


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

from | string | no | Date string in the format YEAR-MONTH-DAY, e.g. 2016-03-11. Defaults to 6 months ago. |



`bash
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/user/activities
`

Example response:

```json
[

	{
	“username”: “user1”,
“last_activity_on”: “2015-12-14”,
“last_activity_at”: “2015-12-14”

},
{

“username”: “user2”,
“last_activity_on”: “2015-12-15”,
“last_activity_at”: “2015-12-15”

},
{

“username”: “user3”,
“last_activity_on”: “2015-12-16”,
“last_activity_at”: “2015-12-16”

}

]

Please note that last_activity_at is deprecated, please use last_activity_on.

[gemojione-index]: https://github.com/jonathanwiesel/gemojione/blob/master/config/index.json

 # API V3 to API V4

Since GitLab 9.0, API V4 is the preferred version to be used.

API V3 was unsupported from GitLab 9.5, released on August
22, 2017. API v3 was removed in [GitLab 11.0](https://gitlab.com/gitlab-org/gitlab-ce/issues/36819).
The V3 API documentation is still
[available](https://gitlab.com/gitlab-org/gitlab-ce/blob/8-16-stable/doc/api/README.md).

Below are the changes made between V3 and V4.

8.17

	Removed GET /projects/:search (use: GET /projects?search=x) [!8877](https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/8877)

	iid filter has been removed from GET /projects/:id/issues [!8967](https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/8967)

	GET /projects/:id/merge_requests?iid[]=x&iid[]=y array filter has been renamed to iids [!8793](https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/8793)

	Endpoints under GET /projects/merge_request/:id have been removed (use: GET /projects/merge_requests/:id) [!8793](https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/8793)

	Project snippets do not return deprecated field expires_at [!8723](https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/8723)

	Endpoints under GET /projects/:id/keys have been removed (use GET /projects/:id/deploy_keys) [!8716](https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/8716)

9.0

	Status 409 returned for POST /projects/:id/members when a member already exists [!9093](https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/9093)

	Moved DELETE /projects/:id/star to POST /projects/:id/unstar [!9328](https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/9328)

	Removed the following deprecated Templates endpoints (these are still accessible with /templates prefix) [!8853](https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/8853)
- /licences
- /licences/:key
- /gitignores
- /gitlab_ci_ymls
- /dockerfiles
- /gitignores/:key
- /gitlab_ci_ymls/:key
- /dockerfiles/:key

	Moved POST /projects/fork/:id to POST /projects/:id/fork [!8940](https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/8940)

	Moved DELETE /todos to POST /todos/mark_as_done and DELETE /todos/:todo_id to POST /todos/:todo_id/mark_as_done [!9410](https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/9410)

	Project filters are no longer available as GET /projects/foo, but as GET /projects?foo=true instead [!8962](https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/8962)
- GET /projects/visible & GET /projects/all are consolidated into GET /projects and can be used with or without authorization
- GET /projects/owned moved to GET /projects?owned=true
- GET /projects/starred moved to GET /projects?starred=true

	GET /projects returns all projects visible to current user, even if the user is not a member [!9674](https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/9674)
- To get projects the user is a member of, use GET /projects?membership=true

	Return pagination headers for all endpoints that return an array [!8606](https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/8606)

	Added POST /environments/:environment_id/stop to stop an environment [!8808](https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/8808)

	Removed DELETE /projects/:id/deploy_keys/:key_id/disable. Use DELETE /projects/:id/deploy_keys/:key_id instead [!9366](https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/9366)

	Moved PUT /users/:id/(block|unblock) to POST /users/:id/(block|unblock) [!9371](https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/9371)

	Make subscription API more RESTful. Use POST /projects/:id/:subscribable_type/:subscribable_id/subscribe to subscribe and POST /projects/:id/:subscribable_type/:subscribable_id/unsubscribe to unsubscribe from a resource. [!9325](https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/9325)

	Labels filter on GET /projects/:id/issues and GET /issues now matches only issues containing all labels (i.e.: Logical AND, not OR) [!8849](https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/8849)

	Renamed param branch_name to branch on the following endpoints [!8936](https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/8936)
- POST /projects/:id/repository/branches
- POST /projects/:id/repository/commits
- POST/PUT/DELETE :id/repository/files

	Renamed the merge_when_build_succeeds parameter to merge_when_pipeline_succeeds on the following endpoints: [!9335](https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/)
- PUT /projects/:id/merge_requests/:merge_request_id/merge
- POST /projects/:id/merge_requests/:merge_request_id/cancel_merge_when_pipeline_succeeds
- POST /projects
- POST /projects/user/:user_id
- PUT /projects/:id

	Renamed branch_name to branch on DELETE /projects/:id/repository/branches/:branch response [!8936](https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/8936)

	Remove public param from create and edit actions of projects [!8736](https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/8736)

	Remove subscribed field from responses returning list of issues or merge
requests. Fetch individual issues or merge requests to obtain the value
of subscribed
[!9661](https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/9661)

	Use visibility as string parameter everywhere [!9337](https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/9337)

	Notes do not return deprecated field upvote and downvote [!9384](https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/9384)

	Return HTTP status code 400 for all validation errors when creating or updating a member instead of sometimes 422 error. [!9523](https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/9523)

	Remove GET /groups/owned. Use GET /groups?owned=true instead [!9505](https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/9505)

	Return 202 with JSON body on async removals on V4 API (DELETE /projects/:id/repository/merged_branches and DELETE /projects/:id) [!9449](https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/9449)

	GET /projects/:id/milestones?iid[]=x&iid[]=y array filter has been renamed to iids [!9096](https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/9096)

	Return basic info about pipeline in GET /projects/:id/pipelines [!8875](https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/8875)

	Renamed all build references to job [!9463](https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/9463)

	Drop GET /projects/:id/repository/commits/:sha/jobs [!9463](https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/9463)

	Rename Build Triggers to be Pipeline Triggers API [!9713](https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/9713)
- POST /projects/:id/trigger/builds to POST /projects/:id/trigger/pipeline
- Require description when creating a new trigger POST /projects/:id/triggers

	Simplify project payload exposed on Environment endpoints [!9675](https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/9675)

	API uses merge request `IID`s (internal ID, as in the web UI) rather than `ID`s. This affects the merge requests, award emoji, todos, and time tracking APIs. [!9530](https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/9530)

	API uses issue `IID`s (internal ID, as in the web UI) rather than `ID`s. This affects the issues, award emoji, todos, and time tracking APIs. [!9530](https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/9530)

	Change initial page from 0 to 1 on GET /projects/:id/repository/commits (like on the rest of the API) [!9679] (https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/9679)

	Return correct Link header data for GET /projects/:id/repository/commits [!9679] (https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/9679)

	Update endpoints for repository files [!9637](https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/9637)
- Moved GET /projects/:id/repository/files?file_path=:file_path to GET /projects/:id/repository/files/:file_path (:file_path should be URL-encoded)
- GET /projects/:id/repository/blobs/:sha now returns JSON attributes for the blob identified by :sha, instead of finding the commit identified by :sha and returning the raw content of the blob in that commit identified by the required ?filepath=:filepath
- Moved GET /projects/:id/repository/commits/:sha/blob?file_path=:file_path and GET /projects/:id/repository/blobs/:sha?file_path=:file_path to GET /projects/:id/repository/files/:file_path/raw?ref=:sha
- GET /projects/:id/repository/tree parameter ref_name has been renamed to ref for consistency

	confirm parameter for POST /users has been deprecated in favor of skip_confirmation parameter

 # Version API

>**Note:** This feature was introduced in GitLab 8.13

Retrieve version information for this GitLab instance. Responds 200 OK for
authenticated users.

`
GET /version
`

`bash
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/version
`

Example response:

```json
{


“version”: “8.13.0-pre”,
“revision”: “4e963fe”





}





            

          

      

      

    

  

    
      
          
            
  # Wikis API

> [Introduced][ce-13372] in GitLab 10.0.

Available only in APIv4.

## List wiki pages

Get all wiki pages for a given project.

`
GET /projects/:id/wikis
`


Attribute | Type    | Required | Description           |

——— | ——- | ——– | ——————— |

id      | integer/string    | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |

with_content      | boolean    | no      | Include pages’ content  |



`bash
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/1/wikis?with_content=1
`

Example response:

```json
[

	{
	“content” : “Here is an instruction how to deploy this project.”,
“format” : “markdown”,
“slug” : “deploy”,
“title” : “deploy”

},
{

“content” : “Our development process is described here.”,
“format” : “markdown”,
“slug” : “development”,
“title” : “development”

	},{
	“content” : “* [Deploy](deploy)n* [Development](development)”,
“format” : “markdown”,
“slug” : “home”,
“title” : “home”

}

]

Get a wiki page

Get a wiki page for a given project.

`
GET /projects/:id/wikis/:slug
`

Attribute | Type | Required | Description |

——— | ——- | ——– | ——————— |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |

slug | string | yes | The slug (a unique string) of the wiki page |

`bash
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/projects/1/wikis/home
`

Example response:

```json
[



	{
	“content” : “home page”,
“format” : “markdown”,
“slug” : “home”,
“title” : “home”





}







]

## Create a new wiki page

Creates a new wiki page for the given repository with the given title, slug, and content.

`
POST /projects/:id/wikis
`


Attribute     | Type    | Required | Description                  |

————- | ——- | ——– | —————————- |

id      | integer/string    | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |

content       | string  | yes      | The content of the wiki page |

title        | string  | yes      | The title of the wiki page        |

format | string  | no       | The format of the wiki page. Available formats are: markdown (default), rdoc, and asciidoc |



`bash
curl --data "format=rdoc&title=Hello&content=Hello world" --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" "https://gitlab.example.com/api/v4/projects/1/wikis"
`

Example response:

```json
{

“content” : “Hello world”,
“format” : “markdown”,
“slug” : “Hello”,
“title” : “Hello”

}

Edit an existing wiki page

Updates an existing wiki page. At least one parameter is required to update the wiki page.

`
PUT /projects/:id/wikis/:slug
`

Attribute | Type | Required | Description |

————— | ——- | ——————————— | ——————————- |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |

content | string | yes if title is not provided | The content of the wiki page |

title | string | yes if content is not provided | The title of the wiki page |

format | string | no | The format of the wiki page. Available formats are: markdown (default), rdoc, and asciidoc |

slug | string | yes | The slug (a unique string) of the wiki page |

`bash
curl --request PUT --data "format=rdoc&content=documentation&title=Docs" --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" "https://gitlab.example.com/api/v4/projects/1/wikis/foo"
`

Example response:

```json
{


“content” : “documentation”,
“format” : “markdown”,
“slug” : “Docs”,
“title” : “Docs”







}

## Delete a wiki page

Deletes a wiki page with a given slug.

`
DELETE /projects/:id/wikis/:slug
`


Attribute | Type    | Required | Description           |

——— | ——- | ——– | ——————— |

id      | integer/string    | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |

slug | string  | yes       | The slug (a unique string) of the wiki page |



`bash
curl --request DELETE --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" "https://gitlab.example.com/api/v4/projects/1/wikis/foo"
`

On success the HTTP status code is 204 and no JSON response is expected.

[ce-13372]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/13372





            

          

      

      

    

  

    
      
          
            
  # GraphQL API (Alpha)

> [Introduced][ce-19008] in GitLab 11.0.

[GraphQL](https://graphql.org/) is a query language for APIs that
allows clients to request exactly the data they need, making it
possible to get all required data in a limited number of requests.

The GraphQL data (fields) can be described in the form of types,
allowing clients to use [clientside GraphQL
libraries](https://graphql.org/code/#graphql-clients) to consume the
API and avoid manual parsing.

Since there’s no fixed endpoints and datamodel, new abilities can be
added to the API without creating breaking changes. This allows us to
have a versionless API as described in [the GraphQL
documentation](https://graphql.org/learn/best-practices/#versioning).

## Enabling the GraphQL feature

The GraphQL API itself is currently in Alpha, and therefore hidden behind a
feature flag. You can enable the feature using the [features api][features-api] on a self-hosted instance.

For example:

`shell
curl --data "value=100" --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/features/graphql
`

## Available queries

A first iteration of a GraphQL API includes a query for: project. Within a project it is also possible to fetch a mergeRequest by IID.

## GraphiQL

The API can be explored by using the GraphiQL IDE, it is available on your
instance on gitlab.example.com/-/graphql-explorer.

[ce-19008]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/19008
[features-api]: ../features.md



            

          

      

      

    

  

    
      
          
            
  # Gitignores API

## List gitignore templates

Get all gitignore templates.

`
GET /templates/gitignores
`

`bash
curl https://gitlab.example.com/api/v4/templates/gitignores
`

Example response:

```json
[

	{
	“name”: “AppEngine”

},
{

“name”: “Laravel”

},
{

“name”: “Elisp”

},
{

“name”: “SketchUp”

},
{

“name”: “Ada”

},
{

“name”: “Ruby”

},
{

“name”: “Kohana”

},
{

“name”: “Nanoc”

},
{

“name”: “Erlang”

},
{

“name”: “OCaml”

},
{

“name”: “Lithium”

},
{

“name”: “Fortran”

},
{

“name”: “Scala”

},
{

“name”: “Node”

},
{

“name”: “Fancy”

},
{

“name”: “Perl”

},
{

“name”: “Zephir”

},
{

“name”: “WordPress”

},
{

“name”: “Symfony”

},
{

“name”: “FuelPHP”

},
{

“name”: “DM”

},
{

“name”: “Sdcc”

},
{

“name”: “Rust”

},
{

“name”: “C”

},
{

“name”: “Umbraco”

},
{

“name”: “Actionscript”

},
{

“name”: “Android”

},
{

“name”: “Grails”

},
{

“name”: “Composer”

},
{

“name”: “ExpressionEngine”

},
{

“name”: “Gcov”

},
{

“name”: “Qt”

},
{

“name”: “Phalcon”

},
{

“name”: “ArchLinuxPackages”

},
{

“name”: “TeX”

},
{

“name”: “SCons”

},
{

“name”: “Lilypond”

},
{

“name”: “CommonLisp”

},
{

“name”: “Rails”

},
{

“name”: “Mercury”

},
{

“name”: “Magento”

},
{

“name”: “ChefCookbook”

},
{

“name”: “GitBook”

},
{

“name”: “C++”

},
{

“name”: “Eagle”

},
{

“name”: “Go”

},
{

“name”: “OpenCart”

},
{

“name”: “Scheme”

},
{

“name”: “Typo3”

},
{

“name”: “SeamGen”

},
{

“name”: “Swift”

},
{

“name”: “Elm”

},
{

“name”: “Unity”

},
{

“name”: “Agda”

},
{

“name”: “CUDA”

},
{

“name”: “VVVV”

},
{

“name”: “Finale”

},
{

“name”: “LemonStand”

},
{

“name”: “Textpattern”

},
{

“name”: “Julia”

},
{

“name”: “Packer”

},
{

“name”: “Scrivener”

},
{

“name”: “Dart”

},
{

“name”: “Plone”

},
{

“name”: “Jekyll”

},
{

“name”: “Xojo”

},
{

“name”: “LabVIEW”

},
{

“name”: “Autotools”

},
{

“name”: “KiCad”

},
{

“name”: “Prestashop”

},
{

“name”: “ROS”

},
{

“name”: “Smalltalk”

},
{

“name”: “GWT”

},
{

“name”: “OracleForms”

},
{

“name”: “SugarCRM”

},
{

“name”: “Nim”

},
{

“name”: “SymphonyCMS”

},
{

“name”: “Maven”

},
{

“name”: “CFWheels”

},
{

“name”: “Python”

},
{

“name”: “ZendFramework”

},
{

“name”: “CakePHP”

},
{

“name”: “Concrete5”

},
{

“name”: “PlayFramework”

},
{

“name”: “Terraform”

},
{

“name”: “Elixir”

},
{

“name”: “CMake”

},
{

“name”: “Joomla”

},
{

“name”: “Coq”

},
{

“name”: “Delphi”

},
{

“name”: “Haskell”

},
{

“name”: “Yii”

},
{

“name”: “Java”

},
{

“name”: “UnrealEngine”

},
{

“name”: “AppceleratorTitanium”

},
{

“name”: “CraftCMS”

},
{

“name”: “ForceDotCom”

},
{

“name”: “ExtJs”

},
{

“name”: “MetaProgrammingSystem”

},
{

“name”: “D”

},
{

“name”: “Objective-C”

},
{

“name”: “RhodesRhomobile”

},
{

“name”: “R”

},
{

“name”: “EPiServer”

},
{

“name”: “Yeoman”

},
{

“name”: “VisualStudio”

},
{

“name”: “Processing”

},
{

“name”: “Leiningen”

},
{

“name”: “Stella”

},
{

“name”: “Opa”

},
{

“name”: “Drupal”

},
{

“name”: “TurboGears2”

},
{

“name”: “Idris”

},
{

“name”: “Jboss”

},
{

“name”: “CodeIgniter”

},
{

“name”: “Qooxdoo”

},
{

“name”: “Waf”

},
{

“name”: “Sass”

},
{

“name”: “Lua”

},
{

“name”: “Clojure”

},
{

“name”: “IGORPro”

},
{

“name”: “Gradle”

},
{

“name”: “Archives”

},
{

“name”: “SynopsysVCS”

},
{

“name”: “Ninja”

},
{

“name”: “Tags”

},
{

“name”: “OSX”

},
{

“name”: “Dreamweaver”

},
{

“name”: “CodeKit”

},
{

“name”: “NotepadPP”

},
{

“name”: “VisualStudioCode”

},
{

“name”: “Mercurial”

},
{

“name”: “BricxCC”

},
{

“name”: “DartEditor”

},
{

“name”: “Eclipse”

},
{

“name”: “Cloud9”

},
{

“name”: “TortoiseGit”

},
{

“name”: “NetBeans”

},
{

“name”: “GPG”

},
{

“name”: “Espresso”

},
{

“name”: “Redcar”

},
{

“name”: “Xcode”

},
{

“name”: “Matlab”

},
{

“name”: “LyX”

},
{

“name”: “SlickEdit”

},
{

“name”: “Dropbox”

},
{

“name”: “CVS”

},
{

“name”: “Calabash”

},
{

“name”: “JDeveloper”

},
{

“name”: “Vagrant”

},
{

“name”: “IPythonNotebook”

},
{

“name”: “TextMate”

},
{

“name”: “Ensime”

},
{

“name”: “WebMethods”

},
{

“name”: “VirtualEnv”

},
{

“name”: “Emacs”

},
{

“name”: “Momentics”

},
{

“name”: “JetBrains”

},
{

“name”: “SublimeText”

},
{

“name”: “Kate”

},
{

“name”: “ModelSim”

},
{

“name”: “Redis”

},
{

“name”: “KDevelop4”

},
{

“name”: “Bazaar”

},
{

“name”: “Linux”

},
{

“name”: “Windows”

},
{

“name”: “XilinxISE”

},
{

“name”: “Lazarus”

},
{

“name”: “EiffelStudio”

},
{

“name”: “Anjuta”

},
{

“name”: “Vim”

},
{

“name”: “Otto”

},
{

“name”: “MicrosoftOffice”

},
{

“name”: “LibreOffice”

},
{

“name”: “SBT”

},
{

“name”: “MonoDevelop”

},
{

“name”: “SVN”

},
{

“name”: “FlexBuilder”

}

]

Single gitignore template

Get a single gitignore template.

`
GET /templates/gitignores/:key
`

Attribute | Type | Required | Description |

———- | —— | ——– | ———– |

key | string | yes | The key of the gitignore template |

`bash
curl https://gitlab.example.com/api/v4/templates/gitignores/Ruby
`

Example response:

```json
{


“name”: “Ruby”,
“content”: “.gemn.rbcn/.confign/coverage/n/InstalledFilesn/pkg/n/spec/reports/n/spec/examples.txtn/test/tmp/n/test/version_tmp/n/tmp/nn# Used by dotenv library to load environment variables.n# .envnn## Specific to RubyMotion:n.dat*n.repl_historynbuild/n*.bridgesupportnbuild-iPhoneOS/nbuild-iPhoneSimulator/nn## Specific to RubyMotion (use of CocoaPods):n#n# We recommend against adding the Pods directory to your .gitignore. Howevern# you should judge for yourself, the pros and cons are mentioned at:n# https://guides.cocoapods.org/using/using-cocoapods.html#should-i-check-the-pods-directory-into-source-controln#n# vendor/Pods/nn## Documentation cache and generated files:n/.yardoc/n/_yardoc/n/doc/n/rdoc/nn## Environment normalization:n/.bundle/n/vendor/bundlen/lib/bundler/man/nn# for a library or gem, you might want to ignore these files since the code isn# intended to run in multiple environments; otherwise, check them in:n# Gemfile.lockn# .ruby-versionn# .ruby-gemsetnn# unless supporting rvm < 1.11.0 or doing something fancy, ignore this:n.rvmrcn”







}





            

          

      

      

    

  

    
      
          
            
  # GitLab CI YMLs API

## List GitLab CI YML templates

Get all GitLab CI YML templates.

`
GET /templates/gitlab_ci_ymls
`

`bash
curl https://gitlab.example.com/api/v4/templates/gitlab_ci_ymls
`

Example response:

```json
[

	{
	“name”: “C++”

},
{

“name”: “Docker”

},
{

“name”: “Elixir”

},
{

“name”: “LaTeX”

},
{

“name”: “Grails”

},
{

“name”: “Rust”

},
{

“name”: “Nodejs”

},
{

“name”: “Ruby”

},
{

“name”: “Scala”

},
{

“name”: “Maven”

},
{

“name”: “Harp”

},
{

“name”: “Pelican”

},
{

“name”: “Hyde”

},
{

“name”: “Nanoc”

},
{

“name”: “Octopress”

},
{

“name”: “JBake”

},
{

“name”: “HTML”

},
{

“name”: “Hugo”

},
{

“name”: “Metalsmith”

},
{

“name”: “Hexo”

},
{

“name”: “Lektor”

},
{

“name”: “Doxygen”

},
{

“name”: “Brunch”

},
{

“name”: “Jekyll”

},
{

“name”: “Middleman”

}

]

Single GitLab CI YML template

Get a single GitLab CI YML template.

`
GET /templates/gitlab_ci_ymls/:key
`

Attribute | Type | Required | Description |

———- | —— | ——– | ———– |

key | string | yes | The key of the GitLab CI YML template |

`bash
curl https://gitlab.example.com/api/v4/templates/gitlab_ci_ymls/Ruby
`

Example response:

```json
{


“name”: “Ruby”,
“content”: “# This file is a template, and might need editing before it works on your project.n# Official language image. Look for the different tagged releases at:n# https://hub.docker.com/r/library/ruby/tags/nimage: "ruby:2.3"nn# Pick zero or more services to be used on all builds.n# Only needed when using a docker container to run your tests in.n# Check out: http://docs.gitlab.com/ce/ci/docker/using_docker_images.html#what-is-servicenservices:n  - mysql:latestn  - redis:latestn  - postgres:latestnnvariables:n  POSTGRES_DB: database_namenn# Cache gems in between buildsncache:n  paths:n    - vendor/rubynn# This is a basic example for a gem or script which doesn’t usen# services such as redis or postgresnbefore_script:n  - ruby -v                                   # Print out ruby version for debuggingn  # Uncomment next line if your rails app needs a JS runtime:n  # - apt-get update -q && apt-get install nodejs -yqqn  - gem install bundler  –no-ri –no-rdoc    # Bundler is not installed with the imagen  - bundle install -j $(nproc) –path vendor  # Install dependencies into ./vendor/rubynn# Optional - Delete if not using rubocopnrubocop:n  script:n  - rubocopnnrspec:n  script:n  - rspec specnnrails:n  variables:n    DATABASE_URL: "postgresql://postgres:postgres@postgres:5432/$POSTGRES_DB"n  script:n  - bundle exec rake db:migraten  - bundle exec rake db:seedn  - bundle exec rake testn”







}





            

          

      

      

    

  

    
      
          
            
  # Licenses API

## List license templates

Get all license templates.

`
GET /templates/licenses
`


Attribute | Type    | Required | Description           |

——— | ——- | ——– | ——————— |

popular | boolean | no       | If passed, returns only popular licenses |



`bash
curl https://gitlab.example.com/api/v4/templates/licenses?popular=1
`

Example response:

```json
[

	{
	“key”: “apache-2.0”,
“name”: “Apache License 2.0”,
“nickname”: null,
“featured”: true,
“html_url”: “http://choosealicense.com/licenses/apache-2.0/”,
“source_url”: “http://www.apache.org/licenses/LICENSE-2.0.html”,
“description”: “A permissive license that also provides an express grant of patent rights from contributors to users.”,
“conditions”: [

“include-copyright”,
“document-changes”

],
“permissions”: [

“commercial-use”,
“modifications”,
“distribution”,
“patent-use”,
“private-use”

],
“limitations”: [

“trademark-use”,
“no-liability”

],
“content”: ” Apache Licensen Version 2.0, January 2004n […]”

},
{

“key”: “gpl-3.0”,
“name”: “GNU General Public License v3.0”,
“nickname”: “GNU GPLv3”,
“featured”: true,
“html_url”: “http://choosealicense.com/licenses/gpl-3.0/”,
“source_url”: “http://www.gnu.org/licenses/gpl-3.0.txt”,
“description”: “The GNU GPL is the most widely used free software license and has a strong copyleft requirement. When distributing derived works, the source code of the work must be made available under the same license.”,
“conditions”: [

“include-copyright”,
“document-changes”,
“disclose-source”,
“same-license”

],
“permissions”: [

“commercial-use”,
“modifications”,
“distribution”,
“patent-use”,
“private-use”

],
“limitations”: [

“no-liability”

],
“content”: ” GNU GENERAL PUBLIC LICENSEn Version 3, 29 June 2007n […]”

},
{

“key”: “mit”,
“name”: “MIT License”,
“nickname”: null,
“featured”: true,
“html_url”: “http://choosealicense.com/licenses/mit/”,
“source_url”: “http://opensource.org/licenses/MIT”,
“description”: “A permissive license that is short and to the point. It lets people do anything with your code with proper attribution and without warranty.”,
“conditions”: [

“include-copyright”

],
“permissions”: [

“commercial-use”,
“modifications”,
“distribution”,
“private-use”

],
“limitations”: [

“no-liability”

],
“content”: “The MIT License (MIT)nnCopyright (c) [year] [fullname]n […]”

}

]

Single license template

Get a single license template. You can pass parameters to replace the license
placeholder.

`
GET /templates/licenses/:key
`

Attribute | Type | Required | Description |

———- | —— | ——– | ———– |

key | string | yes | The key of the license template |

project | string | no | The copyrighted project name |

fullname | string | no | The full-name of the copyright holder |

>**Note:**
If you omit the fullname parameter but authenticate your request, the name of
the authenticated user will be used to replace the copyright holder placeholder.

`bash
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/templates/licenses/mit?project=My+Cool+Project
`

Example response:

```json
{


“key”: “mit”,
“name”: “MIT License”,
“nickname”: null,
“featured”: true,
“html_url”: “http://choosealicense.com/licenses/mit/”,
“source_url”: “http://opensource.org/licenses/MIT”,
“description”: “A permissive license that is short and to the point. It lets people do anything with your code with proper attribution and without warranty.”,
“conditions”: [


“include-copyright”




],
“permissions”: [


“commercial-use”,
“modifications”,
“distribution”,
“private-use”




],
“limitations”: [


“no-liability”




],
“content”: “The MIT License (MIT)nnCopyright (c) 2016 John Doen […]”







}





            

          

      

      

    

  

    
      
          
            
  —
comments: false
—

# Technical articles list (deprecated)

[Technical articles](../development/documentation/index.md#technical-articles) are
topic-related documentation, written with an user-friendly approach and language, aiming
to provide the community with guidance on specific processes to achieve certain objectives.

The list of technical articles was [deprecated](https://gitlab.com/gitlab-org/gitlab-ce/issues/41138) in favor of having them linked from their topic-related documentation:


	[Git](../topics/git/index.md)


	[GitLab administrator](../administration/index.md)


	[GitLab CI/CD](../ci/README.md)


	[GitLab Pages](../user/project/pages/index.md)


	[GitLab user](../user/index.md)


	[Install GitLab](../install/README.md)






            

          

      

      

    

  

    
      
          
            
  This document was moved to [another location](../../ci/examples/artifactory_and_gitlab/index.md)



            

          

      

      

    

  

    
      
          
            
  This document was moved to [another location](../../administration/auth/how_to_configure_ldap_gitlab_ce/index.md).



            

          

      

      

    

  

    
      
          
            
  This document was moved to [another location](../../topics/git/how_to_install_git/index.md).



            

          

      

      

    

  

    
      
          
            
  This document was moved to [another location](../../ci/examples/laravel_with_gitlab_and_envoy/index.md).



            

          

      

      

    

  

    
      
          
            
  This document was moved to [another location](../../topics/git/numerous_undo_possibilities_in_git/index.md).



            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘../../install/openshift_and_gitlab/index.html’
—



            

          

      

      

    

  

    
      
          
            
  This document was moved to [another location](https://docs.gitlab.com/runner/configuration/runner_autoscale_aws/index.html).



            

          

      

      

    

  

    
      
          
            
  —
comments: false
description: “Learn how to use GitLab CI/CD, the GitLab built-in Continuous Integration, Continuous Deployment, and Continuous Delivery toolset to build, test, and deploy your application.”
—

# GitLab Continuous Integration (GitLab CI/CD)

![Pipeline graph](img/cicd_pipeline_infograph.png)

The benefits of Continuous Integration are huge when automation plays an
integral part of your workflow. GitLab comes with built-in Continuous
Integration, Continuous Deployment, and Continuous Delivery support
to build, test, and deploy your application.

Here’s some info we’ve gathered to get you started.

## Getting started

The first steps towards your GitLab CI/CD journey.


	[Getting started with GitLab CI/CD](quick_start/README.md): understand how GitLab CI/CD works.


	[GitLab CI/CD configuration file: .gitlab-ci.yml](yaml/README.md) - Learn all about the ins and outs of .gitlab-ci.yml.


	[Pipelines and jobs](pipelines.md): configure your GitLab CI/CD pipelines to build, test, and deploy your application.


	Runners: The [GitLab Runner](https://docs.gitlab.com/runner/) is responsible by running the jobs in your CI/CD pipeline. On GitLab.com, Shared Runners are enabled by default, so




you don’t need to set up anything to start to use them with GitLab CI/CD.

### Introduction to GitLab CI/CD


	Article (2016-08-05): [Continuous Integration, Delivery, and Deployment with GitLab - Intro to CI/CD](https://about.gitlab.com/2016/08/05/continuous-integration-delivery-and-deployment-with-gitlab/)


	Article (2015-12-14): [Getting started with GitLab and GitLab CI - Intro to CI](https://about.gitlab.com/2015/12/14/getting-started-with-gitlab-and-gitlab-ci/)


	Article (2017-07-13): [Making CI Easier with GitLab](https://about.gitlab.com/2017/07/13/making-ci-easier-with-gitlab/)


	Article (2017-05-22): [Fast and Natural Continuous Integration with GitLab CI](https://about.gitlab.com/2017/05/22/fast-and-natural-continuous-integration-with-gitlab-ci/)


	Videos:
- Demo (Streamed live on Jul 17, 2017): [GitLab CI/CD Deep Dive](https://youtu.be/pBe4t1CD8Fc?t=195)
- Demo (March, 2017): [How to get started using CI/CD with GitLab](https://about.gitlab.com/2017/03/13/ci-cd-demo/)
- Webcast (April, 2016): [Getting started with CI in GitLab](https://about.gitlab.com/2016/04/20/webcast-recording-and-slides-introduction-to-ci-in-gitlab/)


	Third-party videos:
- [Intégration continue avec GitLab (September, 2016)](https://www.youtube.com/watch?v=URcMBXjIr24&t=13s)
- [GitLab CI for Minecraft Plugins (July, 2016)](https://www.youtube.com/watch?v=Z4pcI9F8yf8)




### Why GitLab CI/CD?



	Article (2016-10-17): [Why We Chose GitLab CI for our CI/CD Solution](https://about.gitlab.com/2016/10/17/gitlab-ci-oohlala/)


	Article (2016-07-22): [Building our web-app on GitLab CI: 5 reasons why Captain Train migrated from Jenkins to GitLab CI](https://about.gitlab.com/2016/07/22/building-our-web-app-on-gitlab-ci/)







## Exploring GitLab CI/CD


	[CI/CD Variables](variables/README.md) - Learn how to use variables defined in
your .gitlab-ci.yml or the ones defined in your project’s settings
- [Where variables can be used](variables/where_variables_can_be_used.md) - A


deeper look on where and how the CI/CD variables can be used






	The permissions model - Learn about the access levels a user can have for
performing certain CI actions
- [User permissions](../user/permissions.md#gitlab-ci)
- [Job permissions](../user/permissions.md#job-permissions)


	[Configure a Runner, the application that runs your jobs](runners/README.md)


	Article (2016-03-01): [Setting up GitLab Runner For Continuous Integration](https://about.gitlab.com/2016/03/01/gitlab-runner-with-docker/)


	Article (2016-07-29): [GitLab CI: Run jobs sequentially, in parallel, or build a custom pipeline](https://about.gitlab.com/2016/07/29/the-basics-of-gitlab-ci/)


	Article (2016-08-26): [GitLab CI: Deployment & environments](https://about.gitlab.com/2016/08/26/ci-deployment-and-environments/)


	Article (2016-05-23): [Introduction to GitLab Container Registry](https://about.gitlab.com/2016/05/23/gitlab-container-registry/)




## Advanced use

Once you get familiar with the basics of GitLab CI/CD, it’s time to dive in and
learn how to leverage its potential even more.


	[Environments and deployments](environments.md): Separate your jobs into
environments and use them for different purposes like testing, building and
deploying


	[Job artifacts](../user/project/pipelines/job_artifacts.md)


	[Caching dependencies](caching/index.md)


	[Git submodules](git_submodules.md) - How to run your CI jobs when Git
submodules are involved


	[Use SSH keys in your build environment](ssh_keys/README.md)


	[Trigger pipelines through the GitLab API](triggers/README.md)


	[Trigger pipelines on a schedule](../user/project/pipelines/schedules.md)


	[Kubernetes clusters](../user/project/clusters/index.md) - Integrate one or
more Kubernetes clusters to your project




## GitLab CI/CD for Docker

Leverage the power of Docker to run your CI pipelines.


	[Use Docker images with GitLab Runner](docker/using_docker_images.md)


	[Use CI to build Docker images](docker/using_docker_build.md)


	[CI services (linked Docker containers)](services/README.md)


	Article (2016-03-01): [Setting up GitLab Runner For Continuous Integration](https://about.gitlab.com/2016/03/01/gitlab-runner-with-docker/)




## Review Apps


	[Review Apps documentation](review_apps/index.md)


	Article (2016-11-22): [Introducing Review Apps](https://about.gitlab.com/2016/11/22/introducing-review-apps/)


	[Example project that shows how to use Review Apps](https://gitlab.com/gitlab-examples/review-apps-nginx/)




## Auto DevOps


	[Auto DevOps](../topics/autodevops/index.md): Auto DevOps automatically detects, builds, tests, deploys, and monitors your applications.




## GitLab CI for GitLab Pages

See the documentation on [GitLab Pages](../user/project/pages/index.md).

## Examples

Check the [GitLab CI/CD examples](examples/README.md) for a collection of tutorials and guides on setting up your CI/CD pipeline for various programming languages, frameworks,
and operating systems.

## Integrations


	Article (2016-06-09): [Continuous Delivery with GitLab and Convox](https://about.gitlab.com/2016/06/09/continuous-delivery-with-gitlab-and-convox/)


	Article (2016-05-05): [Getting Started with GitLab and Shippable Continuous Integration](https://about.gitlab.com/2016/05/05/getting-started-gitlab-and-shippable/)


	Article (2016-04-19): [GitLab Partners with DigitalOcean to make Continuous Integration faster, safer, and more affordable](https://about.gitlab.com/2016/04/19/gitlab-partners-with-digitalocean-to-make-continuous-integration-faster-safer-and-more-affordable/)




## Special configuration (GitLab admin)

As a GitLab administrator, you can change the default behavior of GitLab CI/CD in
your whole GitLab instance as well as in each project.


	[Continuous Integration admin settings](../administration/index.md#continuous-integration-settings)


	Project specific:
- [Pipelines settings](../user/project/pipelines/settings.md)
- [Learn how to enable or disable GitLab CI](enable_or_disable_ci.md)


	Affecting the whole GitLab instance:
- [Continuous Integration admin settings](../user/admin_area/settings/continuous_integration.md)




## Breaking changes


	[CI variables renaming for GitLab 9.0](variables/README.md#9-0-renaming) Read about the
deprecated CI variables and what you should use for GitLab 9.0+.


	[New CI job permissions model](../user/project/new_ci_build_permissions_model.md)
Read about what changed in GitLab 8.12 and how that affects your jobs.
There’s a new way to access your Git submodules and LFS objects in jobs.




[gitlab-ci-templates]: https://gitlab.com/gitlab-org/gitlab-ci-yml



            

          

      

      

    

  

    
      
          
            
  # How to enable or disable GitLab CI/CD

To effectively use GitLab CI/CD, you need a valid [.gitlab-ci.yml](yaml/README.md)
file present at the root directory of your project and a
[runner](runners/README.md) properly set up. You can read our
[quick start guide](quick_start/README.md) to get you started.

If you are using an external CI/CD server like Jenkins or Drone CI, it is advised
to disable GitLab CI/CD in order to not have any conflicts with the commits status
API.

—

GitLab CI/CD is exposed via the /pipelines and /jobs pages of a project.
Disabling GitLab CI/CD in a project does not delete any previous jobs.
In fact, the /pipelines and /jobs pages can still be accessed, although
it’s hidden from the left sidebar menu.

GitLab CI/CD is enabled by default on new installations and can be disabled either
individually under each project’s settings, or site-wide by modifying the
settings in gitlab.yml and gitlab.rb for source and Omnibus installations
respectively.

## Per-project user setting

The setting to enable or disable GitLab CI/CD can be found under your project’s
Settings > General > Permissions. Choose one of “Disabled”, “Only team members”
or “Everyone with access” and hit Save changes for the settings to take effect.

![Sharing & Permissions settings](../user/project/settings/img/sharing_and_permissions_settings.png)

## Site-wide admin setting

You can disable GitLab CI/CD site-wide, by modifying the settings in gitlab.yml
and gitlab.rb for source and Omnibus installations respectively.

Two things to note:


	Disabling GitLab CI/CD, will affect only newly-created projects. Projects that
had it enabled prior to this modification, will work as before.





	Even if you disable GitLab CI/CD, users will still be able to enable it in the
project’s settings.




For installations from source, open gitlab.yml with your editor and set
builds to false:

```yaml
Default project features settings
default_projects_features:

issues: true
merge_requests: true
wiki: true
snippets: false
builds: false


```

Save the file and restart GitLab: sudo service gitlab restart.

For Omnibus installations, edit /etc/gitlab/gitlab.rb and add the line:

`
gitlab_rails['gitlab_default_projects_features_builds'] = false
`

Save the file and reconfigure GitLab: sudo gitlab-ctl reconfigure.



            

          

      

      

    

  

    
      
          
            
  # Introduction to environments and deployments

> Introduced in GitLab 8.9.

During the development of software, there can be many stages until it’s ready
for public consumption. You sure want to first test your code and then deploy it
in a testing or staging environment before you release it to the public. That
way you can prevent bugs not only in your software, but in the deployment
process as well.

GitLab CI is capable of not only testing or building your projects, but also
deploying them in your infrastructure, with the added benefit of giving you a
way to track your deployments. In other words, you can always know what is
currently being deployed or has been deployed on your servers.

## Overview

With environments, you can control the Continuous Deployment of your software
all within GitLab. All you need to do is define them in your project’s
[.gitlab-ci.yml][yaml] as we will explore below. GitLab provides a full
history of your deployments per every environment.

Environments are like tags for your CI jobs, describing where code gets deployed.
Deployments are created when [jobs] deploy versions of code to environments,
so every environment can have one or more deployments. GitLab keeps track of
your deployments, so you always know what is currently being deployed on your
servers. If you have a deployment service such as [Kubernetes][kube]
enabled for your project, you can use it to assist with your deployments, and
can even access a [web terminal](#web-terminals) for your environment from within GitLab!

To better understand how environments and deployments work, let’s consider an
example. We assume that you have already created a project in GitLab and set up
a Runner. The example will cover the following:


	We are developing an application


	We want to run tests and build our app on all branches


	Our default branch is master


	We deploy the app only when a pipeline on master branch is run




Let’s see how it all ties together.

## Defining environments

Let’s consider the following .gitlab-ci.yml example:

```yaml
stages:

	test

	build

	deploy

	test:
	stage: test
script: echo “Running tests”

	build:
	stage: build
script: echo “Building the app”

	deploy_staging:
	stage: deploy
script:

	echo “Deploy to staging server”

	environment:
	name: staging
url: https://staging.example.com

only:
- master


```

We have defined 3 [stages](yaml/README.md#stages):


	test


	build


	deploy




The jobs assigned to these stages will run in this order. If a job fails, then
the jobs that are assigned to the next stage won’t run, rendering the pipeline
as failed. In our case, the test job will run first, then the build and
lastly the deploy_staging. With this, we ensure that first the tests pass,
then our app is able to be built successfully, and lastly we deploy to the
staging server.

The environment keyword is just a hint for GitLab that this job actually
deploys to this environment’s name. It can also have a url which, as we
will later see, is exposed in various places within GitLab. Each time a job that
has an environment specified and succeeds, a deployment is recorded, remembering
the Git SHA and environment name.

>**Note:**
Starting with GitLab 8.15, the environment name is exposed to the Runner in
two forms: $CI_ENVIRONMENT_NAME, and $CI_ENVIRONMENT_SLUG. The first is
the name given in .gitlab-ci.yml (with any variables expanded), while the
second is a “cleaned-up” version of the name, suitable for use in URLs, DNS,
etc.

>**Note:**
Starting with GitLab 9.3, the environment URL is exposed to the Runner via
$CI_ENVIRONMENT_URL. The URL would be expanded from .gitlab-ci.yml, or if
the URL was not defined there, the external URL from the environment would be
used.

To sum up, with the above .gitlab-ci.yml we have achieved that:


	All branches will run the test and build jobs.


	The deploy_staging job will run [only](yaml/README.md#only) on the master
branch which means all merge requests that are created from branches don’t
get to deploy to the staging server


	When a merge request is merged, all jobs will run and the deploy_staging
in particular will deploy our code to a staging server while the deployment
will be recorded in an environment named staging.




Let’s now see how that information is exposed within GitLab.

## Viewing the current status of an environment

The environment list under your project’s Operations > Environments, is
where you can find information of the last deployment status of an environment.

Here’s how the Environments page looks so far.

![Environment view](img/environments_available.png)

There’s a bunch of information there, specifically you can see:


	The environment’s name with a link to its deployments


	The last deployment ID number and who performed it


	The job ID of the last deployment with its respective job name


	The commit information of the last deployment such as who committed, to what
branch and the Git SHA of the commit


	The exact time the last deployment was performed


	A button that takes you to the URL that you have defined under the
environment keyword in .gitlab-ci.yml


	A button that re-deploys the latest deployment, meaning it runs the job
defined by the environment name for that specific commit




>**Notes:**
- While you can create environments manually in the web interface, we recommend


that you define your environments in .gitlab-ci.yml first. They will
be automatically created for you after the first deploy.





	The environments page can only be viewed by Reporters and above. For more
information on the permissions, see the [permissions documentation][permissions].


	Only deploys that happen after your .gitlab-ci.yml is properly configured
will show up in the “Environment” and “Last deployment” lists.




The information shown in the Environments page is limited to the latest
deployments, but as you may have guessed an environment can have multiple
deployments.

## Viewing the deployment history of an environment

GitLab keeps track of your deployments, so you always know what is currently
being deployed on your servers. That way you can have the full history of your
deployments per every environment right in your browser. Clicking on an
environment will show the history of its deployments. Assuming you have deployed
multiple times already, here’s how a specific environment’s page looks like.

![Deployments](img/deployments_view.png)

We can see the same information as when in the Environments page, but this time
all deployments are shown. As you may have noticed, apart from the Re-deploy
button there are now Rollback buttons for each deployment. Let’s see how
that works.

## Rolling back changes

You can’t control everything, so sometimes things go wrong. When that unfortunate
time comes GitLab has you covered. Simply by clicking the Rollback button
that can be found in the deployments page
(Operations > Environments > `environment name`) you can relaunch the
job with the commit associated with it.

>**Note:**
Bear in mind that your mileage will vary and it’s entirely up to how you define
the deployment process in the job’s script whether the rollback succeeds or not.
GitLab CI is just following orders.

Thankfully that was the staging server that we had to rollback, and since we
learn from our mistakes, we decided to not make the same again when we deploy
to the production server. Enter manual actions for deployments.

## Manually deploying to environments

Turning a job from running automatically to a manual action is as simple as
adding when: manual to it. To expand on our previous example, let’s add
another job that this time deploys our app to a production server and is
tracked by a production environment. The .gitlab-ci.yml looks like this
so far:

```yaml
stages:

	test

	build

	deploy

	test:
	stage: test
script: echo “Running tests”

	build:
	stage: build
script: echo “Building the app”

	deploy_staging:
	stage: deploy
script:

	echo “Deploy to staging server”

	environment:
	name: staging
url: https://staging.example.com

only:
- master

	deploy_prod:
	stage: deploy
script:

	echo “Deploy to production server”

	environment:
	name: production
url: https://example.com

when: manual
only:
- master


```

The when: manual action exposes a play button in GitLab’s UI and the
deploy_prod job will only be triggered if and when we click that play button.
You can find it in the pipeline, job, environment, and deployment views.


Pipelines | Single pipeline | Environments | Deployments | jobs |

——— | —————-| ———— | ———– | ——-|

![Pipelines manual action](img/environments_manual_action_pipelines.png) | ![Pipelines manual action](img/environments_manual_action_single_pipeline.png) | ![Environments manual action](img/environments_manual_action_environments.png) | ![Deployments manual action](img/environments_manual_action_deployments.png) | ![Builds manual action](img/environments_manual_action_jobs.png) |



Clicking on the play button in either of these places will trigger the
deploy_prod job, and the deployment will be recorded under a new
environment named production.

>**Note:**
Remember that if your environment’s name is production (all lowercase), then
it will get recorded in [Cycle Analytics](../user/project/cycle_analytics.md).
Double the benefit!

## Dynamic environments

As the name suggests, it is possible to create environments on the fly by just
declaring their names dynamically in .gitlab-ci.yml. Dynamic environments is
the basis of [Review apps](review_apps/index.md).

NOTE: Note:
The name and url parameters can use most of the CI/CD variables,
including [predefined](variables/README.md#predefined-variables-environment-variables),
[project/group ones](variables/README.md#variables) and
[.gitlab-ci.yml variables](yaml/README.md#variables). You however cannot use variables
defined under script or on the Runner’s side. There are also other variables that
are unsupported in the context of environment:name. You can read more about
[where variables can be used](variables/where_variables_can_be_used.md).

GitLab Runner exposes various [environment variables][variables] when a job runs,
and as such, you can use them as environment names. Let’s add another job in
our example which will deploy to all branches except master:

```yaml
deploy_review:

stage: deploy
script:

	echo “Deploy a review app”

	environment:
	name: review/$CI_COMMIT_REF_NAME
url: https://$CI_ENVIRONMENT_SLUG.example.com

	only:
	
	branches

	except:
	
	master


```

Let’s break it down in pieces. The job’s name is deploy_review and it runs
on the deploy stage. The script at this point is fictional, you’d have to
use your own based on your deployment. Then, we set the environment with the
environment:name being review/$CI_COMMIT_REF_NAME. Now that’s an interesting
one. Since the [environment name][env-name] can contain slashes (/), we can
use this pattern to distinguish between dynamic environments and the regular
ones.

So, the first part is review, followed by a / and then $CI_COMMIT_REF_NAME
which takes the value of the branch name. Since $CI_COMMIT_REF_NAME itself may
also contain /, or other characters that would be invalid in a domain name or
URL, we use $CI_ENVIRONMENT_SLUG in the environment:url so that the
environment can get a specific and distinct URL for each branch. In this case,
given a $CI_COMMIT_REF_NAME of 100-Do-The-Thing, the URL will be something
like https://100-do-the-4f99a2.example.com. Again, the way you set up
the web server to serve these requests is based on your setup.

You could also use $CI_COMMIT_REF_SLUG in environment:url, e.g.:
https://$CI_COMMIT_REF_SLUG.example.com. We use $CI_ENVIRONMENT_SLUG
here because it is guaranteed to be unique, but if you’re using a workflow like
[GitLab Flow][gitlab-flow], collisions are very unlikely, and you may prefer
environment names to be more closely based on the branch name - the example
above would give you an URL like https://100-do-the-thing.example.com

Last but not least, we tell the job to run [only][only] on branches
[except][only] master.

>**Note:**
You are not bound to use the same prefix or only slashes in the dynamic
environments’ names (/), but as we will see later, this will enable the
[grouping similar environments](#grouping-similar-environments) feature.

The whole .gitlab-ci.yml looks like this so far:

```yaml
stages:

	test

	build

	deploy

	test:
	stage: test
script: echo “Running tests”

	build:
	stage: build
script: echo “Building the app”

	deploy_review:
	stage: deploy
script:

	echo “Deploy a review app”

	environment:
	name: review/$CI_COMMIT_REF_NAME
url: https://$CI_ENVIRONMENT_SLUG.example.com

	only:
	
	branches

	except:
	
	master

	deploy_staging:
	stage: deploy
script:

	echo “Deploy to staging server”

	environment:
	name: staging
url: https://staging.example.com

only:
- master

	deploy_prod:
	stage: deploy
script:

	echo “Deploy to production server”

	environment:
	name: production
url: https://example.com

when: manual
only:
- master


```

A more realistic example would include copying files to a location where a
webserver (NGINX) could then read and serve. The example below will copy the
public directory to /srv/nginx/$CI_COMMIT_REF_SLUG/public:

```yaml
review_app:

stage: deploy
script:

	rsync -av –delete public /srv/nginx/$CI_COMMIT_REF_SLUG

	environment:
	name: review/$CI_COMMIT_REF_NAME
url: https://$CI_COMMIT_REF_SLUG.example.com


```

It is assumed that the user has already setup NGINX and GitLab Runner in the
server this job will run on.

>**Note:**
Be sure to check out the [limitations](#limitations) section for some edge
cases regarding naming of your branches and Review Apps.

—

The development workflow would now be:


	Developer creates a branch locally


	Developer makes changes, commits and pushes the branch to GitLab


	Developer creates a merge request




Behind the scenes:


	GitLab Runner picks up the changes and starts running the jobs


	The jobs run sequentially as defined in stages
- First, the tests pass
- Then, the job begins and successfully also passes
- Lastly, the app is deployed to an environment with a name specific to the


branch








So now, every branch gets its own environment and is deployed to its own place
with the added benefit of having a [history of deployments](#viewing-the-deployment-history-of-an-environment)
and also being able to [rollback changes](#rolling-back-changes) if needed.
Let’s briefly see where URL that’s defined in the environments is exposed.

## Making use of the environment URL

The [environment URL](yaml/README.md#environments-url) is exposed in a few
places within GitLab.


In a merge request widget as a link | In the Environments view as a button | In the Deployments view as a button |

——————– | ———— | ———– |

![Environment URL in merge request](img/environments_mr_review_app.png) | ![Environment URL in environments](img/environments_available.png) | ![Environment URL in deployments](img/deployments_view.png) |



If a merge request is eventually merged to the default branch (in our case
master) and that branch also deploys to an environment (in our case staging
and/or production) you can see this information in the merge request itself.

![Environment URLs in merge request](img/environments_link_url_mr.png)

### Go directly from source files to public pages on the environment

> Introduced in GitLab 8.17.

To go one step further, we can specify a Route Map to get GitLab to show us “View on [environment URL]” buttons to go directly from a file to that file’s representation on the deployed website. It will be exposed in a few places:


In the diff for a merge request, comparison or commit | In the file view |

—— | —— |

![“View on env” button in merge request diff](img/view_on_env_mr.png) | ![“View on env” button in file view](img/view_on_env_blob.png) |



To get this to work, you need to tell GitLab how the paths of files in your repository map to paths of pages on your website, using a Route Map.

A Route Map is a file inside the repository at .gitlab/route-map.yml, which contains a YAML array that maps source paths (in the repository) to public paths (on the website).

This is an example of a route map for [Middleman](https://middlemanapp.com) static websites like [http://about.gitlab.com](https://gitlab.com/gitlab-com/www-gitlab-com):

```yaml
Team data
- source: ‘data/team.yml’ # data/team.yml

public: ‘team/’ # team/

Blogposts
- source: /source/posts/([0-9]{4})-([0-9]{2})-([0-9]{2})-(.+?)..*/ # source/posts/2017-01-30-around-the-world-in-6-releases.html.md.erb

public: ‘1/2/3/4/’ # 2017/01/30/around-the-world-in-6-releases/

HTML files
- source: /source/(.+?.html).*/ # source/index.html.haml

public: ‘1’ # index.html

Other files
- source: /source/(.*)/ # source/images/blogimages/around-the-world-in-6-releases-cover.png

public: ‘1’ # images/blogimages/around-the-world-in-6-releases-cover.png


```

Mappings are defined as entries in the root YAML array, and are identified by a - prefix. Within an entry, we have a hash map with two keys:


	
	source
	
	a string, starting and ending with ‘, for an exact match


	a regular expression, starting and ending with /, for a pattern match
- The regular expression needs to match the entire source path - ^ and $ anchors are implied.
- Can include capture groups denoted by () that can be referred to in the public path.
- Slashes (/) can, but don’t have to, be escaped as /.
- Literal periods (.) should be escaped as ..










	
	public
	
	a string, starting and ending with ‘.
- Can include N expressions to refer to capture groups in the source regular expression in order of their occurrence, starting with 1.












The public path for a source path is determined by finding the first source expression that matches it, and returning the corresponding public path, replacing the N expressions with the values of the () capture groups if appropriate.

In the example above, the fact that mappings are evaluated in order of their definition is used to ensure that source/index.html.haml will match /source/(.+?.html).*/ instead of /source/(.*)/, and will result in a public path of index.html, instead of index.html.haml.

—

We now have a full development cycle, where our app is tested, built, deployed
as a Review app, deployed to a staging server once the merge request is merged,
and finally manually deployed to the production server. What we just described
is a single workflow, but imagine tens of developers working on a project
at the same time. They each push to their branches, and dynamic environments are
created all the time. In that case, we probably need to do some clean up. Read
next how environments can be stopped.

## Stopping an environment

By stopping an environment, you are effectively terminating its recording of the
deployments that happen in it.

A branch is associated with an environment when the CI pipeline that is created
for this branch, was recently deployed to this environment. You can think of
the CI pipeline as the glue between the branch and the environment:
branch ➔ CI pipeline ➔ environment.

There is a special case where environments can be manually stopped. That can
happen if you provide another job for that matter. The syntax is a little
tricky since a job calls another job to do the job.

Consider the following example where the deploy_review calls the stop_review
to clean up and stop the environment:

```yaml
deploy_review:

stage: deploy
script:

	echo “Deploy a review app”

	environment:
	name: review/$CI_COMMIT_REF_NAME
url: https://$CI_ENVIRONMENT_SLUG.example.com
on_stop: stop_review

	only:
	
	branches

	except:
	
	master

	stop_review:
	stage: deploy
variables:

GIT_STRATEGY: none

	script:
	
	echo “Remove review app”

when: manual
environment:

name: review/$CI_COMMIT_REF_NAME
action: stop


```

Setting the [GIT_STRATEGY][git-strategy] to none is necessary on the
stop_review job so that the [GitLab Runner] won’t try to checkout the code
after the branch is deleted.

>**Note:**
Starting with GitLab 8.14, dynamic environments will be stopped automatically
when their associated branch is deleted.

When you have an environment that has a stop action defined (typically when
the environment describes a review app), GitLab will automatically trigger a
stop action when the associated branch is deleted. The stop_review job must
be in the same stage as the deploy_review one in order for the environment
to automatically stop.

You can read more in the [.gitlab-ci.yml reference][onstop].

## Grouping similar environments

> [Introduced][ce-7015] in GitLab 8.14.

As we’ve seen in the [dynamic environments](#dynamic-environments), you can
prepend their name with a word, then followed by a / and finally the branch
name which is automatically defined by the CI_COMMIT_REF_NAME variable.

In short, environments that are named like type/foo are presented under a
group named type.

In our minimal example, we name the environments review/$CI_COMMIT_REF_NAME
where $CI_COMMIT_REF_NAME is the branch name:

```yaml
deploy_review:

stage: deploy
script:

	echo “Deploy a review app”

	environment:
	name: review/$CI_COMMIT_REF_NAME


```

In that case, if you visit the Environments page, and provided the branches
exist, you should see something like:

![Environment groups](img/environments_dynamic_groups.png)

## Monitoring environments

>**Notes:**
>
- For the monitoring dashboard to appear, you need to:



	Have enabled the [Prometheus integration][prom]


	Configured Prometheus to collect at least one [supported metric](../user/project/integrations/prometheus_library/metrics.md)








	With GitLab 9.2, all deployments to an environment are shown directly on the
monitoring dashboard




If you have enabled [Prometheus for monitoring system and response metrics](https://docs.gitlab.com/ee/user/project/integrations/prometheus.html), you can monitor the performance behavior of your app running in each environment.

Once configured, GitLab will attempt to retrieve [supported performance metrics](https://docs.gitlab.com/ee/user/project/integrations/prometheus_library/metrics.html) for any
environment which has had a successful deployment. If monitoring data was
successfully retrieved, a Monitoring button will appear for each environment.

![Environment Detail with Metrics](img/deployments_view.png)

Clicking on the Monitoring button will display a new page, showing up to the last
8 hours of performance data. It may take a minute or two for data to appear
after initial deployment.

All deployments to an environment are shown directly on the monitoring dashboard
which allows easy correlation between any changes in performance and a new
version of the app, all without leaving GitLab.

![Monitoring dashboard](img/environments_monitoring.png)

## Web terminals

>**Note:**
Web terminals were added in GitLab 8.15 and are only available to project
maintainers and owners.

If you deploy to your environments with the help of a deployment service (e.g.,
the [Kubernetes integration][kube]), GitLab can open
a terminal session to your environment! This is a very powerful feature that
allows you to debug issues without leaving the comfort of your web browser. To
enable it, just follow the instructions given in the service integration
documentation.

Once enabled, your environments will gain a “terminal” button:

![Terminal button on environment index](img/environments_terminal_button_on_index.png)

You can also access the terminal button from the page for a specific environment:

![Terminal button for an environment](img/environments_terminal_button_on_show.png)

Wherever you find it, clicking the button will take you to a separate page to
establish the terminal session:

![Terminal page](img/environments_terminal_page.png)

This works just like any other terminal - you’ll be in the container created
by your deployment, so you can run shell commands and get responses in real
time, check the logs, try out configuration or code tweaks, etc. You can open
multiple terminals to the same environment - they each get their own shell
session -  and even a multiplexer like screen or tmux!

>**Note:**
Container-based deployments often lack basic tools (like an editor), and may
be stopped or restarted at any time. If this happens, you will lose all your
changes! Treat this as a debugging tool, not a comprehensive online IDE.

—

While this is fine for deploying to some stable environments like staging or
production, what happens for branches? So far we haven’t defined anything
regarding deployments for branches other than master. Dynamic environments
will help us achieve that.

## Checkout deployments locally

Since 8.13, a reference in the git repository is saved for each deployment, so
knowing the state of your current environments is only a git fetch away.

In your git config, append the [remote “<your-remote>”] block with an extra
fetch line:

`
fetch = +refs/environments/*:refs/remotes/origin/environments/*
`

## Limitations


	You are limited to use only the [CI predefined variables][variables] in the
environment: name. If you try to re-use variables defined inside script
as part of the environment name, it will not work.




## Further reading

Below are some links you may find interesting:


	[The .gitlab-ci.yml definition of environments](yaml/README.md#environment)


	[A blog post on Deployments & Environments](https://about.gitlab.com/2016/08/26/ci-deployment-and-environments/)


	[Review Apps - Use dynamic environments to deploy your code for every branch](review_apps/index.md)




[Pipelines]: pipelines.md
[jobs]: yaml/README.md#jobs
[yaml]: yaml/README.md
[environments]: #environments
[deployments]: #deployments
[permissions]: ../user/permissions.md
[variables]: variables/README.md
[env-name]: yaml/README.md#environment-name
[only]: yaml/README.md#only-and-except
[onstop]: yaml/README.md#environment-on_stop
[ce-7015]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/7015
[gitlab-flow]: ../workflow/gitlab_flow.md
[gitlab runner]: https://docs.gitlab.com/runner/
[git-strategy]: yaml/README.md#git-strategy
[kube]: ../user/project/clusters/index.md
[prom]: ../user/project/integrations/prometheus.md



            

          

      

      

    

  

    
      
          
            
  # Using Git submodules with GitLab CI

> Notes:
- GitLab 8.12 introduced a new [CI job permissions model][newperms] and you


are encouraged to upgrade your GitLab instance if you haven’t done already.
If you are not using GitLab 8.12 or higher, you would need to work your way
around submodules in order to access the sources of e.g., gitlab.com/group/project
with the use of [SSH keys](ssh_keys/README.md).





	With GitLab 8.12 onward, your permissions are used to evaluate what a CI job
can access. More information about how this system works can be found in the
[Jobs permissions model](../user/permissions.md#job-permissions).


	The HTTP(S) Git protocol [must be enabled][gitpro] in your GitLab instance.




## Configuring the .gitmodules file

If dealing with [Git submodules][gitscm], your project will probably have a file
named .gitmodules.

Let’s consider the following example:

1. Your project is located at https://gitlab.com/secret-group/my-project.
1. To checkout your sources you usually use an SSH address like


git@gitlab.com:secret-group/my-project.git.





	Your project depends on https://gitlab.com/group/project, which you want
to include as a submodule.




If you are using GitLab 8.12+ and your submodule is on the same GitLab server,
you must update your .gitmodules file to use relative URLs.
Since Git allows the usage of relative URLs for your .gitmodules configuration,
this easily allows you to use HTTP(S) for cloning all your CI jobs and SSH
for all your local checkouts. The .gitmodules would look like:

```ini
[submodule “project”]

path = project
url = ../../group/project.git


```

The above configuration will instruct Git to automatically deduce the URL that
should be used when cloning sources. Whether you use HTTP(S) or SSH, Git will use
that same channel and it will allow to make all your CI jobs use HTTP(S)
(because GitLab CI only uses HTTP(S) for cloning your sources), and all your local
clones will continue using SSH.

For all other submodules not located on the same GitLab server, use the full
HTTP(S) protocol URL:

```ini
[submodule “project-x”]

path = project-x
url = https://gitserver.com/group/project-x.git


```

Once .gitmodules is correctly configured, you can move on to
[configuring your .gitlab-ci.yml](#using-git-submodules-in-your-ci-jobs).

## Using Git submodules in your CI jobs

There are a few steps you need to take in order to make submodules work
correctly with your CI jobs:


	First, make sure you have used [relative URLs](#configuring-the-gitmodules-file)
for the submodules located in the same GitLab server.





	Next, if you are using gitlab-runner v1.10+, you can set the
GIT_SUBMODULE_STRATEGY variable to either normal or recursive to tell
the runner to fetch your submodules before the job:


```yaml
variables:

GIT_SUBMODULE_STRATEGY: recursive


```
See the [.gitlab-ci.yml reference](yaml/README.md#git-submodule-strategy)
for more details about GIT_SUBMODULE_STRATEGY.









	If you are using an older version of gitlab-runner, then use
git submodule sync/update in before_script:


```yaml
before_script:

	git submodule sync –recursive

	git submodule update –init –recursive


```

–recursive should be used in either both or none (sync/update) depending on
whether you have recursive submodules.








The rationale to set the sync and update in before_script is because of
the way Git submodules work. On a fresh Runner workspace, Git will set the
submodule URL including the token in .git/config
(or .git/modules/<submodule>/config) based on .gitmodules and the current
remote URL. On subsequent jobs on the same Runner, .git/config is cached
and already contains a full URL for the submodule, corresponding to the previous
job, and to a token from a previous job. sync allows to force updating
the full URL.

[gitpro]: ../user/admin_area/settings/visibility_and_access_controls.md#enabled-git-access-protocols
[gitscm]: https://git-scm.com/book/en/v2/Git-Tools-Submodules “Git submodules documentation”
[newperms]: ../user/project/new_ci_build_permissions_model.md



            

          

      

      

    

  

    
      
          
            
  # JUnit test reports

> [Introduced](https://gitlab.com/gitlab-org/gitlab-ce/issues/45318) in GitLab 11.2.
Requires GitLab Runner 11.2 and above.

## Overview

It is very common that a [CI/CD pipeline](pipelines.md) contains a
test job that will verify your code.
If the tests fail, the pipeline fails and users get notified. The person that
works on the merge request will have to check the job logs and see where the
tests failed so that they can fix them.

You can configure your job to use JUnit test reports, and GitLab will display a
report on the merge request so that it’s easier and faster to identify the
failure without having to check the entire log.

## Use cases

Consider the following workflow:


	Your master branch is rock solid, your project is using GitLab CI/CD and
your pipelines indicate that there isn’t anything broken.





	Someone from you team submits a merge request, a test fails and the pipeline
gets the known red icon. To investigate more, you have to go through the job
logs to figure out the cause of the failed test, which usually contain
thousands of lines.





	You configure the JUnit test reports and immediately GitLab collects and
exposes them in the merge request. No more searching in the job logs.





	Your development and debugging workflow becomes easier, faster and efficient.




## How it works

First, GitLab Runner uploads all JUnit XML files as artifacts to GitLab. Then,
when you visit a merge request, GitLab starts comparing the head and base branch’s
JUnit test reports, where:


	The base branch is the target branch (usually master).


	The head branch is the source branch (the latest pipeline in each merge request).




The reports panel has a summary showing how many tests failed and how many were fixed.
If no comparison can be done because data for the base branch is not available,
the panel will just show the list of failed tests for head.

There are three types of results:

1. Newly failed tests: Test cases which passed on base branch and failed on head branch
1. Existing failures:  Test cases which failed on base branch and failed on head branch
1. Resolved failures:  Test cases which failed on base branch and passed on head branch

Each entry in the panel will show the test name and its type from the list
above. Clicking on the test name will open a modal window with details of its
execution time and the error output.

![Test Reports Widget](img/junit_test_report.png)

## How to set it up

NOTE: Note:
For a list of supported languages on JUnit tests, check the
[Wikipedia article](https://en.wikipedia.org/wiki/JUnit#Ports).

To enable the JUnit reports in merge requests, you need to add
[artifacts:reports:junit](yaml/README.md#artifacts-reports-junit)
in .gitlab-ci.yml, and specify the path(s) of the generated test reports.

In the following examples, the job in the test stage runs and GitLab
collects the JUnit test report from each job. After each job is executed, the
XML reports are stored in GitLab as artifacts and their results are shown in the
merge request widget.

### Ruby example

Use the following job in .gitlab-ci.yml:

```yaml
Use https://github.com/sj26/rspec_junit_formatter to generate a JUnit report with rspec
ruby:

stage: test
script:
- bundle install
- rspec spec/lib/ –format RspecJunitFormatter –out rspec.xml
artifacts:

	reports:
	junit: rspec.xml


```

### Go example

Use the following job in .gitlab-ci.yml:

```yaml
Use https://github.com/jstemmer/go-junit-report to generate a JUnit report with go
golang:

stage: test
script:
- go get -u github.com/jstemmer/go-junit-report
- go test -v 2>&1 | go-junit-report > report.xml
artifacts:

	reports:
	junit: report.xml


```



            

          

      

      

    

  

    
      
          
            
  # Introduction to pipelines and jobs

> Introduced in GitLab 8.8.

NOTE: Note:
If you have a [mirrored repository where GitLab pulls from](https://docs.gitlab.com/ee/workflow/repository_mirroring.html#pulling-from-a-remote-repository),
you may need to enable pipeline triggering in your project’s
Settings > Repository > Pull from a remote repository > Trigger pipelines for mirror updates.

## Pipelines

A pipeline is a group of [jobs][] that get executed in [stages][](batches).
All of the jobs in a stage are executed in parallel (if there are enough
concurrent [Runners]), and if they all succeed, the pipeline moves on to the
next stage. If one of the jobs fails, the next stage is not (usually)
executed. You can access the pipelines page in your project’s Pipelines tab.

In the following image you can see that the pipeline consists of four stages
(build, test, staging, production) each one having one or more jobs.

>**Note:**
GitLab capitalizes the stages’ names when shown in the [pipeline graphs](#pipeline-graphs).

![Pipelines example](img/pipelines.png)

## Types of pipelines

There are three types of pipelines that often use the single shorthand of “pipeline”. People often talk about them as if each one is “the” pipeline, but really, they’re just pieces of a single, comprehensive pipeline.

![Types of Pipelines](img/types-of-pipelines.svg)


	CI Pipeline: Build and test stages defined in .gitlab-ci.yml


	Deploy Pipeline: Deploy stage(s) defined in .gitlab-ci.yml The flow of deploying code to servers through various stages: e.g. development to staging to production


	Project Pipeline: Cross-project CI dependencies [triggered via API][triggers], particularly for micro-services, but also for complicated build dependencies: e.g. api -> front-end, ce/ee -> omnibus.




## Development workflows

Pipelines accommodate several development workflows:


	Branch Flow (e.g. different branch for dev, qa, staging, production)


	Trunk-based Flow (e.g. feature branches and single master branch, possibly with tags for releases)


	Fork-based Flow (e.g. merge requests come from forks)




Example continuous delivery flow:

![CD Flow](img/pipelines-goal.svg)

## Jobs

Jobs can be defined in the [.gitlab-ci.yml][jobs-yaml] file. Not to be
confused with a build job or build stage.

## Defining pipelines

Pipelines are defined in .gitlab-ci.yml by specifying [jobs] that run in
[stages].

See the reference [documentation for jobs](yaml/README.md#jobs).

## Seeing pipeline status

You can find the current and historical pipeline runs under your project’s
Pipelines tab. Clicking on a pipeline will show the jobs that were run for
that pipeline.

![Pipelines index page](img/pipelines_index.png)

## Seeing job status

When you visit a single pipeline you can see the related jobs for that pipeline.
Clicking on an individual job will show you its job trace, and allow you to
cancel the job, retry it, or erase the job trace.

![Pipelines example](img/pipelines.png)

## Seeing the failure reason for jobs

> [Introduced][ce-17782] in GitLab 10.7.

When a pipeline fails or is allowed to fail, there are several places where you
can quickly check the reason it failed:


	In the pipeline graph present on the pipeline detail view.


	In the pipeline widgets present in the merge requests and commit pages.


	In the job views present in the global and detailed views of a job.




In any case, if you hover over the failed job you can see the reason it failed.

![Pipeline detail](img/job_failure_reason.png)

From [GitLab 10.8][ce-17814] you can also see the reason it failed on the Job detail page.

## Pipeline graphs

> [Introduced][ce-5742] in GitLab 8.11.

Pipelines can be complex structures with many sequential and parallel jobs.
To make it a little easier to see what is going on, you can view a graph
of a single pipeline and its status.

A pipeline graph can be shown in two different ways depending on what page you
are on.

—

The regular pipeline graph that shows the names of the jobs of each stage can
be found when you are on a [single pipeline page](#seeing-pipeline-status).

![Pipelines example](img/pipelines.png)

Then, there is the pipeline mini graph which takes less space and can give you a
quick glance if all jobs pass or something failed. The pipeline mini graph can
be found when you visit:


	the pipelines index page


	a single commit page


	a merge request page




That way, you can see all related jobs for a single commit and the net result
of each stage of your pipeline. This allows you to quickly see what failed and
fix it. Stages in pipeline mini graphs are collapsible. Hover your mouse over
them and click to expand their jobs.


Mini graph | Mini graph expanded |

:————: | :———————: |

![Pipelines mini graph](img/pipelines_mini_graph_simple.png) | ![Pipelines mini graph extended](img/pipelines_mini_graph.png) |



### Grouping similar jobs in the pipeline graph

> [Introduced][ce-6242] in GitLab 8.12.

If you have many similar jobs, your pipeline graph becomes very long and hard
to read. For that reason, similar jobs can automatically be grouped together.
If the job names are formatted in certain ways, they will be collapsed into
a single group in regular pipeline graphs (not the mini graphs).
You’ll know when a pipeline has grouped jobs if you don’t see the retry or
cancel button inside them. Hovering over them will show the number of grouped
jobs. Click to expand them.

![Grouped pipelines](img/pipelines_grouped.png)

The basic requirements is that there are two numbers separated with one of
the following (you can even use them interchangeably):


	a space


	a slash (/)


	a colon (:)




>**Note:**
More specifically, [it uses][regexp] this regular expression: d+[s:/\]+d+s*.

The jobs will be ordered by comparing those two numbers from left to right. You
usually want the first to be the index and the second the total.

For example, the following jobs will be grouped under a job named test:


	test 0 3 => test


	test 1 3 => test


	test 2 3 => test




The following jobs will be grouped under a job named test ruby:


	test 1:2 ruby => test ruby


	test 2:2 ruby => test ruby




The following jobs will be grouped under a job named test ruby as well:


	1/3 test ruby => test ruby


	2/3 test ruby => test ruby


	3/3 test ruby => test ruby




### Manual actions from the pipeline graph

> [Introduced][ce-7931] in GitLab 8.15.

[Manual actions][manual] allow you to require manual interaction before moving
forward with a particular job in CI. Your entire pipeline can run automatically,
but the actual [deploy to production][env-manual] will require a click.

You can do this straight from the pipeline graph. Just click on the play button
to execute that particular job. For example, in the image below, the production
stage has a job with a manual action.

![Pipelines example](img/pipelines.png)

### Ordering of jobs in pipeline graphs

Regular pipeline graph

In the single pipeline page, jobs are sorted by name.

Mini pipeline graph

> [Introduced][ce-9760] in GitLab 9.0.

In the pipeline mini graphs, the jobs are sorted first by severity and then
by name. The order of severity is:


	failed


	warning


	pending


	running


	manual


	canceled


	success


	skipped


	created




![Pipeline mini graph sorting](img/pipelines_mini_graph_sorting.png)

## How the pipeline duration is calculated

Total running time for a given pipeline would exclude retries and pending
(queue) time. We could reduce this problem down to finding the union of
periods.

So each job would be represented as a Period, which consists of
Period#first as when the job started and Period#last as when the
job was finished. A simple example here would be:


	A (1, 3)


	B (2, 4)


	C (6, 7)




Here A begins from 1, and ends to 3. B begins from 2, and ends to 4.
C begins from 6, and ends to 7. Visually it could be viewed as:

```
0 1 2 3 4 5 6 7

	AAAAAAA
	
	BBBBBBB
	CCCC


```

The union of A, B, and C would be (1, 4) and (6, 7), therefore the
total running time should be:

`
(4 - 1) + (7 - 6) => 4
`

## Badges

Pipeline status and test coverage report badges are available. You can find their
respective link in the [Pipelines settings] page.

## Security on protected branches

A strict security model is enforced when pipelines are executed on
[protected branches](../user/project/protected_branches.md).

The following actions are allowed on protected branches only if the user is
[allowed to merge or push](../user/project/protected_branches.md#using-the-allowed-to-merge-and-allowed-to-push-settings)
on that specific branch:
- run manual pipelines (using Web UI or Pipelines API)
- run scheduled pipelines
- run pipelines using triggers
- trigger manual actions on existing pipelines
- retry/cancel existing jobs (using Web UI or Pipelines API)

Variables marked as protected are accessible only to jobs that
run on protected branches, avoiding untrusted users to get unintended access to
sensitive information like deployment credentials and tokens.

Runners marked as protected can run jobs only on protected
branches, avoiding untrusted code to be executed on the protected runner and
preserving deployment keys and other credentials from being unintentionally
accessed. In order to ensure that jobs intended to be executed on protected
runners will not use regular runners, they must be tagged accordingly.

[jobs]: #jobs
[jobs-yaml]: yaml/README.md#jobs
[manual]: yaml/README.md#manual
[env-manual]: environments.md#manually-deploying-to-environments
[stages]: yaml/README.md#stages
[runners]: runners/README.html
[pipelines settings]: ../user/project/pipelines/settings.md
[triggers]: triggers/README.md
[ce-5742]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/5742
[ce-6242]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/6242
[ce-7931]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/7931
[ce-9760]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/9760
[ce-17782]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/17782
[ce-17814]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/17814
[regexp]: https://gitlab.com/gitlab-org/gitlab-ce/blob/2f3dc314f42dbd79813e6251792853bc231e69dd/app/models/commit_status.rb#L99



            

          

      

      

    

  

    
      
          
            
  This document was moved to [another location](../../topics/autodevops/index.md#auto-deploy).



            

          

      

      

    

  

    
      
          
            
  # Auto Deploy: quick start guide

This is a step-by-step guide to deploying a project hosted on GitLab.com to Google Cloud, using Auto Deploy.

We made a minimal [Ruby application](https://gitlab.com/gitlab-examples/minimal-ruby-app) to use as an example for this guide. It contains two files:


	server.rb - our application. It will start an HTTP server on port 5000 and render “Hello, world!”


	Dockerfile - to build our app into a container image. It will use a ruby base image and run server.rb




## Fork sample project on GitLab.com

Let’s start by forking our sample application. Go to [the project page](https://gitlab.com/gitlab-examples/minimal-ruby-app) and press the Fork button. Soon you should have a project under your namespace with the necessary files.

## Setup your own cluster on Google Kubernetes Engine

If you do not already have a Google Cloud account, create one at https://console.cloud.google.com.

Visit the [Kubernetes Engine](https://console.cloud.google.com/kubernetes/list) tab and create a new cluster. You can change the name and leave the rest of the default settings. Once you have your cluster running, you need to connect to the cluster by following the Google interface.

## Connect to Kubernetes cluster

You need to have the Google Cloud SDK installed. e.g.
On OSX, install [homebrew](https://brew.sh):


	Install Brew Caskroom: brew install caskroom/cask/brew-cask


	Install Google Cloud SDK: brew cask install google-cloud-sdk


	Add kubectl: gcloud components install kubectl


	Log in: gcloud auth login




Now go back to the Google interface, find your cluster, and follow the instructions under Connect to the cluster and open the Kubernetes Dashboard. It will look something like gcloud container clusters get-credentials ruby-autodeploy –zone europe-west2-c –project api-project-XXXXXXX and then kubectl proxy.

![connect to cluster](img/guide_connect_cluster.png)

## Copy credentials to GitLab.com project

Once you have the Kubernetes Dashboard interface running, you should visit Secrets under the  Config section. There you should find the settings we need for GitLab integration: ca.crt and token.

![connect to cluster](img/guide_secret.png)

You need to copy-paste the ca.crt and token into your project on GitLab.com in the Kubernetes integration page under project Settings > Integrations > Project services > Kubernetes. Don’t actually copy the namespace though. Each project should have a unique namespace, and by leaving it blank, GitLab will create one for you.

![connect to cluster](img/guide_integration.png)

For API URL, you should use the Endpoint IP from your cluster page on Google Cloud Platform.

## Expose the application to the internet

In order to be able to visit your application, you need to install an NGINX ingress controller and point your domain name to its external IP address.

### Set up Ingress controller

You’ll need to make sure you have an ingress controller. If you don’t have one, do:

`sh
brew install kubernetes-helm
helm init
helm install --name ruby-app stable/nginx-ingress
`

This should create several services including ruby-app-nginx-ingress-controller. You can list your services by running kubectl get svc to confirm that.

### Point DNS at Cluster IP

Find out the external IP address of the ruby-app-nginx-ingress-controller by running:

`sh
kubectl get svc ruby-app-nginx-ingress-controller -o jsonpath='{.status.loadBalancer.ingress[0].ip}'
`

Use this IP address to configure your DNS. This part heavily depends on your preferences and domain provider. But in case you are not sure, just create an A record with a wildcard host like *.<your-domain> pointing to the external IP address you found above.

Use nslookup minimal-ruby-app-staging.<yourdomain> to confirm that domain is assigned to the cluster IP.

## Setup Auto Deploy

Visit the home page of your GitLab.com project and press “Set up Auto Deploy” button.

![auto deploy button](img/auto_deploy_btn.png)

You will be redirected to the “New file” page where you can apply one of the Auto Deploy templates. Select “Kubernetes” to apply the template, then in the file, replace domain.example.com with your domain name and make any other adjustments you need.

![auto deploy template](img/auto_deploy_dropdown.png)

Change the target branch to master, and submit your changes. This should create
a new pipeline with several jobs. If you made only the domain name change, the
pipeline will have three jobs: build, staging, and production.

The build job will create a Docker image with your new change and push it to
the GitLab Container Registry. The staging job will deploy this image on your
cluster. Once the deploy job succeeds you should be able to see your application by
visiting the Kubernetes dashboard. Select the namespace of your project, which
will look like ruby-autodeploy-23, but with a unique ID for your project, and
your app will be listed as “staging” under the “Deployment” tab.

Once its ready - just visit http://minimal-ruby-app-staging.yourdomain.com to see “Hello, world!”



            

          

      

      

    

  

    
      
          
            
  This document was moved to [pipelines/job_artifacts.md](../../user/project/pipelines/job_artifacts.md).



            

          

      

      

    

  

    
      
          
            
  # Cache dependencies in GitLab CI/CD

GitLab CI/CD provides a caching mechanism that can be used to save time
when your jobs are running.

Caching is about speeding the time a job is executed by reusing the same
content of a previous job. It can be particularly useful when your are
developing software that depends on other libraries which are fetched via the
internet during build time.

If caching is enabled, it’s shared between pipelines and jobs by default,
starting from GitLab 9.0.

Make sure you read the [cache reference](../yaml/README.md#cache) to learn
how it is defined in .gitlab-ci.yml.

## Good caching practices

We have the cache from the perspective of the developers (who consume a cache
within the job) and the cache from the perspective of the Runner. Depending on
which type of Runner you are using, cache can act differently.

From the perspective of the developer, to ensure maximum availability of the
cache, when declaring cache in your jobs, use one or a mix of the following:


	[Tag your Runners](../runners/README.md#using-tags) and use the tag on jobs
that share their cache.


	[Use sticky Runners](../runners/README.md#locking-a-specific-runner-from-being-enabled-for-other-projects)
that will be only available to a particular project.


	[Use a key](../yaml/README.md#cache-key) that fits your workflow (e.g.,
different caches on each branch). For that, you can take advantage of the
[CI/CD predefined variables](../variables/README.md#predefined-variables-environment-variables).




TIP: Tip:
Using the same Runner for your pipeline, is the most simple and efficient way to
cache files in one stage or pipeline, and pass this cache to subsequent stages
or pipelines in a guaranteed manner.

From the perspective of the Runner, in order for cache to work effectively, one
of the following must be true:


	Use a single Runner for all your jobs


	Use multiple Runners (in autoscale mode or not) that use
[distributed caching](https://docs.gitlab.com/runner/configuration/autoscale.html#distributed-runners-caching),
where the cache is stored in S3 buckets (like shared Runners on GitLab.com)


	Use multiple Runners (not in autoscale mode) of the same architecture that
share a common network-mounted directory (using NFS or something similar)
where the cache will be stored




TIP: Tip:
Read about the [availability of the cache](#availability-of-the-cache)
to learn more about the internals and get a better idea how cache works.

### Sharing caches across the same branch

Define a cache with the key: ${CI_COMMIT_REF_SLUG} so that jobs of each
branch always use the same cache:

```yaml
cache:

key: ${CI_COMMIT_REF_SLUG}


```

While this feels like it might be safe from accidentally overwriting the cache,
it means merge requests get slow first pipelines, which might be a bad
developer experience. The next time a new commit is pushed to the branch, the
cache will be re-used.

To enable per-job and per-branch caching:

```yaml
cache:

key: “CI_JOB_NAME-CI_COMMIT_REF_SLUG”


```

To enable per-branch and per-stage caching:

```yaml
cache:

key: “CI_JOB_STAGE-CI_COMMIT_REF_SLUG”


```

### Sharing caches across different branches

If the files you are caching need to be shared across all branches and all jobs,
you can use the same key for all of them:

```yaml
cache:

key: one-key-to-rull-them-all


```

To share the same cache between branches, but separate them by job:

```yaml
cache:

key: ${CI_JOB_NAME}


```

### Disabling cache on specific jobs

If you have defined the cache globally, it means that each job will use the
same definition. You can override this behavior per-job, and if you want to
disable it completely, use an empty hash:

```yaml
job:

cache: {}


```

For more fine tuning, read also about the
[cache: policy](../yaml/README.md#cache-policy).

## Common use cases

The most common use case of cache is to preserve contents between subsequent
runs of jobs for things like dependencies and commonly used libraries
(Nodejs packages, PHP packages, rubygems, python libraries, etc.),
so they don’t have to be re-fetched from the public internet.

NOTE: Note:
For more examples, check the [GitLab CI Yml](https://gitlab.com/gitlab-org/gitlab-ci-yml)
project.

### Caching Nodejs dependencies

Assuming your project is using [npm](https://www.npmjs.com/) or
[Yarn](https://yarnpkg.com/en/) to install the Nodejs dependencies, the
following example defines cache globally so that all jobs inherit it.
Nodejs modules are installed in node_modules/ and are cached per-branch:

```yaml
#
https://gitlab.com/gitlab-org/gitlab-ci-yml/blob/master/Nodejs.gitlab-ci.yml
#
image: node:latest

Cache modules in between jobs
cache:

key: ${CI_COMMIT_REF_SLUG}
paths:
- node_modules/

	before_script:
	
	npm install

	test_async:
	script:
- node ./specs/start.js ./specs/async.spec.js


```

### Caching PHP dependencies

Assuming your project is using [Composer](https://getcomposer.org/) to install
the PHP dependencies, the following example defines cache globally so that
all jobs inherit it. PHP libraries modules are installed in vendor/ and
are cached per-branch:

```yaml
#
https://gitlab.com/gitlab-org/gitlab-ci-yml/blob/master/PHP.gitlab-ci.yml
#
image: php:7.2

Cache libraries in between jobs
cache:

key: ${CI_COMMIT_REF_SLUG}
paths:
- vendor/

before_script:
Install and run Composer
- curl –show-error –silent https://getcomposer.org/installer | php
- php composer.phar install

	test:
	script:
- vendor/bin/phpunit –configuration phpunit.xml –coverage-text –colors=never


```

### Caching Python dependencies

Assuming your project is using [pip](https://pip.pypa.io/en/stable/) to install
the python dependencies, the following example defines cache globally so that
all jobs inherit it. Python libraries are installed in a virtualenv under venv/,
pip’s cache is defined under .cache/pip/ and both are cached per-branch:

```yaml
#
https://gitlab.com/gitlab-org/gitlab-ci-yml/blob/master/Python.gitlab-ci.yml
#
image: python:latest

Change pip’s cache directory to be inside the project directory since we can
only cache local items.
variables:

PIP_CACHE_DIR: “$CI_PROJECT_DIR/.cache”

Pip’s cache doesn’t store the python packages
https://pip.pypa.io/en/stable/reference/pip_install/#caching
#
If you want to also cache the installed packages, you have to install
them in a virtualenv and cache it as well.
cache:

	paths:
	
	.cache/

	venv/

	before_script:
	
	python -V # Print out python version for debugging

	pip install virtualenv

	virtualenv venv

	source venv/bin/activate

	test:
	script:
- python setup.py test
- pip install flake8
- flake8 .


```

### Caching Ruby dependencies

Assuming your project is using [Bundler](https://bundler.io) to install the
gem dependencies, the following example defines cache globally so that all
jobs inherit it. Gems are installed in vendor/ruby/ and are cached per-branch:

```yaml
#
https://gitlab.com/gitlab-org/gitlab-ci-yml/blob/master/Ruby.gitlab-ci.yml
#
image: ruby:2.5

Cache gems in between builds
cache:

key: ${CI_COMMIT_REF_SLUG}
paths:

	vendor/ruby

	before_script:
	
	ruby -v # Print out ruby version for debugging

	gem install bundler –no-ri –no-rdoc # Bundler is not installed with the image

	bundle install -j $(nproc) –path vendor # Install dependencies into ./vendor/ruby

	rspec:
	script:
- rspec spec


```

## Availability of the cache

Caching is an optimization, but isn’t guaranteed to always work, so you need to
be prepared to regenerate any cached files in each job that needs them.

Assuming you have properly [defined cache in .gitlab-ci.yml](../yaml/README.md#cache)
according to your workflow, the availability of the cache ultimately depends on
how the Runner has been configured (the executor type and whether different
Runners are used for passing the cache between jobs).

### Where the caches are stored

Since the Runner is the one responsible for storing the cache, it’s essential
to know where it’s stored. All the cache paths defined under a job in
.gitlab-ci.yml are archived in a single cache.zip file and stored in the
Runner’s configured cache location. By default, they are stored locally in the
machine where the Runner is installed and depends on the type of the executor.


GitLab Runner executor | Default path of the cache |

———————- | ————————- |

[Shell](https://docs.gitlab.com/runner/executors/shell.html) | Locally, stored under the gitlab-runner user’s home directory: /home/gitlab-runner/cache/<user>/<project>/<cache-key>/cache.zip. |

[Docker](https://docs.gitlab.com/runner/executors/docker.html) | Locally, stored under [Docker volumes](https://docs.gitlab.com/runner/executors/docker.html#the-builds-and-cache-storage): /var/lib/docker/volumes/<volume-id>/_data/<user>/<project>/<cache-key>/cache.zip. |

[Docker machine](https://docs.gitlab.com/runner/executors/docker_machine.html) (autoscale Runners) | Behaves the same as the Docker executor. |



### How archiving and extracting works

In the most simple scenario, consider that you use only one machine where the
Runner is installed, and all jobs of your project run on the same host.

Let’s see the following example of two jobs that belong to two consecutive
stages:

```yaml
stages:
- build
- test

before_script:
- echo “Hello”

	job A:
	stage: build
script:
- mkdir vendor/
- echo “build” > vendor/hello.txt
cache:

key: build-cache
paths:
- vendor/

after_script:
- echo “World”

	job B:
	stage: test
script:
- cat vendor/hello.txt
cache:

key: build-cache


```

Here’s what happens behind the scenes:

1. Pipeline starts
1. job A runs
1. before_script is executed
1. script is executed
1. after_script is executed
1. cache runs and the vendor/ directory is zipped into cache.zip.


This file is then saved in the directory based on the
[Runner’s setting](#where-the-caches-are-stored) and the cache: key.




1. job B runs
1. The cache is extracted (if found)
1. before_script is executed
1. script is executed
1. Pipeline finishes

By using a single Runner on a single machine, you’ll not have the issue where
job B might execute on a Runner different from job A, thus guaranteeing the
cache between stages. That will only work if the build goes from stage build
to test in the same Runner/machine, otherwise, you [might not have the cache
available](#cache-mismatch).

During the caching process, there’s also a couple of things to consider:


	If some other job, with another cache configuration had saved its
cache in the same zip file, it is overwritten. If the S3 based shared cache is
used, the file is additionally uploaded to S3 to an object based on the cache
key. So, two jobs with different paths, but the same cache key, will overwrite
their cache.


	When extracting the cache from cache.zip, everything in the zip file is
extracted in the job’s working directory (usually the repository which is
pulled down), and the Runner doesn’t mind if the archive of job A overwrites
things in the archive of job B.




The reason why it works this way is because the cache created for one Runner
often will not be valid when used by a different one which can run on a
different architecture (e.g., when the cache includes binary files). And
since the different steps might be executed by Runners running on different
machines, it is a safe default.

### Cache mismatch

In the following table, you can see some reasons where you might hit a cache
mismatch and a few ideas how to fix it.


Reason of a cache mismatch | How to fix it |

————————– | ————- |

You use multiple standalone Runners (not in autoscale mode) attached to one project without a shared cache | Use only one Runner for your project or use multiple Runners with distributed cache enabled |

You use Runners in autoscale mode without a distributed cache enabled | Configure the autoscale Runner to use a distributed cache |

The machine the Runner is installed on is low on disk space or, if you’ve set up distributed cache, the S3 bucket where the cache is stored doesn’t have enough space | Make sure you clear some space to allow new caches to be stored. Currently, there’s no automatic way to do this. |

You use the same key for jobs where they cache different paths. | Use different cache keys to that the cache archive is stored to a different location and doesn’t overwrite wrong caches. |



Let’s explore some examples.

—

Let’s assume you have only one Runner assigned to your project, so the cache
will be stored in the Runner’s machine by default. If two jobs, A and B,
have the same cache key, but they cache different paths, cache B would overwrite
cache A, even if their paths don’t match:

We want job A and job B to re-use their
cache when the pipeline is run for a second time.

```yaml
stages:
- build
- test

	job A:
	stage: build
script: make build
cache:

key: same-key
paths:
- public/

	job B:
	stage: test
script: make test
cache:

key: same-key
paths:
- vendor/


```

1. job A runs
1. public/ is cached as cache.zip
1. job B runs
1. The previous cache, if any, is unzipped
1. vendor/ is cached as cache.zip and overwrites the previous one
1. The next time job A runs it will use the cache of job B which is different


and thus will be ineffective




To fix that, use different keys for each job.

—

In another case, let’s assume you have more than one Runners assigned to your
project, but the distributed cache is not enabled. We want the second time the
pipeline is run, job A and job B to re-use their cache (which in this case
will be different):

```yaml
stages:
- build
- test

	job A:
	stage: build
script: build
cache:

key: keyA
paths:
- vendor/

	job B:
	stage: test
script: test
cache:

key: keyB
paths:
- vendor/


```

In that case, even if the key is different (no fear of overwriting), you
might experience the cached files to “get cleaned” before each stage if the
jobs run on different Runners in the subsequent pipelines.

## Clearing the cache

GitLab Runners use [cache](../yaml/README.md#cache) to speed up the execution
of your jobs by reusing existing data. This however, can sometimes lead to an
inconsistent behavior.

To start with a fresh copy of the cache, there are two ways to do that.

### Clearing the cache by changing cache:key

All you have to do is set a new cache: key in your .gitlab-ci.yml. In the
next run of the pipeline, the cache will be stored in a different location.

### Clearing the cache manually

> [Introduced](https://gitlab.com/gitlab-org/gitlab-ce/issues/41249) in GitLab 10.4.

If you want to avoid editing .gitlab-ci.yml, you can easily clear the cache
via GitLab’s UI:

1. Navigate to your project’s CI/CD > Pipelines page
1. Click on the Clear Runner caches button to clean up the cache


![Clear Runners cache](img/clear_runners_cache.png)





	On the next push, your CI/CD job will use a new cache




Behind the scenes, this works by increasing a counter in the database, and the
value of that counter is used to create the key for the cache by appending an
integer to it: -1, -2, etc. After a push, a new key is generated and the
old cache is not valid anymore.

## Cache vs artifacts

NOTE: Note:
Be careful if you use cache and artifacts to store the same path in your jobs
as caches are restored before artifacts and the content would be overwritten.

Don’t mix the caching with passing artifacts between stages. Caching is not
designed to pass artifacts between stages. Cache is for runtime dependencies
needed to compile the project:


	cache - Use for temporary storage for project dependencies. Not useful
for keeping intermediate build results, like jar or apk files.
Cache was designed to be used to speed up invocations of subsequent runs of a
given job, by keeping things like dependencies (e.g., npm packages, Go vendor
packages, etc.) so they don’t have to be re-fetched from the public internet.
While the cache can be abused to pass intermediate build results between stages,
there may be cases where artifacts are a better fit.


	artifacts - Use for stage results that will be passed between stages.
Artifacts were designed to upload some compiled/generated bits of the build,
and they can be fetched by any number of concurrent Runners. They are
guaranteed to be available and are there to pass data between jobs. They are
also exposed to be downloaded from the UI.




It’s sometimes confusing because the name artifact sounds like something that
is only useful outside of the job, like for downloading a final image. But
artifacts are also available in between stages within a pipeline. So if you
build your application by downloading all the required modules, you might want
to declare them as artifacts so that each subsequent stage can depend on them
being there. There are some optimizations like declaring an
[expiry time](../yaml/README.md#artifacts-expire_in) so you don’t keep artifacts
around too long, and using [dependencies](../yaml/README.md#dependencies) to
control exactly where artifacts are passed around.

So, to sum up:
- Caches are disabled if not defined globally or per job (using cache:)
- Caches are available for all jobs in your .gitlab-ci.yml if enabled globally
- Caches can be used by subsequent pipelines of that very same job (a script in


a stage) in which the cache was created (if not defined globally).





	Caches are stored where the Runner is installed and uploaded to S3 if
[distributed cache is enabled](https://docs.gitlab.com/runner/configuration/autoscale.html#distributed-runners-caching)


	Caches defined per job are only used either a) for the next pipeline of that job,
or b) if that same cache is also defined in a subsequent job of the same pipeline


	Artifacts are disabled if not defined per job (using artifacts:)


	Artifacts can only be enabled per job, not globally


	Artifacts are created during a pipeline and can be used by the subsequent
jobs of that currently active pipeline


	Artifacts are always uploaded to GitLab (known as coordinator)


	Artifacts can have an expiration value for controlling disk usage (30 days by default)






            

          

      

      

    

  

    
      
          
            
  —
comments: false
—

# Docker integration


	[Using Docker Images](using_docker_images.md)


	[Using Docker Build](using_docker_build.md)


	[Using kaniko](using_kaniko.md)






            

          

      

      

    

  

    
      
          
            
  # Building Docker images with GitLab CI/CD

GitLab CI/CD allows you to use Docker Engine to build and test docker-based projects.

TIP: Tip:
This also allows to you to use docker-compose and other docker-enabled tools.

One of the new trends in Continuous Integration/Deployment is to:

1. Create an application image
1. Run tests against the created image
1. Push image to a remote registry
1. Deploy to a server from the pushed image

It’s also useful when your application already has the Dockerfile that can be
used to create and test an image:

`bash
docker build -t my-image dockerfiles/
docker run my-docker-image /script/to/run/tests
docker tag my-image my-registry:5000/my-image
docker push my-registry:5000/my-image
`

This requires special configuration of GitLab Runner to enable docker support
during jobs.

## Runner Configuration

There are three methods to enable the use of docker build and docker run during jobs; each with their own tradeoffs.

### Use shell executor

The simplest approach is to install GitLab Runner in shell execution mode.
GitLab Runner then executes job scripts as the gitlab-runner user.


	Install [GitLab Runner](https://gitlab.com/gitlab-org/gitlab-runner/#installation).





	During GitLab Runner installation select shell as method of executing job scripts or use command:


```bash
sudo gitlab-runner register -n

–url https://gitlab.com/ –registration-token REGISTRATION_TOKEN –executor shell –description “My Runner”


```






	Install Docker Engine on server.


For more information how to install Docker Engine on different systems
checkout the [Supported installations](https://docs.docker.com/engine/installation/).






	Add gitlab-runner user to docker group:


`bash
sudo usermod -aG docker gitlab-runner
`






	Verify that gitlab-runner has access to Docker:


`bash
sudo -u gitlab-runner -H docker info
`

You can now verify that everything works by adding docker info to .gitlab-ci.yml:

```yaml
before_script:

	docker info

	build_image:
	
	script:
	
	docker build -t my-docker-image .

	docker run my-docker-image /script/to/run/tests


```






	You can now use docker command and install docker-compose if needed.




NOTE: Note:
By adding gitlab-runner to the docker group you are effectively granting gitlab-runner full root permissions.
For more information please read [On Docker security: docker group considered harmful](https://www.andreas-jung.com/contents/on-docker-security-docker-group-considered-harmful).

### Use docker-in-docker executor

The second approach is to use the special docker-in-docker (dind)
[Docker image](https://hub.docker.com/_/docker/) with all tools installed
(docker and docker-compose) and run the job script in context of that
image in privileged mode.

In order to do that, follow the steps:


	Install [GitLab Runner](https://docs.gitlab.com/runner/install).





	Register GitLab Runner from the command line to use docker and privileged
mode:


```bash
sudo gitlab-runner register -n

–url https://gitlab.com/ –registration-token REGISTRATION_TOKEN –executor docker –description “My Docker Runner” –docker-image “docker:stable” –docker-privileged


```

The above command will register a new Runner to use the special
docker:stable image which is provided by Docker. Notice that it’s using
the `privileged` mode to start the build and service containers. If you
want to use [docker-in-docker] mode, you always have to use privileged = true
in your Docker containers.

The above command will create a config.toml entry similar to this:

```
[[runners]]

url = “https://gitlab.com/”
token = TOKEN
executor = “docker”
[runners.docker]

tls_verify = false
image = “docker:stable”
privileged = true
disable_cache = false
volumes = [“/cache”]

	[runners.cache]
	Insecure = false


```









	You can now use docker in the build script (note the inclusion of the
docker:dind service):


```yaml
image: docker:stable

	variables:
	# When using dind service we need to instruct docker, to talk with the
daemon started inside of the service. The daemon is available with
a network connection instead of the default /var/run/docker.sock socket.
#
The ‘docker’ hostname is the alias of the service container as described at
https://docs.gitlab.com/ee/ci/docker/using_docker_images.html#accessing-the-services
#
Note that if you’re using Kubernetes executor, the variable should be set to
tcp://localhost:2375 because of how Kubernetes executor connects services
to the job container
DOCKER_HOST: tcp://docker:2375/
When using dind, it’s wise to use the overlayfs driver for
improved performance.
DOCKER_DRIVER: overlay2

services:
- docker:dind

before_script:
- docker info

	build:
	stage: build
script:
- docker build -t my-docker-image .
- docker run my-docker-image /script/to/run/tests


```








Docker-in-Docker works well, and is the recommended configuration, but it is
not without its own challenges:


	By enabling –docker-privileged, you are effectively disabling all of
the security mechanisms of containers and exposing your host to privilege
escalation which can lead to container breakout. For more information, check
out the official Docker documentation on
[Runtime privilege and Linux capabilities][docker-cap].


	When using docker-in-docker, each job is in a clean environment without the past
history. Concurrent jobs work fine because every build gets it’s own
instance of Docker engine so they won’t conflict with each other. But this
also means jobs can be slower because there’s no caching of layers.


	By default, docker:dind uses –storage-driver vfs which is the slowest
form offered. To use a different driver, see
[Using the overlayfs driver](#using-the-overlayfs-driver).


	Since the docker:dind container and the runner container don’t share their
root filesystem, the job’s working directory can be used as a mount point for
children containers. For example, if you have files you want to share with a
child container, you may create a subdirectory under /builds/$CI_PROJECT_PATH
and use it as your mount point (for a more thorough explanation, check [issue
#41227](https://gitlab.com/gitlab-org/gitlab-ce/issues/41227)):


```yaml
variables:

MOUNT_POINT: /builds/$CI_PROJECT_PATH/mnt

	script:
	
	mkdir -p “$MOUNT_POINT”

	docker run -v “$MOUNT_POINT:/mnt” my-docker-image


```








An example project using this approach can be found here: https://gitlab.com/gitlab-examples/docker.

### Use Docker socket binding

The third approach is to bind-mount /var/run/docker.sock into the container so that docker is available in the context of that image.

In order to do that, follow the steps:


	Install [GitLab Runner](https://docs.gitlab.com/runner/install).





	Register GitLab Runner from the command line to use docker and share /var/run/docker.sock:


```bash
sudo gitlab-runner register -n

–url https://gitlab.com/ –registration-token REGISTRATION_TOKEN –executor docker –description “My Docker Runner” –docker-image “docker:stable” –docker-volumes /var/run/docker.sock:/var/run/docker.sock


```

The above command will register a new Runner to use the special
docker:stable image which is provided by Docker. Notice that it’s using
the Docker daemon of the Runner itself, and any containers spawned by docker
commands will be siblings of the Runner rather than children of the runner.
This may have complications and limitations that are unsuitable for your workflow.

The above command will create a config.toml entry similar to this:

```
[[runners]]

url = “https://gitlab.com/”
token = REGISTRATION_TOKEN
executor = “docker”
[runners.docker]

tls_verify = false
image = “docker:stable”
privileged = false
disable_cache = false
volumes = [“/var/run/docker.sock:/var/run/docker.sock”, “/cache”]

	[runners.cache]
	Insecure = false


```









	You can now use docker in the build script (note that you don’t need to
include the docker:dind service as when using the Docker in Docker executor):


```yaml
image: docker:stable

before_script:
- docker info

	build:
	stage: build
script:
- docker build -t my-docker-image .
- docker run my-docker-image /script/to/run/tests


```








While the above method avoids using Docker in privileged mode, you should be
aware of the following implications:


	By sharing the docker daemon, you are effectively disabling all
the security mechanisms of containers and exposing your host to privilege
escalation which can lead to container breakout. For example, if a project
ran docker rm -f $(docker ps -a -q) it would remove the GitLab Runner
containers.


	Concurrent jobs may not work; if your tests
create containers with specific names, they may conflict with each other.


	Sharing files and directories from the source repo into containers may not
work as expected since volume mounting is done in the context of the host
machine, not the build container, e.g.:


`
docker run --rm -t -i -v $(pwd)/src:/home/app/src test-image:latest run_app_tests
`








## Making docker-in-docker builds faster with Docker layer caching

When using docker-in-docker, Docker will download all layers of your image every
time you create a build. Recent versions of Docker (Docker 1.13 and above) can
use a pre-existing image as a cache during the docker build step, considerably
speeding up the build process.

### How Docker caching works

When running docker build, each command in Dockerfile results in a layer.
These layers are kept around as a cache and can be reused if there haven’t been
any changes. Change in one layer causes all subsequent layers to be recreated.

You can specify a tagged image to be used as a cache source for the docker build
command by using the –cache-from argument. Multiple images can be specified
as a cache source by using multiple –cache-from arguments. Keep in mind that
any image that’s used with the –cache-from argument must first be pulled
(using docker pull) before it can be used as a cache source.

### Using Docker caching

Here’s a simple .gitlab-ci.yml file showing how Docker caching can be utilized:

```yaml
image: docker:stable

	services:
	
	docker:dind

	variables:
	CONTAINER_IMAGE: registry.gitlab.com/$CI_PROJECT_PATH
DOCKER_HOST: tcp://docker:2375
DOCKER_DRIVER: overlay2

	before_script:
	
	docker login -u gitlab-ci-token -p $CI_JOB_TOKEN registry.gitlab.com

	build:
	stage: build
script:

	docker pull $CONTAINER_IMAGE:latest || true

	docker build –cache-from $CONTAINER_IMAGE:latest –tag $CONTAINER_IMAGE:$CI_BUILD_REF –tag $CONTAINER_IMAGE:latest .

	docker push $CONTAINER_IMAGE:$CI_BUILD_REF

	docker push $CONTAINER_IMAGE:latest


```

The steps in the script section for the build stage can be summed up to:


	The first command tries to pull the image from the registry so that it can be
used as a cache for the docker build command.





	The second command builds a Docker image using the pulled image as a
cache (notice the –cache-from $CONTAINER_IMAGE:latest argument) if
available, and tags it.





	The last two commands push the tagged Docker images to the container registry
so that they may also be used as cache for subsequent builds.




## Using the OverlayFS driver

NOTE: Note:
The shared Runners on GitLab.com use the overlay2 driver by default.

By default, when using docker:dind, Docker uses the vfs storage driver which
copies the filesystem on every run. This is a very disk-intensive operation
which can be avoided if a different driver is used, for example overlay2.

### Requirements

1. Make sure a recent kernel is used, preferably >= 4.2.
1. Check whether the overlay module is loaded:


`
sudo lsmod | grep overlay
`

If you see no result, then it isn’t loaded. To load it use:

`
sudo modprobe overlay
`

If everything went fine, you need to make sure module is loaded on reboot.
On Ubuntu systems, this is done by editing /etc/modules. Just add the
following line into it:

`
overlay
`




### Use driver per project

You can enable the driver for each project individually by editing the project’s .gitlab-ci.yml:

```
variables:

DOCKER_DRIVER: overlay2


```

### Use driver for every project

To enable the driver for every project, you can set the environment variable for every build by adding environment in the [[runners]] section of config.toml:

`toml
environment = ["DOCKER_DRIVER=overlay2"]
`

If you’re running multiple Runners you will have to modify all configuration files.

> Notes:
- More information about the Runner configuration is available in the [Runner documentation](https://docs.gitlab.com/runner/configuration/).
- For more information about using OverlayFS with Docker, you can read


[Use the OverlayFS storage driver](https://docs.docker.com/engine/userguide/storagedriver/overlayfs-driver/).




## Using the GitLab Container Registry

> Notes:
- This feature requires GitLab 8.8 and GitLab Runner 1.2.
- Starting from GitLab 8.12, if you have [2FA] enabled in your account, you need


to pass a [personal access token][pat] instead of your password in order to
login to GitLab’s Container Registry.




Once you’ve built a Docker image, you can push it up to the built-in
[GitLab Container Registry](../../user/project/container_registry.md). For example,
if you’re using docker-in-docker on your runners, this is how your .gitlab-ci.yml
could look like:


	```yaml
	
	build:
	image: docker:stable
services:
- docker:dind
variables:

DOCKER_HOST: tcp://docker:2375
DOCKER_DRIVER: overlay2

stage: build
script:

	docker login -u gitlab-ci-token -p $CI_JOB_TOKEN registry.example.com

	docker build -t registry.example.com/group/project/image:latest .

	docker push registry.example.com/group/project/image:latest


```

You have to use the special gitlab-ci-token user created for you in order to
push to the Registry connected to your project. Its password is provided in the
$CI_JOB_TOKEN variable. This allows you to automate building and deployment
of your Docker images.

You can also make use of [other variables](../variables/README.md) to avoid hardcoding:

```yaml
services:

	docker:dind

	variables:
	DOCKER_HOST: tcp://docker:2375
DOCKER_DRIVER: overlay2
IMAGE_TAG: $CI_REGISTRY_IMAGE:$CI_COMMIT_REF_SLUG

	before_script:
	
	docker login -u gitlab-ci-token -p $CI_JOB_TOKEN $CI_REGISTRY

	build:
	stage: build
script:

	docker build -t $IMAGE_TAG .

	docker push $IMAGE_TAG


```

Here, $CI_REGISTRY_IMAGE would be resolved to the address of the registry tied
to this project. Since $CI_COMMIT_REF_NAME resolves to the branch or tag name,
and your branch-name can contain forward slashes (e.g., feature/my-feature), it is
safer to use $CI_COMMIT_REF_SLUG as the image tag. This is due to that image tags
cannot contain forward slashes. We also declare our own variable, $IMAGE_TAG,
combining the two to save us some typing in the script section.

Here’s a more elaborate example that splits up the tasks into 4 pipeline stages,
including two tests that run in parallel. The build is stored in the container
registry and used by subsequent stages, downloading the image
when needed. Changes to master also get tagged as latest and deployed using
an application-specific deploy script:

```yaml
image: docker:stable
services:
- docker:dind

stages:
- build
- test
- release
- deploy

	variables:
	DOCKER_HOST: tcp://docker:2375
DOCKER_DRIVER: overlay2
CONTAINER_TEST_IMAGE: registry.example.com/my-group/my-project/my-image:$CI_COMMIT_REF_SLUG
CONTAINER_RELEASE_IMAGE: registry.example.com/my-group/my-project/my-image:latest

	before_script:
	
	docker login -u gitlab-ci-token -p $CI_JOB_TOKEN registry.example.com

	build:
	stage: build
script:

	docker build –pull -t $CONTAINER_TEST_IMAGE .

	docker push $CONTAINER_TEST_IMAGE

	test1:
	stage: test
script:

	docker pull $CONTAINER_TEST_IMAGE

	docker run $CONTAINER_TEST_IMAGE /script/to/run/tests

	test2:
	stage: test
script:

	docker pull $CONTAINER_TEST_IMAGE

	docker run $CONTAINER_TEST_IMAGE /script/to/run/another/test

	release-image:
	stage: release
script:

	docker pull $CONTAINER_TEST_IMAGE

	docker tag $CONTAINER_TEST_IMAGE $CONTAINER_RELEASE_IMAGE

	docker push $CONTAINER_RELEASE_IMAGE

	only:
	
	master

	deploy:
	stage: deploy
script:

	./deploy.sh

	only:
	
	master


```

Some things you should be aware of when using the Container Registry:


	You must log in to the container registry before running commands. Putting
this in before_script will run it before each job.


	Using docker build –pull makes sure that Docker fetches any changes to base
images before building just in case your cache is stale. It takes slightly
longer, but means you don’t get stuck without security patches to base images.


	Doing an explicit docker pull before each docker run makes sure to fetch
the latest image that was just built. This is especially important if you are
using multiple runners that cache images locally. Using the git SHA in your
image tag makes this less necessary since each job will be unique and you
shouldn’t ever have a stale image, but it’s still possible if you re-build a
given commit after a dependency has changed.


	You don’t want to build directly to latest in case there are multiple jobs
happening simultaneously.




[docker-in-docker]: https://blog.docker.com/2013/09/docker-can-now-run-within-docker/
[docker-cap]: https://docs.docker.com/engine/reference/run/#runtime-privilege-and-linux-capabilities
[2fa]: ../../user/profile/account/two_factor_authentication.md
[pat]: ../../user/profile/personal_access_tokens.md



            

          

      

      

    

  

    
      
          
            
  # Using Docker images

GitLab CI in conjunction with [GitLab Runner](../runners/README.md) can use
[Docker Engine](https://www.docker.com/) to test and build any application.

Docker is an open-source project that allows you to use predefined images to
run applications in independent “containers” that are run within a single Linux
instance. [Docker Hub][hub] has a rich database of pre-built images that can be
used to test and build your applications.

Docker, when used with GitLab CI, runs each job in a separate and isolated
container using the predefined image that is set up in
[.gitlab-ci.yml](../yaml/README.md).

This makes it easier to have a simple and reproducible build environment that
can also run on your workstation. The added benefit is that you can test all
the commands that we will explore later from your shell, rather than having to
test them on a dedicated CI server.

## Register Docker Runner

To use GitLab Runner with Docker you need to [register a new Runner][register]
to use the docker executor.

A one-line example can be seen below:

```bash
sudo gitlab-runner register

–url “https://gitlab.example.com/” –registration-token “PROJECT_REGISTRATION_TOKEN” –description “docker-ruby-2.1” –executor “docker” –docker-image ruby:2.1 –docker-postgres latest –docker-mysql latest


```

The registered runner will use the ruby:2.1 Docker image and will run two
services, postgres:latest and mysql:latest, both of which will be
accessible during the build process.

## What is an image

The image keyword is the name of the Docker image the Docker executor
will run to perform the CI tasks.

By default, the executor will only pull images from [Docker Hub][hub],
but this can be configured in the gitlab-runner/config.toml by setting
the [Docker pull policy][] to allow using local images.

For more information about images and Docker Hub please read
the [Docker Fundamentals][] documentation.

## What is a service

The services keyword defines just another Docker image that is run during
your job and is linked to the Docker image that the image keyword defines.
This allows you to access the service image during build time.

The service image can run any application, but the most common use case is to
run a database container, e.g., mysql. It’s easier and faster to use an
existing image and run it as an additional container than install mysql every
time the project is built.

You are not limited to have only database services. You can add as many
services you need to .gitlab-ci.yml or manually modify config.toml.
Any image found at [Docker Hub][hub] or your private Container Registry can be
used as a service.

You can see some widely used services examples in the relevant documentation of
[CI services examples](../services/README.md).

### How services are linked to the job

To better understand how the container linking works, read
[Linking containers together][linking-containers].

To summarize, if you add mysql as service to your application, the image will
then be used to create a container that is linked to the job container.

The service container for MySQL will be accessible under the hostname mysql.
So, in order to access your database service you have to connect to the host
named mysql instead of a socket or localhost. Read more in [accessing the
services](#accessing-the-services).

### How the health check of services works

Services are designed to provide additional functionality which is network accessible.
It may be a database like MySQL, or Redis, and even docker:stable-dind which
allows you to use Docker in Docker. It can be practically anything that is
required for the CI/CD job to proceed and is accessed by network.

To make sure this works, the Runner:

1. checks which ports are exposed from the container by default
1. starts a special container that waits for these ports to be accessible

When the second stage of the check fails, either because there is no opened port in the
service, or the service was not started properly before the timeout and the port is not
responding, it prints the warning: *** WARNING: Service XYZ probably didn’t start properly.

In most cases it will affect the job, but there may be situations when the job
will still succeed even if that warning was printed. For example:


	The service was started a little after the warning was raised, and the job is
not using the linked service from the very beginning. In that case, when the
job needed to access the service, it may have been already there waiting for
connections.


	The service container is not providing any networking service, but it’s doing
something with the job’s directory (all services have the job directory mounted
as a volume under /builds). In that case, the service will do its job, and
since the job is not trying to connect to it, it won’t fail.




### What services are not for

As it was mentioned before, this feature is designed to provide network accessible
services. A database is the simplest example of such a service.

NOTE: Note:
The services feature is not designed to, and will not add any software from the
defined services image(s) to the job’s container.

For example, if you have the following services defined in your job, the php,
node or go commands will not be available for your script, and thus
the job will fail:

```yaml
job:

services:
- php:7
- node:latest
- golang:1.10
image: alpine:3.7
script:
- php -v
- node -v
- go version


```

If you need to have php, node and go available for your script, you should
either:


	choose an existing Docker image that contains all required tools, or


	create your own Docker image, which will have all the required tools included
and use that in your job




### Accessing the services

Let’s say that you need a Wordpress instance to test some API integration with
your application.

You can then use for example the [tutum/wordpress][] image in your
.gitlab-ci.yml:

`yaml
services:
- tutum/wordpress:latest
`

If you don’t [specify a service alias](#available-settings-for-services),
when the job is run, tutum/wordpress will be started and you will have
access to it from your build container under two hostnames to choose from:


	tutum-wordpress


	tutum__wordpress




>**Note:**
Hostnames with underscores are not RFC valid and may cause problems in 3rd party
applications.

The default aliases for the service’s hostname are created from its image name
following these rules:


	Everything after the colon (:) is stripped


	Slash (/) is replaced with double underscores (__) and the primary alias
is created


	Slash (/) is replaced with a single dash (-) and the secondary alias is
created (requires GitLab Runner v1.1.0 or higher)




To override the default behavior, you can
[specify a service alias](#available-settings-for-services).

## Define image and services from .gitlab-ci.yml

You can simply define an image that will be used for all jobs and a list of
services that you want to use during build time:

```yaml
image: ruby:2.2

	services:
	
	postgres:9.3

	before_script:
	
	bundle install

	test:
	script:
- bundle exec rake spec


```

It is also possible to define different images and services per job:

```yaml
before_script:

	bundle install

	test:2.1:
	image: ruby:2.1
services:
- postgres:9.3
script:
- bundle exec rake spec

	test:2.2:
	image: ruby:2.2
services:
- postgres:9.4
script:
- bundle exec rake spec


```

Or you can pass some [extended configuration options](#extended-docker-configuration-options)
for image and services:

```yaml
image:

name: ruby:2.2
entrypoint: [“/bin/bash”]

services:
- name: my-postgres:9.4

alias: db-postgres
entrypoint: [“/usr/local/bin/db-postgres”]
command: [“start”]

before_script:
- bundle install

	test:
	script:
- bundle exec rake spec


```

## Extended Docker configuration options

> Introduced in GitLab and GitLab Runner 9.4.

When configuring the image or services entries, you can use a string or a map as
options:


	when using a string as an option, it must be the full name of the image to use
(including the Registry part if you want to download the image from a Registry
other than Docker Hub)


	when using a map as an option, then it must contain at least the name
option, which is the same name of the image as used for the string setting




For example, the following two definitions are equal:


	Using a string as an option to image and services:


```yaml
image: “registry.example.com/my/image:latest”

services:
- postgresql:9.4
- redis:latest
```









	Using a map as an option to image and services. The use of image:name is
required:


```yaml
image:

name: “registry.example.com/my/image:latest”

services:
- name: postgresql:9.4
- name: redis:latest
```








### Available settings for image

> Introduced in GitLab and GitLab Runner 9.4.


Setting    | Required | GitLab version | Description |



------------	———-	----------------	———–
name	yes, when used with any other option	9.4	Full name of the image that should be used. It should contain the Registry part if needed.
entrypoint	no	9.4	Command or script that should be executed as the container’s entrypoint. It will be translated to Docker’s –entrypoint option while creating the container. The syntax is similar to [Dockerfile’s ENTRYPOINT][entrypoint] directive, where each shell token is a separate string in the array.

### Available settings for services

> Introduced in GitLab and GitLab Runner 9.4.


Setting    | Required | GitLab version | Description |



------------	———-	----------------	———–
name	yes, when used with any other option	9.4	Full name of the image that should be used. It should contain the Registry part if needed.
entrypoint	no	9.4	Command or script that should be executed as the container’s entrypoint. It will be translated to Docker’s –entrypoint option while creating the container. The syntax is similar to [Dockerfile’s ENTRYPOINT][entrypoint] directive, where each shell token is a separate string in the array.
command	no	9.4	Command or script that should be used as the container’s command. It will be translated to arguments passed to Docker after the image’s name. The syntax is similar to [Dockerfile’s CMD][cmd] directive, where each shell token is a separate string in the array.
alias	no	9.4	Additional alias that can be used to access the service from the job’s container. Read [Accessing the services](#accessing-the-services) for more information.

### Starting multiple services from the same image

> Introduced in GitLab and GitLab Runner 9.4. Read more about the [extended
configuration options](#extended-docker-configuration-options).

Before the new extended Docker configuration options, the following configuration
would not work properly:

`yaml
services:
- mysql:latest
- mysql:latest
`

The Runner would start two containers using the mysql:latest image, but both
of them would be added to the job’s container with the mysql alias based on
the [default hostname naming](#accessing-the-services). This would end with one
of the services not being accessible.

After the new extended Docker configuration options, the above example would
look like:

```yaml
services:
- name: mysql:latest

alias: mysql-1

	name: mysql:latest
alias: mysql-2


```

The Runner will still start two containers using the mysql:latest image,
but now each of them will also be accessible with the alias configured
in .gitlab-ci.yml file.

### Setting a command for the service

> Introduced in GitLab and GitLab Runner 9.4. Read more about the [extended
configuration options](#extended-docker-configuration-options).

Let’s assume you have a super/sql:latest image with some SQL database
inside it and you would like to use it as a service for your job. Let’s also
assume that this image doesn’t start the database process while starting
the container and the user needs to manually use /usr/bin/super-sql run as
a command to start the database.

Before the new extended Docker configuration options, you would need to create
your own image based on the super/sql:latest image, add the default command,
and then use it in job’s configuration, like:

```Dockerfile
my-super-sql:latest image’s Dockerfile

FROM super/sql:latest
CMD [“/usr/bin/super-sql”, “run”]
```

```yaml
.gitlab-ci.yml

services:
- my-super-sql:latest
```

After the new extended Docker configuration options, you can now simply
set a command in .gitlab-ci.yml, like:

```yaml
.gitlab-ci.yml

services:
- name: super/sql:latest

command: [“/usr/bin/super-sql”, “run”]


```

As you can see, the syntax of command is similar to [Dockerfile’s CMD][cmd].

### Overriding the entrypoint of an image

> Introduced in GitLab and GitLab Runner 9.4. Read more about the [extended
configuration options](#extended-docker-configuration-options).

Before showing the available entrypoint override methods, let’s describe shortly
how the Runner starts and uses a Docker image for the containers used in the
CI jobs:


	The Runner starts a Docker container using the defined entrypoint (default
from Dockerfile that may be overridden in .gitlab-ci.yml)




1. The Runner attaches itself to a running container.
1. The Runner prepares a script (the combination of


[before_script](../yaml/README.md#before_script),
[script](../yaml/README.md#script),
and [after_script](../yaml/README.md#after_script)).





	The Runner sends the script to the container’s shell STDIN and receives the
output.




To override the entrypoint of a Docker image, the recommended solution is to
define an empty entrypoint in .gitlab-ci.yml, so the Runner doesn’t start
a useless shell layer. However, that will not work for all Docker versions, and
you should check which one your Runner is using. Specifically:


	If Docker 17.06 or later is used, the entrypoint can be set to an empty value.


	If Docker 17.03 or previous versions are used, the entrypoint can be set to
/bin/sh -c, /bin/bash -c or an equivalent shell available in the image.




The syntax of image:entrypoint is similar to [Dockerfile’s ENTRYPOINT][entrypoint].



Let’s assume you have a super/sql:experimental image with some SQL database
inside it and you would like to use it as a base image for your job because you
want to execute some tests with this database binary. Let’s also assume that
this image is configured with /usr/bin/super-sql run as an entrypoint. That
means that when starting the container without additional options, it will run
the database’s process, while Runner expects that the image will have no
entrypoint or that the entrypoint is prepared to start a shell command.

With the extended Docker configuration options, instead of creating your
own image based on super/sql:experimental, setting the ENTRYPOINT
to a shell, and then using the new image in your CI job, you can now simply
define an entrypoint in .gitlab-ci.yml.

For Docker 17.06+:

```yaml
image:

name: super/sql:experimental
entrypoint: [“”]


```

For Docker =< 17.03:

```yaml
image:

name: super/sql:experimental
entrypoint: [“/bin/sh”, “-c”]


```

## Define image and services in config.toml

Look for the [runners.docker] section:

```
[runners.docker]

image = “ruby:2.1”
services = [“mysql:latest”, “postgres:latest”]


```

The image and services defined this way will be added to all job run by
that runner.

## Define an image from a private Container Registry

> Notes:
- This feature requires GitLab Runner 1.8 or higher
- For GitLab Runner versions >= 0.6, <1.8 there was a partial


support for using private registries, which required manual configuration
of credentials on runner’s host. We recommend to upgrade your Runner to
at least version 1.8 if you want to use private registries.





	If the repository is private you need to authenticate your GitLab Runner in the
registry. Learn more about how [GitLab Runner works in this case][runner-priv-reg].




As an example, let’s assume that you want to use the registry.example.com/private/image:latest
image which is private and requires you to login into a private container registry.

Let’s also assume that these are the login credentials:


Key      | Value                |



----------	———————-
registry	registry.example.com
username	my_username
password	my_password

To configure access for registry.example.com, follow these steps:


	Find what the value of DOCKER_AUTH_CONFIG should be. There are two ways to
accomplish this:



	First way - Do a docker login on your local machine:


`bash
docker login registry.example.com --username my_username --password my_password
`


Then copy the content of ~/.docker/config.json.









	Second way - In some setups, it’s possible that Docker client will use
the available system keystore to store the result of docker login. In
that case, it’s impossible to read ~/.docker/config.json, so you will
need to prepare the required base64-encoded version of
${username}:${password} manually. Open a terminal and execute the
following command:


```bash
echo -n “my_username:my_password” | base64

Example output to copy
bXlfdXNlcm5hbWU6bXlfcGFzc3dvcmQ=
```
















	Create a [variable] DOCKER_AUTH_CONFIG with the content of the
Docker configuration file as the value:


```json
{

	“auths”: {
	
	“registry.example.com”: {
	“auth”: “bXlfdXNlcm5hbWU6bXlfcGFzc3dvcmQ=”

}

}

	Optionally,if you followed the first way of finding the DOCKER_AUTH_CONFIG
value, do a docker logout on your computer if you don’t need access to the
registry from it:

`bash
docker logout registry.example.com
`

	You can now use any private image from registry.example.com defined in
image and/or services in your .gitlab-ci.yml file:

`yaml
image: my.registry.tld:5000/namespace/image:tag
`

In the example above, GitLab Runner will look at my.registry.tld:5000 for the
image namespace/image:tag.

You can add configuration for as many registries as you want, adding more
registries to the “auths” hash as described above.

Configuring services

Many services accept environment variables which allow you to easily change
database names or set account names depending on the environment.

GitLab Runner 0.5.0 and up passes all YAML-defined variables to the created
service containers.

For all possible configuration variables check the documentation of each image
provided in their corresponding Docker hub page.

Note: All variables will be passed to all services containers. It’s not
designed to distinguish which variable should go where.

PostgreSQL service example

See the specific documentation for
[using PostgreSQL as a service](../services/postgres.md).

MySQL service example

See the specific documentation for
[using MySQL as a service](../services/mysql.md).

How Docker integration works

Below is a high level overview of the steps performed by Docker during job
time.

1. Create any service container: mysql, postgresql, mongodb, redis.
1. Create cache container to store all volumes as defined in config.toml and

Dockerfile of build image (ruby:2.1 as in above example).

1. Create build container and link any service container to build container.
1. Start build container and send job script to the container.
1. Run job script.
1. Checkout code in: /builds/group-name/project-name/.
1. Run any step defined in .gitlab-ci.yml.
1. Check exit status of build script.
1. Remove build container and all created service containers.

How to debug a job locally

Note: The following commands are run without root privileges. You should be
able to run Docker with your regular user account.

First start with creating a file named build_script:

`bash
cat <<EOF > build_script
git clone https://gitlab.com/gitlab-org/gitlab-runner.git /builds/gitlab-org/gitlab-runner
cd /builds/gitlab-org/gitlab-runner
make
EOF
`

Here we use as an example the GitLab Runner repository which contains a
Makefile, so running make will execute the commands defined in the Makefile.
Your mileage may vary, so instead of make you could run the command which
is specific to your project.

Then create some service containers:

`
docker run -d --name service-mysql mysql:latest
docker run -d --name service-postgres postgres:latest
`

This will create two service containers, named service-mysql and
service-postgres which use the latest MySQL and PostgreSQL images
respectively. They will both run in the background (-d).

Finally, create a build container by executing the build_script file we
created earlier:

`
docker run --name build -i --link=service-mysql:mysql --link=service-postgres:postgres ruby:2.1 /bin/bash < build_script
`

The above command will create a container named build that is spawned from
the ruby:2.1 image and has two services linked to it. The build_script is
piped using STDIN to the bash interpreter which in turn executes the
build_script in the build container.

When you finish testing and no longer need the containers, you can remove them
with:

`
docker rm -f -v build service-mysql service-postgres
`

This will forcefully (-f) remove the build container, the two service
containers as well as all volumes (-v) that were created with the container
creation.

[Docker Fundamentals]: https://docs.docker.com/engine/understanding-docker/
[docker pull policy]: https://docs.gitlab.com/runner/executors/docker.html#how-pull-policies-work
[hub]: https://hub.docker.com/
[linking-containers]: https://docs.docker.com/engine/userguide/networking/default_network/dockerlinks/
[tutum/wordpress]: https://hub.docker.com/r/tutum/wordpress/
[postgres-hub]: https://hub.docker.com/r/_/postgres/
[mysql-hub]: https://hub.docker.com/r/_/mysql/
[runner-priv-reg]: http://docs.gitlab.com/runner/configuration/advanced-configuration.html#using-a-private-container-registry
[variable]: ../variables/README.md#variables
[entrypoint]: https://docs.docker.com/engine/reference/builder/#entrypoint
[cmd]: https://docs.docker.com/engine/reference/builder/#cmd
[register]: https://docs.gitlab.com/runner/register/

 # Building images with kaniko and GitLab CI/CD

> [Introduced](https://gitlab.com/gitlab-org/gitlab-ce/issues/45512) in GitLab 11.2.
Requires GitLab Runner 11.2 and above.

[kaniko](https://github.com/GoogleContainerTools/kaniko) is a tool to build
container images from a Dockerfile, inside a container or Kubernetes cluster.

kaniko solves two problems with using the
[docker-in-docker build](using_docker_build.md#use-docker-in-docker-executor) method:

	Docker-in-docker requires [privileged mode](https://docs.docker.com/engine/reference/run/#runtime-privilege-and-linux-capabilities)
in order to function, which is a significant security concern.

	Docker-in-docker generally incurs a performance penalty and can be quite slow.

Requirements

In order to utilize kaniko with GitLab, a [GitLab Runner](https://docs.gitlab.com/runner/)
using either the [Kubernetes](https://docs.gitlab.com/runner/executors/kubernetes.html),
[Docker](https://docs.gitlab.com/runner/executors/docker.html), or
[Docker Machine](https://docs.gitlab.com/runner/executors/docker_machine.html)
executors is required.

Building a Docker image with kaniko

When building an image with kaniko and GitLab CI/CD, you should be aware of a
few important details:

	The kaniko debug image is recommended (gcr.io/kaniko-project/executor:debug)
because it has a shell, and a shell is required for an image to be used with
GitLab CI/CD.

	The entrypoint will need to be [overridden](using_docker_images.md#overriding-the-entrypoint-of-an-image),
otherwise the build script will not run.

	A Docker config.json file needs to be created with the authentication
information for the desired container registry.

—

In the following example, kaniko is used to build a Docker image and then push
it to [GitLab Container Registry](../../user/project/container_registry.md).
The job will run only when a tag is pushed. A config.json file is created under
/root/.docker with the needed GitLab Container Registry credentials taken from the
[environment variables](../variables/README.md#predefined-variables-environment-variables)
GitLab CI/CD provides. In the last step, kaniko uses the Dockerfile under the
root directory of the project, builds the Docker image and pushes it to the
project’s Container Registry while tagging it with the Git tag:

```yaml
build:


stage: build
image:


name: gcr.io/kaniko-project/executor:debug
entrypoint: [“”]





	script:
	
	mkdir -p /root/.docker


	echo “{"auths":{"$CI_REGISTRY":{"username":"$CI_REGISTRY_USER","password":"$CI_REGISTRY_PASSWORD"}}}” > /root/.docker/config.json


	/kaniko/executor –context $CI_PROJECT_DIR –dockerfile $CI_PROJECT_DIR/Dockerfile –destination $CI_REGISTRY_IMAGE:$CI_COMMIT_TAG






	only:
	
	tags











```


 —
comments: false
—

GitLab CI/CD Examples

A collection of .gitlab-ci.yml template files is maintained at the [GitLab CI/CD YAML project][gitlab-ci-templates]. When you create a new file via the UI,
GitLab will give you the option to choose one of the templates existent on this project.
If your favorite programming language or framework are missing we would love your
help by sending a merge request with a new .gitlab-ci.yml to this project.

There’s also a collection of repositories with [example projects](https://gitlab.com/gitlab-examples) for various languages. You can fork an adjust them to your own needs.

Languages, frameworks, OSs

	PHP:
- [Testing a PHP application](php.md)
- [Run PHP Composer & NPM scripts then deploy them to a staging server](deployment/composer-npm-deploy.md)
- [How to test and deploy Laravel/PHP applications with GitLab CI/CD and Envoy](laravel_with_gitlab_and_envoy/index.md)

	Ruby: [Test and deploy a Ruby application to Heroku](test-and-deploy-ruby-application-to-heroku.md)

	Python: [Test and deploy a Python application to Heroku](test-and-deploy-python-application-to-heroku.md)

	Java:
- [Deploy a Spring Boot application to Cloud Foundry with GitLab CI/CD](deploy_spring_boot_to_cloud_foundry/index.md)
- [Continuous Delivery of a Spring Boot application with GitLab CI and Kubernetes](https://about.gitlab.com/2016/12/14/continuous-delivery-of-a-spring-boot-application-with-gitlab-ci-and-kubernetes/)

	Scala: [Test a Scala application](test-scala-application.md)

	Clojure: [Test a Clojure application](test-clojure-application.md)

	Elixir:
- [Testing a Phoenix application with GitLab CI/CD](test_phoenix_app_with_gitlab_ci_cd/index.md)
- [Building an Elixir Release into a Docker image using GitLab CI](https://about.gitlab.com/2016/08/11/building-an-elixir-release-into-docker-image-using-gitlab-ci-part-1/)

	iOS and macOS:
- [Setting up GitLab CI for iOS projects](https://about.gitlab.com/2016/03/10/setting-up-gitlab-ci-for-ios-projects/)
- [How to use GitLab CI and MacStadium to build your macOS or iOS projects](https://about.gitlab.com/2017/05/15/how-to-use-macstadium-and-gitlab-ci-to-build-your-macos-or-ios-projects/)

	Android: [Setting up GitLab CI for Android projects](https://about.gitlab.com/2016/11/30/setting-up-gitlab-ci-for-android-projects/)

	Debian: [Continuous Deployment with GitLab: how to build and deploy a Debian Package with GitLab CI](https://about.gitlab.com/2016/10/12/automated-debian-package-build-with-gitlab-ci/)

	Maven: [How to deploy Maven projects to Artifactory with GitLab CI/CD](artifactory_and_gitlab/index.md)

Game development

	[DevOps and Game Dev with GitLab CI/CD](devops_and_game_dev_with_gitlab_ci_cd/index.md)

Miscellaneous

	[Using dpl as deployment tool](deployment/README.md)

	[The .gitlab-ci.yml file for GitLab itself](https://gitlab.com/gitlab-org/gitlab-ce/blob/master/.gitlab-ci.yml)

Test Reports

[Collect test reports in Verify stage](../junit_test_reports.md).

Code Quality analysis

(Starter) [Analyze your project’s Code Quality](code_quality.md).

Static Application Security Testing (SAST)

(Ultimate) [Scan your code for vulnerabilities](https://docs.gitlab.com/ee/ci/examples/sast.html)

Dependency Scanning

(Ultimate) [Scan your dependencies for vulnerabilities](https://docs.gitlab.com/ee/ci/examples/dependency_scanning.html)

Container Scanning

[Scan your Docker images for vulnerabilities](container_scanning.md)

Dynamic Application Security Testing (DAST)

Scan your app for vulnerabilities with GitLab [Dynamic Application Security Testing (DAST)](dast.md).

Browser Performance Testing with Sitespeed.io

Analyze your [browser performance with Sitespeed.io](browser_performance.md).

GitLab CI/CD for Review Apps

	[Example project](https://gitlab.com/gitlab-examples/review-apps-nginx/) that shows how to use GitLab CI/CD for [Review Apps](../review_apps/index.html).

	[Dockerizing GitLab Review Apps](https://about.gitlab.com/2017/07/11/dockerizing-review-apps/)

GitLab CI/CD for GitLab Pages

See the documentation on [GitLab Pages](../../user/project/pages/index.md) for a complete overview.

Contributing

Contributions are very welcome! You can help your favorite programming
language users and GitLab by sending a merge request with a guide for that language.
You may want to apply for the [GitLab Community Writers Program](https://about.gitlab.com/community-writers/)
to get paid for writing complete articles for GitLab.

[gitlab-ci-templates]: https://gitlab.com/gitlab-org/gitlab-ci-yml

 # Browser Performance Testing with the Sitespeed.io container

This example shows how to run the
[Sitespeed.io container](https://hub.docker.com/r/sitespeedio/sitespeed.io/) on
your code by using GitLab CI/CD and [Sitespeed.io](https://www.sitespeed.io)
using Docker-in-Docker.

First, you need a GitLab Runner with the
[docker-in-docker executor](../docker/using_docker_build.md#use-docker-in-docker-executor).
Once you set up the Runner, add a new job to .gitlab-ci.yml, called
performance:

```yaml
performance:


stage: performance
image: docker:git
variables:


URL: https://example.com





	services:
	
	docker:stable-dind






	script:
	
	mkdir gitlab-exporter


	wget -O ./gitlab-exporter/index.js https://gitlab.com/gitlab-org/gl-performance/raw/master/index.js


	mkdir sitespeed-results


	docker run –shm-size=1g –rm -v “$(pwd)”:/sitespeed.io sitespeedio/sitespeed.io:6.3.1 –plugins.add ./gitlab-exporter –outputFolder sitespeed-results $URL


	mv sitespeed-results/data/performance.json performance.json






	artifacts:
	paths:
- performance.json
- sitespeed-results/








```

The above example will:

	Create a performance job in your CI/CD pipeline and will run
Sitespeed.io against the webpage you defined in URL.

	The [GitLab plugin](https://gitlab.com/gitlab-org/gl-performance) for
Sitespeed.io is downloaded in order to export key metrics to JSON. The full
HTML Sitespeed.io report will also be saved as an artifact, and if you have
[GitLab Pages](../../user/project/pages/index.md) enabled, it can be viewed
directly in your browser.

For further customization options of Sitespeed.io, including the ability to
provide a list of URLs to test, please consult
[their documentation](https://www.sitespeed.io/documentation/sitespeed.io/configuration/).

TIP: Tip:
For [GitLab Premium](https://about.gitlab.com/pricing/) users, key metrics are automatically
extracted and shown right in the merge request widget. Learn more about
[Browser Performance Testing](https://docs.gitlab.com/ee/user/project/merge_requests/browser_performance_testing.html).

Performance testing on Review Apps

The above CI YML is great for testing against static environments, and it can
be extended for dynamic environments. There are a few extra steps to take to
set this up:

1. The performance job should run after the dynamic environment has started.
1. In the review job, persist the hostname and upload it as an artifact so

it’s available to the performance job (the same can be done for static
environments like staging and production to unify the code path). Saving it
as an artifact is as simple as echo $CI_ENVIRONMENT_URL > environment_url.txt
in your job’s script.

	In the performance job, read the previous artifact into an environment
variable, like $CI_ENVIRONMENT_URL, and use it to parameterize the test
URLs.

	You can now run the Sitespeed.io container against the desired hostname and
paths.

Your .gitlab-ci.yml file would look like:

```yaml
stages:



	deploy


	performance








	review:
	stage: deploy
environment:


name: review/$CI_COMMIT_REF_SLUG
url: http://$CI_COMMIT_REF_SLUG.$APPS_DOMAIN





	script:
	
	run_deploy_script


	echo $CI_ENVIRONMENT_URL > environment_url.txt






	artifacts:
	
	paths:
	
	environment_url.txt










	only:
	
	branches






	except:
	
	master










	performance:
	stage: performance
image: docker:git
services:



	docker:stable-dind








	dependencies:
	
	review






	script:
	
	export CI_ENVIRONMENT_URL=$(cat environment_url.txt)


	mkdir gitlab-exporter


	wget -O ./gitlab-exporter/index.js https://gitlab.com/gitlab-org/gl-performance/raw/master/index.js


	mkdir sitespeed-results


	docker run –shm-size=1g –rm -v “$(pwd)”:/sitespeed.io sitespeedio/sitespeed.io:6.3.1 –plugins.add ./gitlab-exporter –outputFolder sitespeed-results “$CI_ENVIRONMENT_URL”


	mv sitespeed-results/data/performance.json performance.json






	artifacts:
	
	paths:
	
	performance.json


	sitespeed-results/
















```

A complete example can be found in our [Auto DevOps CI YML](https://gitlab.com/gitlab-org/gitlab-ci-yml/blob/master/Auto-DevOps.gitlab-ci.yml).

 —
redirect_from: ‘https://docs.gitlab.com/ee/ci/examples/code_climate.html’
redirect_to: code_quality.md
—

This document was moved to [another location](code_quality.md).

 # Analyze your project’s Code Quality

This example shows how to run Code Quality on your code by using GitLab CI/CD
and Docker.

First, you need GitLab Runner with [docker-in-docker executor][dind].

Once you set up the Runner, add a new job to .gitlab-ci.yml, called code_quality:

```yaml
code_quality:


image: docker:stable
variables:


DOCKER_DRIVER: overlay2




allow_failure: true
services:



	docker:stable-dind








	script:
	
	export SP_VERSION=$(echo “$CI_SERVER_VERSION” | sed ‘s/^([0-9]*).([0-9]*).*/1-2-stable/’)


	
	docker run
	–env SOURCE_CODE=”$PWD”
–volume “$PWD”:/code
–volume /var/run/docker.sock:/var/run/docker.sock
“registry.gitlab.com/gitlab-org/security-products/codequality:$SP_VERSION” /code











	artifacts:
	paths: [gl-code-quality-report.json]








```

The above example will create a code_quality job in your CI/CD pipeline which
will scan your source code for code quality issues. The report will be saved
as an artifact that you can later download and analyze.

TIP: Tip:
Starting with [GitLab Starter][ee] 9.3, this information will
be automatically extracted and shown right in the merge request widget. To do
so, the CI/CD job must be named code_quality and the artifact path must be
gl-code-quality-report.json.
[Learn more on Code Quality in merge requests](https://docs.gitlab.com/ee/user/project/merge_requests/code_quality.html).

CAUTION: Caution:
Code Quality was previously using codeclimate and codequality for job name and
codeclimate.json for the artifact name. While these old names
are still maintained they have been deprecated with GitLab 11.0 and may be removed
in next major release, GitLab 12.0. You are advised to update your current .gitlab-ci.yml
configuration to reflect that change.

[cli]: https://github.com/codeclimate/codeclimate
[dind]: ../docker/using_docker_build.md#use-docker-in-docker-executor
[ee]: https://about.gitlab.com/pricing/

 # Container Scanning with GitLab CI/CD

You can check your Docker images (or more precisely the containers) for known
vulnerabilities by using [Clair](https://github.com/coreos/clair) and
[clair-scanner](https://github.com/arminc/clair-scanner), two open source tools
for Vulnerability Static Analysis for containers.

All you need is a GitLab Runner with the Docker executor (the shared Runners on
GitLab.com will work fine). You can then add a new job to .gitlab-ci.yml,
called container_scanning:

```yaml
container_scanning:


image: docker:stable
variables:


DOCKER_DRIVER: overlay2
## Define two new variables based on GitLab’s CI/CD predefined variables
## https://docs.gitlab.com/ee/ci/variables/#predefined-variables-environment-variables
CI_APPLICATION_REPOSITORY: $CI_REGISTRY_IMAGE/$CI_COMMIT_REF_SLUG
CI_APPLICATION_TAG: $CI_COMMIT_SHA




allow_failure: true
services:



	docker:stable-dind








	script:
	
	docker run -d –name db arminc/clair-db:latest


	docker run -p 6060:6060 –link db:postgres -d –name clair –restart on-failure arminc/clair-local-scan:v2.0.1


	apk add -U wget ca-certificates


	docker pull ${CI_APPLICATION_REPOSITORY}:${CI_APPLICATION_TAG}


	wget https://github.com/arminc/clair-scanner/releases/download/v8/clair-scanner_linux_amd64


	mv clair-scanner_linux_amd64 clair-scanner


	chmod +x clair-scanner


	touch clair-whitelist.yml


	while( ! wget -q -O /dev/null http://docker:6060/v1/namespaces ) ; do sleep 1 ; done


	retries=0


	echo “Waiting for clair daemon to start”


	while( ! wget -T 10 -q -O /dev/null http://docker:6060/v1/namespaces ) ; do sleep 1 ; echo -n “.” ; if [ $retries -eq 10 ] ; then echo ” Timeout, aborting.” ; exit 1 ; fi ; retries=$(($retries+1)) ; done


	./clair-scanner -c http://docker:6060 –ip $(hostname -i) -r gl-container-scanning-report.json -l clair.log -w clair-whitelist.yml ${CI_APPLICATION_REPOSITORY}:${CI_APPLICATION_TAG} || true






	artifacts:
	paths: [gl-container-scanning-report.json]








```

The above example will create a container_scanning job in your CI/CD pipeline, pull
the image from the [Container Registry](../../user/project/container_registry.md)
(whose name is defined from the two CI_APPLICATION_ variables) and scan it
for possible vulnerabilities. The report will be saved as an artifact that you
can later download and analyze.

If you want to whitelist some specific vulnerabilities, you can do so by defining
them in a [YAML file](https://github.com/arminc/clair-scanner/blob/master/README.md#example-whitelist-yaml-file),
in our case its named clair-whitelist.yml.

TIP: Tip:
Starting with [GitLab Ultimate][ee] 10.4, this information will
be automatically extracted and shown right in the merge request widget. To do
so, the CI/CD job must be named container_scanning and the artifact path must be
gl-container-scanning-report.json.
[Learn more on container scanning results shown in merge requests](https://docs.gitlab.com/ee/user/project/merge_requests/container_scanning.html).

CAUTION: Caution:
Before GitLab 11.0, Container Scanning was previously using sast:container for job name and
gl-sast-container-report.json for the artifact name. While these old names
are still maintained, they have been deprecated with GitLab 11.0 and may be removed
in next major release, GitLab 12.0. You are advised to update your current .gitlab-ci.yml
configuration to reflect that change.

[ee]: https://about.gitlab.com/pricing/

 # Dynamic Application Security Testing with GitLab CI/CD

[Dynamic Application Security Testing (DAST)](https://en.wikipedia.org/wiki/Dynamic_program_analysis)
is using the popular open source tool [OWASP ZAProxy](https://github.com/zaproxy/zaproxy)
to perform an analysis on your running web application.

It can be very useful combined with [Review Apps](../review_apps/index.md).

Example

All you need is a GitLab Runner with the Docker executor (the shared Runners on
GitLab.com will work fine). You can then add a new job to .gitlab-ci.yml,
called dast:

```yaml
dast:


image: registry.gitlab.com/gitlab-org/security-products/zaproxy
variables:


website: “https://example.com”




allow_failure: true
script:



	mkdir /zap/wrk/


	/zap/zap-baseline.py -J gl-dast-report.json -t $website || true


	cp /zap/wrk/gl-dast-report.json .








	artifacts:
	paths: [gl-dast-report.json]








```

The above example will create a dast job in your CI/CD pipeline which will run
the tests on the URL defined in the website variable (change it to use your
own) and finally write the results in the gl-dast-report.json file. You can
then download and analyze the report artifact in JSON format.

It’s also possible to authenticate the user before performing DAST checks:

```yaml
dast:


image: registry.gitlab.com/gitlab-org/security-products/zaproxy
variables:


website: “https://example.com”
login_url: “https://example.com/sign-in”




allow_failure: true
script:



	mkdir /zap/wrk/


	
	/zap/zap-baseline.py -J gl-dast-report.json -t $website
	–auth-url $login_url
–auth-username “john.doe@example.com”
–auth-password “john-doe-password” || true







	cp /zap/wrk/gl-dast-report.json .








	artifacts:
	paths: [gl-dast-report.json]








```
See [zaproxy documentation](https://gitlab.com/gitlab-org/security-products/zaproxy)
to learn more about authentication settings.

TIP: Tip:
Starting with [GitLab Ultimate][ee] 10.4, this information will
be automatically extracted and shown right in the merge request widget. To do
so, the CI job must be named dast and the artifact path must be
gl-dast-report.json.
[Learn more about DAST results shown in merge requests](https://docs.gitlab.com/ee/user/project/merge_requests/dast.html).

[ee]: https://about.gitlab.com/pricing/

 # Testing PHP projects

This guide covers basic building instructions for PHP projects.

There are covered two cases: testing using the Docker executor and testing
using the Shell executor.

Test PHP projects using the Docker executor

While it is possible to test PHP apps on any system, this would require manual
configuration from the developer. To overcome this we will be using the
official [PHP docker image][php-hub] that can be found in Docker Hub.

This will allow us to test PHP projects against different versions of PHP.
However, not everything is plug ‘n’ play, you still need to configure some
things manually.

As with every job, you need to create a valid .gitlab-ci.yml describing the
build environment.

Let’s first specify the PHP image that will be used for the job process
(you can read more about what an image means in the Runner’s lingo reading
about [Using Docker images](../docker/using_docker_images.md#what-is-image)).

Start by adding the image to your .gitlab-ci.yml:

`yaml
image: php:5.6
`

The official images are great, but they lack a few useful tools for testing.
We need to first prepare the build environment. A way to overcome this is to
create a script which installs all prerequisites prior the actual testing is
done.

Let’s create a ci/docker_install.sh file in the root directory of our
repository with the following content:

```bash
#!/bin/bash

# We need to install dependencies only for Docker
[[ ! -e /.dockerenv ]] && exit 0

set -xe

# Install git (the php image doesn’t have it) which is required by composer
apt-get update -yqq
apt-get install git -yqq

# Install phpunit, the tool that we will use for testing
curl –location –output /usr/local/bin/phpunit https://phar.phpunit.de/phpunit.phar
chmod +x /usr/local/bin/phpunit

# Install mysql driver
# Here you can install any other extension that you need
docker-php-ext-install pdo_mysql
```

You might wonder what docker-php-ext-install is. In short, it is a script
provided by the official php docker image that you can use to easily install
extensions. For more information read the documentation at
<https://hub.docker.com/r/_/php/>.

Now that we created the script that contains all prerequisites for our build
environment, let’s add it in .gitlab-ci.yml:

```yaml
…

before_script:
- bash ci/docker_install.sh > /dev/null


…

Last step, run the actual tests using phpunit:

```yaml
…

	test:app:
	script:
- phpunit –configuration phpunit_myapp.xml

…

Finally, commit your files and push them to GitLab to see your build succeeding
(or failing).

The final .gitlab-ci.yml should look similar to this:

```yaml
# Select image from https://hub.docker.com/r/_/php/
image: php:5.6

before_script:
# Install dependencies
- bash ci/docker_install.sh > /dev/null


	test:app:
	script:
- phpunit –configuration phpunit_myapp.xml





```

Test against different PHP versions in Docker builds

Testing against multiple versions of PHP is super easy. Just add another job
with a different docker image version and the runner will do the rest:

```yaml
before_script:
# Install dependencies
- bash ci/docker_install.sh > /dev/null

# We test PHP5.6
test:5.6:


image: php:5.6
script:
- phpunit –configuration phpunit_myapp.xml




# We test PHP7.0 (good luck with that)
test:7.0:


image: php:7.0
script:
- phpunit –configuration phpunit_myapp.xml




```

Custom PHP configuration in Docker builds

There are times where you will need to customise your PHP environment by
putting your .ini file into /usr/local/etc/php/conf.d/. For that purpose
add a before_script action:

`yaml
before_script:
- cp my_php.ini /usr/local/etc/php/conf.d/test.ini
`

Of course, my_php.ini must be present in the root directory of your repository.

Test PHP projects using the Shell executor

The shell executor runs your job in a terminal session on your server.
Thus, in order to test your projects you first need to make sure that all
dependencies are installed.

For example, in a VM running Debian 8 we first update the cache, then we
install phpunit and php5-mysql:

`bash
sudo apt-get update -y
sudo apt-get install -y phpunit php5-mysql
`

Next, add the following snippet to your .gitlab-ci.yml:

```yaml
test:app:


script:
- phpunit –configuration phpunit_myapp.xml




```

Finally, push to GitLab and let the tests begin!

Test against different PHP versions in Shell builds

The [phpenv][] project allows you to easily manage different versions of PHP
each with its own config. This is especially useful when testing PHP projects
with the Shell executor.

You will have to install it on your build machine under the gitlab-runner
user following [the upstream installation guide][phpenv-installation].

Using phpenv also allows to easily configure the PHP environment with:

`
phpenv config-add my_config.ini
`

	*__Important note:__ It seems phpenv/phpenv
	[is abandoned](https://github.com/phpenv/phpenv/issues/57). There is a fork
at [madumlao/phpenv](https://github.com/madumlao/phpenv) that tries to bring
the project back to life. [CHH/phpenv](https://github.com/CHH/phpenv) also
seems like a good alternative. Picking any of the mentioned tools will work
with the basic phpenv commands. Guiding you to choose the right phpenv is out
of the scope of this tutorial.*

Install custom extensions

Since this is a pretty bare installation of the PHP environment, you may need
some extensions that are not currently present on the build machine.

To install additional extensions simply execute:

`bash
pecl install <extension>
`

It’s not advised to add this to .gitlab-ci.yml. You should execute this
command once, only to setup the build environment.

Extend your tests

Using atoum

Instead of PHPUnit, you can use any other tool to run unit tests. For example
you can use [atoum](https://github.com/atoum/atoum):

```yaml
before_script:
- wget http://downloads.atoum.org/nightly/mageekguy.atoum.phar


	test:atoum:
	script:
- php mageekguy.atoum.phar





```

Using Composer

The majority of the PHP projects use Composer for managing their PHP packages.
In order to execute Composer before running your tests, simply add the
following in your .gitlab-ci.yml:

```yaml
…

# Composer stores all downloaded packages in the vendor/ directory.
# Do not use the following if the vendor/ directory is committed to
# your git repository.
cache:


paths:
- vendor/




before_script:
# Install composer dependencies
- wget https://composer.github.io/installer.sig -O - -q | tr -d ‘n’ > installer.sig
- php -r “copy(‘https://getcomposer.org/installer’, ‘composer-setup.php’);”
- php -r “if (hash_file(‘SHA384’, ‘composer-setup.php’) === file_get_contents(‘installer.sig’)) { echo ‘Installer verified’; } else { echo ‘Installer corrupt’; unlink(‘composer-setup.php’); } echo PHP_EOL;”
- php composer-setup.php
- php -r “unlink(‘composer-setup.php’); unlink(‘installer.sig’);”
- php composer.phar install




…

## Access private packages / dependencies

If your test suite needs to access a private repository, you need to configure
[the SSH keys](../ssh_keys/README.md) in order to be able to clone it.

## Use databases or other services

Most of the time you will need a running database in order for your tests to
run. If you are using the Docker executor you can leverage Docker’s ability to
link to other containers. In GitLab Runner lingo, this can be achieved by
defining a service.

This functionality is covered in [the CI services](../services/README.md)
documentation.

## Testing things locally

With GitLab Runner 1.0 you can also test any changes locally. From your
terminal execute:

```bash
Check using docker executor
gitlab-runner exec docker test:app

Check using shell executor
gitlab-runner exec shell test:app
```

## Example project

We have set up an [Example PHP Project][php-example-repo] for your convenience
that runs on [GitLab.com](https://gitlab.com) using our publicly available
[shared runners](../runners/README.md).

Want to hack on it? Simply fork it, commit and push  your changes. Within a few
moments the changes will be picked by a public runner and the job will begin.

[php-hub]: https://hub.docker.com/r/_/php/
[phpenv]: https://github.com/phpenv/phpenv
[phpenv-installation]: https://github.com/phpenv/phpenv#installation
[php-example-repo]: https://gitlab.com/gitlab-examples/php





            

          

      

      

    

  

    
      
          
            
  This document was moved to [another location](./container_scanning.md).



            

          

      

      

    

  

    
      
          
            
  # Test and Deploy a python application with GitLab CI/CD

This example will guide you how to run tests in your Python application and deploy it automatically as Heroku application.

You can checkout the [example source](https://gitlab.com/ayufan/python-getting-started).

## Configure project

This is what the .gitlab-ci.yml file looks like for this project:

```yaml
test:

script:
this configures Django application to use attached postgres database that is run on postgres host
- export DATABASE_URL=postgres://postgres:@postgres:5432/python-test-app
- apt-get update -qy
- apt-get install -y python-dev python-pip
- pip install -r requirements.txt
- python manage.py test

	staging:
	type: deploy
script:
- apt-get update -qy
- apt-get install -y ruby-dev
- gem install dpl
- dpl –provider=heroku –app=gitlab-ci-python-test-staging –api-key=$HEROKU_STAGING_API_KEY
only:
- master

	production:
	type: deploy
script:
- apt-get update -qy
- apt-get install -y ruby-dev
- gem install dpl
- dpl –provider=heroku –app=gitlab-ci-python-test-prod –api-key=$HEROKU_PRODUCTION_API_KEY
only:
- tags


```

This project has three jobs:
1. test - used to test Django application,
2. staging - used to automatically deploy staging environment every push to master branch
3. production - used to automatically deploy production environment for every created tag

## Store API keys

You’ll need to create two variables in Settings > CI/CD > Variables on your GitLab project settings:
1. HEROKU_STAGING_API_KEY - Heroku API key used to deploy staging app,
2. HEROKU_PRODUCTION_API_KEY - Heroku API key used to deploy production app.

Find your Heroku API key in [Manage Account](https://dashboard.heroku.com/account).

## Create Heroku application

For each of your environments, you’ll need to create a new Heroku application.
You can do this through the [Dashboard](https://dashboard.heroku.com/).

## Create Runner

First install [Docker Engine](https://docs.docker.com/installation/).
To build this project you also need to have [GitLab Runner](https://docs.gitlab.com/runner).
You can use public runners available on gitlab.com, but you can register your own:

```
gitlab-runner register

–non-interactive –url “https://gitlab.com/” –registration-token “PROJECT_REGISTRATION_TOKEN” –description “python-3.5” –executor “docker” –docker-image python:3.5 –docker-postgres latest


```

With the command above, you create a runner that uses [python:3.5](https://hub.docker.com/r/_/python/) image and uses [postgres](https://hub.docker.com/r/_/postgres/) database.

To access PostgreSQL database you need to connect to host: postgres as user postgres without password.



            

          

      

      

    

  

    
      
          
            
  # Test and Deploy a ruby application with GitLab CI/CD

This example will guide you how to run tests in your Ruby on Rails application and deploy it automatically as Heroku application.

You can checkout the example [source](https://gitlab.com/ayufan/ruby-getting-started) and check [CI status](https://gitlab.com/ayufan/ruby-getting-started/builds?scope=all).

## Configure the project

This is what the .gitlab-ci.yml file looks like for this project:

```yaml
test:

stage: test
script:
- apt-get update -qy
- apt-get install -y nodejs
- bundle install –path /cache
- bundle exec rake db:create RAILS_ENV=test
- bundle exec rake test

	staging:
	stage: deploy
script:
- gem install dpl
- dpl –provider=heroku –app=gitlab-ci-ruby-test-staging –api-key=$HEROKU_STAGING_API_KEY
only:
- master

	production:
	stage: deploy
script:
- gem install dpl
- dpl –provider=heroku –app=gitlab-ci-ruby-test-prod –api-key=$HEROKU_PRODUCTION_API_KEY
only:
- tags


```

This project has three jobs:
1. test - used to test Rails application,
2. staging - used to automatically deploy staging environment every push to master branch
3. production - used to automatically deploy production environment for every created tag

## Store API keys

You’ll need to create two variables in your project’s Settings > CI/CD > Variables:


	HEROKU_STAGING_API_KEY - Heroku API key used to deploy staging app,


	HEROKU_PRODUCTION_API_KEY - Heroku API key used to deploy production app.




Find your Heroku API key in [Manage Account](https://dashboard.heroku.com/account).

## Create Heroku application

For each of your environments, you’ll need to create a new Heroku application.
You can do this through the [Dashboard](https://dashboard.heroku.com/).

## Create Runner

First install [Docker Engine](https://docs.docker.com/installation/).
To build this project you also need to have [GitLab Runner](https://about.gitlab.com/gitlab-ci/#gitlab-runner).
You can use public runners available on gitlab.com, but you can register your own:

```
gitlab-runner register

–non-interactive –url “https://gitlab.com/” –registration-token “PROJECT_REGISTRATION_TOKEN” –description “ruby-2.2” –executor “docker” –docker-image ruby:2.2 –docker-postgres latest


```

With the command above, you create a Runner that uses [ruby:2.2](https://hub.docker.com/r/_/ruby/) image and uses [postgres](https://hub.docker.com/r/_/postgres/) database.

To access PostgreSQL database you need to connect to host: postgres as user postgres without password.



            

          

      

      

    

  

    
      
          
            
  # Test a Clojure application with GitLab CI/CD

This example will guide you how to run tests in your Clojure application.

You can checkout the example [source](https://gitlab.com/dzaporozhets/clojure-web-application) and check [CI status](https://gitlab.com/dzaporozhets/clojure-web-application/builds?scope=all).

## Configure the project

This is what the .gitlab-ci.yml file looks like for this project:

```yaml
variables:

POSTGRES_DB: sample-test
DATABASE_URL: “postgresql://postgres@postgres:5432/sample-test”

	before_script:
	
	apt-get update -y

	apt-get install default-jre postgresql-client -y

	wget https://raw.githubusercontent.com/technomancy/leiningen/stable/bin/lein

	chmod a+x lein

	export LEIN_ROOT=1

	PATH=$PATH:.

	lein deps

	lein migratus migrate

	test:
	
	script:
	
	lein test


```

In before script we install JRE and [Leiningen](http://leiningen.org/).
Sample project uses [migratus](https://github.com/yogthos/migratus) library to manage database migrations.
So we added database migration as last step of before_script section

You can use public runners available on gitlab.com for testing your application with such configuration.



            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘../../ci/examples/test_phoenix_app_with_gitlab_ci_cd/index.md’
—

The content of this page was incorporated in [this document](../../ci/examples/test_phoenix_app_with_gitlab_ci_cd/index.md).



            

          

      

      

    

  

    
      
          
            
  # Test and deploy to Heroku a Scala application

This example demonstrates the integration of Gitlab CI with Scala
applications using SBT. Checkout the example
[project](https://gitlab.com/gitlab-examples/scala-sbt) and
[build status](https://gitlab.com/gitlab-examples/scala-sbt/builds).

## Add .gitlab-ci.yml file to project

The following .gitlab-ci.yml should be added in the root of your
repository to trigger CI:

``` yaml
image: java:8

	stages:
	
	test

	deploy

	before_script:
	
	apt-get update -y

	apt-get install apt-transport-https -y

Install SBT
- echo “deb http://dl.bintray.com/sbt/debian /” | tee -a /etc/apt/sources.list.d/sbt.list
- apt-key adv –keyserver hkp://keyserver.ubuntu.com:80 –recv 642AC823
- apt-get update -y
- apt-get install sbt -y
- sbt sbt-version

	test:
	stage: test
script:

	sbt clean coverage test coverageReport

	deploy:
	stage: deploy
script:

	apt-get update -yq

	apt-get install rubygems ruby-dev -y

	gem install dpl

	dpl –provider=heroku –app=gitlab-play-sample-app –api-key=$HEROKU_API_KEY


```

The before_script installs [SBT](http://www.scala-sbt.org/) and
displays the version that is being used. The test stage executes SBT
to compile and test the project.
[scoverage](https://github.com/scoverage/sbt-scoverage) is used as an SBT
plugin to measure test coverage.
The deploy stage automatically deploys the project to Heroku using dpl.

You can use other versions of Scala and SBT by defining them in
build.sbt.

## Display test coverage in job

Add the Coverage was [d+.d+%] regular expression in the
Settings ➔ Pipelines ➔ Coverage report project setting to
retrieve the [test coverage] rate from the build trace and have it
displayed with your jobs.

Pipelines must be enabled for this option to appear.

## Heroku application

A Heroku application is required. You can create one through the
[Dashboard](https://dashboard.heroku.com/). Substitute gitlab-play-sample-app
in the .gitlab-ci.yml file with your application’s name.

## Heroku API key

You can look up your Heroku API key in your
[account](https://dashboard.heroku.com/account). Add a secure [variable] with
this value in Project ➔ Variables with key HEROKU_API_KEY.

[variable]: ../variables/README.md#user-defined-variables-secure-variables
[test coverage]: ../../user/project/pipelines/settings.md#test-coverage-report-badge



            

          

      

      

    

  

    
      
          
            
  —
redirect_from: ‘https://docs.gitlab.com/ee/articles/artifactory_and_gitlab/index.html’
author: Fabio Busatto
author_gitlab: bikebilly
level: intermediary
article_type: tutorial
date: 2017-08-15
—

# How to deploy Maven projects to Artifactory with GitLab CI/CD

## Introduction

In this article, we will show how you can leverage the power of [GitLab CI/CD](https://about.gitlab.com/features/gitlab-ci-cd/)
to build a [Maven](https://maven.apache.org/) project, deploy it to [Artifactory](https://www.jfrog.com/artifactory/), and then use it from another Maven application as a dependency.

You’ll create two different projects:


	simple-maven-dep: the app built and deployed to Artifactory (available at https://gitlab.com/gitlab-examples/maven/simple-maven-dep)


	simple-maven-app: the app using the previous one as a dependency (available at https://gitlab.com/gitlab-examples/maven/simple-maven-app)




We assume that you already have a GitLab account on [GitLab.com](https://gitlab.com/), and that you know the basic usage of Git and [GitLab CI/CD](https://about.gitlab.com/features/gitlab-ci-cd/).
We also assume that an Artifactory instance is available and reachable from the internet, and that you have valid credentials to deploy on it.

## Create the simple Maven dependency

First of all, you need an application to work with: in this specific case we will
use a simple one, but it could be any Maven application. This will be the
dependency you want to package and deploy to Artifactory, in order to be
available to other projects.

### Prepare the dependency application

For this article you’ll use a Maven app that can be cloned from our example
project:

1. Log in to your GitLab account
1. Create a new project by selecting Import project from ➔ Repo by URL
1. Add the following URL:


`
https://gitlab.com/gitlab-examples/maven/simple-maven-dep.git
`





	Click Create project




This application is nothing more than a basic class with a stub for a JUnit based test suite.
It exposes a method called hello that accepts a string as input, and prints a hello message on the screen.

The project structure is really simple, and you should consider these two resources:


	pom.xml: project object model (POM) configuration file


	src/main/java/com/example/dep/Dep.java: source of our application




### Configure the Artifactory deployment

The application is ready to use, but you need some additional steps to deploy it to Artifactory:

1. Log in to Artifactory with your user’s credentials.
1. From the main screen, click on the libs-release-local item in the Set Me Up panel.
1. Copy to clipboard the configuration snippet under the Deploy paragraph.
1. Change the url value in order to have it configurable via variables.
1. Copy the snippet in the pom.xml file for your project, just after the


dependencies section. The snippet should look like this:


```xml
<distributionManagement>

	<repository>
	<id>central</id>
<name>83d43b5afeb5-releases</name>
<url>${env.MAVEN_REPO_URL}/libs-release-local</url>

</repository>

</distributionManagement>
```







Another step you need to do before you can deploy the dependency to Artifactory
is to configure the authentication data. It is a simple task, but Maven requires
it to stay in a file called settings.xml that has to be in the .m2 subdirectory
in the user’s homedir.

Since you want to use GitLab Runner to automatically deploy the application, you
should create the file in the project’s home directory and set a command line
parameter in .gitlab-ci.yml to use the custom location instead of the default one:

1. Create a folder called .m2 in the root of your repository
1. Create a file called settings.xml in the .m2 folder
1. Copy the following content into a settings.xml file:


```xml
<settings xsi:schemaLocation=”http://maven.apache.org/SETTINGS/1.1.0 http://maven.apache.org/xsd/settings-1.1.0.xsd”

xmlns=”http://maven.apache.org/SETTINGS/1.1.0” xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”>

	<servers>
	
	<server>
	<id>central</id>
<username>${env.MAVEN_REPO_USER}</username>
<password>${env.MAVEN_REPO_PASS}</password>

</server>

</servers>

</settings>
```

Username and password will be replaced by the correct values using variables.




### Configure GitLab CI/CD for simple-maven-dep

Now it’s time we set up [GitLab CI/CD](https://about.gitlab.com/features/gitlab-ci-cd/) to automatically build, test and deploy the dependency!

GitLab CI/CD uses a file in the root of the repo, named .gitlab-ci.yml, to read the definitions for jobs
that will be executed by the configured GitLab Runners. You can read more about this file in the [GitLab Documentation](https://docs.gitlab.com/ee/ci/yaml/).

First of all, remember to set up variables for your deployment. Navigate to your project’s Settings > CI/CD > Variables page
and add the following ones (replace them with your current values, of course):


	MAVEN_REPO_URL: http://artifactory.example.com:8081/artifactory (your Artifactory URL)


	MAVEN_REPO_USER: gitlab (your Artifactory username)


	MAVEN_REPO_PASS: AKCp2WXr3G61Xjz1PLmYa3arm3yfBozPxSta4taP3SeNu2HPXYa7FhNYosnndFNNgoEds8BCS (your Artifactory Encrypted Password)




Now it’s time to define jobs in .gitlab-ci.yml and push it to the repo:

```yaml
image: maven:latest

	variables:
	MAVEN_CLI_OPTS: “-s .m2/settings.xml –batch-mode”
MAVEN_OPTS: “-Dmaven.repo.local=.m2/repository”

	cache:
	
	paths:
	
	.m2/repository/

	target/

	build:
	stage: build
script:

	mvn $MAVEN_CLI_OPTS compile

	test:
	stage: test
script:

	mvn $MAVEN_CLI_OPTS test

	deploy:
	stage: deploy
script:

	mvn $MAVEN_CLI_OPTS deploy

	only:
	
	master


```

GitLab Runner will use the latest [Maven Docker image](https://hub.docker.com/_/maven/), which already contains all the tools and the dependencies you need to manage the project,
in order to run the jobs.

Environment variables are set to instruct Maven to use the homedir of the repo instead of the user’s home when searching for configuration and dependencies.

Caching the .m2/repository folder (where all the Maven files are stored), and the target folder (where our application will be created), is useful for speeding up the process
by running all Maven phases in a sequential order, therefore, executing mvn test will automatically run mvn compile if necessary.

Both build and test jobs leverage the mvn command to compile the application and to test it as defined in the test suite that is part of the application.

Deploy to Artifactory is done as defined by the variables we have just set up.
The deployment occurs only if we’re pushing or merging to master branch, so that the development versions are tested but not published.

Done! Now you have all the changes in the GitLab repo, and a pipeline has already been started for this commit. In the Pipelines tab you can see what’s happening.
If the deployment has been successful, the deploy job log will output:

`
[INFO] ------------------------------------------------------------------------
[INFO] BUILD SUCCESS
[INFO] ------------------------------------------------------------------------
[INFO] Total time: 1.983 s
`

>**Note**:
the mvn command downloads a lot of files from the internet, so you’ll see a lot of extra activity in the log the first time you run it.

Yay! You did it! Checking in Artifactory will confirm that you have a new artifact available in the libs-release-local repo.

## Create the main Maven application

Now that you have the dependency available on Artifactory, it’s time to use it!
Let’s see how we can have it as a dependency to our main application.

### Prepare the main application

We’ll use again a Maven app that can be cloned from our example project:

1. Create a new project by selecting Import project from ➔ Repo by URL
1. Add the following URL:


`
https://gitlab.com/gitlab-examples/maven/simple-maven-app.git
`





	Click Create project




This one is a simple app as well. If you look at the src/main/java/com/example/app/App.java
file you can see that it imports the com.example.dep.Dep class and calls the hello method passing GitLab as a parameter.

Since Maven doesn’t know how to resolve the dependency, you need to modify the configuration:

1. Go back to Artifactory
1. Browse the libs-release-local repository
1. Select the simple-maven-dep-1.0.jar file
1. Find the configuration snippet from the Dependency Declaration section of the main panel
1. Copy the snippet in the dependencies section of the pom.xml file.


The snippet should look like this:


```xml
<dependency>

<groupId>com.example.dep</groupId>
<artifactId>simple-maven-dep</artifactId>
<version>1.0</version>

</dependency>
```







### Configure the Artifactory repository location

At this point you defined the dependency for the application, but you still miss where you can find the required files.
You need to create a .m2/settings.xml file as you did for the dependency project, and let Maven know the location using environment variables.

Here is how you can get the content of the file directly from Artifactory:

1. From the main screen, click on the libs-release-local item in the Set Me Up panel
1. Click on Generate Maven Settings
1. Click on Generate Settings
1. Copy to clipboard the configuration file
1. Save the file as .m2/settings.xml in your repo

Now you are ready to use the Artifactory repository to resolve dependencies and use simple-maven-dep in your main application!

### Configure GitLab CI/CD for simple-maven-app

You need a last step to have everything in place: configure the .gitlab-ci.yml file for this project, as you already did for simple-maven-dep.

You want to leverage [GitLab CI/CD](https://about.gitlab.com/features/gitlab-ci-cd/) to automatically build, test and run your awesome application,
and see if you can get the greeting as expected!

All you need to do is to add the following .gitlab-ci.yml to the repo:

```yaml
image: maven:latest

	stages:
	
	build

	test

	run

	variables:
	MAVEN_CLI_OPTS: “-s .m2/settings.xml –batch-mode”
MAVEN_OPTS: “-Dmaven.repo.local=.m2/repository”

	cache:
	
	paths:
	
	.m2/repository/

	target/

	build:
	stage: build
script:

	mvn $MAVEN_CLI_OPTS compile

	test:
	stage: test
script:

	mvn $MAVEN_CLI_OPTS test

	run:
	stage: run
script:

	mvn $MAVEN_CLI_OPTS package

	mvn $MAVEN_CLI_OPTS exec:java -Dexec.mainClass=”com.example.app.App”


```

It is very similar to the configuration used for simple-maven-dep, but instead of the deploy job there is a run job.
Probably something that you don’t want to use in real projects, but here it is useful to see the application executed automatically.

And that’s it! In the run job output log you will find a friendly hello to GitLab!

## Conclusion

In this article we covered the basic steps to use an Artifactory Maven repository to automatically publish and consume artifacts.

A similar approach could be used to interact with any other Maven compatible Binary Repository Manager.
Obviously, you can improve these examples, optimizing the .gitlab-ci.yml file to better suit your needs, and adapting to your workflow.



            

          

      

      

    

  

    
      
          
            
  —
author: Dylan Griffith
author_gitlab: DylanGriffith
level: intermediary
article_type: tutorial
date: 2018-06-07
description: “Continuous Deployment of a Spring Boot application to Cloud Foundry with GitLab CI/CD”
—

# Deploy a Spring Boot application to Cloud Foundry with GitLab CI/CD

## Introduction

In this article, we’ll demonstrate how to deploy a [Spring
Boot](https://projects.spring.io/spring-boot/) application to [Cloud
Foundry (CF)](https://www.cloudfoundry.org/) with GitLab CI/CD using the [Continuous
Deployment](https://about.gitlab.com/2016/08/05/continuous-integration-delivery-and-deployment-with-gitlab/#continuous-deployment)
method.

All the code for this project can be found in this [GitLab
repo](https://gitlab.com/gitlab-examples/spring-gitlab-cf-deploy-demo).

In case you’re interested in deploying Spring Boot applications to Kubernetes
using GitLab CI/CD, read through the blog post [Continuous Delivery of a Spring Boot application with GitLab CI and Kubernetes](https://about.gitlab.com/2016/12/14/continuous-delivery-of-a-spring-boot-application-with-gitlab-ci-and-kubernetes/).

## Requirements

_We assume you are familiar with Java, GitLab, Cloud Foundry, and GitLab CI/CD._

To follow along with this tutorial you will need the following:


	An account on [Pivotal Web Services (PWS)](https://run.pivotal.io/) or any
other Cloud Foundry instance


	An account on GitLab




NOTE: Note:
You will need to replace the api.run.pivotal.io URL in the all below
commands with the [API
URL](https://docs.cloudfoundry.org/running/cf-api-endpoint.html) of your CF
instance if you’re not deploying to PWS.

## Create your project

To create your Spring Boot application you can use the Spring template in
GitLab when creating a new project:

![New Project From Template](img/create_from_template.png)

## Configure the deployment to Cloud Foundry

To deploy to Cloud Foundry we need to add a manifest.yml file. This
is the configuration for the CF CLI we will use to deploy the application. We
will create this in the root directory of our project with the following
content:

```yaml
—
applications:
- name: gitlab-hello-world

random-route: true
memory: 1G
path: target/demo-0.0.1-SNAPSHOT.jar


```

## Configure GitLab CI/CD to deploy your application

Now we need to add the the GitLab CI/CD configuration file
([.gitlab-ci.yml](../../yaml/README.md)) to our
project’s root. This is how GitLab figures out what commands need to be run whenever
code is pushed to our repository. We will add the following .gitlab-ci.yml
file to the root directory of the repository, GitLab will detect it
automatically and run the steps defined once we push our code:

```yaml
image: java:8

	stages:
	
	build

	deploy

	build:
	stage: build
script: ./mvnw package
artifacts:

	paths:
	
	target/demo-0.0.1-SNAPSHOT.jar

	production:
	stage: deploy
script:
- curl –location “https://cli.run.pivotal.io/stable?release=linux64-binary&source=github” | tar zx
- ./cf login -u $CF_USERNAME -p $CF_PASSWORD -a api.run.pivotal.io
- ./cf push
only:
- master


```

We’ve used the java:8 [docker
image](../../docker/using_docker_images.md) to build
our application as it provides the up-to-date Java 8 JDK on [Docker
Hub](https://hub.docker.com/). We’ve also added the [only
clause](../../yaml/README.md#only-and-except-simplified)
to ensure our deployments only happen when we push to the master branch.

Now, since the steps defined in .gitlab-ci.yml require credentials to login
to CF, you’ll need to add your CF credentials as [environment
variables](../../variables/README.md#predefined-variables-environment-variables)
on GitLab CI/CD. To set the environment variables, navigate to your project’s
Settings > CI/CD and expand Secret Variables. Name the variables
CF_USERNAME and CF_PASSWORD and set them to the correct values.

![Secret Variable Settings in GitLab](img/cloud_foundry_secret_variables.png)

Once set up, GitLab CI/CD will deploy your app to CF at every push to your
repository’s deafult branch. To see the build logs or watch your builds running
live, navigate to CI/CD > Pipelines.

CAUTION: Caution:
It is considered best practice for security to create a separate deploy
user for your application and add its credentials to GitLab instead of using
a developer’s credentials.

To start a manual deployment in GitLab go to CI/CD > Pipelines then click
on Run Pipeline. Once the app is finished deploying it will display the URL
of your application in the logs for the production job like:

```shell
requested state: started
instances: 1/1
usage: 1G x 1 instances
urls: gitlab-hello-world-undissembling-hotchpot.cfapps.io
last uploaded: Mon Nov 6 10:02:25 UTC 2017
stack: cflinuxfs2
buildpack: client-certificate-mapper=1.2.0_RELEASE container-security-provider=1.8.0_RELEASE java-buildpack=v4.5-offline-https://github.com/cloudfoundry/java-buildpack.git#ffeefb9 java-main java-opts jvmkill-agent=1.10.0_RELEASE open-jdk-like-jre=1.8.0_1…

state since cpu memory disk details

#0 running 2017-11-06 09:03:22 PM 120.4% 291.9M of 1G 137.6M of 1G
```

You can then visit your deployed application (for this example,
https://gitlab-hello-world-undissembling-hotchpot.cfapps.io/) and you should
see the “Spring is here!” message.



            

          

      

      

    

  

    
      
          
            
  # Using Dpl as deployment tool

[Dpl](https://github.com/travis-ci/dpl) (dee-pee-ell) is a deploy tool made for
continuous deployment that’s developed and used by Travis CI, but can also be
used with GitLab CI.

>**Note:**
We recommend to use Dpl if you’re deploying to any of these of these services:
https://github.com/travis-ci/dpl#supported-providers.

## Requirements

To use Dpl you need at least Ruby 1.9.3 with ability to install gems.

## Basic usage

Dpl can be installed on any machine with:

`
gem install dpl
`

This allows you to test all commands from your local terminal, rather than
having to test it on a CI server.

If you don’t have Ruby installed you can do it on Debian-compatible Linux with:

`
apt-get update
apt-get install ruby-dev
`

The Dpl provides support for vast number of services, including: Heroku, Cloud Foundry, AWS/S3, and more.
To use it simply define provider and any additional parameters required by the provider.

For example if you want to use it to deploy your application to heroku, you need to specify heroku as provider, specify api-key and app.
There’s more and all possible parameters can be found here: https://github.com/travis-ci/dpl#heroku

```yaml
staging:

stage: deploy
script:
- gem install dpl
- dpl –provider=heroku –app=my-app-staging –api-key=$HEROKU_STAGING_API_KEY


```

In the above example we use Dpl to deploy my-app-staging to Heroku server with api-key stored in HEROKU_STAGING_API_KEY secure variable.

To use different provider take a look at long list of [Supported Providers](https://github.com/travis-ci/dpl#supported-providers).

## Using Dpl with Docker

When you use GitLab Runner you most likely configured it to use your server’s shell commands.
This means that all commands are run in context of local user (ie. gitlab_runner or gitlab_ci_multi_runner).
It also means that most probably in your Docker container you don’t have the Ruby runtime installed.
You will have to install it:

```yaml
staging:

stage: deploy
script:
- apt-get update -yq
- apt-get install -y ruby-dev
- gem install dpl
- dpl –provider=heroku –app=my-app-staging –api-key=$HEROKU_STAGING_API_KEY
only:
- master


```

The first line apt-get update -yq updates the list of available packages,
where second apt-get install -y ruby-dev installs the Ruby runtime on system.
The above example is valid for all Debian-compatible systems.

## Usage in staging and production

It’s pretty common in the development workflow to have staging (development) and
production environments

Let’s consider the following example: we would like to deploy the master
branch to staging and all tags to the production environment.
The final .gitlab-ci.yml for that setup would look like this:

```yaml
staging:

stage: deploy
script:
- gem install dpl
- dpl –provider=heroku –app=my-app-staging –api-key=$HEROKU_STAGING_API_KEY
only:
- master

	production:
	stage: deploy
script:
- gem install dpl
- dpl –provider=heroku –app=my-app-production –api-key=$HEROKU_PRODUCTION_API_KEY
only:
- tags


```

We created two deploy jobs that are executed on different events:


	staging is executed for all commits that were pushed to master branch,


	production is executed for all pushed tags.




We also use two secure variables:


	HEROKU_STAGING_API_KEY - Heroku API key used to deploy staging app,


	HEROKU_PRODUCTION_API_KEY - Heroku API key used to deploy production app.




## Storing API keys

Secure Variables can added by going to your project’s
Settings ➔ CI / CD ➔ Variables. The variables that are defined
in the project settings are sent along with the build script to the Runner.
The secure variables are stored out of the repository. Never store secrets in
your project’s .gitlab-ci.yml. It is also important that the secret’s value
is hidden in the job log.

You access added variable by prefixing it’s name with $ (on non-Windows runners)
or % (for Windows Batch runners):


	$SECRET_VARIABLE - use it for non-Windows runners


	%SECRET_VARIABLE% - use it for Windows Batch runners




Read more about the [CI variables](../../variables/README.md).



            

          

      

      

    

  

    
      
          
            
  # Running Composer and NPM scripts with deployment via SCP in GitLab CI/CD

This guide covers the building dependencies of a PHP project while compiling assets via an NPM script.

While is possible to create your own image with custom PHP and Node JS versions, for brevity, we will use an existing [Docker image](https://hub.docker.com/r/tetraweb/php/) that contains both PHP and NodeJS installed.

`yaml
image: tetraweb/php
`

The next step is to install zip/unzip packages and make composer available. We will place these in the before_script section:

```yaml
before_script:

	apt-get update

	apt-get install zip unzip

	php -r “copy(‘https://getcomposer.org/installer’, ‘composer-setup.php’);”

	php composer-setup.php

	php -r “unlink(‘composer-setup.php’);”


```

This will make sure we have all requirements ready. Next, we want to run composer install to fetch all PHP dependencies  and npm install to load node packages, then run the npm script. We need to append them  into before_script section:

```yaml
before_script:

…
- php composer.phar install
- npm install
- npm run deploy


```

In this particular case, the npm deploy script is a Gulp script that does the following:


	Compile CSS & JS


	Create sprites


	Copy various assets (images, fonts) around


	Replace some strings




All these operations will put all files into a build folder, which is ready to be deployed to a live server.

## How to transfer files to a live server

You have multiple options: rsync, scp, sftp and so on. For now, we will use scp.

To make this work, you need to add a GitLab Secret Variable (accessible on _gitlab.example/your-project-name/variables_). That variable will be called STAGING_PRIVATE_KEY and it’s the  private ssh key of your server.

### Security tip

Create a user that has access only to the folder that needs to be updated!

After you create that variable, you need to make sure that key will be added to the docker container on run:

```yaml
before_script:

- ….
- ‘which ssh-agent || (apt-get update -y && apt-get install openssh-client -y)’
- mkdir -p ~/.ssh
- eval $(ssh-agent -s)
- ‘[[-f /.dockerenv]] && echo -e “Host *ntStrictHostKeyChecking nonn” > ~/.ssh/config’


```

In order, this means that:


	We check if the ssh-agent is available and we install it if it’s not;


	We create the ~/.ssh folder;


	We make sure we’re running bash;


	We disable host checking (we don’t ask for user accept when we first connect to a server; and since every job will equal a first connect, we kind of need this)




And this is basically all you need in the before_script section.

## How to deploy things

As we stated above, we need to deploy the build folder from the docker image to our server. To do so, we create a new job:

```yaml
stage_deploy:

	artifacts:
	
	paths:
	
	build/

	only:
	
	dev

	script:
	
	ssh-add <(echo “$STAGING_PRIVATE_KEY”)

	ssh -p22 server_user@server_host “mkdir htdocs/wp-content/themes/_tmp”

	scp -P22 -r build/* server_user@server_host:htdocs/wp-content/themes/_tmp

	ssh -p22 server_user@server_host “mv htdocs/wp-content/themes/live htdocs/wp-content/themes/_old && mv htdocs/wp-content/themes/_tmp htdocs/wp-content/themes/live”

	ssh -p22 server_user@server_host “rm -rf htdocs/wp-content/themes/_old”


```

Here’s the breakdown:


	only:dev means that this build will run only when something is pushed to the dev branch. You can remove this block completely and have everything be ran on every push (but probably this is something you don’t want)


	ssh-add … we will add that private key you added on the web UI to the docker container


	We will connect via ssh and create a new _tmp folder


	We will connect via scp and upload the build folder (which was generated by a npm script) to our previously created _tmp folder


	We will connect again to ssh and move the live folder to an _old folder, then move _tmp to live.


	We connect to ssh and remove the _old folder




What’s the deal with the artifacts? We just tell GitLab CI to keep the build directory (later on, you can download that as needed).

### Why we do it this way

If you’re using this only for stage server, you could do this in two steps:

`yaml
- ssh -p22 server_user@server_host "rm -rf htdocs/wp-content/themes/live/*"
- scp -P22 -r build/* server_user@server_host:htdocs/wp-content/themes/live
`

The problem is that there will be a small period of time when you won’t have the app on your server.

So we use so many steps because we want to make sure that at any given time we have a functional app in place.

## Where to go next

Since this was a WordPress project, I gave real life code snippets. Some ideas you can pursuit:


	Having a slightly different script for master branch will allow you to deploy to a production server from that branch and to a stage server from any other branches;


	Instead of pushing it live, you can push it to WordPress official repo (with creating a SVN commit & stuff);


	You could generate i18n text domains on the fly.




—

Our final .gitlab-ci.yml will look like this:

```yaml
image: tetraweb/php

	before_script:
	
	apt-get update

	apt-get install zip unzip

	php -r “copy(‘https://getcomposer.org/installer’, ‘composer-setup.php’);”

	php composer-setup.php

	php -r “unlink(‘composer-setup.php’);”

	php composer.phar install

	npm install

	npm run deploy

	‘which ssh-agent || (apt-get update -y && apt-get install openssh-client -y)’

	mkdir -p ~/.ssh

	eval $(ssh-agent -s)

	‘[[-f /.dockerenv]] && echo -e “Host *ntStrictHostKeyChecking nonn” > ~/.ssh/config’

	stage_deploy:
	
	artifacts:
	paths:
- build/

	only:
	
	dev

	script:
	
	ssh-add <(echo “$STAGING_PRIVATE_KEY”)

	ssh -p22 server_user@server_host “mkdir htdocs/wp-content/themes/_tmp”

	scp -P22 -r build/* server_user@server_host:htdocs/wp-content/themes/_tmp

	ssh -p22 server_user@server_host “mv htdocs/wp-content/themes/live htdocs/wp-content/themes/_old && mv htdocs/wp-content/themes/_tmp htdocs/wp-content/themes/live”

	ssh -p22 server_user@server_host “rm -rf htdocs/wp-content/themes/_old”


```



            

          

      

      

    

  

    
      
          
            
  —
author: Ryan Hall
author_gitlab: blitzgren
level: intermediary
article_type: tutorial
date: 2018-03-07
—

# DevOps and Game Dev with GitLab CI/CD

With advances in WebGL and WebSockets, browsers are extremely viable as game development
platforms without the use of plugins like Adobe Flash. Furthermore, by using GitLab and [AWS](https://aws.amazon.com/),
single game developers, as well as game dev teams, can easily host browser-based games online.

In this tutorial, we’ll focus on DevOps, as well as testing and hosting games with Continuous
Integration/Deployment methods. We assume you are familiar with GitLab, javascript,
and the basics of game development.

## The game

Our [demo game](http://gitlab-game-demo.s3-website-us-east-1.amazonaws.com/) consists of a simple spaceship traveling in space that shoots by clicking the mouse in a given direction.

Creating a strong CI/CD pipeline at the beginning of developing another game, [Dark Nova](http://darknova.io/about),
was essential for the fast pace the team worked at. This tutorial will build upon my
[previous introductory article](https://ryanhallcs.wordpress.com/2017/03/15/devops-and-game-dev/) and go through the following steps:

1. Using code from the previous article to start with a barebones [Phaser](https://phaser.io) game built by a gulp file
1. Adding and running unit tests
1. Creating a Weapon class that can be triggered to spawn a Bullet in a given direction
1. Adding a Player class that uses this weapon and moves around the screen
1. Adding the sprites we will use for the Player and Weapon
1. Testing and deploying with Continuous Integration and Continuous Deployment methods

By the end, we’ll have the core of a [playable game](http://gitlab-game-demo.s3-website-us-east-1.amazonaws.com/)
that’s tested and deployed on every push to the master branch of the [codebase](https://gitlab.com/blitzgren/gitlab-game-demo).
This will also provide
boilerplate code for starting a browser-based game with the following components:


	Written in [Typescript](https://www.typescriptlang.org/) and [PhaserJs](https://phaser.io)


	Building, running, and testing with [Gulp](http://gulpjs.com/)


	Unit tests with [Chai](http://chaijs.com/) and [Mocha](https://mochajs.org/)


	CI/CD with GitLab


	Hosting the codebase on GitLab.com


	Hosting the game on AWS


	Deploying to AWS




## Requirements and setup

Please refer to my previous article [DevOps and Game Dev](https://ryanhallcs.wordpress.com/2017/03/15/devops-and-game-dev/) to learn the foundational
development tools, running a Hello World-like game, and building this game using GitLab
CI/CD from every new push to master. The master branch for this game’s [repository](https://gitlab.com/blitzgren/gitlab-game-demo)
contains a completed version with all configurations. If you would like to follow along
with this article, you can clone and work from the devops-article branch:

`sh
git clone git@gitlab.com:blitzgren/gitlab-game-demo.git
git checkout devops-article
`

Next, we’ll create a small subset of tests that exemplify most of the states I expect
this Weapon class to go through. To get started, create a folder called lib/tests
and add the following code to a new file weaponTests.ts:

```ts
import { expect } from ‘chai’;
import { Weapon, BulletFactory } from ‘../lib/weapon’;

	describe(‘Weapon’, () => {
	var subject: Weapon;
var shotsFired: number = 0;
// Mocked bullet factory
var bulletFactory: BulletFactory = <BulletFactory>{

	generate: function(px, py, vx, vy, rot) {
	shotsFired++;

}

};
var parent: any = { x: 0, y: 0 };

	beforeEach(() => {
	shotsFired = 0;
subject = new Weapon(bulletFactory, parent, 0.25, 1);

});

	it(‘should shoot if not in cooldown’, () => {
	subject.trigger(true);
subject.update(0.1);
expect(shotsFired).to.equal(1);

});

	it(‘should not shoot during cooldown’, () => {
	subject.trigger(true);
subject.update(0.1);
subject.update(0.1);
expect(shotsFired).to.equal(1);

});

	it(‘should shoot after cooldown ends’, () => {
	subject.trigger(true);
subject.update(0.1);
subject.update(0.3); // longer than timeout
expect(shotsFired).to.equal(2);

});

	it(‘should not shoot if not triggered’, () => {
	subject.update(0.1);
subject.update(0.1);
expect(shotsFired).to.equal(0);

});

});

To build and run these tests using gulp, let’s also add the following gulp functions
to the existing gulpfile.js file:

```ts
gulp.task(‘build-test’, function () {


return gulp.src(‘src/tests/**/*.ts’, { read: false })
.pipe(tap(function (file) {


// replace file contents with browserify’s bundle stream
file.contents = browserify(file.path, { debug: true })


.plugin(tsify, { project: “./tsconfig.test.json” })
.bundle();







}))
.pipe(buffer())
.pipe(sourcemaps.init({loadMaps: true}) )
.pipe(gulp.dest(‘built/tests’));




});


	gulp.task(‘run-test’, function() {
	gulp.src([‘./built/tests/**/*.ts’]).pipe(mocha());








});

We will start implementing the first part of our game and get these Weapon tests to pass.
The Weapon class will expose a method to trigger the generation of a bullet at a given
direction and speed. Later we will implement a Player class that ties together the user input
to trigger the weapon. In the src/lib folder create a weapon.ts file. We’ll add two classes
to it: Weapon and BulletFactory which will encapsulate Phaser’s sprite and
group objects, and the logic specific to our game.

```ts
export class Weapon {

private isTriggered: boolean = false;
private currentTimer: number = 0;

constructor(private bulletFactory: BulletFactory, private parent: Phaser.Sprite, private cooldown: number, private bulletSpeed: number) {
}

	public trigger(on: boolean): void {
	this.isTriggered = on;

}

	public update(delta: number): void {
	this.currentTimer -= delta;

	if (this.isTriggered && this.currentTimer <= 0) {
	this.shoot();

}

}

	private shoot(): void {
	// Reset timer
this.currentTimer = this.cooldown;

// Get velocity direction from player rotation
var parentRotation = this.parent.rotation + Math.PI / 2;
var velx = Math.cos(parentRotation);
var vely = Math.sin(parentRotation);

// Apply a small forward offset so bullet shoots from head of ship instead of the middle
var posx = this.parent.x - velx * 10
var posy = this.parent.y - vely * 10;

this.bulletFactory.generate(posx, posy, -velx * this.bulletSpeed, -vely * this.bulletSpeed, this.parent.rotation);

}

}

export class BulletFactory {

	constructor(private bullets: Phaser.Group, private poolSize: number) {
	// Set all the defaults for this BulletFactory’s bullet object
this.bullets.enableBody = true;
this.bullets.physicsBodyType = Phaser.Physics.ARCADE;
this.bullets.createMultiple(30, ‘bullet’);
this.bullets.setAll(‘anchor.x’, 0.5);
this.bullets.setAll(‘anchor.y’, 0.5);
this.bullets.setAll(‘outOfBoundsKill’, true);
this.bullets.setAll(‘checkWorldBounds’, true);

}

	public generate(posx: number, posy: number, velx: number, vely: number, rot: number): Phaser.Sprite {
	// Pull a bullet from Phaser’s Group pool
var bullet = this.bullets.getFirstExists(false);

// Set the few unique properties about this bullet: rotation, position, and velocity
if (bullet) {

bullet.reset(posx, posy);
bullet.rotation = rot;
bullet.body.velocity.x = velx;
bullet.body.velocity.y = vely;

}

return bullet;

}

}

Lastly, we’ll redo our entry point, game.ts, to tie together both Player and Weapon objects
as well as add them to the update loop. Here is what the updated game.ts file looks like:

```ts
import { Player } from “./player”;
import { Weapon, BulletFactory } from “./weapon”;


	window.onload = function() {
	var game = new Phaser.Game(800, 600, Phaser.AUTO, ‘gameCanvas’, { preload: preload, create: create, update: update });
var player: Player;
var weapon: Weapon;

// Import all assets prior to loading the game
function preload () {


game.load.image(‘player’, ‘assets/player.png’);
game.load.image(‘bullet’, ‘assets/bullet.png’);




}

// Create all entities in the game, after Phaser loads
function create () {


// Create and position the player
var playerSprite = game.add.sprite(400, 550, ‘player’);
playerSprite.anchor.setTo(0.5);
player = new Player(game.input, playerSprite, 150);

var bulletFactory = new BulletFactory(game.add.group(), 30);
weapon = new Weapon(bulletFactory, player.sprite, 0.25, 1000);

player.loadWeapon(weapon);




}

// This function is called once every tick, default is 60fps
function update() {


var deltaSeconds = game.time.elapsedMS / 1000; // convert to seconds
player.update(deltaSeconds);
weapon.update(deltaSeconds);




}








}

Run gulp serve and you can run around and shoot. Wonderful! Let’s update our CI
pipeline to include running the tests along with the existing build job.

## Continuous Integration

To ensure our changes don’t break the build and all tests still pass, we utilize
Continuous Integration (CI) to run these checks automatically for every push.
Read through this article to understand [Continuous Integration, Continuous Delivery, and Continuous Deployment](https://about.gitlab.com/2016/08/05/continuous-integration-delivery-and-deployment-with-gitlab/),
and how these methods are leveraged by GitLab.
From the [last tutorial](https://ryanhallcs.wordpress.com/2017/03/15/devops-and-game-dev/) we already have a gitlab-ci.yml file set up for building our app from
every push. We need to set up a new CI job for testing, which GitLab CI/CD will run after the build job using our generated artifacts from gulp.

Please read through the [documentation on CI/CD configuration](../../../ci/yaml/README.md) file to explore its contents and adjust it to your needs.

### Build your game with GitLab CI/CD

We need to update our build job to ensure tests get run as well. Add gulp build-test
to the end of the script array for the existing build job. Once these commands run,
we know we will need to access everything in the built folder, given by GitLab CI/CD’s artifacts.
We’ll also cache node_modules to avoid having to do a full re-pull of those dependencies:
just pack them up in the cache. Here is the full build job:

```yml
build:

stage: build
script:

	npm i gulp -g

	npm i

	gulp

	gulp build-test

	cache:
	policy: push
paths:
- node_modules

	artifacts:
	paths:
- built


```

### Test your game with GitLab CI/CD

For testing locally, we simply run gulp run-tests, which requires gulp to be installed
globally like in the build job. We pull node_modules from the cache, so the npm i
command won’t have to do much. In preparation for deployment, we know we will still need
the built folder in the artifacts, which will be brought over as default behavior from
the previous job. Lastly, by convention, we let GitLab CI/CD know this needs to be run after
the build job by giving it a test [stage](../../../ci/yaml/README.md#stages).
Following the YAML structure, the test job should look like this:

```yml
test:

stage: test
script:

	npm i gulp -g

	npm i

	gulp run-test

	cache:
	policy: push
paths:
- node_modules/

	artifacts:
	paths:
- built/


```

We have added unit tests for a Weapon class that shoots on a specified interval.
The Player class implements Weapon along with the ability to move around and shoot. Also,
we’ve added test artifacts and a test stage to our GitLab CI/CD pipeline using .gitlab-ci.yml,
allowing us to run our tests by every push.
Our entire .gitlab-ci.yml file should now look like this:

```yml
image: node:6

	build:
	stage: build
script:

	npm i gulp -g

	npm i

	gulp

	gulp build-test

	cache:
	policy: push
paths:
- node_modules/

	artifacts:
	paths:
- built/

	test:
	stage: test
script:

	npm i gulp -g

	npm i

	gulp run-test

	cache:
	policy: pull
paths:
- node_modules/

	artifacts:
	paths:
- built/


```

### Run your CI/CD pipeline

That’s it! Add all your new files, commit, and push. For a reference of what our repo should
look like at this point, please refer to the [final commit related to this article on my sample repository](https://gitlab.com/blitzgren/gitlab-game-demo/commit/8b36ef0ecebcf569aeb251be4ee13743337fcfe2).
By applying both build and test stages, GitLab will run them sequentially at every push to
our repository. If all goes well you’ll end up with a green check mark on each job for the pipeline:

![Passing Pipeline](img/test_pipeline_pass.png)

You can confirm that the tests passed by clicking on the test job to enter the full build logs.
Scroll to the bottom and observe, in all its passing glory:

```sh
$ gulp run-test
[18:37:24] Using gulpfile /builds/blitzgren/gitlab-game-demo/gulpfile.js
[18:37:24] Starting ‘run-test’…
[18:37:24] Finished ‘run-test’ after 21 ms

	Weapon
	✓ should shoot if not in cooldown
✓ should not shoot during cooldown
✓ should shoot after cooldown ends
✓ should not shoot if not triggered

4 passing (18ms)

Uploading artifacts…
built/: found 17 matching files
Uploading artifacts to coordinator… ok id=17095874 responseStatus=201 Created token=aaaaaaaa Job succeeded
```

## Continuous Deployment

We have our codebase built and tested on every push. To complete the full pipeline with Continuous Deployment,
let’s set up [free web hosting with AWS S3](https://aws.amazon.com/s/dm/optimization/server-side-test/free-tier/free_np/) and a job through which our build artifacts get
deployed. GitLab also has a free static site hosting service we could use, [GitLab Pages](https://about.gitlab.com/features/pages/),
however Dark Nova specifically uses other AWS tools that necessitates using AWS S3.
Read through this article that describes [deploying to both S3 and GitLab Pages](https://about.gitlab.com/2016/08/26/ci-deployment-and-environments/)
and further delves into the principles of GitLab CI/CD than discussed in this article.

### Set up S3 Bucket

1. Log into your AWS account and go to [S3](https://console.aws.amazon.com/s3/home)
1. Click the Create Bucket link at the top
1. Enter a name of your choosing and click next
1. Keep the default Properties and click next
1. Click the Manage group permissions and allow Read for the Everyone group, click next
1. Create the bucket, and select it in your S3 bucket list
1. On the right side, click Properties and enable the Static website hosting category
1. Update the radio button to the Use this bucket to host a website selection. Fill in index.html and error.html respectively

### Set up AWS Secrets

We need to be able to deploy to AWS with our AWS account credentials, but we certainly
don’t want to put secrets into source code. Luckily GitLab provides a solution for this
with [Variables](../../../ci/variables/README.md). This can get complicated
due to [IAM](https://aws.amazon.com/iam/) management. As a best practice, you shouldn’t
use root security credentials. Proper IAM credential management is beyond the scope of this
article, but AWS will remind you that using root credentials is unadvised and against their
best practices, as they should. Feel free to follow best practices and use a custom IAM user’s
credentials, which will be the same two credentials (Key ID and Secret). It’s a good idea to
fully understand [IAM Best Practices in AWS](http://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html). We need to add these credentials to GitLab:

1. Log into your AWS account and go to the [Security Credentials page](https://console.aws.amazon.com/iam/home#/security_credential)
1. Click the Access Keys section and Create New Access Key. Create the key and keep the id and secret around, you’ll need them later


![AWS Access Key Config](img/aws_config_window.png)




1. Go to your GitLab project, click Settings > CI/CD on the left sidebar
1. Expand the Secret Variables section


![GitLab Secret Config](img/gitlab_config.png)




1. Add a key named AWS_KEY_ID and copy the key id from Step 2 into the Value textbox
1. Add a key named AWS_KEY_SECRET and copy the key secret from Step 2 into the Value textbox

### Deploy your game with GitLab CI/CD

To deploy our build artifacts, we need to install the [AWS CLI](https://aws.amazon.com/cli/) on
the Shared Runner. The Shared Runner also needs to be able to authenticate with your AWS
account to deploy the artifacts. By convention, AWS CLI will look for AWS_ACCESS_KEY_ID
and AWS_SECRET_ACCESS_KEY. GitLab’s CI gives us a way to pass the variables we
set up in the prior section using the variables portion of the deploy job. At the end,
we add directives to ensure deployment only happens on pushes to master. This way, every
single branch still runs through CI, and only merging (or committing directly) to master will
trigger the deploy job of our pipeline. Put these together to get the following:

```yml
deploy:

stage: deploy
variables:

AWS_ACCESS_KEY_ID: “$AWS_KEY_ID”
AWS_SECRET_ACCESS_KEY: “$AWS_KEY_SECRET”

	script:
	
	apt-get update

	apt-get install -y python3-dev python3-pip

	easy_install3 -U pip

	pip3 install –upgrade awscli

	aws s3 sync ./built s3://gitlab-game-demo –region “us-east-1” –grants read=uri=http://acs.amazonaws.com/groups/global/AllUsers –cache-control “no-cache, no-store, must-revalidate” –delete

	only:
	
	master


```

Be sure to update the region and S3 URL in that last script command to fit your setup.
Our final configuration file .gitlab-ci.yml looks like:

```yml
image: node:6

	build:
	stage: build
script:

	npm i gulp -g

	npm i

	gulp

	gulp build-test

	cache:
	policy: push
paths:
- node_modules/

	artifacts:
	paths:
- built/

	test:
	stage: test
script:

	npm i gulp -g

	gulp run-test

	cache:
	policy: pull
paths:
- node_modules/

	artifacts:
	paths:
- built/

	deploy:
	stage: deploy
variables:

AWS_ACCESS_KEY_ID: “$AWS_KEY_ID”
AWS_SECRET_ACCESS_KEY: “$AWS_KEY_SECRET”

	script:
	
	apt-get update

	apt-get install -y python3-dev python3-pip

	easy_install3 -U pip

	pip3 install –upgrade awscli

	aws s3 sync ./built s3://gitlab-game-demo –region “us-east-1” –grants read=uri=http://acs.amazonaws.com/groups/global/AllUsers –cache-control “no-cache, no-store, must-revalidate” –delete

	only:
	
	master


```

## Conclusion

Within the [demo repository](https://gitlab.com/blitzgren/gitlab-game-demo) you can also find a handful of boilerplate code to get
[Typescript](https://www.typescriptlang.org/), [Mocha](https://mochajs.org/), [Gulp](http://gulpjs.com/) and [Phaser](https://phaser.io) all playing
together nicely with GitLab CI/CD, which is the result of lessons learned while making [Dark Nova](http://darknova.io/).
Using a combination of free and open source software, we have a full CI/CD pipeline, a game foundation,
and unit tests, all running and deployed at every push to master - with shockingly little code.
Errors can be easily debugged through GitLab’s build logs, and within minutes of a successful commit,
you can see the changes live on your game.

Setting up Continuous Integration and Continuous Deployment from the start with Dark Nova enables
rapid but stable development. We can easily test changes in a separate [environment](../../../ci/environments.md#introduction-to-environments-and-deployments),
or multiple environments if needed. Balancing and updating a multiplayer game can be ongoing
and tedious, but having faith in a stable deployment with GitLab CI/CD allows
a lot of breathing room in quickly getting changes to players.

## Further settings

Here are some ideas to further investigate that can speed up or improve your pipeline:


	[Yarn](https://yarnpkg.com) instead of npm


	Setup a custom [Docker](../../../ci/docker/using_docker_images.md#define-image-and-services-from-gitlab-ci-yml) image that can preload dependencies and tools (like AWS CLI)


	Forward a [custom domain](http://docs.aws.amazon.com/AmazonS3/latest/dev/website-hosting-custom-domain-walkthrough.html) to your game’s S3 static website


	Combine jobs if you find it unnecessary for a small project


	Avoid the queues and set up your own [custom GitLab CI/CD runner](https://about.gitlab.com/2016/03/01/gitlab-runner-with-docker/)








            

          

      

      

    

  

    
      
          
            
  —
redirect_from: ‘https://docs.gitlab.com/ee/articles/laravel_with_gitlab_and_envoy/index.html’
author: Mehran Rasulian
author_gitlab: mehranrasulian
level: intermediary
article_type: tutorial
date: 2017-08-31
—

# Test and deploy Laravel applications with GitLab CI/CD and Envoy

## Introduction

GitLab features our applications with Continuous Integration, and it is possible to easily deploy the new code changes to the production server whenever we want.

In this tutorial, we’ll show you how to initialize a [Laravel](http://laravel.com/) application and setup our [Envoy](https://laravel.com/docs/envoy) tasks, then we’ll jump into see how to test and deploy it with [GitLab CI/CD](../README.md) via [Continuous Delivery](https://about.gitlab.com/2016/08/05/continuous-integration-delivery-and-deployment-with-gitlab/).

We assume you have a basic experience with Laravel, Linux servers,
and you know how to use GitLab.

Laravel is a high quality web framework written in PHP.
It has a great community with a [fantastic documentation](https://laravel.com/docs).
Aside from the usual routing, controllers, requests, responses, views, and (blade) templates, out of the box Laravel provides plenty of additional services such as cache, events, localization, authentication and many others.

We will use [Envoy](https://laravel.com/docs/master/envoy) as an SSH task runner based on PHP.
It uses a clean, minimal [Blade syntax](https://laravel.com/docs/blade) to setup tasks that can run on remote servers, such as, cloning your project from the repository, installing the Composer dependencies, and running [Artisan commands](https://laravel.com/docs/artisan).

## Initialize our Laravel app on GitLab

We assume [you have installed a new laravel project](https://laravel.com/docs/installation#installation), so let’s start with a unit test, and initialize Git for the project.

### Unit Test

Every new installation of Laravel (currently 5.4) comes with two type of tests, ‘Feature’ and ‘Unit’, placed in the tests directory.
Here’s a unit test from test/Unit/ExampleTest.php:

```php
<?php

namespace TestsUnit;

…

class ExampleTest extends TestCase
{

public function testBasicTest()
{

$this->assertTrue(true);

}

}

This test is as simple as asserting that the given value is true.

Laravel uses PHPUnit for tests by default.
If we run vendor/bin/phpunit we should see the green output:

`bash
vendor/bin/phpunit
OK (1 test, 1 assertions)
`

This test will be used later for continuously testing our app with GitLab CI/CD.

Push to GitLab

Since we have our app up and running locally, it’s time to push the codebase to our remote repository.
Let’s create [a new project](../../../gitlab-basics/create-project.md) in GitLab named laravel-sample.
After that, follow the command line instructions displayed on the project’s homepage to initiate the repository on our machine and push the first commit.

`bash
cd laravel-sample
git init
git remote add origin git@gitlab.example.com:<USERNAME>/laravel-sample.git
git add .
git commit -m 'Initial Commit'
git push -u origin master
`

Configure the production server

Before we begin setting up Envoy and GitLab CI/CD, let’s quickly make sure the production server is ready for deployment.
We have installed LEMP stack which stands for Linux, Nginx, MySQL and PHP on our Ubuntu 16.04.

Create a new user

Let’s now create a new user that will be used to deploy our website and give it
the needed permissions using [Linux ACL](https://serversforhackers.com/video/linux-acls):

`bash
Create user deployer
sudo adduser deployer
Give the read-write-execute permissions to deployer user for directory /var/www
sudo setfacl -R -m u:deployer:rwx /var/www
`

If you don’t have ACL installed on your Ubuntu server, use this command to install it:

`bash
sudo apt install acl
`

Add SSH key

Let’s suppose we want to deploy our app to the production server from a private repository on GitLab. First, we need to [generate a new SSH key pair with no passphrase](../../../ssh/README.md) for the deployer user.

After that, we need to copy the private key, which will be used to connect to our server as the deployer user with SSH, to be able to automate our deployment process:

`bash
As the deployer user on server
#
Copy the content of public key to authorized_keys
cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys
Copy the private key text block
cat ~/.ssh/id_rsa
`

Now, let’s add it to your GitLab project as a [variable](../../variables/README.md#variables).
Variables are user-defined variables and are stored out of .gitlab-ci.yml, for security purposes.
They can be added per project by navigating to the project’s Settings > CI/CD.

![variables page](img/secret_variables_page.png)

To the field KEY, add the name SSH_PRIVATE_KEY, and to the VALUE field, paste the private key you’ve copied earlier.
We’ll use this variable in the .gitlab-ci.yml later, to easily connect to our remote server as the deployer user without entering its password.

We also need to add the public key to Project > Settings > Repository as [Deploy Keys](../../../ssh/README.md/#deploy-keys), which gives us the ability to access our repository from the server through [SSH protocol](../../../gitlab-basics/command-line-commands.md/#start-working-on-your-project).

`bash
As the deployer user on the server
#
Copy the public key
cat ~/.ssh/id_rsa.pub
`

![deploy keys page](img/deploy_keys_page.png)

To the field Title, add any name you want, and paste the public key into the Key field.

Now, let’s clone our repository on the server just to make sure the deployer user has access to the repository.

`bash
As the deployer user on server
#
git clone git@gitlab.example.com:<USERNAME>/laravel-sample.git
`

>**Note:**
Answer yes if asked Are you sure you want to continue connecting (yes/no)?.
It adds GitLab.com to the known hosts.

Configuring Nginx

Now, let’s make sure our web server configuration points to the current/public rather than public.

Open the default Nginx server block configuration file by typing:

`bash
sudo nano /etc/nginx/sites-available/default
`

The configuration should be like this.

```
server {


root /var/www/app/current/public;
server_name example.com;
# Rest of the configuration







}

>**Note:**
You may replace the app’s name in /var/www/app/current/public with the folder name of your application.

## Setting up Envoy

So we have our Laravel app ready for production.
The next thing is to use Envoy to perform the deploy.

To use Envoy, we should first install it on our local machine [using the given instructions by Laravel](https://laravel.com/docs/envoy/#introduction).

### How Envoy works

The pros of Envoy is that it doesn’t require Blade engine, it just uses Blade syntax to define tasks.
To start, we create an Envoy.blade.php in the root of our app with a simple task to test Envoy.

```php
@servers([‘web’ => ‘remote_username@remote_host’])

	@task(‘list’, [‘on’ => ‘web’])
	ls -l

@endtask
```

As you may expect, we have an array within @servers directive at the top of the file, which contains a key named web with a value of the server’s address (e.g. deployer@192.168.1.1).
Then within our @task directive we define the bash commands that should be run on the server when the task is executed.

On the local machine use the run command to run Envoy tasks.

`bash
envoy run list
`

It should execute the list task we defined earlier, which connects to the server and lists directory contents.

Envoy is not a dependency of Laravel, therefore you can use it for any PHP application.

### Zero downtime deployment

Every time we deploy to the production server, Envoy downloads the latest release of our app from GitLab repository and replace it with preview’s release.
Envoy does this without any [downtime](https://en.wikipedia.org/wiki/Downtime),
so we don’t have to worry during the deployment while someone might be reviewing the site.
Our deployment plan is to clone the latest release from GitLab repository, install the Composer dependencies and finally, activate the new release.

#### @setup directive

The first step of our deployment process is to define a set of variables within [@setup](https://laravel.com/docs/envoy/#setup) directive.
You may change the app to your application’s name:

```php
…

	@setup
	$repository = ‘git@gitlab.example.com:<USERNAME>/laravel-sample.git’;
$releases_dir = ‘/var/www/app/releases’;
$app_dir = ‘/var/www/app’;
$release = date(‘YmdHis’);
$new_release_dir = $releases_dir .’/’. $release;

@endsetup

…

	$repository is the address of our repository

	$releases_dir directory is where we deploy the app

	$app_dir is the actual location of the app that is live on the server

	$release contains a date, so every time that we deploy a new release of our app, we get a new folder with the current date as name

	$new_release_dir is the full path of the new release which is used just to make the tasks cleaner

@story directive

The [@story](https://laravel.com/docs/envoy/#stories) directive allows us define a list of tasks that can be run as a single task.
Here we have three tasks called clone_repository, run_composer, update_symlinks. These variables are usable to making our task’s codes more cleaner:

```php
…


	@story(‘deploy’)
	clone_repository
run_composer
update_symlinks





@endstory




…

Let’s create these three tasks one by one.

#### Clone the repository

The first task will create the releases directory (if it doesn’t exist), and then clone the master branch of the repository (by default) into the new release directory, given by the $new_release_dir variable.
The releases directory will hold all our deployments:

```php
…

	@task(‘clone_repository’)
	echo ‘Cloning repository’
[-d {{ $releases_dir }}] || mkdir {{ $releases_dir }}
git clone –depth 1 {{ $repository }} {{ $new_release_dir }}

@endtask

…

While our project grows, its Git history will be very very long over time.
Since we are creating a directory per release, it might not be necessary to have the history of the project downloaded for each release.
The –depth 1 option is a great solution which saves systems time and disk space as well.

Installing dependencies with Composer

As you may know, this task just navigates to the new release directory and runs Composer to install the application dependencies:

```php
…


	@task(‘run_composer’)
	echo “Starting deployment ({{ $release }})”
cd {{ $new_release_dir }}
composer install –prefer-dist –no-scripts -q -o





@endtask




…

#### Activate new release

Next thing to do after preparing the requirements of our new release, is to remove the storage directory from it and to create two symbolic links to point the application’s storage directory and .env file to the new release.
Then, we need to create another symbolic link to the new release with the name of current placed in the app directory.
The current symbolic link always points to the latest release of our app:

```php
…

	@task(‘update_symlinks’)
	echo “Linking storage directory”
rm -rf {{ $new_release_dir }}/storage
ln -nfs {{ $app_dir }}/storage {{ $new_release_dir }}/storage

echo ‘Linking .env file’
ln -nfs {{ $app_dir }}/.env {{ $new_release_dir }}/.env

echo ‘Linking current release’
ln -nfs {{ $new_release_dir }} {{ $app_dir }}/current

@endtask
```

As you see, we use -nfs as an option for ln command, which says that the storage, .env and current no longer points to the preview’s release and will point them to the new release by force (f from -nfs means force), which is the case when we are doing multiple deployments.

### Full script

The script is ready, but make sure to change the deployer@192.168.1.1 to your server and also change /var/www/app with the directory you want to deploy your app.

At the end, our Envoy.blade.php file will look like this:

```php
@servers([‘web’ => ‘deployer@192.168.1.1’])

	@setup
	$repository = ‘git@gitlab.example.com:<USERNAME>/laravel-sample.git’;
$releases_dir = ‘/var/www/app/releases’;
$app_dir = ‘/var/www/app’;
$release = date(‘YmdHis’);
$new_release_dir = $releases_dir .’/’. $release;

@endsetup

	@story(‘deploy’)
	clone_repository
run_composer
update_symlinks

@endstory

	@task(‘clone_repository’)
	echo ‘Cloning repository’
[-d {{ $releases_dir }}] || mkdir {{ $releases_dir }}
git clone –depth 1 {{ $repository }} {{ $new_release_dir }}

@endtask

	@task(‘run_composer’)
	echo “Starting deployment ({{ $release }})”
cd {{ $new_release_dir }}
composer install –prefer-dist –no-scripts -q -o

@endtask

	@task(‘update_symlinks’)
	echo “Linking storage directory”
rm -rf {{ $new_release_dir }}/storage
ln -nfs {{ $app_dir }}/storage {{ $new_release_dir }}/storage

echo ‘Linking .env file’
ln -nfs {{ $app_dir }}/.env {{ $new_release_dir }}/.env

echo ‘Linking current release’
ln -nfs {{ $new_release_dir }} {{ $app_dir }}/current

@endtask
```

One more thing we should do before any deployment is to manually copy our application storage folder to the /var/www/app directory on the server for the first time.
You might want to create another Envoy task to do that for you.
We also create the .env file in the same path to setup our production environment variables for Laravel.
These are persistent data and will be shared to every new release.

Now, we would need to deploy our app by running envoy run deploy, but it won’t be necessary since GitLab can handle that for us with CI’s [environments](../../environments.md), which will be described [later](#setting-up-gitlab-ci-cd) in this tutorial.

Now it’s time to commit [Envoy.blade.php](https://gitlab.com/mehranrasulian/laravel-sample/blob/master/Envoy.blade.php) and push it to the master branch.
To keep things simple, we commit directly to master, without using [feature-branches](../../../workflow/gitlab_flow.md/#github-flow-as-a-simpler-alternative) since collaboration is beyond the scope of this tutorial.
In a real world project, teams may use [Issue Tracker](../../../user/project/issues/index.md) and [Merge Requests](../../../user/project/merge_requests/index.md) to move their code across branches:

`bash
git add Envoy.blade.php
git commit -m 'Add Envoy'
git push origin master
`

## Continuous Integration with GitLab

We have our app ready on GitLab, and we also can deploy it manually.
But let’s take a step forward to do it automatically with [Continuous Delivery](https://about.gitlab.com/2016/08/05/continuous-integration-delivery-and-deployment-with-gitlab/#continuous-delivery) method.
We need to check every commit with a set of automated tests to become aware of issues at the earliest, and then, we can deploy to the target environment if we are happy with the result of the tests.

[GitLab CI/CD](../../README.md) allows us to use [Docker](https://docker.com/) engine to handle the process of testing and deploying our app.
In the case you’re not familiar with Docker, refer to [How to Automate Docker Deployments](http://paislee.io/how-to-automate-docker-deployments/).

To be able to build, test, and deploy our app with GitLab CI/CD, we need to prepare our work environment.
To do that, we’ll use a Docker image which has the minimum requirements that a Laravel app needs to run.
[There are other ways](../php.md/#test-php-projects-using-the-docker-executor) to do that as well, but they may lead our builds run slowly, which is not what we want when there are faster options to use.

With Docker images our builds run incredibly faster!

### Create a Container Image

Let’s create a [Dockerfile](https://gitlab.com/mehranrasulian/laravel-sample/blob/master/Dockerfile) in the root directory of our app with the following content:

```bash
Set the base image for subsequent instructions
FROM php:7.1

Update packages
RUN apt-get update

Install PHP and composer dependencies
RUN apt-get install -qq git curl libmcrypt-dev libjpeg-dev libpng-dev libfreetype6-dev libbz2-dev

Clear out the local repository of retrieved package files
RUN apt-get clean

Install needed extensions
Here you can install any other extension that you need during the test and deployment process
RUN docker-php-ext-install mcrypt pdo_mysql zip

Install Composer
RUN curl –silent –show-error https://getcomposer.org/installer | php – –install-dir=/usr/local/bin –filename=composer

Install Laravel Envoy
RUN composer global require “laravel/envoy=~1.0”
```

We added the [official PHP 7.1 Docker image](https://hub.docker.com/r/_/php/), which consist of a minimum installation of Debian Jessie with PHP pre-installed, and works perfectly for our use case.

We used docker-php-ext-install (provided by the official PHP Docker image) to install the PHP extensions we need.

#### Setting Up GitLab Container Registry

Now that we have our Dockerfile let’s build and push it to our [GitLab Container Registry](../../../user/project/container_registry.md).

> The registry is the place to store and tag images for later use. Developers may want to maintain their own registry for private, company images, or for throw-away images used only in testing. Using GitLab Container Registry means you don’t need to set up and administer yet another service or use a public registry.

On your GitLab project repository navigate to the Registry tab.

![container registry page empty image](img/container_registry_page_empty_image.png)

You may need to [enable Container Registry](../../../user/project/container_registry.md#enable-the-container-registry-for-your-project) to your project to see this tab. You’ll find it under your project’s Settings > General > Sharing and permissions.

![container registry checkbox](img/container_registry_checkbox.png)

To start using Container Registry on our machine, we first need to login to the GitLab registry using our GitLab username and password:

`bash
docker login registry.gitlab.com
`
Then we can build and push our image to GitLab:

```bash
docker build -t registry.gitlab.com/<USERNAME>/laravel-sample .

docker push registry.gitlab.com/<USERNAME>/laravel-sample
```

>**Note:**
To run the above commands, we first need to have [Docker](https://docs.docker.com/engine/installation/) installed on our machine.

Congratulations! You just pushed the first Docker image to the GitLab Registry, and if you refresh the page you should be able to see it:

![container registry page with image](img/container_registry_page_with_image.jpg)

>**Note:**
You can also [use GitLab CI/CD](https://about.gitlab.com/2016/05/23/gitlab-container-registry/#use-with-gitlab-ci) to build and push your Docker images, rather than doing that on your machine.

We’ll use this image further down in the .gitlab-ci.yml configuration file to handle the process of testing and deploying our app.

Let’s commit the Dockerfile file.

`bash
git add Dockerfile
git commit -m 'Add Dockerfile'
git push origin master
`

### Setting up GitLab CI/CD

In order to build and test our app with GitLab CI/CD, we need a file called .gitlab-ci.yml in our repository’s root. It is similar to Circle CI and Travis CI, but built-in GitLab.

Our .gitlab-ci.yml file will look like this:

```yaml
image: registry.gitlab.com/<USERNAME>/laravel-sample:latest

	services:
	
	mysql:5.7

	variables:
	MYSQL_DATABASE: homestead
MYSQL_ROOT_PASSWORD: secret
DB_HOST: mysql
DB_USERNAME: root

	stages:
	
	test

	deploy

	unit_test:
	stage: test
script:

	cp .env.example .env

	composer install

	php artisan key:generate

	php artisan migrate

	vendor/bin/phpunit

	deploy_production:
	stage: deploy
script:

	‘which ssh-agent || (apt-get update -y && apt-get install openssh-client -y)’

	eval $(ssh-agent -s)

	ssh-add <(echo “$SSH_PRIVATE_KEY”)

	mkdir -p ~/.ssh

	‘[[-f /.dockerenv]] && echo -e “Host *ntStrictHostKeyChecking nonn” > ~/.ssh/config’

	~/.composer/vendor/bin/envoy run deploy

	environment:
	name: production
url: http://192.168.1.1

when: manual
only:

	master


```

That’s a lot to take in, isn’t it? Let’s run through it step by step.

#### Image and Services

[GitLab Runners](../../runners/README.md) run the script defined by .gitlab-ci.yml.
The image keyword tells the Runners which image to use.
The services keyword defines additional images [that are linked to the main image](../../docker/using_docker_images.md/#what-is-a-service).
Here we use the container image we created before as our main image and also use MySQL 5.7 as a service.

```yaml
image: registry.gitlab.com/<USERNAME>/laravel-sample:latest

	services:
	
	mysql:5.7

…

>**Note:**
If you wish to test your app with different PHP versions and [database management systems](../../services/README.md), you can define different image and services keywords for each test job.

Variables

GitLab CI/CD allows us to use [environment variables](../../yaml/README.md#variables) in our jobs.
We defined MySQL as our database management system, which comes with a superuser root created by default.

So we should adjust the configuration of MySQL instance by defining MYSQL_DATABASE variable as our database name and MYSQL_ROOT_PASSWORD variable as the password of root.
Find out more about MySQL variables at the [official MySQL Docker Image](https://hub.docker.com/r/_/mysql/).

Also set the variables DB_HOST to mysql and DB_USERNAME to root, which are Laravel specific variables.
We define DB_HOST as mysql instead of 127.0.0.1, as we use MySQL Docker image as a service which [is linked to the main Docker image](../../docker/using_docker_images.md/#how-services-are-linked-to-the-build).

```yaml
…


	variables:
	MYSQL_DATABASE: homestead
MYSQL_ROOT_PASSWORD: secret
DB_HOST: mysql
DB_USERNAME: root








…

#### Unit Test as the first job

We defined the required shell scripts as an array of the [script](../../yaml/README.md#script) variable to be executed when running unit_test job.

These scripts are some Artisan commands to prepare the Laravel, and, at the end of the script, we’ll run the tests by PHPUnit.

```yaml
…

	unit_test:
	
	script:
	# Install app dependencies
- composer install
Setup .env
- cp .env.example .env
Generate an environment key
- php artisan key:generate
Run migrations
- php artisan migrate
Run tests
- vendor/bin/phpunit

…

Deploy to production

The job deploy_production will deploy the app to the production server.
To deploy our app with Envoy, we had to set up the $SSH_PRIVATE_KEY variable as an [SSH private key](../../ssh_keys/README.md/#ssh-keys-when-using-the-docker-executor).
If the SSH keys have added successfully, we can run Envoy.

As mentioned before, GitLab supports [Continuous Delivery](https://about.gitlab.com/2016/08/05/continuous-integration-delivery-and-deployment-with-gitlab/#continuous-delivery) methods as well.
The [environment](../../yaml/README.md#environment) keyword tells GitLab that this job deploys to the production environment.
The url keyword is used to generate a link to our application on the GitLab Environments page.
The only keyword tells GitLab CI that the job should be executed only when the pipeline is building the master branch.
Lastly, when: manual is used to turn the job from running automatically to a manual action.

```yaml
…


	deploy_production:
	
	script:
	# Add the private SSH key to the build environment
- ‘which ssh-agent || ( apt-get update -y && apt-get install openssh-client -y )’
- eval $(ssh-agent -s)
- ssh-add <(echo “$SSH_PRIVATE_KEY”)
- mkdir -p ~/.ssh
- ‘[[ -f /.dockerenv ]] && echo -e “Host *ntStrictHostKeyChecking nonn” > ~/.ssh/config’

# Run Envoy
- ~/.composer/vendor/bin/envoy run deploy



	environment:
	name: production
url: http://192.168.1.1





when: manual
only:



	master











```

You may also want to add another job for [staging environment](https://about.gitlab.com/2016/08/26/ci-deployment-and-environments), to final test your application before deploying to production.

Turn on GitLab CI/CD

We have prepared everything we need to test and deploy our app with GitLab CI/CD.
To do that, commit and push .gitlab-ci.yml to the master branch. It will trigger a pipeline, which you can watch live under your project’s Pipelines.

![pipelines page](img/pipelines_page.png)

Here we see our Test and Deploy stages.
The Test stage has the unit_test build running.
click on it to see the Runner’s output.

![pipeline page](img/pipeline_page.png)

After our code passed through the pipeline successfully, we can deploy to our production server by clicking the play button on the right side.

![pipelines page deploy button](img/pipelines_page_deploy_button.png)

Once the deploy pipeline passed successfully, navigate to Pipelines > Environments.

![environments page](img/environments_page.png)

If something doesn’t work as expected, you can roll back to the latest working version of your app.

![environment page](img/environment_page.png)

By clicking on the external link icon specified on the right side, GitLab opens the production website.
Our deployment successfully was done and we can see the application is live.

![laravel welcome page](img/laravel_welcome_page.png)

In the case that you’re interested to know how is the application directory structure on the production server after deployment, here are three directories named current, releases and storage.
As you know, the current directory is a symbolic link that points to the latest release.
The .env file consists of our Laravel environment variables.

![production server app directory](img/production_server_app_directory.png)

If you navigate to the current directory, you should see the application’s content.
As you see, the .env is pointing to the /var/www/app/.env file and also storage is pointing to the /var/www/app/storage/ directory.

![production server current directory](img/production_server_current_directory.png)

Conclusion

We configured GitLab CI to perform automated tests and used the method of [Continuous Delivery](https://continuousdelivery.com/) to deploy to production a Laravel application with Envoy, directly from the codebase.

Envoy also was a great match to help us deploy the application without writing our custom bash script and doing Linux magics.

 —
author: Alexandre S Hostert
author_gitlab: Hostert
level: beginner
article_type: tutorial
date: 2018-02-20
—

Testing a Phoenix application with GitLab CI/CD

[Phoenix][phoenix-site] is a web development framework written in [Elixir][elixir-site], which is a
functional language designed for productivity and maintainability that runs on the
[Erlang VM][erlang-site]. Erlang VM is really really fast and can handle very large numbers of
simultaneous users.

That’s why we’re hearing so much about Phoenix today.

In this tutorial, we’ll teach you how to set up GitLab CI/CD to build and test a Phoenix
application.

_We assume that you know how to create a Phoenix app, run tests locally, and how to work with Git
and GitLab UI._

Introduction

What is Phoenix?

	[Phoenix][phoenix-site] is a web development framework written in [Elixir][elixir-site] very useful
	to build fast, reliable, and high-performance applications, as it uses [Erlang VM][erlang-site].

Many components and concepts are similar to Ruby on Rails or Python’s Django. High developer
productivity and high application performance are only a few advantages on learning how to use it.
Working on the MVC pattern, it’s was designed to be modular and flexible. Easy to maintain a growing
app is a plus.

Phoenix can run in any OS where Erlang is supported:

	Ubuntu

	CentOS

	Mac OS X

	Debian

	Windows

	Fedora

	Raspbian

Check the [Phoenix learning guide][phoenix-learning-guide] for more information.

What is Elixir?

[Elixir][elixir-site] is a dynamic, functional language created to use all the maturity of Erlang
(30 years old!) in these days, in an easy way. It has similarities with Ruby, specially on syntax,
so Ruby developers are quite excited with the rapid growing of Elixir. A full-stack Ruby developer
can learn how to use Elixir and Phoenix in just a few weeks!

In Elixir we have a command called mix, which is a helper to create projects, testing, run
migrations and [much more][elixir-mix]. We’ll use it later on in this tutorial.

Check the [Elixir documentation][elixir-docs] for more information.

Requirements

To follow this tutorial, you’ll need to have installed:

	Elixir [installation instructions][elixir-install]

	Phoenix Framework [installation instructions][phoenix-install]

	PostgreSQL (if you need to use MySQL server, check [Phoenix instructions][phoenix-mysql])

Create a new Phoenix project

Open your terminal and go to the directory you wish to create your project.
You don’t need to create an empty directory for the project’s files, because the mix command will
do it for us.

When we call mix command, we’ll pass two arguments:

	The task we want it to run: phoenix.new

	And the parameter phoenix.new requires, which is the name of the new project. In this case,

we’re calling it hello_gitlab_ci, but you’re free to set your own name:

`bash
mix phoenix.new hello_gitlab_ci
`

When asked, answer Y to fetch and install dependencies.

If everything went fine, you’ll get an output like this:

![mix phoenix.new](img/mix-phoenix-new.png)

Now, our project is located inside the directory with the same name we pass to mix command, for
example, ~/GitLab/hello_gitlab_ci.
If we take a look at the directory, we’ll see the Phoenix files and the dependencies needed to run.

Initialize the PostgreSQL database

By default, Phoenix requires a PostgreSQL database to store whatever we need to store in our app. In
this case, we’ll only create an empty database.

First, we need to navigate to our recently created project’s directory, and then execute again
mix. This time, mix will receive the parameter ecto.create, which is the task to create our
new database. [Ecto][ecto] is the database wrapper for Elixir.

When we do run mix the first time after creating our project, it will compile our files to
bytecode, which will be interpreted by Erlang VM. In the next times, it will only compile our
changes.

Run the commands below to create our empty database:

`bash
cd hello_gitlab_ci
mix ecto.create
`

We expect to see this output at the end of the command:

`bash
Generated hello_gitlab_ci app
The database for HelloGitlabCi.Repo has been created
`

> Note:
Phoenix assumes that our PostgreSQL database will have a postgres user account with the correct
permissions and a password of postgres. If it’s not your case, check
[Ecto’s instructions][ecto-repo].

Start Phoenix server

Now, it’s time to see if everything we did until now went well. We’ll call mix again, this time
with phoenix.server parameter, which will start Phoenix’s HTTP Server.

`bash
mix phoenix.server
`

This will be the output to this command:

`bash
[info] Running HelloGitlabCi.Endpoint with Cowboy using http://localhost:4000
23 May 11:44:35 - info: compiling
23 May 11:44:37 - info: compiled 6 files into 2 files, copied 3 in 9.8 sec
`

Now, we have our app running locally. We can preview it directly on our browser. Let’s open
localhost:4000 to see our Phoenix Framework welcome page. If the link do
not work, open 127.0.0.1:4000 instead and later, configure your OS to
point localhost to 127.0.0.1.

![mix phoenix.server](img/mix-phoenix-server.png)

Great, now we have a local Phoenix Server running our app.

Locally, our application is running in an iex session. [iex][iex] stands for Interactive Elixir.
In this interactive mode, we can type any Elixir expression and get its result. To exit iex, we
need to press Ctrl+C twice. So, when we need to stop the Phoenix server, we have to hit Ctrl+C
twice.

Introducing GitLab CI/CD

With GitLab, we can manage our development workflow, improve our productivity, track issues,
perform code review, and much more from a single platform. With GitLab CI/CD, we can be much more
productive, because every time we, or our co-workers push any code, GitLab CI/CD will build and
test the changes, telling us in realtime if anything goes wrong.

Certainly, when our application starts to grow, we’ll need more developers working on the same
project and this process of building and testing can easily become a mess without proper management.
That’s also why GitLab CI/CD is so important to our application. Every time someone pushes its code to
GitLab, we’ll quickly know if their changes broke something or not. We don’t need to stop everything
we’re doing to test manually and locally every change our team does.

Let’s see this in practice.

Adjusting Phoenix configuration

Now, we need to adjust our Phoenix configuration before configuring GitLab CI/CD.
There is a directory (config) in your Phoenix project that contains a configuration file for every
environment it can run. Since we will work with a single environment, we’ll edit just the test
configuration file (test.exs).

But, why do we need to adjust our configuration? Well, GitLab CI/CD builds and tests our code in one
isolated virtual machine, called [Runner][runner-site], using Docker technology. In this Runner,
GitLab CI/CD has access to everything our Phoenix application need to run, exactly as we have in our
localhost, but we have to tell GitLab CI/CD where to create and find this database using system
variables. This way, GitLab CI/CD will create our test database inside the Runner, just like we do
when running our Phoenix in our localhost.

	Open hello_gitlab_ci/config/test.exs on your favorite code editor

	Go to Configure your database session and edit the block to include System.get_env:


```elixir
# Configure your database
config :hello_gitlab_ci, HelloGitlabCi.Repo,


adapter: Ecto.Adapters.Postgres,
username: System.get_env(“POSTGRES_USER”) || “postgres”,
password: System.get_env(“POSTGRES_PASSWORD”) || “postgres”,
database: System.get_env(“POSTGRES_DB”) || “hello_gitlab_ci_test”,
hostname: System.get_env(“POSTGRES_HOST”) || “localhost”,
pool: Ecto.Adapters.SQL.Sandbox




```

We’ll need these system variables later on.

	Create an empty file named .gitkeep into hello_gitlab_ci/priv/repo/migrations

As our project is still fresh, we don’t have any data on our database, so, the migrations

	directory will be empty.
	Without .gitkeep, git will not upload this empty directory and we’ll got an error when running our

test on GitLab.

> Note:
If we add a folder via the GitLab UI, GitLab itself will add the .gitkeep to that new dir.

Now, let’s run a local test and see if everything we did didn’t break anything.

Testing

Earlier, when we created our project, we ran mix phoenix.new.
This task created everything a Phoenix application needed, including some unit tests into
hello_gitlab_ci/test directory.

Let’s run a new task with mix to run those tests for us. This time, the parameter expected is
test. We can add –trace parameter for debugging purposes.

In your terminal, navigate to the directory hello_gitlab_ci and run:

`bash
mix test
`

Our expected result is this:


```bash

Finished in 0.7 seconds
4 tests, 0 failures

Randomized with seed 610000
```

Our test was successful. It’s time to push our files to GitLab.

Configuring CI/CD Pipeline

The first step is to create a new file called .gitlab-ci.yml in hello_gitlab_ci directory of our
project.

	The fastest and easiest way to do this, is to click on Set up CI on project’s main page:

![Set up CI](img/setup-ci.png)

	On next screen, we can select a template ready to go. Click on **Apply a GitLab CI/CD Yaml

template** and select Elixir:

![Select template](img/select-template.png)

This template file tells GitLab CI/CD about what we wish to do every time a new commit is made.
However, we have to adapt it to run a Phoenix app.

	The first line tells GitLab what Docker image will be used.

Remember when we learn about Runners, the isolated virtual machine where GitLab CI/CD build and test
our application? This virtual machine must have all dependencies to run our application. This is
where a Docker image is needed. The correct image will provide the entire system for us.

As a suggestion, you can use [trenpixster’s elixir image][docker-image], which already has all
dependencies for Phoenix installed, such as Elixir, Erlang, NodeJS and PostgreSQL:

`yml
image: trenpixster/elixir:latest
`

	At services session, we’ll only use postgres, so we’ll delete mysql and redis lines:


```yml
services:



	postgres:latest







```


	Now, we’ll create a new entry called variables, before before_script session:


```yml
variables:


POSTGRES_DB: hello_gitlab_ci_test
POSTGRES_HOST: postgres
POSTGRES_USER: postgres
POSTGRES_PASSWORD: “postgres”
MIX_ENV: “test”




```

Here, we are setting up the values for GitLab CI/CD authenticate into PostgreSQL, as we did on
config/test.exs earlier.

	In before_script session, we’ll add some commands to prepare everything to the test:


```yml
before_script:



	apt-get update && apt-get -y install postgresql-client


	mix local.hex –force


	mix deps.get –only test


	mix ecto.create


	mix ecto.migrate







```

It’s important to install postgresql-client to let GitLab CI/CD access PostgreSQL and create our
database with the login information provided earlier. More important is to respect the indentation,
to avoid syntax errors when running the build.

	And finally, we’ll let mix session intact.

Let’s take a look at the completed file after the editions:

```yml
image: trenpixster/elixir:latest


	services:
	
	postgres:latest






	variables:
	POSTGRES_DB: test_test
POSTGRES_HOST: postgres
POSTGRES_USER: postgres
POSTGRES_PASSWORD: “postgres”
MIX_ENV: “test”



	before_script:
	
	apt-get update && apt-get -y install postgresql-client


	mix deps.get


	mix ecto.create


	mix ecto.migrate






	mix:
	script:
- mix test





```

For safety, we can check if we get any syntax errors before submitting this file to GitLab. Copy the
contents of .gitlab-ci.yml and paste it on [GitLab CI/CD Lint tool][ci-lint]. Please note that
this link will only work for logged in users.

Watching the build

I don’t know about you, but I love to watch that black screen being filled with compilation output.
With this, I can feel the happiness of something I made working correctly. On localhost it’s easy
to watch our build, but on GitLab, is it possible? Yes!

Let’s go to Pipelines and see GitLab doing the job. Just click on Pipelines to find the
actual running build job.

![Pipelines](img/pipelines.png)

Click on build’s ID to watch the entire process. If everything went as expected, we can wait for the
Build succeeded at the end of the process! :)

```
$ mix test
….

Finished in 0.3 seconds
4 tests, 0 failures

Randomized with seed 206909
Build succeeded
```

If we take a look at the project’s main page on the GitLab UI, we can see the status of the last
build made by GitLab CI/CD.

Time to show the world our green build badge! Navigate to your project’s Settings > CI/CD and
expand General pipelines settings. Scroll down to Pipeline status and copy the markdown code
for your badge. Paste it on the top of your README.md file, to let people outside of our project
see if our latest code is running without errors.

When we finish this edition, GitLab will start another build and show a build running badge. It
is expected, after all we just configured GitLab CI/CD to do this for every push! But you may think
“Why run build and tests for simple things like editing README.md?” and it is a good question.
For changes that don’t affect your application, you can add the keyword [[ci skip]][skipping-jobs]
to commit message and the build related to that commit will be skipped.

In the end, we finally got our pretty green build succeeded badge! By outputting the result on the
README file, it shows to whoever lands on your project’s page that your code is up-to-date and
working properly.

Conclusion

When we have a growing application with many developers working on it, or when we have an open
source project being watched and contributed by the community, it is really important to have our
code permanently working. GitLab CI/CD is a time saving powerful tool to help us maintain our code
organized and working.

As we could see in this post, GitLab CI/CD is really really easy to configure and use. We have [many
other reasons][ci-reasons] to keep using GitLab CI/CD. The benefits to our teams will be huge!

References

	[GitLab CI/CD introductory guide][ci-guide]

	[GitLab CI/CD full Documentation][ci-docs]

	[GitLab Runners documentation][gitlab-runners]

	[Using Docker images documentation][using-docker]

	[Example project: Hello GitLab CI/CD on GitLab][hello-gitlab]

[phoenix-site]: http://phoenixframework.org/ “Phoenix Framework”
[phoenix-learning-guide]: https://hexdocs.pm/phoenix/learning.html “Phoenix Learning Guide”
[phoenix-install]: http://www.phoenixframework.org/docs/installation “Phoenix Installation”
[phoenix-mysql]: http://www.phoenixframework.org/docs/using-mysql “Phoenix with MySQL”
[elixir-site]: http://elixir-lang.org/ “Elixir”
[elixir-mix]: http://elixir-lang.org/getting-started/mix-otp/introduction-to-mix.html “Introduction to mix”
[elixir-docs]: http://elixir-lang.org/getting-started/introduction.html “Elixir Documentation”
[erlang-site]: http://erlang.org “Erlang”
[elixir-install]: https://elixir-lang.org/install.html “Elixir Installation”
[ecto]: http://hexdocs.pm/ecto “Ecto”
[ecto-repo]: https://hexdocs.pm/ecto/Ecto.html#module-repositories “Ecto Repositories”
[mix-ecto]: https://hexdocs.pm/ecto/Mix.Tasks.Ecto.Create.html “mix and Ecto”
[iex]: http://elixir-lang.org/getting-started/introduction.html#interactive-mode “Interactive Mode”
[ci-lint]: https://gitlab.com/ci/lint “CI Lint Tool”
[ci-reasons]: https://about.gitlab.com/2015/02/03/7-reasons-why-you-should-be-using-ci/ “7 Reasons Why You Should Be Using CI”
[ci-guide]: https://about.gitlab.com/2015/12/14/getting-started-with-gitlab-and-gitlab-ci/ “Getting Started With GitLab And GitLab CI/CD”
[ci-docs]: ../../README.md “GitLab CI/CD Documentation”
[skipping-jobs]: ../../yaml/README.md#skipping-jobs “Skipping Jobs”
[gitlab-runners]: ../../runners/README.md “GitLab Runners Documentation”
[runner-site]: ../../runners/README.md#runners “Runners”
[docker-image]: https://hub.docker.com/r/trenpixster/elixir/ “Elixir Docker Image”
[using-docker]: ../../docker/using_docker_images.md “Using Docker Images”
[hello-gitlab]: https://gitlab.com/Hostert/hello_gitlab_ci “Hello GitLab CI/CD”

 This document was moved to [user/permissions.md](../../user/permissions.md#gitlab-ci).

 # Getting started with GitLab CI/CD

>**Note:** Starting from version 8.0, GitLab [Continuous Integration][ci] (CI)
is fully integrated into GitLab itself and is [enabled] by default on all
projects.

GitLab offers a [continuous integration][ci] service. If you
[add a .gitlab-ci.yml file][yaml] to the root directory of your repository,
and configure your GitLab project to use a [Runner], then each commit or
push, triggers your CI [pipeline].

The .gitlab-ci.yml file tells the GitLab runner what to do. By default it runs
a pipeline with three [stages]: build, test, and deploy. You don’t need to
use all three stages; stages with no jobs are simply ignored.

If everything runs OK (no non-zero return values), you’ll get a nice green
checkmark associated with the commit. This makes it
easy to see whether a commit caused any of the tests to fail before
you even look at the code.

Most projects use GitLab’s CI service to run the test suite so that
developers get immediate feedback if they broke something.

There’s a growing trend to use continuous delivery and continuous deployment to
automatically deploy tested code to staging and production environments.

So in brief, the steps needed to have a working CI can be summed up to:

1. Add .gitlab-ci.yml to the root directory of your repository
1. Configure a Runner

From there on, on every push to your Git repository, the Runner will
automagically start the pipeline and the pipeline will appear under the
project’s Pipelines page.

—

This guide assumes that you:

	have a working GitLab instance of version 8.0+r or are using
[GitLab.com](https://gitlab.com)

	have a project in GitLab that you would like to use CI for

Let’s break it down to pieces and work on solving the GitLab CI puzzle.

Creating a .gitlab-ci.yml file

Before you create .gitlab-ci.yml let’s first explain in brief what this is
all about.

What is .gitlab-ci.yml

The .gitlab-ci.yml file is where you configure what CI does with your project.
It lives in the root of your repository.

On any push to your repository, GitLab will look for the .gitlab-ci.yml
file and start jobs on _Runners_ according to the contents of the file,
for that commit.

Because .gitlab-ci.yml is in the repository and is version controlled, old
versions still build successfully, forks can easily make use of CI, branches can
have different pipelines and jobs, and you have a single source of truth for CI.
You can read more about the reasons why we are using .gitlab-ci.yml [in our
blog about it][blog-ci].

Creating a simple .gitlab-ci.yml file

>**Note:**
.gitlab-ci.yml is a [YAML](https://en.wikipedia.org/wiki/YAML) file
so you have to pay extra attention to indentation. Always use spaces, not tabs.

You need to create a file named .gitlab-ci.yml in the root directory of your
repository. Below is an example for a Ruby on Rails project.

```yaml
before_script:



	apt-get update -qq && apt-get install -y -qq sqlite3 libsqlite3-dev nodejs


	ruby -v


	which ruby


	gem install bundler –no-ri –no-rdoc


	bundle install –jobs $(nproc)  “${FLAGS[@]}”








	rspec:
	
	script:
	
	bundle exec rspec










	rubocop:
	
	script:
	
	bundle exec rubocop












```

This is the simplest possible configuration that will work for most Ruby
applications:

	Define two jobs rspec and rubocop (the names are arbitrary) with
different commands to be executed.

	Before every job, the commands defined by before_script are executed.

The .gitlab-ci.yml file defines sets of jobs with constraints of how and when
they should be run. The jobs are defined as top-level elements with a name (in
our case rspec and rubocop) and always have to contain the script keyword.
Jobs are used to create jobs, which are then picked by
[Runners](../runners/README.md) and executed within the environment of the Runner.

What is important is that each job is run independently from each other.

If you want to check whether the .gitlab-ci.yml of your project is valid, there is a
Lint tool under the page /ci/lint of your project namespace. You can also find
a “CI Lint” button to go to this page under CI/CD ➔ Pipelines and
Pipelines ➔ Jobs in your project.

For more information and a complete .gitlab-ci.yml syntax, please read
[the reference documentation on .gitlab-ci.yml](../yaml/README.md).

Push .gitlab-ci.yml to GitLab

Once you’ve created .gitlab-ci.yml, you should add it to your Git repository
and push it to GitLab.

`bash
git add .gitlab-ci.yml
git commit -m "Add .gitlab-ci.yml"
git push origin master
`

Now if you go to the Pipelines page you will see that the pipeline is
pending.

NOTE: Note:
If you have a [mirrored repository where GitLab pulls from](https://docs.gitlab.com/ee/workflow/repository_mirroring.html#pulling-from-a-remote-repository),
you may need to enable pipeline triggering in your project’s
Settings > Repository > Pull from a remote repository > Trigger pipelines for mirror updates.

You can also go to the Commits page and notice the little pause icon next
to the commit SHA.

![New commit pending](img/new_commit.png)

Clicking on it you will be directed to the jobs page for that specific commit.

![Single commit jobs page](img/single_commit_status_pending.png)

Notice that there is a pending job which is named after what we wrote in
.gitlab-ci.yml. “stuck” indicates that there is no Runner configured
yet for this job.

The next step is to configure a Runner so that it picks the pending jobs.

Configuring a Runner

In GitLab, Runners run the jobs that you define in .gitlab-ci.yml. A Runner
can be a virtual machine, a VPS, a bare-metal machine, a docker container or
even a cluster of containers. GitLab and the Runners communicate through an API,
so the only requirement is that the Runner’s machine has network access to the
GitLab server.

A Runner can be specific to a certain project or serve multiple projects in
GitLab. If it serves all projects it’s called a _Shared Runner_.

Find more information about different Runners in the
[Runners](../runners/README.md) documentation.

You can find whether any Runners are assigned to your project by going to
Settings ➔ CI/CD. Setting up a Runner is easy and straightforward. The
official Runner supported by GitLab is written in Go and its documentation
can be found at <https://docs.gitlab.com/runner/>.

In order to have a functional Runner you need to follow two steps:

	[Install it][runner-install]

	[Configure it](../runners/README.md#registering-a-specific-runner)

Follow the links above to set up your own Runner or use a Shared Runner as
described in the next section.

Once the Runner has been set up, you should see it on the Runners page of your
project, following Settings ➔ CI/CD.

![Activated runners](img/runners_activated.png)

Shared Runners

If you use [GitLab.com](https://gitlab.com/) you can use the Shared Runners
provided by GitLab Inc.

These are special virtual machines that run on GitLab’s infrastructure and can
build any project.

To enable the Shared Runners you have to go to your project’s
Settings ➔ CI/CD and click Enable shared runners.

[Read more on Shared Runners](../runners/README.md).

Seeing the status of your pipeline and jobs

After configuring the Runner successfully, you should see the status of your
last commit change from _pending_ to either _running_, _success_ or _failed_.

You can view all pipelines by going to the Pipelines page in your project.

![Commit status](img/pipelines_status.png)

Or you can view all jobs, by going to the Pipelines ➔ Jobs page.

![Commit status](img/builds_status.png)

By clicking on a job’s status, you will be able to see the log of that job.
This is important to diagnose why a job failed or acted differently than
you expected.

![Build log](img/build_log.png)

You are also able to view the status of any commit in the various pages in
GitLab, such as Commits and Merge requests.

Examples

Visit the [examples README][examples] to see a list of examples using GitLab
CI with various languages.

[runner-install]: https://docs.gitlab.com/runner/install/
[blog-ci]: https://about.gitlab.com/2015/05/06/why-were-replacing-gitlab-ci-jobs-with-gitlab-ci-dot-yml/
[examples]: ../examples/README.md
[ci]: https://about.gitlab.com/gitlab-ci/
[yaml]: ../yaml/README.md
[runner]: ../runners/README.md
[enabled]: ../enable_or_disable_ci.md
[stages]: ../yaml/README.md#stages
[pipeline]: ../pipelines.md

 # Getting started with Review Apps

>
- [Introduced][ce-21971] in GitLab 8.12. Further additions were made in GitLab

8.13 and 8.14.

	Inspired by [Heroku’s Review Apps][heroku-apps] which itself was inspired by
[Fourchette].

The basis of Review Apps is the [dynamic environments] which allow you to create
a new environment (dynamically) for each one of your branches.

A Review App can then be visible as a link when you visit the [merge request]
relevant to the branch. That way, you are able to see live all changes introduced
by the merge request changes. Reviewing anything, from performance to interface
changes, becomes much easier with a live environment and as such, Review Apps
can make a huge impact on your development flow.

They mostly make sense to be used with web applications, but you can use them
any way you’d like.

Overview

Simply put, a Review App is a mapping of a branch with an environment as there
is a 1:1 relation between them.

Here’s an example of what it looks like when viewing a merge request with a
dynamically set environment.

![Review App in merge request](img/review_apps_preview_in_mr.png)

In the image above you can see that the add-new-line branch was successfully
built and deployed under a dynamic environment and can be previewed with an
also dynamically URL.

The details of the Review Apps implementation depend widely on your real
technology stack and on your deployment process. The simplest case is to
deploy a simple static HTML website, but it will not be that straightforward
when your app is using a database for example. To make a branch be deployed
on a temporary instance and booting up this instance with all required software
and services automatically on the fly is not a trivial task. However, it is
doable, especially if you use Docker, or at least a configuration management
tool like Chef, Puppet, Ansible or Salt.

Prerequisites

To get a better understanding of Review Apps, you must first learn how
environments and deployments work. The following docs will help you grasp that
knowledge:

1. First, learn about [environments][] and their role in the development workflow.
1. Then make a small stop to learn about [CI variables][variables] and how they

can be used in your CI jobs.

	Next, explore the [environment syntax][yaml-env] as defined in .gitlab-ci.yml.
This will be your primary reference when you are finally comfortable with
how environments work.

	Additionally, find out about [manual actions][] and how you can use them to
deploy to critical environments like production with the push of a button.

	And as a last step, follow the [example tutorials](#examples) which will
guide you step by step to set up the infrastructure and make use of
Review Apps.

Configuration

The configuration of Review apps depends on your technology stack and your
infrastructure. Read the [dynamic environments] documentation to understand
how to define and create them.

Creating and destroying Review Apps

The creation and destruction of a Review App is defined in .gitlab-ci.yml
at a job level under the environment keyword.

Check the [environments] documentation how to do so.

A simple workflow

The process of adding Review Apps in your workflow would look like:

1. Set up the infrastructure to host and deploy the Review Apps.
1. [Install][install-runner] and [configure][conf-runner] a Runner that does

the deployment.

	Set up a job in .gitlab-ci.yml that uses the predefined
[predefined CI environment variable][variables] ${CI_COMMIT_REF_NAME} to
create dynamic environments and restrict it to run only on branches.

	Optionally set a job that [manually stops][manual-env] the Review Apps.

From there on, you would follow the branched Git flow:

	Push a branch and let the Runner deploy the Review App based on the script
definition of the dynamic environment job.

1. Wait for the Runner to build and/or deploy your web app.
1. Click on the link that’s present in the MR related to the branch and see the

changes live.

Limitations

Check the [environments limitations](../environments.md#limitations).

Examples

A list of examples used with Review Apps can be found below:

	[Use with NGINX][app-nginx] - Use NGINX and the shell executor of GitLab Runner
to deploy a simple HTML website.

And below is a soon to be added examples list:

	Use with Amazon S3

	Use on Heroku with dpl

	Use with OpenShift/kubernetes

[app-nginx]: https://gitlab.com/gitlab-examples/review-apps-nginx
[ce-21971]: https://gitlab.com/gitlab-org/gitlab-ce/issues/21971
[dynamic environments]: ../environments.md#dynamic-environments
[environments]: ../environments.md
[fourchette]: https://github.com/rainforestapp/fourchette
[heroku-apps]: https://devcenter.heroku.com/articles/github-integration-review-apps
[manual actions]: ../environments.md#manual-actions
[merge request]: ../../user/project/merge_requests.md
[variables]: ../variables/README.md
[yaml-env]: ../yaml/README.md#environment
[install-runner]: https://docs.gitlab.com/runner/install/
[conf-runner]: https://docs.gitlab.com/runner/commands/
[manual-env]: ../environments.md#stopping-an-environment

 # Configuring GitLab Runners

In GitLab CI, Runners run the code defined in [.gitlab-ci.yml](../yaml/README.md).
They are isolated (virtual) machines that pick up jobs through the coordinator
API of GitLab CI.

A Runner can be specific to a certain project or serve any project
in GitLab CI. A Runner that serves all projects is called a shared Runner.

Ideally, the GitLab Runner should not be installed on the same machine as GitLab.
Read the [requirements documentation](../../install/requirements.md#gitlab-runner)
for more information.

Shared, specific and group Runners

After [installing the Runner][install], you can either register it as shared or
specific. You can only register a shared Runner if you have admin access to
the GitLab instance. The main differences between a shared and a specific Runner
are:

	Shared Runners are useful for jobs that have similar requirements,
between multiple projects. Rather than having multiple Runners idling for
many projects, you can have a single or a small number of Runners that handle
multiple projects. This makes it easier to maintain and update them.
Shared Runners process jobs using a [fair usage queue](#how-shared-runners-pick-jobs).
In contrast to specific Runners that use a FIFO queue, this prevents
cases where projects create hundreds of jobs which can lead to eating all
available shared Runners resources.

	Specific Runners are useful for jobs that have special requirements or for
projects with a specific demand. If a job has certain requirements, you can set
up the specific Runner with this in mind, while not having to do this for all
Runners. For example, if you want to deploy a certain project, you can setup
a specific Runner to have the right credentials for this. The [usage of tags](#using-tags)
may be useful in this case. Specific Runners process jobs using a [FIFO] queue.

	Group Runners are useful when you have multiple projects under one group
and would like all projects to have access to a set of Runners. Group Runners
process jobs using a [FIFO] queue.

A Runner that is specific only runs for the specified project(s). A shared Runner
can run jobs for every project that has enabled the option Allow shared Runners
under Settings > CI/CD.

Projects with high demand of CI activity can also benefit from using specific
Runners. By having dedicated Runners you are guaranteed that the Runner is not
being held up by another project’s jobs.

You can set up a specific Runner to be used by multiple projects. The difference
with a shared Runner is that you have to enable each project explicitly for
the Runner to be able to run its jobs.

Specific Runners do not get shared with forked projects automatically.
A fork does copy the CI settings (jobs, allow shared, etc) of the cloned
repository.

Registering a shared Runner

You can only register a shared Runner if you are an admin of the GitLab instance.

	Grab the shared-Runner token on the admin/runners page

![Shared Runners admin area](img/shared_runners_admin.png)

	[Register the Runner][register]

Shared Runners are enabled by default as of GitLab 8.2, but can be disabled
with the Disable shared Runners button which is present under each project’s
Settings ➔ CI/CD page. Previous versions of GitLab defaulted shared
Runners to disabled.

Registering a specific Runner

Registering a specific Runner can be done in two ways:

1. Creating a Runner with the project registration token
1. Converting a shared Runner into a specific Runner (one-way, admin only)

Registering a specific Runner with a project registration token

To create a specific Runner without having admin rights to the GitLab instance,
visit the project you want to make the Runner work for in GitLab:

1. Go to Settings > CI/CD to obtain the token
1. [Register the Runner][register]

Registering a group Runner

Creating a group Runner requires Maintainer permissions for the group. To create a
group Runner visit the group you want to make the Runner work for in GitLab:

1. Go to Settings > CI/CD to obtain the token
1. [Register the Runner][register]

Making an existing shared Runner specific

If you are an admin on your GitLab instance, you can turn any shared Runner into
a specific one, but not the other way around. Keep in mind that this is a one
way transition.

	Go to the Runners in the admin area Overview > Runners (/admin/runners)
and find your Runner

	Enable any projects under Restrict projects for this Runner to be used
with the Runner

From now on, the shared Runner will be specific to those projects.

Locking a specific Runner from being enabled for other projects

You can configure a Runner to assign it exclusively to a project. When a
Runner is locked this way, it can no longer be enabled for other projects.
This setting can be enabled the first time you [register a Runner][register] and
can be changed afterwards under each Runner’s settings.

To lock/unlock a Runner:

1. Visit your project’s Settings > CI/CD
1. Find the Runner you wish to lock/unlock and make sure it’s enabled
1. Click the pencil button
1. Check the Lock to current projects option
1. Click Save changes for the changes to take effect

Assigning a Runner to another project

If you are Maintainer on a project where a specific Runner is assigned to, and the
Runner is not [locked only to that project](#locking-a-specific-runner-from-being-enabled-for-other-projects),
you can enable the Runner also on any other project where you have Maintainer permissions.

To enable/disable a Runner in your project:

1. Visit your project’s Settings > CI/CD
1. Find the Runner you wish to enable/disable
1. Click Enable for this project or Disable for this project

> Note:
Consider that if you don’t lock your specific Runner to a specific project, any
user with Maintainer role in you project can assign your Runner to another arbitrary
project without requiring your authorization, so use it with caution.

An admin can enable/disable a specific Runner for projects:

	Navigate to Admin > Runners

	Find the Runner you wish to enable/disable

	Click edit on the Runner

	Click Enable or Disable on the project

Protected Runners

>
[Introduced](https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/13194)
in GitLab 10.0.

You can protect Runners from revealing sensitive information.
Whenever a Runner is protected, the Runner picks only jobs created on
[protected branches] or [protected tags], and ignores other jobs.

To protect/unprotect Runners:

1. Visit your project’s Settings > CI/CD
1. Find a Runner you want to protect/unprotect and make sure it’s enabled
1. Click the pencil button besides the Runner name
1. Check the Protected option
1. Click Save changes for the changes to take effect

![specific Runners edit icon](img/protected_runners_check_box.png)

Manually clearing the Runners cache

Read [clearing the cache](../caching/index.md#clearing-the-cache).

How shared Runners pick jobs

Shared Runners abide to a process queue we call fair usage. The fair usage
algorithm tries to assign jobs to shared Runners from projects that have the
lowest number of jobs currently running on shared Runners.

Example 1

We have following jobs in queue:

	Job 1 for Project 1

	Job 2 for Project 1

	Job 3 for Project 1

	Job 4 for Project 2

	Job 5 for Project 2

	Job 6 for Project 3

With the fair usage algorithm jobs are assigned in following order:

1. Job 1 is chosen first, because it has the lowest job number from projects with no running jobs (i.e. all projects)
1. Job 4 is next, because 4 is now the lowest job number from projects with no running jobs (Project 1 has a job running)
1. Job 6 is next, because 6 is now the lowest job number from projects with no running jobs (Projects 1 and 2 have jobs running)
1. Job 2 is next, because, of projects with the lowest number of jobs running (each has 1), it is the lowest job number
1. Job 5 is next, because Project 1 now has 2 jobs running, and between Projects 2 and 3, Job 5 is the lowest remaining job number
1. Lastly we choose Job 3… because it’s the only job left

—

Example 2

We have following jobs in queue:

	Job 1 for project 1

	Job 2 for project 1

	Job 3 for project 1

	Job 4 for project 2

	Job 5 for project 2

	Job 6 for project 3

With the fair usage algorithm jobs are assigned in following order:

1. Job 1 is chosen first, because it has the lowest job number from projects with no running jobs (i.e. all projects)
1. We finish job 1
1. Job 2 is next, because, having finished Job 1, all projects have 0 jobs running again, and 2 is the lowest available job number
1. Job 4 is next, because with Project 1 running a job, 4 is the lowest number from projects running no jobs (Projects 2 and 3)
1. We finish job 4
1. Job 5 is next, because having finished Job 4, Project 2 has no jobs running again
1. Job 6 is next, because Project 3 is the only project left with no running jobs
1. Lastly we choose Job 3… because, again, it’s the only job left (who says 1 is the loneliest number?)

Using shared Runners effectively

If you are planning to use shared Runners, there are several things you
should keep in mind.

Using tags

You must setup a Runner to be able to run all the different types of jobs
that it may encounter on the projects it’s shared over. This would be
problematic for large amounts of projects, if it wasn’t for tags.

By tagging a Runner for the types of jobs it can handle, you can make sure
shared Runners will [only run the jobs they are equipped to run](../yaml/README.md#tags).

For instance, at GitLab we have Runners tagged with “rails” if they contain
the appropriate dependencies to run Rails test suites.

Preventing Runners with tags from picking jobs without tags

You can configure a Runner to prevent it from picking
[jobs with tags](../yaml/README.md#tags) when the Runner does not have tags
assigned. This setting can be enabled the first
time you [register a Runner][register] and can be changed afterwards under
each Runner’s settings.

To make a Runner pick tagged/untagged jobs:

1. Visit your project’s Settings ➔ CI/CD
1. Find the Runner you wish and make sure it’s enabled
1. Click the pencil button
1. Check the Run untagged jobs option
1. Click Save changes for the changes to take effect

Setting maximum job timeout for a Runner

For each Runner you can specify a _maximum job timeout_. Such timeout,
if smaller than [project defined timeout], will take the precedence. This
feature can be used to prevent Shared Runner from being appropriated
by a project by setting a ridiculous big timeout (e.g. one week).

When not configured, Runner will not override project timeout.

How this feature will work:

Example 1 - Runner timeout bigger than project timeout

1. You set the _maximum job timeout_ for a Runner to 24 hours
1. You set the _CI/CD Timeout_ for a project to 2 hours
1. You start a job
1. The job, if running longer, will be timeouted after 2 hours

Example 2 - Runner timeout not configured

1. You remove the _maximum job timeout_ configuration from a Runner
1. You set the _CI/CD Timeout_ for a project to 2 hours
1. You start a job
1. The job, if running longer, will be timeouted after 2 hours

Example 3 - Runner timeout smaller than project timeout

1. You set the _maximum job timeout_ for a Runner to 30 minutes
1. You set the _CI/CD Timeout_ for a project to 2 hours
1. You start a job
1. The job, if running longer, will be timeouted after 30 minutes

Be careful with sensitive information

With some [Runner Executors](https://docs.gitlab.com/runner/executors/README.html),
if you can run a job on the Runner, you can get access to any code it runs
and get the token of the Runner. With shared Runners, this means that anyone
that runs jobs on the Runner, can access anyone else’s code that runs on the
Runner.

In addition, because you can get access to the Runner token, it is possible
to create a clone of a Runner and submit false jobs, for example.

The above is easily avoided by restricting the usage of shared Runners
on large public GitLab instances, controlling access to your GitLab instance,
and using more secure [Runner Executors](https://docs.gitlab.com/runner/executors/README.html).

Forks

Whenever a project is forked, it copies the settings of the jobs that relate
to it. This means that if you have shared Runners setup for a project and
someone forks that project, the shared Runners will also serve jobs of this
project.

Attack vectors in Runners

Mentioned briefly earlier, but the following things of Runners can be exploited.
We’re always looking for contributions that can mitigate these
[Security Considerations](https://docs.gitlab.com/runner/security/).

Resetting the registration token for a Project

If you think that registration token for a Project was revealed, you should
reset them. It’s recommended because such token can be used to register another
Runner to thi Project. It may be next used to obtain the values of secret
variables or clone the project code, that normally may be unavailable for the
attacker.

To reset the token:

1. Go to Settings > CI/CD for a specified Project
1. Expand the General pipelines settings section
1. Find the Runner token form field and click the Reveal value button
1. Delete the value and save the form
1. After the page is refreshed, expand the Runners settings section

and check the registration token - it should be changed

From now on the old token is not valid anymore and will not allow to register
a new Runner to the project. If you are using any tools to provision and
register new Runners, you should now update the token that is used to the
new value.

Determining the IP address of a Runner

> [Introduced](https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/17286) in GitLab 10.6.

It may be useful to know the IP address of a Runner so you can troubleshoot
issues with that Runner. GitLab stores and displays the IP address by viewing
the source of the HTTP requests it makes to GitLab when polling for jobs. The
IP address is always kept up to date so if the Runner IP changes it will be
automatically updated in GitLab.

The IP address for shared Runners and specific Runners can be found in
different places.

Shared Runners

To view the IP address of a shared Runner you must have admin access to
the GitLab instance. To determine this:

1. Visit Admin area ➔ Overview ➔ Runners
1. Look for the Runner in the table and you should see a column for “IP Address”

![shared Runner IP address](img/shared_runner_ip_address.png)

Specific Runners

You can find the IP address of a Runner for a specific project by:

1. Visit your project’s Settings ➔ CI/CD
1. Find the Runner and click on it’s ID which links you to the details page
1. On the details page you should see a row for “IP Address”

![specific Runner IP address](img/specific_runner_ip_address.png)

[install]: http://docs.gitlab.com/runner/install/
[fifo]: https://en.wikipedia.org/wiki/FIFO_(computing_and_electronics)
[register]: http://docs.gitlab.com/runner/register/
[protected branches]: ../../user/project/protected_branches.md
[protected tags]: ../../user/project/protected_tags.md
[project defined timeout]: ../../user/project/pipelines/settings.html#timeout

 —
comments: false
—

GitLab CI Services

GitLab CI uses the services keyword to define what docker containers should
be linked with your base image. Below is a list of examples you may use.

	[Using MySQL](mysql.md)

	[Using PostgreSQL](postgres.md)

	[Using Redis](redis.md)

	[Using Other Services](../docker/using_docker_images.md#how-to-use-other-images-as-services)

 —
redirect_to: ‘README.md’
—

 # Using MySQL

As many applications depend on MySQL as their database, you will eventually
need it in order for your tests to run. Below you are guided how to do this
with the Docker and Shell executors of GitLab Runner.

Use MySQL with the Docker executor

If you are using [GitLab Runner](../runners/README.md) with the Docker executor
you basically have everything set up already.

First, in your .gitlab-ci.yml add:

```yaml
services:



	mysql:latest








	variables:
	# Configure mysql environment variables (https://hub.docker.com/r/_/mysql/)
MYSQL_DATABASE: el_duderino
MYSQL_ROOT_PASSWORD: mysql_strong_password





```

And then configure your application to use the database, for example:

`yaml
Host: mysql
User: root
Password: mysql_strong_password
Database: el_duderino
`

If you are wondering why we used mysql for the Host, read more at
[How is service linked to the job](../docker/using_docker_images.md#how-is-service-linked-to-the-job).

You can also use any other docker image available on [Docker Hub][hub-mysql].
For example, to use MySQL 5.5 the service becomes mysql:5.5.

The mysql image can accept some environment variables. For more details
check the documentation on [Docker Hub][hub-mysql].

Use MySQL with the Shell executor

You can also use MySQL on manually configured servers that are using
GitLab Runner with the Shell executor.

First install the MySQL server:

`bash
sudo apt-get install -y mysql-server mysql-client libmysqlclient-dev
`

Pick a MySQL root password (can be anything), and type it twice when asked.

Note: As a security measure you can run `mysql_secure_installation` to
remove anonymous users, drop the test database and disable remote logins with
the root user.

The next step is to create a user, so login to MySQL as root:

`bash
mysql -u root -p
`

Then create a user (in our case runner) which will be used by your
application. Change $password in the command below to a real strong password.

Note: Do not type `mysql>`, this is part of the MySQL prompt.

`bash
mysql> CREATE USER 'runner'@'localhost' IDENTIFIED BY '$password';
`

Create the database:

`bash
mysql> CREATE DATABASE IF NOT EXISTS `el_duderino` DEFAULT CHARACTER SET `utf8` COLLATE `utf8_unicode_ci`;
`

Grant the necessary permissions on the database:

`bash
mysql> GRANT SELECT, INSERT, UPDATE, DELETE, CREATE, CREATE TEMPORARY TABLES, DROP, INDEX, ALTER, LOCK TABLES ON `el_duderino`.* TO 'runner'@'localhost';
`

If all went well you can now quit the database session:

`bash
mysql> \q
`

Now, try to connect to the newly created database to check that everything is
in place:

`bash
mysql -u runner -p -D el_duderino
`

As a final step, configure your application to use the database, for example:

`bash
Host: localhost
User: runner
Password: $password
Database: el_duderino
`

Example project

We have set up an [Example MySQL Project][mysql-example-repo] for your
convenience that runs on [GitLab.com](https://gitlab.com) using our publicly
available [shared runners](../runners/README.md).

Want to hack on it? Simply fork it, commit and push your changes. Within a few
moments the changes will be picked by a public runner and the job will begin.

[hub-mysql]: https://hub.docker.com/r/_/mysql/
[mysql-example-repo]: https://gitlab.com/gitlab-examples/mysql

 # Using PostgreSQL

As many applications depend on PostgreSQL as their database, you will
eventually need it in order for your tests to run. Below you are guided how to
do this with the Docker and Shell executors of GitLab Runner.

Use PostgreSQL with the Docker executor

If you are using [GitLab Runner](../runners/README.md) with the Docker executor
you basically have everything set up already.

First, in your .gitlab-ci.yml add:

```yaml
services:



	postgres:latest








	variables:
	POSTGRES_DB: nice_marmot
POSTGRES_USER: runner
POSTGRES_PASSWORD: “”





```

And then configure your application to use the database, for example:

`yaml
Host: postgres
User: runner
Password:
Database: nice_marmot
`

If you are wondering why we used postgres for the Host, read more at
[How is service linked to the job](../docker/using_docker_images.md#how-is-service-linked-to-the-job).

You can also use any other docker image available on [Docker Hub][hub-pg].
For example, to use PostgreSQL 9.3 the service becomes postgres:9.3.

The postgres image can accept some environment variables. For more details
check the documentation on [Docker Hub][hub-pg].

Use PostgreSQL with the Shell executor

You can also use PostgreSQL on manually configured servers that are using
GitLab Runner with the Shell executor.

First install the PostgreSQL server:

`bash
sudo apt-get install -y postgresql postgresql-client libpq-dev
`

The next step is to create a user, so login to PostgreSQL:

`bash
sudo -u postgres psql -d template1
`

Then create a user (in our case runner) which will be used by your
application. Change $password in the command below to a real strong password.

__Note:__ Do not type `template1=#`, this is part of the PostgreSQL prompt.

`bash
template1=# CREATE USER runner WITH PASSWORD '$password' CREATEDB;
`

__Note:__ Notice that we created the user with the privilege to be able to
create databases (`CREATEDB`). In the following steps we will create a database
explicitly for that user but having that privilege can be useful if in your
testing framework you have tools that drop and create databases.

Create the database and grant all privileges on it for the user runner:

`bash
template1=# CREATE DATABASE nice_marmot OWNER runner;
`

If all went well you can now quit the database session:

`bash
template1=# \q
`

Now, try to connect to the newly created database with the user runner to
check that everything is in place.

`bash
psql -U runner -h localhost -d nice_marmot -W
`

__Note:__ We are explicitly telling `psql` to connect to localhost in order
to use the md5 authentication. If you omit this step you will be denied access.

Finally, configure your application to use the database, for example:

`yaml
Host: localhost
User: runner
Password: $password
Database: nice_marmot
`

Example project

We have set up an [Example PostgreSQL Project][postgres-example-repo] for your
convenience that runs on [GitLab.com](https://gitlab.com) using our publicly
available [shared runners](../runners/README.md).

Want to hack on it? Simply fork it, commit and push your changes. Within a few
moments the changes will be picked by a public runner and the job will begin.

[hub-pg]: https://hub.docker.com/r/_/postgres/
[postgres-example-repo]: https://gitlab.com/gitlab-examples/postgres

 # Using Redis

As many applications depend on Redis as their key-value store, you will
eventually need it in order for your tests to run. Below you are guided how to
do this with the Docker and Shell executors of GitLab Runner.

Use Redis with the Docker executor

If you are using [GitLab Runner](../runners/README.md) with the Docker executor
you basically have everything set up already.

First, in your .gitlab-ci.yml add:

```yaml
services:



	redis:latest







```

Then you need to configure your application to use the Redis database, for
example:

`yaml
Host: redis
`

And that’s it. Redis will now be available to be used within your testing
framework.

You can also use any other docker image available on [Docker Hub][hub-redis].
For example, to use Redis 2.8 the service becomes redis:2.8.

Use Redis with the Shell executor

Redis can also be used on manually configured servers that are using GitLab
Runner with the Shell executor.

In your build machine install the Redis server:

`bash
sudo apt-get install redis-server
`

Verify that you can connect to the server with the gitlab-runner user:

```bash
# Try connecting the the Redis server
sudo -u gitlab-runner -H redis-cli

# Quit the session
127.0.0.1:6379> quit
```

Finally, configure your application to use the database, for example:

`yaml
Host: localhost
`

Example project

We have set up an [Example Redis Project][redis-example-repo] for your convenience
that runs on [GitLab.com](https://gitlab.com) using our publicly available
[shared runners](../runners/README.md).

Want to hack on it? Simply fork it, commit and push your changes. Within a few
moments the changes will be picked by a public runner and the job will begin.

[hub-redis]: https://hub.docker.com/r/_/redis/
[redis-example-repo]: https://gitlab.com/gitlab-examples/redis

 —
last_updated: 2017-12-13
—

Using SSH keys with GitLab CI/CD

GitLab currently doesn’t have built-in support for managing SSH keys in a build
environment (where the GitLab Runner runs).

The SSH keys can be useful when:

1. You want to checkout internal submodules
1. You want to download private packages using your package manager (e.g., Bundler)
1. You want to deploy your application to your own server, or, for example, Heroku
1. You want to execute SSH commands from the build environment to a remote server
1. You want to rsync files from the build environment to a remote server

If anything of the above rings a bell, then you most likely need an SSH key.

The most widely supported method is to inject an SSH key into your build
environment by extending your .gitlab-ci.yml, and it’s a solution which works
with any type of [executor](https://docs.gitlab.com/runner/executors/)
(Docker, shell, etc.).

How it works

1. Create a new SSH key pair locally with [ssh-keygen](http://linux.die.net/man/1/ssh-keygen)
1. Add the private key as a [variable](../variables/README.md) to

your project

	Run the [ssh-agent](http://linux.die.net/man/1/ssh-agent) during job to load
the private key.

	Copy the public key to the servers you want to have access to (usually in
~/.ssh/authorized_keys) or add it as a [deploy key](../../ssh/README.md#deploy-keys)
if you are accessing a private GitLab repository.

NOTE: Note:
The private key will not be displayed in the job trace, unless you enable
[debug tracing](../variables/README.md#debug-tracing). You might also want to
check the [visibility of your pipelines](../../user/project/pipelines/settings.md#visibility-of-pipelines).

SSH keys when using the Docker executor

When your CI/CD jobs run inside Docker containers (meaning the environment is
contained) and you want to deploy your code in a private server, you need a way
to access it. This is where an SSH key pair comes in handy.

	You will first need to create an SSH key pair. For more information, follow
the instructions to [generate an SSH key](../../ssh/README.md#generating-a-new-ssh-key-pair).
Do not add a passphrase to the SSH key, or the before_script willprompt for it.

	Create a new [variable](../variables/README.md#variables).
As Key enter the name SSH_PRIVATE_KEY and in the Value field paste
the content of your _private_ key that you created earlier.

	Modify your .gitlab-ci.yml with a before_script action. In the following
example, a Debian based image is assumed. Edit to your needs:


```yaml
before_script:


##
## Install ssh-agent if not already installed, it is required by Docker.
## (change apt-get to yum if you use an RPM-based image)
##
- ‘which ssh-agent || ( apt-get update -y && apt-get install openssh-client -y )’

##
## Run ssh-agent (inside the build environment)
##
- eval $(ssh-agent -s)

##
## Add the SSH key stored in SSH_PRIVATE_KEY variable to the agent store
## We’re using tr to fix line endings which makes ed25519 keys work
## without extra base64 encoding.
## https://gitlab.com/gitlab-examples/ssh-private-key/issues/1#note_48526556
##
- echo “$SSH_PRIVATE_KEY” | tr -d ‘r’ | ssh-add - > /dev/null

##
## Create the SSH directory and give it the right permissions
##
- mkdir -p ~/.ssh
- chmod 700 ~/.ssh

##
## Optionally, if you will be using any Git commands, set the user name and
## and email.
##
#- git config –global user.email “user@example.com”
#- git config –global user.name “User name”




```

NOTE: Note:
The [before_script](../yaml/README.md#before-script) can be set globally
or per-job.

	Make sure the private server’s [SSH host keys are verified](#verifying-the-ssh-host-keys).

	As a final step, add the _public_ key from the one you created in the first
step to the services that you want to have an access to from within the build
environment. If you are accessing a private GitLab repository you need to add
it as a [deploy key](../../ssh/README.md#deploy-keys).

That’s it! You can now have access to private servers or repositories in your
build environment.

SSH keys when using the Shell executor

If you are using the Shell executor and not Docker, it is easier to set up an
SSH key.

You can generate the SSH key from the machine that GitLab Runner is installed
on, and use that key for all projects that are run on this machine.

	First, you need to login to the server that runs your jobs.

	Then from the terminal login as the gitlab-runner user:

`
sudo su - gitlab-runner
`

	Generate the SSH key pair as described in the instructions to
[generate an SSH key](../../ssh/README.md#generating-a-new-ssh-key-pair).
Do not add a passphrase to the SSH key, or the before_script will
prompt for it.

	As a final step, add the _public_ key from the one you created earlier to the
services that you want to have an access to from within the build environment.
If you are accessing a private GitLab repository you need to add it as a
[deploy key](../../ssh/README.md#deploy-keys).

Once done, try to login to the remote server in order to accept the fingerprint:

`bash
ssh example.com
`

For accessing repositories on GitLab.com, you would use git@gitlab.com.

Verifying the SSH host keys

It is a good practice to check the private server’s own public key to make sure
you are not being targeted by a man-in-the-middle attack. In case anything
suspicious happens, you will notice it since the job would fail (the SSH
connection would fail if the public keys would not match).

To find out the host keys of your server, run the ssh-keyscan command from a
trusted network (ideally, from the private server itself):

```sh
## Use the domain name
ssh-keyscan example.com

## Or use an IP
ssh-keyscan 1.2.3.4
```

Create a new [variable](../variables/README.md#variables) with
SSH_KNOWN_HOSTS as “Key”, and as a “Value” add the output of ssh-keyscan.

NOTE: Note:
If you need to connect to multiple servers, all the server host keys
need to be collected in the Value of the variable, one key per line.

TIP: Tip:
By using a variable instead of ssh-keyscan directly inside
.gitlab-ci.yml, it has the benefit that you don’t have to change .gitlab-ci.yml
if the host domain name changes for some reason. Also, the values are predefined
by you, meaning that if the host keys suddenly change, the CI/CD job will fail,
and you’ll know there’s something wrong with the server or the network.

Now that the SSH_KNOWN_HOSTS variable is created, in addition to the
[content of .gitlab-ci.yml](#ssh-keys-when-using-the-docker-executor)
above, here’s what more you need to add:


```yaml





	before_script:
	##
## Assuming you created the SSH_KNOWN_HOSTS variable, uncomment the
## following two lines.
##
- echo “$SSH_KNOWN_HOSTS” > ~/.ssh/known_hosts
- chmod 644 ~/.ssh/known_hosts

##
## Alternatively, use ssh-keyscan to scan the keys of your private server.
## Replace example.com with your private server’s domain name. Repeat that
## command if you have more than one server to connect to.
##
#- ssh-keyscan example.com >> ~/.ssh/known_hosts
#- chmod 644 ~/.ssh/known_hosts

##
## You can optionally disable host key checking. Be aware that by adding that
## you are susceptible to man-in-the-middle attacks.
## WARNING: Use this only with the Docker executor, if you use it with shell
## you will overwrite your user’s SSH config.
##
#- ‘[[ -f /.dockerenv ]] && echo -e “Host *ntStrictHostKeyChecking nonn” > ~/.ssh/config’





```

Example project

We have set up an [Example SSH Project][ssh-example-repo] for your convenience
that runs on [GitLab.com](https://gitlab.com) using our publicly available
[shared runners](../runners/README.md).

Want to hack on it? Simply fork it, commit and push your changes. Within a few
moments the changes will be picked by a public runner and the job will begin.

[ssh-example-repo]: https://gitlab.com/gitlab-examples/ssh-private-key/

 # Triggering pipelines through the API

> Notes:
- [Introduced][ci-229] in GitLab CE 7.14.
- GitLab 8.12 has a completely redesigned job permissions system. Read all

about the [new model and its implications](../../user/project/new_ci_build_permissions_model.md#job-triggers).

Triggers can be used to force a pipeline rerun of a specific ref (branch or
tag) with an API call.

Authentication tokens

The following methods of authentication are supported.

Trigger token

A unique trigger token can be obtained when [adding a new trigger](#adding-a-new-trigger).

Adding a new trigger

You can add a new trigger by going to your project’s
Settings ➔ CI/CD under Triggers. The Add trigger button will
create a new token which you can then use to trigger a rerun of this
particular project’s pipeline.

Every new trigger you create, gets assigned a different token which you can
then use inside your scripts or .gitlab-ci.yml. You also have a nice
overview of the time the triggers were last used.

![Triggers page overview](img/triggers_page.png)

Taking ownership of a trigger

> Note:
GitLab 9.0 introduced a trigger ownership to solve permission problems.

Each created trigger when run will impersonate their associated user including
their access to projects and their project permissions.

You can take ownership of existing triggers by clicking Take ownership.
From now on the trigger will be run as you.

Revoking a trigger

You can revoke a trigger any time by going at your project’s
Settings ➔ CI/CD under Triggers and hitting the Revoke button.
The action is irreversible.

Triggering a pipeline

> Notes:
- Valid refs are only the branches and tags. If you pass a commit SHA as a ref,

it will not trigger a job.

	If your project is public, passing the token in plain text is probably not the
wisest idea, so you might want to use a
[variable](../variables/README.md#variables) for that purpose.

To trigger a job you need to send a POST request to GitLab’s API endpoint:

`
POST /projects/:id/trigger/pipeline
`

The required parameters are the [trigger’s token](#authentication-tokens)
and the Git ref on which the trigger will be performed. Valid refs are the
branch and the tag. The :id of a project can be found by
[querying the API](../../api/projects.md) or by visiting the CI/CD
settings page which provides self-explanatory examples.

When a rerun of a pipeline is triggered, the information is exposed in GitLab’s
UI under the Jobs page and the jobs are marked as triggered ‘by API’.

![Marked rebuilds as on jobs page](img/builds_page.png)

—

You can see which trigger caused the rebuild by visiting the single job page.
A part of the trigger’s token is exposed in the UI as you can see from the image
below.

![Marked rebuilds as triggered on a single job page](img/trigger_single_build.png)

—

By using cURL you can trigger a pipeline rerun with minimal effort, for example:

```bash
curl –request POST 


–form token=TOKEN –form ref=master https://gitlab.example.com/api/v4/projects/9/trigger/pipeline




```

In this case, the project with ID 9 will get rebuilt on master branch.

Alternatively, you can pass the token and ref arguments in the query string:

```bash
curl –request POST 


“https://gitlab.example.com/api/v4/projects/9/trigger/pipeline?token=TOKEN&ref=master”




```

You can also benefit by using triggers in your .gitlab-ci.yml. Let’s say that
you have two projects, A and B, and you want to trigger a rebuild on the master
branch of project B whenever a tag on project A is created. This is the job you
need to add in project’s A .gitlab-ci.yml:

```yaml
build_docs:


stage: deploy
script:
- “curl –request POST –form token=TOKEN –form ref=master https://gitlab.example.com/api/v4/projects/9/trigger/pipeline”
only:
- tags




```

Now, whenever a new tag is pushed on project A, the job will run and the
build_docs job will be executed, triggering a rebuild of project B. The
stage: deploy ensures that this job will run only after all jobs with
stage: test complete successfully.

Triggering a pipeline from a webhook

> Notes:
- Introduced in GitLab 8.14.
- ref should be passed as part of the URL in order to take precedence over

ref from the webhook body that designates the branch ref that fired the
trigger in the source repository.

	ref should be URL-encoded if it contains slashes.

To trigger a job from a webhook of another project you need to add the following
webhook URL for Push and Tag events (change the project ID, ref and token):

`
https://gitlab.example.com/api/v4/projects/9/ref/master/trigger/pipeline?token=TOKEN
`

Making use of trigger variables

You can pass any number of arbitrary variables in the trigger API call and they
will be available in GitLab CI so that they can be used in your .gitlab-ci.yml
file. The parameter is of the form:

`
variables[key]=value
`

This information is also exposed in the UI.

![Job variables in UI](img/trigger_variables.png)

Using trigger variables can be proven useful for a variety of reasons:

	Identifiable jobs. Since the variable is exposed in the UI you can know
why the rebuild was triggered if you pass a variable that explains the
purpose.

	Conditional job processing. You can have conditional jobs that run whenever
a certain variable is present.

Consider the following .gitlab-ci.yml where we set three
[stages](../yaml/README.md#stages) and the upload_package job is run only
when all jobs from the test and build stages pass. When the UPLOAD_TO_S3
variable is non-zero, make upload is run.

```yaml
stages:
- test
- build
- package


	run_tests:
	script:
- make test



	build_package:
	stage: build
script:
- make build



	upload_package:
	stage: package
script:
- if [ -n “${UPLOAD_TO_S3}” ]; then make upload; fi





```

You can then trigger a rebuild while you pass the UPLOAD_TO_S3 variable
and the script of the upload_package job will run:

```bash
curl –request POST 


–form token=TOKEN –form ref=master –form “variables[UPLOAD_TO_S3]=true” https://gitlab.example.com/api/v4/projects/9/trigger/pipeline




```

Using cron to trigger nightly pipelines

>**Note:**
The following behavior can also be achieved through GitLab’s UI with
[pipeline schedules](../../user/project/pipelines/schedules.md).

Whether you craft a script or just run cURL directly, you can trigger jobs
in conjunction with cron. The example below triggers a job on the master
branch of project with ID 9 every night at 00:30:

`bash
30 0 * * * curl --request POST --form token=TOKEN --form ref=master https://gitlab.example.com/api/v4/projects/9/trigger/pipeline
`

Legacy triggers

Old triggers, created before GitLab 9.0 will be marked as legacy.

Triggers with the legacy label do not have an associated user and only have
access to the current project. They are considered deprecated and will be
removed with one of the future versions of GitLab. You are advised to
[take ownership](#taking-ownership) of any legacy triggers.

[ee-2017]: https://gitlab.com/gitlab-org/gitlab-ee/merge_requests/2017
[ci-229]: https://gitlab.com/gitlab-org/gitlab-ci/merge_requests/229
[ee]: https://about.gitlab.com/pricing/
[variables]: ../variables/README.md
[predef]: ../variables/README.md#predefined-variables-environment-variables
[registry]: ../../user/project/container_registry.md

 # GitLab CI/CD Variables

When receiving a job from GitLab CI, the [Runner] prepares the build environment.
It starts by setting a list of predefined variables (environment variables)
and a list of user-defined variables.

Priority of variables

The variables can be overwritten and they take precedence over each other in
this order:

1. [Trigger variables][triggers] or [scheduled pipeline variables](../../user/project/pipelines/schedules.md#making-use-of-scheduled-pipeline-variables) (take precedence over all)
1. Project-level [variables](#variables) or [protected variables](#protected-variables)
1. Group-level [variables](#variables) or [protected variables](#protected-variables)
1. YAML-defined [job-level variables](../yaml/README.md#variables)
1. YAML-defined [global variables](../yaml/README.md#variables)
1. [Deployment variables](#deployment-variables)
1. [Predefined variables](#predefined-variables-environment-variables) (are the

lowest in the chain)

For example, if you define API_TOKEN=secure as a project variable and
API_TOKEN=yaml in your .gitlab-ci.yml, the API_TOKEN will take the value
secure as the project variables are higher in the chain.

Unsupported variables

There are cases where some variables cannot be used in the context of a
.gitlab-ci.yml definition (for example under script). Read more
about which variables are [not supported](where_variables_can_be_used.md).

Predefined variables (Environment variables)

Some of the predefined environment variables are available only if a minimum
version of [GitLab Runner][runner] is used. Consult the table below to find the
version of Runner required.

>**Note:**
Starting with GitLab 9.0, we have deprecated some variables. Read the
[9.0 Renaming](#9-0-renaming) section to find out their replacements. You are
strongly advised to use the new variables as we will remove the old ones in
future GitLab releases.

Variable | GitLab | Runner | Description |

--------------------------------	--------	——–	-------------
ARTIFACT_DOWNLOAD_ATTEMPTS	8.15	1.9	Number of attempts to download artifacts running a job
CI	all	0.4	Mark that job is executed in CI environment
CI_COMMIT_REF_NAME	9.0	all	The branch or tag name for which project is built
CI_COMMIT_REF_SLUG	9.0	all	$CI_COMMIT_REF_NAME lowercased, shortened to 63 bytes, and with everything except 0-9 and a-z replaced with -. No leading / trailing -. Use in URLs, host names and domain names.
CI_COMMIT_SHA	9.0	all	The commit revision for which project is built
CI_COMMIT_BEFORE_SHA	11.2	all	The previous latest commit present on a branch before a push request.
CI_COMMIT_TAG	9.0	0.5	The commit tag name. Present only when building tags.
CI_COMMIT_MESSAGE	10.8	all	The full commit message.
CI_COMMIT_TITLE	10.8	all	The title of the commit - the full first line of the message
CI_COMMIT_DESCRIPTION	10.8	all	The description of the commit: the message without first line, if the title is shorter than 100 characters; full message in other case.
CI_CONFIG_PATH	9.4	0.5	The path to CI config file. Defaults to .gitlab-ci.yml
CI_DEBUG_TRACE	all	1.7	Whether [debug tracing](#debug-tracing) is enabled
CI_DEPLOY_USER	10.8	all	Authentication username of the [GitLab Deploy Token][gitlab-deploy-token], only present if the Project has one related.
CI_DEPLOY_PASSWORD	10.8	all	Authentication password of the [GitLab Deploy Token][gitlab-deploy-token], only present if the Project has one related.
CI_DISPOSABLE_ENVIRONMENT	all	10.1	Marks that the job is executed in a disposable environment (something that is created only for this job and disposed of/destroyed after the execution - all executors except shell and ssh). If the environment is disposable, it is set to true, otherwise it is not defined at all.
CI_ENVIRONMENT_NAME	8.15	all	The name of the environment for this job
CI_ENVIRONMENT_SLUG	8.15	all	A simplified version of the environment name, suitable for inclusion in DNS, URLs, Kubernetes labels, etc.
CI_ENVIRONMENT_URL	9.3	all	The URL of the environment for this job
CI_JOB_ID	9.0	all	The unique id of the current job that GitLab CI uses internally
CI_JOB_MANUAL	8.12	all	The flag to indicate that job was manually started
CI_JOB_NAME	9.0	0.5	The name of the job as defined in .gitlab-ci.yml
CI_JOB_STAGE	9.0	0.5	The name of the stage as defined in .gitlab-ci.yml
CI_JOB_TOKEN	9.0	1.2	Token used for authenticating with the [GitLab Container Registry][registry] and downloading [dependent repositories][dependent-repositories]
CI_JOB_URL	11.1	0.5	Job details URL
CI_REPOSITORY_URL	9.0	all	The URL to clone the Git repository
CI_RUNNER_DESCRIPTION	8.10	0.5	The description of the runner as saved in GitLab
CI_RUNNER_ID	8.10	0.5	The unique id of runner being used
CI_RUNNER_TAGS	8.10	0.5	The defined runner tags
CI_RUNNER_VERSION	all	10.6	GitLab Runner version that is executing the current job
CI_RUNNER_REVISION	all	10.6	GitLab Runner revision that is executing the current job
CI_RUNNER_EXECUTABLE_ARCH	all	10.6	The OS/architecture of the GitLab Runner executable (note that this is not necessarily the same as the environment of the executor)
CI_PIPELINE_ID	8.10	0.5	The unique id of the current pipeline that GitLab CI uses internally
CI_PIPELINE_IID	11.0	all	The unique id of the current pipeline scoped to project
CI_PIPELINE_TRIGGERED	all	all	The flag to indicate that job was [triggered]
CI_PIPELINE_SOURCE	10.0	all	Indicates how the pipeline was triggered. Possible options are: push, web, trigger, schedule, api, and pipeline. For pipelines created before GitLab 9.5, this will show as unknown
CI_PROJECT_DIR	all	all	The full path where the repository is cloned and where the job is run
CI_PROJECT_ID	all	all	The unique id of the current project that GitLab CI uses internally
CI_PROJECT_NAME	8.10	0.5	The project name that is currently being built (actually it is project folder name)
CI_PROJECT_NAMESPACE	8.10	0.5	The project namespace (username or groupname) that is currently being built
CI_PROJECT_PATH	8.10	0.5	The namespace with project name
CI_PROJECT_PATH_SLUG	9.3	all	$CI_PROJECT_PATH lowercased and with everything except 0-9 and a-z replaced with -. Use in URLs and domain names.
CI_PIPELINE_URL	11.1	0.5	Pipeline details URL
CI_PROJECT_URL	8.10	0.5	The HTTP address to access project
CI_PROJECT_VISIBILITY	10.3	all	The project visibility (internal, private, public)
CI_REGISTRY	8.10	0.5	If the Container Registry is enabled it returns the address of GitLab’s Container Registry
CI_REGISTRY_IMAGE	8.10	0.5	If the Container Registry is enabled for the project it returns the address of the registry tied to the specific project
CI_REGISTRY_PASSWORD	9.0	all	The password to use to push containers to the GitLab Container Registry
CI_REGISTRY_USER	9.0	all	The username to use to push containers to the GitLab Container Registry
CI_SERVER	all	all	Mark that job is executed in CI environment
CI_SERVER_NAME	all	all	The name of CI server that is used to coordinate jobs
CI_SERVER_REVISION	all	all	GitLab revision that is used to schedule jobs
CI_SERVER_VERSION	all	all	GitLab version that is used to schedule jobs
CI_SHARED_ENVIRONMENT	all	10.1	Marks that the job is executed in a shared environment (something that is persisted across CI invocations like shell or ssh executor). If the environment is shared, it is set to true, otherwise it is not defined at all.
GET_SOURCES_ATTEMPTS	8.15	1.9	Number of attempts to fetch sources running a job
GITLAB_CI	all	all	Mark that job is executed in GitLab CI environment
GITLAB_USER_EMAIL	8.12	all	The email of the user who started the job
GITLAB_USER_ID	8.12	all	The id of the user who started the job
GITLAB_USER_LOGIN	10.0	all	The login username of the user who started the job
GITLAB_USER_NAME	10.0	all	The real name of the user who started the job
RESTORE_CACHE_ATTEMPTS	8.15	1.9	Number of attempts to restore the cache running a job

9.0 Renaming

To follow conventions of naming across GitLab, and to further move away from the
build term and toward job CI variables have been renamed for the 9.0
release.

>**Note:**
Starting with GitLab 9.0, we have deprecated the $CI_BUILD_* variables. You are
strongly advised to use the new variables as we will remove the old ones in
future GitLab releases.

8.x name | 9.0+ name |

——————— |———————— |

CI_BUILD_ID | CI_JOB_ID |

CI_BUILD_REF | CI_COMMIT_SHA |

CI_BUILD_TAG | CI_COMMIT_TAG |

CI_BUILD_BEFORE_SHA | CI_COMMIT_BEFORE_SHA |

CI_BUILD_REF_NAME | CI_COMMIT_REF_NAME |

CI_BUILD_REF_SLUG | CI_COMMIT_REF_SLUG |

CI_BUILD_NAME | CI_JOB_NAME |

CI_BUILD_STAGE | CI_JOB_STAGE |

CI_BUILD_REPO | CI_REPOSITORY_URL |

CI_BUILD_TRIGGERED | CI_PIPELINE_TRIGGERED |

CI_BUILD_MANUAL | CI_JOB_MANUAL |

CI_BUILD_TOKEN | CI_JOB_TOKEN |

.gitlab-ci.yml defined variables

>**Note:**
This feature requires GitLab Runner 0.5.0 or higher and GitLab CI 7.14 or higher.

GitLab CI allows you to add to .gitlab-ci.yml variables that are set in the
build environment. The variables are hence saved in the repository, and they
are meant to store non-sensitive project configuration, e.g., RAILS_ENV or
DATABASE_URL.

For example, if you set the variable below globally (not inside a job), it will
be used in all executed commands and scripts:

```yaml
variables:


DATABASE_URL: “postgres://postgres@postgres/my_database”




```

The YAML-defined variables are also set to all created
[service containers](../docker/using_docker_images.md), thus allowing to fine
tune them.

Variables can be defined at a global level, but also at a job level. To turn off
global defined variables in your job, define an empty hash:

```yaml
job_name:


variables: {}




```

You are able to use other variables inside your variable definition (or escape them with $$):

```yaml
variables:


LS_CMD: ‘ls $FLAGS $$TMP_DIR’
FLAGS: ‘-al’





	script:
	
	‘eval $LS_CMD’  # will execute ‘ls -al $TMP_DIR’








```

Variables

NOTE: Note:
Group-level variables were added in GitLab 9.4.

CAUTION: Important:
Be aware that variables are not masked, and their values can be shown
in the job logs if explicitly asked to do so. If your project is public or
internal, you can set the pipelines private from your [project’s Pipelines
settings](../../user/project/pipelines/settings.md#visibility-of-pipelines).
Follow the discussion in issue [#13784][ce-13784] for masking the variables.

GitLab CI allows you to define per-project or per-group variables
that are set in the pipeline environment. The variables are stored out of
the repository (not in .gitlab-ci.yml) and are securely passed to GitLab Runner
making them available during a pipeline run. It’s the recommended method to
use for storing things like passwords, SSH keys and credentials.

Project-level variables can be added by going to your project’s
Settings > CI/CD, then finding the section called Variables.

Likewise, group-level variables can be added by going to your group’s
Settings > CI/CD, then finding the section called Variables.
Any variables of [subgroups] will be inherited recursively.

![Variables](img/secret_variables.png)

Once you set them, they will be available for all subsequent pipelines. You can also
[protect your variables](#protected-variables).

Protected variables

>**Notes:**
This feature requires GitLab 9.3 or higher.

Variables could be protected. Whenever a variable is
protected, it would only be securely passed to pipelines running on the
[protected branches] or [protected tags]. The other pipelines would not get any
protected variables.

Protected variables can be added by going to your project’s
Settings > CI/CD, then finding the section called
Variables, and check “Protected”.

Once you set them, they will be available for all subsequent pipelines.

Deployment variables

>**Note:**
This feature requires GitLab CI 8.15 or higher.

[Project services](../../user/project/integrations/project_services.md) that are
responsible for deployment configuration may define their own variables that
are set in the build environment. These variables are only defined for
[deployment jobs](../environments.md). Please consult the documentation of
the project services that you are using to learn which variables they define.

An example project service that defines deployment variables is the
[Kubernetes integration](../../user/project/clusters/index.md#deployment-variables).

Debug tracing

> Introduced in GitLab Runner 1.7.

CAUTION: Warning:
Enabling debug tracing can have severe security implications. The
output will contain the content of all your variables and any other
secrets! The output will be uploaded to the GitLab server and made visible
in job traces!

By default, GitLab Runner hides most of the details of what it is doing when
processing a job. This behavior keeps job traces short, and prevents secrets
from being leaked into the trace unless your script writes them to the screen.

If a job isn’t working as expected, this can make the problem difficult to
investigate; in these cases, you can enable debug tracing in .gitlab-ci.yml.
Available on GitLab Runner v1.7+, this feature enables the shell’s execution
trace, resulting in a verbose job trace listing all commands that were run,
variables that were set, etc.

Before enabling this, you should ensure jobs are visible to
[team members only](../../user/permissions.md#project-features). You should
also [erase](../pipelines.md#seeing-build-status) all generated job traces
before making them visible again.

To enable debug traces, set the CI_DEBUG_TRACE variable to true:

```yaml
job_name:



	variables:
	CI_DEBUG_TRACE: “true”








```

Example truncated output with debug trace set to true:

```bash
…

export CI_SERVER_TLS_CA_FILE=”/builds/gitlab-examples/ci-debug-trace.tmp/CI_SERVER_TLS_CA_FILE”
if [[ -d “/builds/gitlab-examples/ci-debug-trace/.git” ]]; then


echo $’'’x1b[32;1mFetching changes…x1b[0;m’'’
$’'’cd’'’ “/builds/gitlab-examples/ci-debug-trace”
$’'’git’'’ “config” “fetch.recurseSubmodules” “false”
$’'’rm’'’ “-f” “.git/index.lock”
$’'’git’'’ “clean” “-ffdx”
$’'’git’'’ “reset” “–hard”
$’'’git’'’ “remote” “set-url” “origin” “https://gitlab-ci-token:xxxxxxxxxxxxxxxxxxxx@example.com/gitlab-examples/ci-debug-trace.git”
$’'’git’'’ “fetch” “origin” “–prune” “+refs/heads/:refs/remotes/origin/” “+refs/tags/:refs/tags/”





	else
	$’'’mkdir’'’ “-p” “/builds/gitlab-examples/ci-debug-trace.tmp/git-template”
$’'’rm’'’ “-r” “-f” “/builds/gitlab-examples/ci-debug-trace”
$’'’git’'’ “config” “-f” “/builds/gitlab-examples/ci-debug-trace.tmp/git-template/config” “fetch.recurseSubmodules” “false”
echo $’'’x1b[32;1mCloning repository…x1b[0;m’'’
$’'’git’'’ “clone” “–no-checkout” “https://gitlab-ci-token:xxxxxxxxxxxxxxxxxxxx@example.com/gitlab-examples/ci-debug-trace.git” “/builds/gitlab-examples/ci-debug-trace” “–template” “/builds/gitlab-examples/ci-debug-trace.tmp/git-template”
$’'’cd’'’ “/builds/gitlab-examples/ci-debug-trace”





fi
echo $’'’x1b[32;1mChecking out dd648b2e as master…x1b[0;m’'’
$’'’git’'’ “checkout” “-f” “-q” “dd648b2e48ce6518303b0bb580b2ee32fadaf045”
‘
+++ hostname
++ echo ‘Running on runner-8a2f473d-project-1796893-concurrent-0 via runner-8a2f473d-machine-1480971377-317a7d0f-digital-ocean-4gb…’
Running on runner-8a2f473d-project-1796893-concurrent-0 via runner-8a2f473d-machine-1480971377-317a7d0f-digital-ocean-4gb…
++ export CI=true
++ CI=true
++ export CI_DEBUG_TRACE=false
++ CI_DEBUG_TRACE=false
++ export CI_COMMIT_SHA=dd648b2e48ce6518303b0bb580b2ee32fadaf045
++ CI_COMMIT_SHA=dd648b2e48ce6518303b0bb580b2ee32fadaf045
++ export CI_COMMIT_BEFORE_SHA=dd648b2e48ce6518303b0bb580b2ee32fadaf045
++ CI_COMMIT_BEFORE_SHA=dd648b2e48ce6518303b0bb580b2ee32fadaf045
++ export CI_COMMIT_REF_NAME=master
++ CI_COMMIT_REF_NAME=master
++ export CI_JOB_ID=7046507
++ CI_JOB_ID=7046507
++ export CI_REPOSITORY_URL=https://gitlab-ci-token:xxxxxxxxxxxxxxxxxxxx@example.com/gitlab-examples/ci-debug-trace.git
++ CI_REPOSITORY_URL=https://gitlab-ci-token:xxxxxxxxxxxxxxxxxxxx@example.com/gitlab-examples/ci-debug-trace.git
++ export CI_JOB_TOKEN=xxxxxxxxxxxxxxxxxxxx
++ CI_JOB_TOKEN=xxxxxxxxxxxxxxxxxxxx
++ export CI_PROJECT_ID=1796893
++ CI_PROJECT_ID=1796893
++ export CI_PROJECT_DIR=/builds/gitlab-examples/ci-debug-trace
++ CI_PROJECT_DIR=/builds/gitlab-examples/ci-debug-trace
++ export CI_SERVER=yes
++ CI_SERVER=yes
++ export ‘CI_SERVER_NAME=GitLab CI’
++ CI_SERVER_NAME=’GitLab CI’
++ export CI_SERVER_VERSION=
++ CI_SERVER_VERSION=
++ export CI_SERVER_REVISION=
++ CI_SERVER_REVISION=
++ export GITLAB_CI=true
++ GITLAB_CI=true
++ export CI=true
++ CI=true
++ export GITLAB_CI=true
++ GITLAB_CI=true
++ export CI_JOB_ID=7046507
++ CI_JOB_ID=7046507
++ export CI_JOB_TOKEN=xxxxxxxxxxxxxxxxxxxx
++ CI_JOB_TOKEN=xxxxxxxxxxxxxxxxxxxx
++ export CI_COMMIT_REF=dd648b2e48ce6518303b0bb580b2ee32fadaf045
++ CI_COMMIT_REF=dd648b2e48ce6518303b0bb580b2ee32fadaf045
++ export CI_COMMIT_BEFORE_SHA=dd648b2e48ce6518303b0bb580b2ee32fadaf045
++ CI_COMMIT_BEFORE_SHA=dd648b2e48ce6518303b0bb580b2ee32fadaf045
++ export CI_COMMIT_REF_NAME=master
++ CI_COMMIT_REF_NAME=master
++ export CI_COMMIT_NAME=debug_trace
++ CI_JOB_NAME=debug_trace
++ export CI_JOB_STAGE=test
++ CI_JOB_STAGE=test
++ export CI_SERVER_NAME=GitLab
++ CI_SERVER_NAME=GitLab
++ export CI_SERVER_VERSION=8.14.3-ee
++ CI_SERVER_VERSION=8.14.3-ee
++ export CI_SERVER_REVISION=82823
++ CI_SERVER_REVISION=82823
++ export CI_PROJECT_ID=17893
++ CI_PROJECT_ID=17893
++ export CI_PROJECT_NAME=ci-debug-trace
++ CI_PROJECT_NAME=ci-debug-trace
++ export CI_PROJECT_PATH=gitlab-examples/ci-debug-trace
++ CI_PROJECT_PATH=gitlab-examples/ci-debug-trace
++ export CI_PROJECT_NAMESPACE=gitlab-examples
++ CI_PROJECT_NAMESPACE=gitlab-examples
++ export CI_PROJECT_URL=https://example.com/gitlab-examples/ci-debug-trace
++ CI_PROJECT_URL=https://example.com/gitlab-examples/ci-debug-trace
++ export CI_PIPELINE_ID=52666
++ CI_PIPELINE_ID=52666
++ export CI_PIPELINE_IID=123
++ CI_PIPELINE_IID=123
++ export CI_RUNNER_ID=1337
++ CI_RUNNER_ID=1337
++ export CI_RUNNER_DESCRIPTION=shared-runners-manager-1.example.com
++ CI_RUNNER_DESCRIPTION=shared-runners-manager-1.example.com
++ export ‘CI_RUNNER_TAGS=shared, docker, linux, ruby, mysql, postgres, mongo’
++ CI_RUNNER_TAGS=’shared, docker, linux, ruby, mysql, postgres, mongo’
++ export CI_REGISTRY=registry.example.com
++ CI_REGISTRY=registry.example.com
++ export CI_DEBUG_TRACE=true
++ CI_DEBUG_TRACE=true
++ export GITLAB_USER_ID=42
++ GITLAB_USER_ID=42
++ export GITLAB_USER_EMAIL=user@example.com
++ GITLAB_USER_EMAIL=user@example.com
++ export VERY_SECURE_VARIABLE=imaverysecurevariable
++ VERY_SECURE_VARIABLE=imaverysecurevariable
++ mkdir -p /builds/gitlab-examples/ci-debug-trace.tmp
++ echo -n ‘—–BEGIN CERTIFICATE—–
MIIFQzCCBCugAwIBAgIRAL/ElDjuf15xwja1ZnCocWAwDQYJKoZIhvcNAQELBQAw’


…

## Using the CI variables in your job scripts

All variables are set as environment variables in the build environment, and
they are accessible with normal methods that are used to access such variables.
In most cases bash or sh is used to execute the job script.

To access environment variables, use the syntax for your Runner’s [shell][shellexecutors].


Shell                | Usage           |



|----------------------|—————–|
| bash/sh              | $variable     |
| windows batch        | %variable%    |
| PowerShell           | $env:variable |

To access environment variables in bash, prefix the variable name with ($):

```yaml
job_name:

	script:
	
	echo $CI_JOB_ID


```

To access environment variables in Windows Batch, surround the variable
with (%):

```yaml
job_name:

	script:
	
	echo %CI_JOB_ID%


```

To access environment variables in a Windows PowerShell environment, prefix
the variable name with ($env:):

```yaml
job_name:

	script:
	
	echo $env:CI_JOB_ID


```

You can also list all environment variables with the export command,
but be aware that this will also expose the values of all the variables
you set, in the job log:

```yaml
job_name:

	script:
	
	export


```

Example values:

`bash
export CI_JOB_ID="50"
export CI_COMMIT_SHA="1ecfd275763eff1d6b4844ea3168962458c9f27a"
export CI_COMMIT_REF_NAME="master"
export CI_REPOSITORY_URL="https://gitlab-ci-token:abcde-1234ABCD5678ef@example.com/gitlab-org/gitlab-ce.git"
export CI_COMMIT_TAG="1.0.0"
export CI_JOB_NAME="spec:other"
export CI_JOB_STAGE="test"
export CI_JOB_MANUAL="true"
export CI_JOB_TRIGGERED="true"
export CI_JOB_TOKEN="abcde-1234ABCD5678ef"
export CI_PIPELINE_ID="1000"
export CI_PIPELINE_IID="10"
export CI_PROJECT_ID="34"
export CI_PROJECT_DIR="/builds/gitlab-org/gitlab-ce"
export CI_PROJECT_NAME="gitlab-ce"
export CI_PROJECT_NAMESPACE="gitlab-org"
export CI_PROJECT_PATH="gitlab-org/gitlab-ce"
export CI_PROJECT_URL="https://example.com/gitlab-org/gitlab-ce"
export CI_REGISTRY="registry.example.com"
export CI_REGISTRY_IMAGE="registry.example.com/gitlab-org/gitlab-ce"
export CI_RUNNER_ID="10"
export CI_RUNNER_DESCRIPTION="my runner"
export CI_RUNNER_TAGS="docker, linux"
export CI_SERVER="yes"
export CI_SERVER_NAME="GitLab"
export CI_SERVER_REVISION="70606bf"
export CI_SERVER_VERSION="8.9.0"
export GITLAB_USER_ID="42"
export GITLAB_USER_EMAIL="user@example.com"
export CI_REGISTRY_USER="gitlab-ci-token"
export CI_REGISTRY_PASSWORD="longalfanumstring"
`

## Variables expressions

> Variables expressions were added in GitLab 10.7.

It is possible to use variables expressions with only / except policies in
.gitlab-ci.yml. By using this approach you can limit what jobs are going to
be created within a pipeline after pushing a code to GitLab.

This is particularly useful in combination with variables and triggered
pipeline variables.

```yaml
deploy:

script: cap staging deploy
environment: staging
only:

	variables:
	
	$RELEASE == “staging”

	$STAGING


```

Each expression provided is going to be evaluated before creating a pipeline.

If any of the conditions in variables evaluates to truth when using only,
a new job is going to be created. If any of the expressions evaluates to truth
when except is being used, a job is not going to be created.

This follows usual rules for [only / except policies][builds-policies].

### Supported syntax

Below you can find supported syntax reference:


	Equality matching using a string


> Example: $VARIABLE == “some value”

You can use equality operator == to compare a variable content to a
string. We support both, double quotes and single quotes to define a string
value, so both $VARIABLE == “some value” and $VARIABLE == ‘some value’
are supported. “some value” == $VARIABLE is correct too.









	Checking for an undefined value


> Example: $VARIABLE == null

It sometimes happens that you want to check whether a variable is defined
or not. To do that, you can compare a variable to null keyword, like
$VARIABLE == null. This expression is going to evaluate to truth if
variable is not defined.









	Checking for an empty variable


> Example: $VARIABLE == “”

If you want to check whether a variable is defined, but is empty, you can
simply compare it against an empty string, like $VAR == ‘’.









	Comparing two variables


> Example: $VARIABLE_1 == $VARIABLE_2

It is possible to compare two variables. This is going to compare values
of these variables.









	Variable presence check


> Example: $STAGING

If you only want to create a job when there is some variable present,
which means that it is defined and non-empty, you can simply use
variable name as an expression, like $STAGING. If $STAGING variable
is defined, and is non empty, expression will evaluate to truth.
$STAGING value needs to a string, with length higher than zero.
Variable that contains only whitespace characters is not an empty variable.









	Pattern matching  _(added in 11.0)_


> Example: $VARIABLE =~ /^content.*/

It is possible perform pattern matching against a variable and regular
expression. Expression like this evaluates to truth if matches are found.

Pattern matching is case-sensitive by default. Use i flag modifier, like
/pattern/i to make a pattern case-insensitive.








[ce-13784]: https://gitlab.com/gitlab-org/gitlab-ce/issues/13784 “Simple protection of CI variables”
[eep]: https://about.gitlab.com/pricing/ “Available only in GitLab Premium”
[envs]: ../environments.md
[protected branches]: ../../user/project/protected_branches.md
[protected tags]: ../../user/project/protected_tags.md
[runner]: https://docs.gitlab.com/runner/
[shellexecutors]: https://docs.gitlab.com/runner/executors/
[triggered]: ../triggers/README.md
[triggers]: ../triggers/README.md#pass-job-variables-to-a-trigger
[subgroups]: ../../user/group/subgroups/index.md
[builds-policies]: ../yaml/README.md#only-and-except-complex
[gitlab-deploy-token]: ../../user/project/deploy_tokens/index.md#gitlab-deploy-token
[registry]: ../../user/project/container_registry.md
[dependent-repositories]: ../../user/project/new_ci_build_permissions_model.md#dependent-repositories





            

          

      

      

    

  

    
      
          
            
  # Where variables can be used

As it’s described in the [CI/CD variables](README.md) docs, you can
define many different variables. Some of them can be used for all GitLab CI/CD
features, but some of them are more or less limited.

This document describes where and how the different types of variables can be used.

## Variables usage

There are basically two places where you can use any defined variables:

1. On GitLab’s side there’s .gitlab-ci.yml
1. On the Runner’s side there’s config.toml

### .gitlab-ci.yml file


Definition                           | Can be expanded?  | Expansion place | Description  |



--------------------------------------	——————-	-----------------	————–
environment:url	yes	GitLab	The variable expansion is made by GitLab’s [internal variable expansion mechanism](#gitlab-internal-variable-expansion-mechanism).<ul><li>**Supported:** all variables defined for a job (project/group variables, variables from .gitlab-ci.yml, variables from triggers, variables from pipeline schedules)</li><li>**Not suported:** variables defined in Runner’s config.toml and variables created in job’s script`</li></ul>
`environment:name	yes	GitLab	Similar to environment:url, but the variables expansion doesn’t support: <ul><li>variables that are based on the environment’s name (CI_ENVIRONMENT_NAME, CI_ENVIRONMENT_SLUG)</li><li>any other variables related to environment (currently only CI_ENVIRONMENT_URL)</li><li>[persisted variables](#persisted-variables)</li></ul>
variables	yes	Runner	The variable expansion is made by GitLab Runner’s [internal variable expansion mechanism](#gitlab-runner-internal-variable-expansion-mechanism)
image	yes	Runner	The variable expansion is made by GitLab Runner’s [internal variable expansion mechanism](#gitlab-runner-internal-variable-expansion-mechanism)
services:[]	yes	Runner	The variable expansion is made by GitLab Runner’s [internal variable expansion mechanism](#gitlab-runner-internal-variable-expansion-mechanism)
services:[]:name	yes	Runner	The variable expansion is made by GitLab Runner’s [internal variable expansion mechanism](#gitlab-runner-internal-variable-expansion-mechanism)
cache:key	yes	Runner	The variable expansion is made by GitLab Runner’s [internal variable expansion mechanism](#gitlab-runner-internal-variable-expansion-mechanism)
artifacts:name	yes	Runner	The variable expansion is made by GitLab Runner’s shell environment
script, before_script, after_script	yes	Script execution shell	The variable expansion is made by the [execution shell environment](#execution-shell-environment)
only:variables:[], except:variables:[]	no	n/a	The variable must be in the form of $variable. **Not supported:**<ul><li>variables that are based on the environment’s name (CI_ENVIRONMENT_NAME, CI_ENVIRONMENT_SLUG)</li><li>any other variables related to environment (currently only CI_ENVIRONMENT_URL)</li><li>[persisted variables](#persisted-variables)</li></ul>

### config.toml file

NOTE: Note:
You can read more about config.toml in the [Runner’s docs](https://docs.gitlab.com/runner/configuration/advanced-configuration.html).


Definition                           | Can be expanded? | Description |



--------------------------------------	——————	-------------
runners.environment	yes	The variable expansion is made by the Runner’s [internal variable expansion mechanism](#gitlab-runner-internal-variable-expansion-mechanism)
runners.kubernetes.pod_labels	yes	The Variable expansion is made by the Runner’s [internal variable expansion mechanism](#gitlab-runner-internal-variable-expansion-mechanism)
runners.kubernetes.pod_annotations	yes	The Variable expansion is made by the Runner’s [internal variable expansion mechanism](#gitlab-runner-internal-variable-expansion-mechanism)

## Expansion mechanisms

There are three expansion mechanisms:


	GitLab


	GitLab Runner


	Execution shell environment




### GitLab internal variable expansion mechanism

The expanded part needs to be in a form of $variable, or ${variable} or %variable%.
Each form is handled in the same way, no matter which OS/shell will finally handle the job,
since the expansion is done in GitLab before any Runner will get the job.

### GitLab Runner internal variable expansion mechanism


	Supported: project/group variables, .gitlab-ci.yml variables, config.toml variables, and
variables from triggers and pipeline schedules


	Not supported: variables defined inside of scripts (e.g., export MY_VARIABLE=”test”)




The Runner uses Go’s os.Expand() method for variable expansion. It means that it will handle
only variables defined as $variable and ${variable}. What’s also important, is that
the expansion is done only once, so nested variables may or may not work, depending on the
ordering of variables definitions.

### Execution shell environment

This is an expansion that takes place during the script execution.
How it works depends on the used shell (bash/sh/cmd/PowerShell). For example, if the job’s
script contains a line echo $MY_VARIABLE-${MY_VARIABLE_2}, it should be properly handled
by bash/sh (leaving empty strings or some values depending whether the variables were
defined or not), but will not work with Windows’ cmd/PowerShell, since these shells
are using a different variables syntax.

Supported:


	The script may use all available variables that are default for the shell (e.g., $PATH which
should be present in all bash/sh shells) and all variables defined by GitLab CI/CD (project/group variables,
.gitlab-ci.yml variables, config.toml variables, and variables from triggers and pipeline schedules).


	The script may also use all variables defined in the lines before. So, for example, if you define
a variable export MY_VARIABLE=”test”:


	in before_script, it will work in the following lines of before_script and
all lines of the related script


	in script, it will work in the following lines of script


	in after_script, it will work in following lines of after_script








## Persisted variables

NOTE: Note:
Some of the persisted variables contain tokens and cannot be used by some definitions
due to security reasons.

The following variables are known as “persisted”:


	CI_PIPELINE_ID


	CI_JOB_ID


	CI_JOB_TOKEN


	CI_BUILD_ID


	CI_BUILD_TOKEN


	CI_REGISTRY_USER


	CI_REGISTRY_PASSWORD


	CI_REPOSITORY_URL


	CI_DEPLOY_USER


	CI_DEPLOY_PASSWORD




They are:


	supported for all definitions as [described in the table](#gitlab-ci-yml-file) where the “Expansion place” is “Runner”


	not supported:
- by the definitions [described in the table](#gitlab-ci-yml-file) where the “Expansion place” is “GitLab”
- in the only and except [variables expressions](README.md#variables-expressions)






            

          

      

      

    

  

    
      
          
            
  # Configuration of your jobs with .gitlab-ci.yml

This document describes the usage of .gitlab-ci.yml, the file that is used by
GitLab Runner to manage your project’s jobs.

From version 7.12, GitLab CI uses a [YAML](https://en.wikipedia.org/wiki/YAML)
file (.gitlab-ci.yml) for the project configuration. It is placed in the root
of your repository and contains definitions of how your project should be built.

If you want a quick introduction to GitLab CI, follow our
[quick start guide](../quick_start/README.md).

NOTE: Note:
If you have a [mirrored repository where GitLab pulls from](https://docs.gitlab.com/ee/workflow/repository_mirroring.html#pulling-from-a-remote-repository),
you may need to enable pipeline triggering in your project’s
Settings > Repository > Pull from a remote repository > Trigger pipelines for mirror updates.

## Jobs

The YAML file defines a set of jobs with constraints stating when they should
be run. You can specify an unlimited number of jobs which are defined as
top-level elements with an arbitrary name and always have to contain at least
the script clause.

```yaml
job1:

script: “execute-script-for-job1”

	job2:
	script: “execute-script-for-job2”


```

The above example is the simplest possible CI/CD configuration with two separate
jobs, where each of the jobs executes a different command.
Of course a command can execute code directly (./configure;make;make install)
or run a script (test.sh) in the repository.

Jobs are picked up by [Runners](../runners/README.md) and executed within the
environment of the Runner. What is important, is that each job is run
independently from each other.

Each job must have a unique name, but there are a few reserved `keywords` that
cannot be used as job names:


	image


	services


	stages


	types


	before_script


	after_script


	variables


	cache




A job is defined by a list of parameters that define the job behavior.


Keyword       | Required | Description |



---------------	———-	-------------
script	yes	Defines a shell script which is executed by Runner
image	no	Use docker image, covered in [Using Docker Images](../docker/using_docker_images.md#define-image-and-services-from-gitlab-ciyml)
services	no	Use docker services, covered in [Using Docker Images](../docker/using_docker_images.md#define-image-and-services-from-gitlab-ciyml)
stage	no	Defines a job stage (default: test)
type	no	Alias for stage
variables	no	Define job variables on a job level
only	no	Defines a list of git refs for which job is created
except	no	Defines a list of git refs for which job is not created
tags	no	Defines a list of tags which are used to select Runner
allow_failure	no	Allow job to fail. Failed job doesn’t contribute to commit status
when	no	Define when to run job. Can be on_success, on_failure, always or manual
dependencies	no	Define other jobs that a job depends on so that you can pass artifacts between them
artifacts	no	Define list of [job artifacts](#artifacts)
cache	no	Define list of files that should be cached between subsequent runs
before_script	no	Override a set of commands that are executed before job
after_script	no	Override a set of commands that are executed after job
environment	no	Defines a name of environment to which deployment is done by this job
coverage	no	Define code coverage settings for a given job
retry	no	Define how many times a job can be auto-retried in case of a failure

### pages

pages is a special job that is used to upload static content to GitLab that
can be used to serve your website. It has a special syntax, so the two
requirements below must be met:

1. Any static content must be placed under a public/ directory
1. artifacts with a path to the public/ directory must be defined

The example below simply moves all files from the root of the project to the
public/ directory. The .public workaround is so cp doesn’t also copy
public/ to itself in an infinite loop:

```yaml
pages:

stage: deploy
script:

	mkdir .public

	cp -r * .public

	mv .public public

	artifacts:
	
	paths:
	
	public

	only:
	
	master


```

Read more on [GitLab Pages user documentation](../../user/project/pages/index.md).

## image and services

This allows to specify a custom Docker image and a list of services that can be
used for time of the job. The configuration of this feature is covered in
[a separate document](../docker/README.md).

## before_script and after_script

> Introduced in GitLab 8.7 and requires Gitlab Runner v1.2

before_script is used to define the command that should be run before all
jobs, including deploy jobs, but after the restoration of [artifacts](#artifacts).
This can be an array or a multi-line string.

after_script is used to define the command that will be run after for all
jobs, including failed ones. This has to be an array or a multi-line string.

The before_script and the main script are concatenated and run in a single context/container.
The after_script is run separately, so depending on the executor, changes done
outside of the working tree might not be visible, e.g. software installed in the
before_script.

It’s possible to overwrite the globally defined before_script and after_script
if you set it per-job:

```yaml
before_script:

	global before script

	job:
	
	before_script:
	
	execute this instead of global before script

	script:
	
	my command

	after_script:
	
	execute this after my script


```

## stages

stages is used to define stages that can be used by jobs and is defined
globally.

The specification of stages allows for having flexible multi stage pipelines.
The ordering of elements in stages defines the ordering of jobs’ execution:

1. Jobs of the same stage are run in parallel.
1. Jobs of the next stage are run after the jobs from the previous stage


complete successfully.




Let’s consider the following example, which defines 3 stages:

```yaml
stages:

	build

	test

	deploy


```

1. First, all jobs of build are executed in parallel.
1. If all jobs of build succeed, the test jobs are executed in parallel.
1. If all jobs of test succeed, the deploy jobs are executed in parallel.
1. If all jobs of deploy succeed, the commit is marked as passed.
1. If any of the previous jobs fails, the commit is marked as failed and no


jobs of further stage are executed.




There are also two edge cases worth mentioning:


	If no stages are defined in .gitlab-ci.yml, then the build,
test and deploy are allowed to be used as job’s stage by default.


	If a job doesn’t specify a stage, the job is assigned the test stage.




## stage

stage is defined per-job and relies on [stages](#stages) which is defined
globally. It allows to group jobs into different stages, and jobs of the same
stage are executed in parallel. For example:

```yaml
stages:

	build

	test

	deploy

	job 1:
	stage: build
script: make build dependencies

	job 2:
	stage: build
script: make build artifacts

	job 3:
	stage: test
script: make test

	job 4:
	stage: deploy
script: make deploy


```

## types

CAUTION: Deprecated:
types is deprecated, and could be removed in one of the future releases.
Use [stages](#stages) instead.

## script

script is the only required keyword that a job needs. It’s a shell script
which is executed by the Runner. For example:

```yaml
job:

script: “bundle exec rspec”


```

This parameter can also contain several commands using an array:

```yaml
job:

	script:
	
	uname -a

	bundle exec rspec


```

Sometimes, script commands will need to be wrapped in single or double quotes.
For example, commands that contain a colon (:) need to be wrapped in quotes so
that the YAML parser knows to interpret the whole thing as a string rather than
a “key: value” pair. Be careful when using special characters:
:, {, }, [, ], ,, &, *, #, ?, |, -, <, >, =, !, %, @, `` ` ``.

## only and except (simplified)

only and except are two parameters that set a job policy to limit when
jobs are created:


	only defines the names of branches and tags for which the job will run.


	
	except defines the names of branches and tags for which the job will
	not run.









There are a few rules that apply to the usage of job policy:


	
	only and except are inclusive. If both only and except are defined
	in a job specification, the ref is filtered by only and except.







	only and except allow the use of regular expressions.


	
	only and except allow to specify a repository path to filter jobs for
	forks.









In addition, only and except allow the use of special keywords:


Value |  Description  |

——— |  —————- |

branches  | When a branch is pushed.  |

tags      | When a tag is pushed.  |

api       | When pipeline has been triggered by a second pipelines API (not triggers API).  |

external  | When using CI services other than GitLab. |

pipelines | For multi-project triggers, created using the API with CI_JOB_TOKEN. |

pushes    | Pipeline is triggered by a git push by the user. |

schedules | For [scheduled pipelines][schedules]. |

triggers  | For pipelines created using a trigger token. |

web       | For pipelines created using Run pipeline button in GitLab UI (under your project’s Pipelines). |



In the example below, job will run only for refs that start with issue-,
whereas all branches will be skipped:

```yaml
job:

use regexp
only:

	/^issue-.*$/

use special keyword
except:

	branches


```

In this example, job will run only for refs that are tagged, or if a build is
explicitly requested via an API trigger or a [Pipeline Schedule][schedules]:

```yaml
job:

use special keywords
only:

	tags

	triggers

	schedules


```

The repository path can be used to have jobs executed only for the parent
repository and not forks:

```yaml
job:

	only:
	
	branches@gitlab-org/gitlab-ce

	except:
	
	master@gitlab-org/gitlab-ce


```

The above example will run job for all branches on gitlab-org/gitlab-ce,
except master.

## only and except (complex)

> refs and kubernetes policies introduced in GitLab 10.0

> variables policy introduced in 10.7

CAUTION: Warning:
This an _alpha_ feature, and it it subject to change at any time without
prior notice!

Since GitLab 10.0 it is possible to define a more elaborate only/except job
policy configuration.

GitLab now supports both, simple and complex strategies, so it is possible to
use an array and a hash configuration scheme.

Three keys are now available: refs, kubernetes and variables.
Refs strategy equals to simplified only/except configuration, whereas
kubernetes strategy accepts only active keyword.

variables keyword is used to define variables expressions. In other words
you can use predefined variables / project / group or
environment-scoped variables to define an expression GitLab is going to
evaluate in order to decide whether a job should be created or not.

See the example below. Job is going to be created only when pipeline has been
scheduled or runs for a master branch, and only if kubernetes service is
active in the project.

```yaml
job:

	only:
	
	refs:
	
	master

	schedules

kubernetes: active


```

Examples of using variables expressions:

```yaml
deploy:

script: cap staging deploy
only:

	refs:
	
	branches

	variables:
	
	$RELEASE == “staging”

	$STAGING


```

Another use case is exluding jobs depending on a commit message _(added in 11.0)_:

```yaml
end-to-end:

script: rake test:end-to-end
except:

	variables:
	
	$CI_COMMIT_MESSAGE =~ /skip-end-to-end-tests/


```

Learn more about variables expressions on [a separate page][variables-expressions].

## tags

tags is used to select specific Runners from the list of all Runners that are
allowed to run this project.

During the registration of a Runner, you can specify the Runner’s tags, for
example ruby, postgres, development.

tags allow you to run jobs with Runners that have the specified tags
assigned to them:

```yaml
job:

	tags:
	
	ruby

	postgres


```

The specification above, will make sure that job is built by a Runner that
has both ruby AND postgres tags defined.

## allow_failure

allow_failure is used when you want to allow a job to fail without impacting
the rest of the CI suite. Failed jobs don’t contribute to the commit status.

When enabled and the job fails, the pipeline will be successful/green for all
intents and purposes, but a “CI build passed with warnings” message  will be
displayed on the merge request or commit or job page. This is to be used by
jobs that are allowed to fail, but where failure indicates some other (manual)
steps should be taken elsewhere.

In the example below, job1 and job2 will run in parallel, but if job1
fails, it will not stop the next stage from running, since it’s marked with
allow_failure: true:

```yaml
job1:

stage: test
script:

	execute_script_that_will_fail

allow_failure: true

	job2:
	stage: test
script:

	execute_script_that_will_succeed

	job3:
	stage: deploy
script:

	deploy_to_staging


```

## when

when is used to implement jobs that are run in case of failure or despite the
failure.

when can be set to one of the following values:


	
	on_success - execute job only when all jobs from prior stages
	succeed. This is the default.










	
	on_failure - execute job only when at least one job from prior stages
	fails.









1. always - execute job regardless of the status of jobs from prior stages.
1. manual - execute job manually (added in GitLab 8.10). Read about


[manual actions](#when-manual) below.




For example:

```yaml
stages:

	build

	cleanup_build

	test

	deploy

	cleanup

	build_job:
	stage: build
script:

	make build

	cleanup_build_job:
	stage: cleanup_build
script:

	cleanup build when failed

when: on_failure

	test_job:
	stage: test
script:

	make test

	deploy_job:
	stage: deploy
script:

	make deploy

when: manual

	cleanup_job:
	stage: cleanup
script:

	cleanup after jobs

when: always


```

The above script will:


	Execute cleanup_build_job only when build_job fails.


	Always execute cleanup_job as the last step in pipeline regardless of
success or failure.


	Allow you to manually execute deploy_job from GitLab’s UI.




### when:manual

> Notes:
- Introduced in GitLab 8.10.
- Blocking manual actions were introduced in GitLab 9.0.
- Protected actions were introduced in GitLab 9.2.

Manual actions are a special type of job that are not executed automatically,
they need to be explicitly started by a user. An example usage of manual actions
would be a deployment to a production environment. Manual actions can be started
from the pipeline, job, environment, and deployment views. Read more at the
[environments documentation][env-manual].

Manual actions can be either optional or blocking. Blocking manual actions will
block the execution of the pipeline at the stage this action is defined in. It’s
possible to resume execution of the pipeline when someone executes a blocking
manual action by clicking a _play_ button.

When a pipeline is blocked, it will not be merged if Merge When Pipeline Succeeds
is set. Blocked pipelines also do have a special status, called _manual_.
Manual actions are non-blocking by default. If you want to make manual action
blocking, it is necessary to add allow_failure: false to the job’s definition
in .gitlab-ci.yml.

Optional manual actions have allow_failure: true set by default and their
Statuses do not contribute to the overall pipeline status. So, if a manual
action fails, the pipeline will eventually succeed.

Manual actions are considered to be write actions, so permissions for
[protected branches](../../user/project/protected_branches.md) are used when
user wants to trigger an action. In other words, in order to trigger a manual
action assigned to a branch that the pipeline is running for, user needs to
have ability to merge to this branch.

## environment

>
Notes:
- Introduced in GitLab 8.9.
- You can read more about environments and find more examples in the


[documentation about environments][environment].




environment is used to define that a job deploys to a specific environment.
If environment is specified and no environment under that name exists, a new
one will be created automatically.

In its simplest form, the environment keyword can be defined like:

```yaml
deploy to production:

stage: deploy
script: git push production HEAD:master
environment:

name: production


```

In the above example, the deploy to production job will be marked as doing a
deployment to the production environment.

### environment:name

>
Notes:
- Introduced in GitLab 8.11.
- Before GitLab 8.11, the name of an environment could be defined as a string like


environment: production. The recommended way now is to define it under the
name keyword.





	The name parameter can use any of the defined CI variables,
including predefined, secure variables and .gitlab-ci.yml [variables](#variables).
You however cannot use variables defined under script.




The environment name can contain:


	letters


	digits


	spaces


	-


	_


	/


	$


	{


	}




Common names are qa, staging, and production, but you can use whatever
name works with your workflow.

Instead of defining the name of the environment right after the environment
keyword, it is also possible to define it as a separate value. For that, use
the name keyword under environment:

```yaml
deploy to production:

stage: deploy
script: git push production HEAD:master
environment:

name: production


```

### environment:url

>
Notes:
- Introduced in GitLab 8.11.
- Before GitLab 8.11, the URL could be added only in GitLab’s UI. The


recommended way now is to define it in .gitlab-ci.yml.





	The url parameter can use any of the defined CI variables,
including predefined, secure variables and .gitlab-ci.yml [variables](#variables).
You however cannot use variables defined under script.




This is an optional value that when set, it exposes buttons in various places
in GitLab which when clicked take you to the defined URL.

In the example below, if the job finishes successfully, it will create buttons
in the merge requests and in the environments/deployments pages which will point
to https://prod.example.com.

```yaml
deploy to production:

stage: deploy
script: git push production HEAD:master
environment:

name: production
url: https://prod.example.com


```

### environment:on_stop

>
Notes:
- [Introduced][ce-6669] in GitLab 8.13.
- Starting with GitLab 8.14, when you have an environment that has a stop action


defined, GitLab will automatically trigger a stop action when the associated
branch is deleted.




Closing (stoping) environments can be achieved with the on_stop keyword defined under
environment. It declares a different job that runs in order to close
the environment.

Read the environment:action section for an example.

### environment:action

> [Introduced][ce-6669] in GitLab 8.13.

The action keyword is to be used in conjunction with on_stop and is defined
in the job that is called to close the environment.

Take for instance:

```yaml
review_app:

stage: deploy
script: make deploy-app
environment:

name: review
on_stop: stop_review_app

	stop_review_app:
	stage: deploy
script: make delete-app
when: manual
environment:

name: review
action: stop


```

In the above example we set up the review_app job to deploy to the review
environment, and we also defined a new stop_review_app job under on_stop.
Once the review_app job is successfully finished, it will trigger the
stop_review_app job based on what is defined under when. In this case we
set it up to manual so it will need a [manual action](#manual-actions) via
GitLab’s web interface in order to run.

The stop_review_app job is required to have the following keywords defined:


	when - [reference](#when)


	environment:name


	environment:action


	stage should be the same as the review_app in order for the environment
to stop automatically when the branch is deleted




### Dynamic environments

>
Notes:
- [Introduced][ce-6323] in GitLab 8.12 and GitLab Runner 1.6.
- The $CI_ENVIRONMENT_SLUG was [introduced][ce-7983] in GitLab 8.15.
- The name and url parameters can use any of the defined CI variables,


including predefined, secure variables and .gitlab-ci.yml [variables](#variables).
You however cannot use variables defined under script.




For example:

```yaml
deploy as review app:

stage: deploy
script: make deploy
environment:

name: review/$CI_COMMIT_REF_NAME
url: https://$CI_ENVIRONMENT_SLUG.example.com/


```

The deploy as review app job will be marked as deployment to dynamically
create the review/$CI_COMMIT_REF_NAME environment, where $CI_COMMIT_REF_NAME
is an [environment variable][variables] set by the Runner. The
$CI_ENVIRONMENT_SLUG variable is based on the environment name, but suitable
for inclusion in URLs. In this case, if the deploy as review app job was run
in a branch named pow, this environment would be accessible with an URL like
https://review-pow.example.com/.

This of course implies that the underlying server which hosts the application
is properly configured.

The common use case is to create dynamic environments for branches and use them
as Review Apps. You can see a simple example using Review Apps at
<https://gitlab.com/gitlab-examples/review-apps-nginx/>.

## cache

>
Notes:
- Introduced in GitLab Runner v0.7.0.
- cache can be set globally and per-job.
- From GitLab 9.0, caching is enabled and shared between pipelines and jobs


by default.





	From GitLab 9.2, caches are restored before [artifacts](#artifacts).




TIP: Learn more:
Read how caching works and find out some good practices in the
[caching dependencies documentation](../caching/index.md).

cache is used to specify a list of files and directories which should be
cached between jobs. You can only use paths that are within the project
workspace.

If cache is defined outside the scope of jobs, it means it is set
globally and all jobs will use that definition.

### cache:paths

Use the paths directive to choose which files or directories will be cached.
Wildcards can be used as well.

Cache all files in binaries that end in .apk and the .config file:

```yaml
rspec:

script: test
cache:

	paths:
	
	binaries/*.apk

	.config


```

Locally defined cache overrides globally defined options. The following rspec
job will cache only binaries/:

```yaml
cache:

	paths:
	
	my/files

	rspec:
	script: test
cache:

key: rspec
paths:

	binaries/


```

Note that since cache is shared between jobs, if you’re using different
paths for different jobs, you should also set a different cache:key
otherwise cache content can be overwritten.

### cache:key

> Introduced in GitLab Runner v1.0.0.

Since the cache is shared between jobs, if you’re using different
paths for different jobs, you should also set a different cache:key
otherwise cache content can be overwritten.

The key directive allows you to define the affinity of caching between jobs,
allowing to have a single cache for all jobs, cache per-job, cache per-branch
or any other way that fits your workflow. This way, you can fine tune caching,
allowing you to cache data between different jobs or even different branches.

The cache:key variable can use any of the
[predefined variables](../variables/README.md), and the default key, if not
set, is just literal default which means everything is shared between each
pipelines and jobs by default, starting from GitLab 9.0.

NOTE: Note:
The cache:key variable cannot contain the / character, or the equivalent
URI-encoded %2F; a value made only of dots (., %2E) is also forbidden.

For example, to enable per-branch caching:

```yaml
cache:

key: “$CI_COMMIT_REF_SLUG”
paths:

	binaries/


```

If you use Windows Batch to run your shell scripts you need to replace
$ with %:

```yaml
cache:

key: “%CI_COMMIT_REF_SLUG%”
paths:

	binaries/


```

### cache:untracked

Set untracked: true to cache all files that are untracked in your Git
repository:

```yaml
rspec:

script: test
cache:

untracked: true


```

Cache all Git untracked files and files in binaries:

```yaml
rspec:

script: test
cache:

untracked: true
paths:

	binaries/


```

### cache:policy

> Introduced in GitLab 9.4.

The default behaviour of a caching job is to download the files at the start of
execution, and to re-upload them at the end. This allows any changes made by the
job to be persisted for future runs, and is known as the pull-push cache
policy.

If you know the job doesn’t alter the cached files, you can skip the upload step
by setting policy: pull in the job specification. Typically, this would be
twinned with an ordinary cache job at an earlier stage to ensure the cache
is updated from time to time:

```yaml
stages:

	setup

	test

	prepare:
	stage: setup
cache:

key: gems
paths:

	vendor/bundle

	script:
	
	bundle install –deployment

	rspec:
	stage: test
cache:

key: gems
paths:

	vendor/bundle

policy: pull

	script:
	
	bundle exec rspec …


```

This helps to speed up job execution and reduce load on the cache server,
especially when you have a large number of cache-using jobs executing in
parallel.

Additionally, if you have a job that unconditionally recreates the cache without
reference to its previous contents, you can use policy: push in that job to
skip the download step.

## artifacts

>
Notes:
- Introduced in GitLab Runner v0.7.0 for non-Windows platforms.
- Windows support was added in GitLab Runner v.1.0.0.
- From GitLab 9.2, caches are restored before artifacts.
- Not all executors are [supported](https://docs.gitlab.com/runner/executors/#compatibility-chart).
- Job artifacts are only collected for successful jobs by default.

artifacts is used to specify a list of files and directories which should be
attached to the job after success.

The artifacts will be sent to GitLab after the job finishes successfully and will
be available for download in the GitLab UI.

[Read more about artifacts.](../../user/project/pipelines/job_artifacts.md)

### artifacts:paths

You can only use paths that are within the project workspace. To pass artifacts
between different jobs, see [dependencies](#dependencies).

Send all files in binaries and .config:

```yaml
artifacts:

	paths:
	
	binaries/

	.config


```

To disable artifact passing, define the job with empty [dependencies](#dependencies):

```yaml
job:

stage: build
script: make build
dependencies: []


```

You may want to create artifacts only for tagged releases to avoid filling the
build server storage with temporary build artifacts.

Create artifacts only for tags (default-job will not create artifacts):

```yaml
default-job:

	script:
	
	mvn test -U

	except:
	
	tags

	release-job:
	
	script:
	
	mvn package -U

	artifacts:
	
	paths:
	
	target/*.war

	only:
	
	tags


```

### artifacts:name

> Introduced in GitLab 8.6 and GitLab Runner v1.1.0.

The name directive allows you to define the name of the created artifacts
archive. That way, you can have a unique name for every archive which could be
useful when you’d like to download the archive from GitLab. The artifacts:name
variable can make use of any of the [predefined variables](../variables/README.md).
The default name is artifacts, which becomes artifacts.zip when downloaded.

NOTE: Note:
If your branch-name contains forward slashes
(e.g. feature/my-feature) it is advised to use $CI_COMMIT_REF_SLUG
instead of $CI_COMMIT_REF_NAME for proper naming of the artifact.

To create an archive with a name of the current job:

```yaml
job:

	artifacts:
	name: “$CI_JOB_NAME”
paths:

	binaries/


```

To create an archive with a name of the current branch or tag including only
the binaries directory:

```yaml
job:

	artifacts:
	name: “$CI_COMMIT_REF_NAME”
paths:

	binaries/


```

To create an archive with a name of the current job and the current branch or
tag including only the binaries directory:

```yaml
job:

	artifacts:
	name: “CI_JOB_NAME-CI_COMMIT_REF_NAME”
paths:

	binaries/


```

To create an archive with a name of the current [stage](#stages) and branch name:

```yaml
job:

	artifacts:
	name: “CI_JOB_STAGE-CI_COMMIT_REF_NAME”
paths:

	binaries/


```

—

If you use Windows Batch to run your shell scripts you need to replace
$ with %:

```yaml
job:

	artifacts:
	name: “%CI_JOB_STAGE%-%CI_COMMIT_REF_NAME%”
paths:

	binaries/


```

If you use Windows PowerShell to run your shell scripts you need to replace
$ with $env::

```yaml
job:

	artifacts:
	name: “$env:CI_JOB_STAGE-$env:CI_COMMIT_REF_NAME”
paths:

	binaries/


```

### artifacts:untracked

artifacts:untracked is used to add all Git untracked files as artifacts (along
to the paths defined in artifacts:paths).

NOTE: Note:
To exclude the folders/files which should not be a part of untracked just
add them to .gitignore.

Send all Git untracked files:

```yaml
artifacts:

untracked: true


```

Send all Git untracked files and files in binaries:

```yaml
artifacts:

untracked: true
paths:

	binaries/


```

### artifacts:when

> Introduced in GitLab 8.9 and GitLab Runner v1.3.0.

artifacts:when is used to upload artifacts on job failure or despite the
failure.

artifacts:when can be set to one of the following values:

1. on_success - upload artifacts only when the job succeeds. This is the default.
1. on_failure - upload artifacts only when the job fails.
1. always - upload artifacts regardless of the job status.

To upload artifacts only when job fails:

```yaml
job:

	artifacts:
	when: on_failure


```

### artifacts:expire_in

> Introduced in GitLab 8.9 and GitLab Runner v1.3.0.

expire_in allows you to specify how long artifacts should live before they
expire and therefore deleted, counting from the time they are uploaded and
stored on GitLab. If the expiry time is not defined, it defaults to the
[instance wide setting](../../user/admin_area/settings/continuous_integration.md#default-artifacts-expiration)
(30 days by default, forever on GitLab.com).

You can use the Keep button on the job page to override expiration and
keep artifacts forever.

After their expiry, artifacts are deleted hourly by default (via a cron job),
and are not accessible anymore.

The value of expire_in is an elapsed time. Examples of parsable values:


	‘3 mins 4 sec’


	‘2 hrs 20 min’


	‘2h20min’


	‘6 mos 1 day’


	‘47 yrs 6 mos and 4d’


	‘3 weeks and 2 days’




To expire artifacts 1 week after being uploaded:

```yaml
job:

	artifacts:
	expire_in: 1 week


```

### artifacts:reports

> [Introduced](https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/20390) in
GitLab 11.2. Requires GitLab Runner 11.2 and above.

The reports keyword is used for collecting test reports from jobs and
exposing them in GitLab’s UI (merge requests, pipeline views). Read how to use
this with [JUnit reports](#artifacts-reports-junit).

NOTE: Note:
The test reports are collected regardless of the job results (success or failure).
You can use [artifacts:expire_in](#artifacts-expire_in) to set up an expiration
date for their artifacts.

#### artifacts:reports:junit

> [Introduced](https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/20390) in
GitLab 11.2. Requires GitLab Runner 11.2 and above.

The junit report collects [JUnit XML files](https://www.ibm.com/support/knowledgecenter/en/SSQ2R2_14.1.0/com.ibm.rsar.analysis.codereview.cobol.doc/topics/cac_useresults_junit.html)
as artifacts. Although JUnit was originally developed in Java, there are many
[third party ports](https://en.wikipedia.org/wiki/JUnit#Ports) for other
languages like Javascript, Python, Ruby, etc.

Below is an example of collecting a JUnit XML file from Ruby’s RSpec test tool:

```yaml
rspec:

stage: test
script:
- bundle install
- rspec –format RspecJunitFormatter –out rspec.xml
artifacts:

	reports:
	junit: rspec.xml


```

The collected JUnit reports will be uploaded to GitLab as an artifact and will
be automatically [shown in merge requests](../junit_test_reports.md).

NOTE: Note:
In case the JUnit tool you use exports to multiple XML files, you can specify
multiple test report paths within a single job
(junit: [rspec-1.xml, rspec-2.xml, rspec-3.xml]) and they will be automatically
concatenated into a single file.

## dependencies

> Introduced in GitLab 8.6 and GitLab Runner v1.1.1.

This feature should be used in conjunction with [artifacts](#artifacts) and
allows you to define the artifacts to pass between different jobs.

Note that artifacts from all previous [stages](#stages) are passed by default.

To use this feature, define dependencies in context of the job and pass
a list of all previous jobs from which the artifacts should be downloaded.
You can only define jobs from stages that are executed before the current one.
An error will be shown if you define jobs from the current stage or next ones.
Defining an empty array will skip downloading any artifacts for that job.
The status of the previous job is not considered when using dependencies, so
if it failed or it is a manual job that was not run, no error occurs.

—

In the following example, we define two jobs with artifacts, build:osx and
build:linux. When the test:osx is executed, the artifacts from build:osx
will be downloaded and extracted in the context of the build. The same happens
for test:linux and artifacts from build:linux.

The job deploy will download artifacts from all previous jobs because of
the [stage](#stages) precedence:

```yaml
build:osx:

stage: build
script: make build:osx
artifacts:

	paths:
	
	binaries/

	build:linux:
	stage: build
script: make build:linux
artifacts:

	paths:
	
	binaries/

	test:osx:
	stage: test
script: make test:osx
dependencies:

	build:osx

	test:linux:
	stage: test
script: make test:linux
dependencies:

	build:linux

	deploy:
	stage: deploy
script: make deploy


```

### When a dependent job will fail

> Introduced in GitLab 10.3.

If the artifacts of the job that is set as a dependency have been
[expired](#artifacts-expire_in) or
[erased](../../user/project/pipelines/job_artifacts.md#erasing-artifacts), then
the dependent job will fail.

NOTE: Note:
You can ask your administrator to
[flip this switch](../../administration/job_artifacts.md#validation-for-dependencies)
and bring back the old behavior.

## coverage

> [Introduced][ce-7447] in GitLab 8.17.

coverage allows you to configure how code coverage will be extracted from the
job output.

Regular expressions are the only valid kind of value expected here. So, using
surrounding / is mandatory in order to consistently and explicitly represent
a regular expression string. You must escape special characters if you want to
match them literally.

A simple example:

```yaml
job1:

script: rspec
coverage: ‘/Code coverage: d+.d+/’


```

## retry

> [Introduced][ce-12909] in GitLab 9.5.

retry allows you to configure how many times a job is going to be retried in
case of a failure.

When a job fails, and has retry configured it is going to be processed again
up to the amount of times specified by the retry keyword.

If retry is set to 2, and a job succeeds in a second run (first retry), it won’t be retried
again. retry value has to be a positive integer, equal or larger than 0, but
lower or equal to 2 (two retries maximum, three runs in total).

A simple example:

```yaml
test:

script: rspec
retry: 2


```

## variables

> Introduced in GitLab Runner v0.5.0.

NOTE: Note:
Integers (as well as strings) are legal both for variable’s name and value.
Floats are not legal and cannot be used.

GitLab CI/CD allows you to define variables inside .gitlab-ci.yml that are
then passed in the job environment. They can be set globally and per-job.
When the variables keyword is used on a job level, it overrides the global
YAML variables and predefined ones.

They are stored in the Git repository and are meant to store non-sensitive
project configuration, for example:

```yaml
variables:

DATABASE_URL: “postgres://postgres@postgres/my_database”


```

These variables can be later used in all executed commands and scripts.
The YAML-defined variables are also set to all created service containers,
thus allowing to fine tune them.

To turn off global defined variables in a specific job, define an empty hash:

```yaml
job_name:

variables: {}


```

Except for the user defined variables, there are also the ones [set up by the
Runner itself](../variables/README.md#predefined-variables-environment-variables).
One example would be CI_COMMIT_REF_NAME which has the value of
the branch or tag name for which project is built. Apart from the variables
you can set in .gitlab-ci.yml, there are also the so called
[Variables](../variables/README.md#variables)
which can be set in GitLab’s UI.

[Learn more about variables and their priority.][variables]

### Git strategy


	> Introduced in GitLab 8.9 as an experimental feature.  May change or be removed
	completely in future releases. GIT_STRATEGY=none requires GitLab Runner
v1.7+.





You can set the GIT_STRATEGY used for getting recent application code, either
globally or per-job in the [variables](#variables) section. If left
unspecified, the default from project settings will be used.

There are three possible values: clone, fetch, and none.

clone is the slowest option. It clones the repository from scratch for every
job, ensuring that the project workspace is always pristine.

```yaml
variables:

GIT_STRATEGY: clone


```

fetch is faster as it re-uses the project workspace (falling back to clone
if it doesn’t exist). git clean is used to undo any changes made by the last
job, and git fetch is used to retrieve commits made since the last job ran.

```yaml
variables:

GIT_STRATEGY: fetch


```

none also re-uses the project workspace, but skips all Git operations
(including GitLab Runner’s pre-clone script, if present). It is mostly useful
for jobs that operate exclusively on artifacts (e.g., deploy). Git repository
data may be present, but it is certain to be out of date, so you should only
rely on files brought into the project workspace from cache or artifacts.

```yaml
variables:

GIT_STRATEGY: none


```

### Git submodule strategy

> Requires GitLab Runner v1.10+.

The GIT_SUBMODULE_STRATEGY variable is used to control if / how Git
submodules are included when fetching the code before a build. You can set them
globally or per-job in the [variables](#variables) section.

There are three possible values: none, normal, and recursive:


	none means that submodules will not be included when fetching the project
code. This is the default, which matches the pre-v1.10 behavior.


	normal means that only the top-level submodules will be included. It is
equivalent to:


`
git submodule sync
git submodule update --init
`






	recursive means that all submodules (including submodules of submodules)
will be included. It is equivalent to:


`
git submodule sync --recursive
git submodule update --init --recursive
`








Note that for this feature to work correctly, the submodules must be configured
(in .gitmodules) with either:


	the HTTP(S) URL of a publicly-accessible repository, or


	a relative path to another repository on the same GitLab server. See the
[Git submodules](../git_submodules.md) documentation.




### Git checkout

> Introduced in GitLab Runner 9.3

The GIT_CHECKOUT variable can be used when the GIT_STRATEGY is set to either
clone or fetch to specify whether a git checkout should be run. If not
specified, it defaults to true. You can set them globally or per-job in the
[variables](#variables) section.

If set to false, the Runner will:


	when doing fetch - update the repository and leave working copy on
the current revision,


	when doing clone - clone the repository and leave working copy on the
default branch.




Having this setting set to true will mean that for both clone and fetch
strategies the Runner will checkout the working copy to a revision related
to the CI pipeline:

```yaml
variables:

GIT_STRATEGY: clone
GIT_CHECKOUT: “false”

	script:
	
	git checkout master

	git merge $CI_BUILD_REF_NAME


```

### Job stages attempts

> Introduced in GitLab, it requires GitLab Runner v1.9+.

You can set the number for attempts the running job will try to execute each
of the following stages:


Variable                        | Description |



|-------------------------------- |-------------|
| GET_SOURCES_ATTEMPTS        | Number of attempts to fetch sources running a job |
| ARTIFACT_DOWNLOAD_ATTEMPTS  | Number of attempts to download artifacts running a job |
| RESTORE_CACHE_ATTEMPTS      | Number of attempts to restore the cache running a job |

The default is one single attempt.

Example:

```yaml
variables:

GET_SOURCES_ATTEMPTS: 3


```

You can set them globally or per-job in the [variables](#variables) section.

### Shallow cloning

> Introduced in GitLab 8.9 as an experimental feature. May change in future
releases or be removed completely.

You can specify the depth of fetching and cloning using GIT_DEPTH. This allows
shallow cloning of the repository which can significantly speed up cloning for
repositories with a large number of commits or old, large binaries. The value is
passed to git fetch and git clone.

>**Note:**
If you use a depth of 1 and have a queue of jobs or retry
jobs, jobs may fail.

Since Git fetching and cloning is based on a ref, such as a branch name, Runners
can’t clone a specific commit SHA. If there are multiple jobs in the queue, or
you are retrying an old job, the commit to be tested needs to be within the
Git history that is cloned. Setting too small a value for GIT_DEPTH can make
it impossible to run these old commits. You will see unresolved reference in
job logs. You should then reconsider changing GIT_DEPTH to a higher value.

Jobs that rely on git describe may not work correctly when GIT_DEPTH is
set since only part of the Git history is present.

To fetch or clone only the last 3 commits:

```yaml
variables:

GIT_DEPTH: “3”


```

You can set it globally or per-job in the [variables](#variables) section.

## Special YAML features

It’s possible to use special YAML features like anchors (&), aliases (*)
and map merging (<<), which will allow you to greatly reduce the complexity
of .gitlab-ci.yml.

Read more about the various [YAML features](https://learnxinyminutes.com/docs/yaml/).

### Hidden keys (jobs)

> Introduced in GitLab 8.6 and GitLab Runner v1.1.1.

If you want to temporarily ‘disable’ a job, rather than commenting out all the
lines where the job is defined:

`
#hidden_job:
#  script:
#    - run test
`

you can instead start its name with a dot (.) and it will not be processed by
GitLab CI. In the following example, .hidden_job will be ignored:

```yaml
.hidden_job:

	script:
	
	run test


```

Use this feature to ignore jobs, or use the
[special YAML features](#special-yaml-features) and transform the hidden keys
into templates.

### Anchors

> Introduced in GitLab 8.6 and GitLab Runner v1.1.1.

YAML has a handy feature called ‘anchors’, which lets you easily duplicate
content across your document. Anchors can be used to duplicate/inherit
properties, and is a perfect example to be used with [hidden keys](#hidden-keys-jobs)
to provide templates for your jobs.

The following example uses anchors and map merging. It will create two jobs,
test1 and test2, that will inherit the parameters of .job_template, each
having their own custom script defined:

```yaml
.job_template: &job_definition # Hidden key that defines an anchor named ‘job_definition’

image: ruby:2.1
services:

	postgres

	redis

	test1:
	<<: *job_definition # Merge the contents of the ‘job_definition’ alias
script:

	test1 project

	test2:
	<<: *job_definition # Merge the contents of the ‘job_definition’ alias
script:

	test2 project


```

& sets up the name of the anchor (job_definition), << means “merge the
given hash into the current one”, and * includes the named anchor
(job_definition again). The expanded version looks like this:

```yaml
.job_template:

image: ruby:2.1
services:

	postgres

	redis

	test1:
	image: ruby:2.1
services:

	postgres

	redis

	script:
	
	test1 project

	test2:
	image: ruby:2.1
services:

	postgres

	redis

	script:
	
	test2 project


```

Let’s see another one example. This time we will use anchors to define two sets
of services. This will create two jobs, test:postgres and test:mysql, that
will share the script directive defined in .job_template, and the services
directive defined in .postgres_services and .mysql_services respectively:

```yaml
.job_template: &job_definition

	script:
	
	test project

	.postgres_services:
	
	services: &postgres_definition
	
	postgres

	ruby

	.mysql_services:
	
	services: &mysql_definition
	
	mysql

	ruby

	test:postgres:
	<<: *job_definition
services: *postgres_definition

	test:mysql:
	<<: *job_definition
services: *mysql_definition


```

The expanded version looks like this:

```yaml
.job_template:

	script:
	
	test project

	.postgres_services:
	
	services:
	
	postgres

	ruby

	.mysql_services:
	
	services:
	
	mysql

	ruby

	test:postgres:
	
	script:
	
	test project

	services:
	
	postgres

	ruby

	test:mysql:
	
	script:
	
	test project

	services:
	
	mysql

	ruby


```

You can see that the hidden keys are conveniently used as templates.

## Triggers

Triggers can be used to force a rebuild of a specific branch, tag or commit,
with an API call.

[Read more in the triggers documentation.](../triggers/README.md)

## Skipping jobs

If your commit message contains [ci skip] or [skip ci], using any
capitalization, the commit will be created but the pipeline will be skipped.

## Validate the .gitlab-ci.yml

Each instance of GitLab CI has an embedded debug tool called Lint, which validates the
content of your .gitlab-ci.yml files. You can find the Lint under the page ci/lint of your
project namespace (e.g, http://gitlab-example.com/gitlab-org/project-123/-/ci/lint)

## Using reserved keywords

If you get validation error when using specific values (e.g., true or false),
try to quote them, or change them to a different form (e.g., /bin/true).

## Examples

Visit the [examples README][examples] to see a list of examples using GitLab
CI with various languages.

[env-manual]: ../environments.md#manually-deploying-to-environments
[examples]: ../examples/README.md
[ce-6323]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/6323
[environment]: ../environments.md
[ce-6669]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/6669
[variables]: ../variables/README.md
[ce-7983]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/7983
[ce-7447]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/7447
[ce-12909]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/12909
[schedules]: ../../user/project/pipelines/schedules.md
[variables-expressions]: ../variables/README.md#variables-expressions



            

          

      

      

    

  

    
      
          
            
  This document was moved to [another location](../user/project/container_registry.md).



            

          

      

      

    

  

    
      
          
            
  This document was moved to [user/project/container_registry](../user/project/container_registry.md).



            

          

      

      

    

  

    
      
          
            
  # Changing the appearance of the login page

GitLab offers a way to put your company’s identity on the login page of your GitLab server and make it a branded login page.

By default, the page shows the GitLab logo and description.

![default_login_page](branded_login_page/default_login_page.png)

## Changing the appearance of the login page

Navigate to the Admin area and go to the Appearance page.

Fill in the required details like Title, Description and upload the company logo.

![appearance](branded_login_page/appearance.png)

After saving the page, your GitLab login page will have the details you filled in:

![company_login_page](branded_login_page/custom_sign_in.png)



            

          

      

      

    

  

    
      
          
            
  # Changing the logo on the overall page and email header

Navigate to the Admin area and go to the Appearance page.

Upload the custom logo (Header logo) in the section Navigation bar.

![appearance](branded_page_and_email_header/appearance.png)

After saving the page, your GitLab navigation bar will contain the custom logo:

![custom_brand_header](branded_page_and_email_header/custom_brand_header.png)

The GitLab pipeline emails will also have the custom logo:

![custom_email_header](branded_page_and_email_header/custom_email_header.png)



            

          

      

      

    

  

    
      
          
            
  # Changing the favicon

> [Introduced][ce-14497] in GitLab 11.0.

[ce-14497]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/14497

Navigate to the Admin area and go to the Appearance page.

Upload the custom favicon (Favicon) in the section Favicon.

![appearance](favicon/appearance.png)

After saving the page, the new favicon will be shown in the browser. The main
favicon as well as the CI status icons will show the custom icon:

![custom_favicon](favicon/custom_favicon.png)



            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘../user/project/issues/automatic_issue_closing.md’
—



            

          

      

      

    

  

    
      
          
            
  # Use Libravatar service with GitLab

GitLab by default supports [Gravatar](https://gravatar.com) avatar service.
Libravatar is a service which delivers your avatar (profile picture) to other websites and their API is
[heavily based on gravatar](https://wiki.libravatar.org/api/).

This means that it is not complicated to switch to Libravatar avatar service or even self hosted Libravatar server.

# Configuration

In [gitlab.yml gravatar section](https://gitlab.com/gitlab-org/gitlab-ce/blob/672bd3902d86b78d730cea809fce312ec49d39d7/config/gitlab.yml.example#L122) set
the configuration options as follows:

## For HTTP


	```yml
	
	gravatar:
	enabled: true
gravatar URLs: possible placeholders: %{hash} %{size} %{email} %{username}
plain_url: “http://cdn.libravatar.org/avatar/%{hash}?s=%{size}&d=identicon”


```

## For HTTPS


	```yml
	
	gravatar:
	enabled: true
gravatar URLs: possible placeholders: %{hash} %{size} %{email} %{username}
ssl_url: “https://seccdn.libravatar.org/avatar/%{hash}?s=%{size}&d=identicon”


```

## Self-hosted

If you are [running your own libravatar service](https://wiki.libravatar.org/running_your_own/) the URL will be different in the configuration
but the important part is to provide the same placeholders so GitLab can parse the URL correctly.

For example, you host a service on http://libravatar.example.com the plain_url you need to supply in gitlab.yml is

http://libravatar.example.com/avatar/%{hash}?s=%{size}&d=identicon

## Omnibus-gitlab example

In /etc/gitlab/gitlab.rb:

#### For http

`ruby
gitlab_rails['gravatar_enabled'] = true
gitlab_rails['gravatar_plain_url'] = "http://cdn.libravatar.org/avatar/%{hash}?s=%{size}&d=identicon"
`

#### For https

`ruby
gitlab_rails['gravatar_enabled'] = true
gitlab_rails['gravatar_ssl_url'] = "https://seccdn.libravatar.org/avatar/%{hash}?s=%{size}&d=identicon"
`

Run sudo gitlab-ctl reconfigure for changes to take effect.

## Default URL for missing images

[Libravatar supports different sets](https://wiki.libravatar.org/api/) of missing images for emails not found on the Libravatar service.

In order to use a different set other than identicon, replace &d=identicon portion of the URL with another supported set.
For example, you can use retro set in which case the URL would look like: plain_url: “http://cdn.libravatar.org/avatar/%{hash}?s=%{size}&d=retro”

## Usage examples

#### For Microsoft Office 365

If your users are Office 365-users, the “GetPersonaPhoto” service can be used. Note that this service requires login, so this use case is
most useful in a corporate installation, where all users have access to Office 365.

`ruby
gitlab_rails['gravatar_plain_url'] = 'http://outlook.office365.com/owa/service.svc/s/GetPersonaPhoto?email=%{email}&size=HR120x120'
gitlab_rails['gravatar_ssl_url'] = 'https://outlook.office365.com/owa/service.svc/s/GetPersonaPhoto?email=%{email}&size=HR120x120'
`



            

          

      

      

    

  

    
      
          
            
  # Customizing the new project page

It is possible to add a markdown-formatted message to your GitLab
new project page.

By default, the new project page shows a sidebar with general information:

![](new_project_page/default_new_project_page.png)

## Changing the appearance of the new project page

Navigate to the Admin area and go to the Appearance page.

Fill in your project guidelines:

![](new_project_page/appearance_settings.png)

After saving the page, your new project page will show the guidelines in the sidebar, below the general information:

![](new_project_page/custom_new_project_page.png)



            

          

      

      

    

  

    
      
          
            
  # Customize the complete sign-in page

Please see [Branded login page](branded_login_page.md)

# Add a welcome message to the sign-in page (GitLab Community Edition)

It is possible to add a markdown-formatted welcome message to your GitLab
sign-in page. Users of GitLab Enterprise Edition should use the [branded login
page feature](branded_login_page.md) instead.

The welcome message (extra_sign_in_text) can now be set/changed in the Admin UI.
Admin area > Settings



            

          

      

      

    

  

    
      
          
            
  —
comments: false
description: ‘Learn how to contribute to GitLab.’
—

# GitLab development guides

## Get started!


	Setup GitLab’s development environment with [GitLab Development Kit (GDK)](https://gitlab.com/gitlab-org/gitlab-development-kit/blob/master/doc/howto/README.md)


	[GitLab contributing guide](https://gitlab.com/gitlab-org/gitlab-ce/blob/master/CONTRIBUTING.md)


	[Architecture](architecture.md) of GitLab


	[Rake tasks](rake_tasks.md) for development




## Processes


	[GitLab core team & GitLab Inc. contribution process](https://gitlab.com/gitlab-org/gitlab-ce/blob/master/PROCESS.md)


	[Generate a changelog entry with bin/changelog](changelog.md)


	[Code review guidelines](code_review.md) for reviewing code and having code reviewed.


	[Automatic CE->EE merge](automatic_ce_ee_merge.md)


	[Guidelines for implementing Enterprise Edition features](ee_features.md)


	[Security process for developers](https://gitlab.com/gitlab-org/release/docs/blob/master/general/security/developer.md#security-releases-critical-non-critical-as-a-developer)




## UX and frontend guides


	[UX guide](ux_guide/index.md) for building GitLab with existing CSS styles and elements


	[Frontend guidelines](fe_guide/index.md)


	[Emoji guide](fe_guide/emojis.md)




## Backend guides


	[GitLab utilities](utilities.md)


	[API styleguide](api_styleguide.md) Use this styleguide if you are
contributing to the API.


	[GraphQL API styleguide](api_graphql_styleguide.md) Use this
styleguide if you are contribution to the [GraphQL API](../api/graphql/index.md)


	[Sidekiq guidelines](sidekiq_style_guide.md) for working with Sidekiq workers


	[Working with Gitaly](gitaly.md)


	[Manage feature flags](feature_flags.md)


	[View sent emails or preview mailers](emails.md)


	[Shell commands](shell_commands.md) in the GitLab codebase


	[Gemfile guidelines](gemfile.md)


	[Pry debugging](pry_debugging.md)


	[Sidekiq debugging](sidekiq_debugging.md)


	[Gotchas](gotchas.md) to avoid


	[Avoid modules with instance variables](module_with_instance_variables.md) if possible


	[How to dump production data to staging](db_dump.md)


	[Working with the GitHub importer](github_importer.md)


	[Working with Merge Request diffs](diffs.md)




## Performance guides


	[Instrumentation](instrumentation.md)


	[Performance guidelines](performance.md)


	[Merge request performance guidelines](merge_request_performance_guidelines.md)
for ensuring merge requests do not negatively impact GitLab performance




## Databases guides

### Migrations


	[What requires downtime?](what_requires_downtime.md)


	[SQL guidelines](sql.md) for working with SQL queries


	[Migrations style guide](migration_style_guide.md) for creating safe SQL migrations


	[Post deployment migrations](post_deployment_migrations.md)


	[Background migrations](background_migrations.md)


	[Swapping tables](swapping_tables.md)




### Best practices


	[Merge Request checklist](database_merge_request_checklist.md)


	[Adding database indexes](adding_database_indexes.md)


	[Foreign keys & associations](foreign_keys.md)


	[Single table inheritance](single_table_inheritance.md)


	[Polymorphic associations](polymorphic_associations.md)


	[Serializing data](serializing_data.md)


	[Hash indexes](hash_indexes.md)


	[Storing SHA1 hashes as binary](sha1_as_binary.md)


	[Iterating tables in batches](iterating_tables_in_batches.md)


	[Ordering table columns](ordering_table_columns.md)


	[Verifying database capabilities](verifying_database_capabilities.md)


	[Database Debugging and Troubleshooting](database_debugging.md)


	[Query Count Limits](query_count_limits.md)




## Testing guides


	[Testing standards and style guidelines](testing_guide/index.md)


	[Frontend testing standards and style guidelines](testing_guide/frontend_testing.md)




## Documentation guides


	[Writing documentation](documentation/index.md)


	[Documentation styleguide](documentation/styleguide.md)


	[Markdown](../user/markdown.md)




## Internationalization (i18n) guides


	[Introduction](i18n/index.md)


	[Externalization](i18n/externalization.md)


	[Translation](i18n/translation.md)




## Build guides


	[Building a package for testing purposes](build_test_package.md)




## Compliance


	[Licensing](licensing.md) for ensuring license compliance






            

          

      

      

    

  

    
      
          
            
  # Adding Database Indexes

Indexes can be used to speed up database queries, but when should you add a new
index? Traditionally the answer to this question has been to add an index for
every column used for filtering or joining data. For example, consider the
following query:

`sql
SELECT *
FROM projects
WHERE user_id = 2;
`

Here we are filtering by the user_id column and as such a developer may decide
to index this column.

While in certain cases indexing columns using the above approach may make sense
it can actually have a negative impact. Whenever you write data to a table any
existing indexes need to be updated. The more indexes there are the slower this
can potentially become. Indexes can also take up quite some disk space depending
on the amount of data indexed and the index type. For example, PostgreSQL offers
“GIN” indexes which can be used to index certain data types that can not be
indexed by regular btree indexes. These indexes however generally take up more
data and are slower to update compared to btree indexes.

Because of all this one should not blindly add a new index for every column used
to filter data by. Instead one should ask themselves the following questions:


	Can I write my query in such a way that it re-uses as many existing indexes
as possible?


	Is the data going to be large enough that using an index will actually be
faster than just iterating over the rows in the table?


	Is the overhead of maintaining the index worth the reduction in query
timings?




We’ll explore every question in detail below.

## Re-using Queries

The first step is to make sure your query re-uses as many existing indexes as
possible. For example, consider the following query:

`sql
SELECT *
FROM todos
WHERE user_id = 123
AND state = 'open';
`

Now imagine we already have an index on the user_id column but not on the
state column. One may think this query will perform badly due to state being
unindexed. In reality the query may perform just fine given the index on
user_id can filter out enough rows.

The best way to determine if indexes are re-used is to run your query using
EXPLAIN ANALYZE. Depending on any extra tables that may be joined and
other columns being used for filtering you may find an extra index is not going
to make much (if any) difference. On the other hand you may determine that the
index _may_ make a difference.

In short:


	Try to write your query in such a way that it re-uses as many existing
indexes as possible.


	Run the query using EXPLAIN ANALYZE and study the output to find the most
ideal query.




## Data Size

A database may decide not to use an index despite it existing in case a regular
sequence scan (= simply iterating over all existing rows) is faster. This is
especially the case for small tables.

If a table is expected to grow in size and you expect your query has to filter
out a lot of rows you may want to consider adding an index. If the table size is
very small (e.g. only a handful of rows) or any existing indexes filter out
enough rows you may _not_ want to add a new index.

## Maintenance Overhead

Indexes have to be updated on every table write. In case of PostgreSQL _all_
existing indexes will be updated whenever data is written to a table. As a
result of this having many indexes on the same table will slow down writes.

Because of this one should ask themselves: is the reduction in query performance
worth the overhead of maintaining an extra index?

If adding an index reduces SELECT timings by 5 milliseconds but increases
INSERT/UPDATE/DELETE timings by 10 milliseconds then the index may not be worth
it. On the other hand, if SELECT timings are reduced but INSERT/UPDATE/DELETE
timings are not affected you may want to add the index after all.

## Finding Unused Indexes

To see which indexes are unused you can run the following query:

`sql
SELECT relname as table_name, indexrelname as index_name, idx_scan, idx_tup_read, idx_tup_fetch, pg_size_pretty(pg_relation_size(indexrelname::regclass))
FROM pg_stat_all_indexes
WHERE schemaname = 'public'
AND idx_scan = 0
AND idx_tup_read = 0
AND idx_tup_fetch = 0
ORDER BY pg_relation_size(indexrelname::regclass) desc;
`

This query outputs a list containing all indexes that are never used and sorts
them by indexes sizes in descending order.  This query can be useful to
determine if any previously indexes are useful after all. More information on
the meaning of the various columns can be found at
<https://www.postgresql.org/docs/current/static/monitoring-stats.html>.

Because the output of this query relies on the actual usage of your database it
may be affected by factors such as (but not limited to):


	Certain queries never being executed, thus not being able to use certain
indexes.


	Certain tables having little data, resulting in PostgreSQL using sequence
scans instead of index scans.




In other words, this data is only reliable for a frequently used database with
plenty of data and with as many GitLab features enabled (and being used) as
possible.



            

          

      

      

    

  

    
      
          
            
  # GraphQL API

## Authentication

Authentication happens through the GraphqlController, right now this
uses the same authentication as the Rails application. So the session
can be shared.

It is also possible to add a private_token to the querystring, or
add a HTTP_PRIVATE_TOKEN header.

### Authorization

Fields can be authorized using the same abilities used in the Rails
app. This can be done using the authorize helper:

```ruby
module Types

	class QueryType < BaseObject
	graphql_name ‘Query’

	field :project, Types::ProjectType, null: true, resolver: Resolvers::ProjectResolver do
	authorize :read_project

end

end


```

The object found by the resolve call is used for authorization.

This works for authorizing a single record, for authorizing
collections, we should only load what the currently authenticated user
is allowed to view. Preferably we use our existing finders for that.

## Types

When exposing a model through the GraphQL API, we do so by creating a
new type in app/graphql/types.

When exposing properties in a type, make sure to keep the logic inside
the definition as minimal as possible. Instead, consider moving any
logic into a presenter:

```ruby
class Types::MergeRequestType < BaseObject

present_using MergeRequestPresenter

name ‘MergeRequest’

end

An existing presenter could be used, but it is also possible to create
a new presenter specifically for GraphQL.

The presenter is initialized using the object resolved by a field, and
the context.

Connection Types

GraphQL uses [cursor based
pagination](https://graphql.org/learn/pagination/#pagination-and-edges)
to expose collections of items. This provides the clients with a lot
of flexibility while also allowing the backend to use different
pagination models.

To expose a collection of resources we can use a connection type. This wraps the array with default pagination fields. For example a query for project-pipelines could look like this:

```
query($project_path: ID!) {



	project(fullPath: $project_path) {
	
	pipelines(first: 2) {
	
	pageInfo {
	hasNextPage
hasPreviousPage





}
edges {


cursor
node {


id
status




}




}





}





}







}

This would return the first 2 pipelines of a project and related
pagination info., ordered by descending ID. The returned data would
look like this:

```json
{

	“data”: {
	
	“project”: {
	
	“pipelines”: {
	
	“pageInfo”: {
	“hasNextPage”: true,
“hasPreviousPage”: false

},
“edges”: [

	{
	“cursor”: “Nzc=”,
“node”: {

“id”: “77”,
“status”: “FAILED”

}

},
{

“cursor”: “Njc=”,
“node”: {

“id”: “67”,
“status”: “FAILED”

}

}

]

}

}

}

}

To get the next page, the cursor of the last known element could be
passed:

```
query($project_path: ID!) {



	project(fullPath: $project_path) {
	
	pipelines(first: 2, after: “Njc=”) {
	
	pageInfo {
	hasNextPage
hasPreviousPage





}
edges {


cursor
node {


id
status




}




}





}





}







}

### Exposing permissions for a type

To expose permissions the current user has on a resource, you can call
the expose_permissions passing in a separate type representing the
permissions for the resource.

For example:

```ruby
module Types

	class MergeRequestType < BaseObject
	expose_permissions Types::MergeRequestPermissionsType

end

end

The permission type inherits from BasePermissionType which includes
some helper methods, that allow exposing permissions as non-nullable
booleans:

```ruby
class MergeRequestPermissionsType < BasePermissionType


present_using MergeRequestPresenter

graphql_name ‘MergeRequestPermissions’

abilities :admin_merge_request, :update_merge_request, :create_note


	ability_field :resolve_note,
	description: ‘Whether or not the user can resolve disussions on the merge request’





permission_field :push_to_source_branch, method: :can_push_to_source_branch?







end


	`permission_field`: Will act the same as graphql-ruby’s
field method but setting a default description and type and making
them non-nullable. These options can still be overridden by adding
them as arguments.


	`ability_field`: Expose an ability defined in our policies. This
takes behaves the same way as permission_field and the same
arguments can be overridden.


	`abilities`: Allows exposing several abilities defined in our
policies at once. The fields for these will all have be non-nullable
booleans with a default description.




## Resolvers

To find objects to display in a field, we can add resolvers to
app/graphql/resolvers.

Arguments can be defined within the resolver, those arguments will be
made available to the fields using the resolver.

We already have a FullPathLoader that can be included in other
resolvers to quickly find Projects and Namespaces which will have a
lot of dependant objects.

To limit the amount of queries performed, we can use BatchLoader.

## Mutations

Mutations are used to change any stored values, or to trigger
actions. In the same way a GET-request should not modify data, we
cannot modify data in a regular GraphQL-query. We can however in a
mutation.

### Fields

In the most common situations, a mutation would return 2 fields:


	The resource being modified


	A list of errors explaining why the action could not be
performed. If the mutation succeeded, this list would be empty.




By inheriting any new mutations from Mutations::BaseMutation the
errors field is automatically added. A clientMutationId field is
also added, this can be used by the client to identify the result of a
single mutation when multiple are performed within a single request.

### Building Mutations

Mutations live in app/graphql/mutations ideally grouped per
resources they are mutating, similar to our services. They should
inherit Mutations::BaseMutation. The fields defined on the mutation
will be returned as the result of the mutation.

Always provide a consistent GraphQL-name to the mutation, this name is
used to generate the input types and the field the mutation is mounted
on. The name should look like <Resource being modified><Mutation
class name>, for example the Mutations::MergeRequests::SetWip
mutation has GraphQL name MergeRequestSetWip.

Arguments required by the mutation can be defined as arguments
required for a field. These will be wrapped up in an input type for
the mutation. For example, the Mutations::MergeRequests::SetWip
with GraphQL-name MergeRequestSetWip defines these arguments:

```ruby
argument :project_path, GraphQL::ID_TYPE,

required: true,
description: “The project the merge request to mutate is in”

	argument :iid, GraphQL::ID_TYPE,
	required: true,
description: “The iid of the merge request to mutate”

	argument :wip,
	GraphQL::BOOLEAN_TYPE,
required: false,
description: <<~DESC

Whether or not to set the merge request as a WIP.
If not passed, the value will be toggled.
DESC


```

This would automatically generate an input type called
MergeRequestSetWipInput with the 3 arguments we specified and the
clientMutationId.

These arguments are then passed to the resolve method of a mutation
as keyword arguments. From here, we can call the service that will
modify the resource.

The resolve method should then return a hash with the same field
names as defined on the mutation and an errors array. For example,
the Mutations::MergeRequests::SetWip defines a merge_request
field:

```ruby
field :merge_request,

Types::MergeRequestType,
null: true,
description: “The merge request after mutation”


```

This means that the hash returned from resolve in this mutation
should look like this:

```ruby
{

The merge request modified, this will be wrapped in the type
defined on the field
merge_request: merge_request,
An array if strings if the mutation failed after authorization
errors: merge_request.errors.full_messages

}

To make the mutation available it should be defined on the mutation
type that lives in graphql/types/mutation_types. The
mount_mutation helper method will define a field based on the
GraphQL-name of the mutation:

```ruby
module Types



	class MutationType < BaseObject
	include Gitlab::Graphql::MountMutation

graphql_name “Mutation”

mount_mutation Mutations::MergeRequests::SetWip





end







end

Will generate a field called mergeRequestSetWip that
Mutations::MergeRequests::SetWip to be resolved.

### Authorizing resources

To authorize resources inside a mutation, we can include the
Gitlab::Graphql::Authorize::AuthorizeResource concern in the
mutation.

This allows us to provide the required abilities on the mutation like
this:

```ruby
module Mutations

	module MergeRequests
	
	class SetWip < Base
	graphql_name ‘MergeRequestSetWip’

authorize :update_merge_request

end

end

end

We can then call authorize! in the resolve method, passing in the resource we
want to validate the abilities for.

Alternatively, we can add a find_object method that will load the
object on the mutation. This would allow you to use the
authorized_find! and authorized_find! helper methods.

When a user is not allowed to perform the action, or an object is not
found, we should raise a
Gitlab::Graphql::Errors::ResourceNotAvailable error. Which will be
correctly rendered to the clients.

Testing

full stack tests for a graphql query or mutation live in
spec/requests/api/graphql.

When adding a query, the a working graphql query shared example can
be used to test if the query renders valid results.

Using the GraphqlHelpers#all_graphql_fields_for-helper, a query
including all available fields can be constructed. This makes it easy
to add a test rendering all possible fields for a query.

To test GraphQL mutation requests, GraphqlHelpers provides 2
helpers: graphql_mutation which takes the name of the mutation, and
a hash with the input for the mutation. This will return a struct with
a mutation query, and prepared variables.

This struct can then be passed to the post_graphql_mutation helper,
that will post the request with the correct params, like a GraphQL
client would do.

To access the response of a mutation, the graphql_mutation_response
helper is available.

Using these helpers, we can build specs like this:

```ruby
let(:mutation) do



	graphql_mutation(
	:merge_request_set_wip,
project_path: ‘gitlab-org/gitlab-ce’,
iid: ‘1’,
wip: true





)




end


	it ‘returns a successfull response’ do
	post_graphql_mutation(mutation, current_user: user)

expect(response).to have_gitlab_http_status(:success)
expect(graphql_mutation_response(:merge_request_set_wip)[‘errors’]).to be_empty








end





            

          

      

      

    

  

    
      
          
            
  # API styleguide

This styleguide recommends best practices for API development.

## Instance variables

Please do not use instance variables, there is no need for them (we don’t need
to access them as we do in Rails views), local variables are fine.

## Entities

Always use an [Entity] to present the endpoint’s payload.

## Methods and parameters description

Every method must be described using the [Grape DSL](https://github.com/ruby-grape/grape#describing-methods)
(see https://gitlab.com/gitlab-org/gitlab-ce/blob/master/lib/api/environments.rb
for a good example):


	desc for the method summary. You should pass it a block for additional
details such as:
- The GitLab version when the endpoint was added
- If the endpoint is deprecated, and if so, when will it be removed


	params for the method params. This acts as description,
[validation, and coercion of the parameters]




A good example is as follows:

```ruby
desc ‘Get all broadcast messages’ do

detail ‘This feature was introduced in GitLab 8.12.’
success Entities::BroadcastMessage

end
params do

optional :page, type: Integer, desc: ‘Current page number’
optional :per_page, type: Integer, desc: ‘Number of messages per page’

end
get do

messages = BroadcastMessage.all

present paginate(messages), with: Entities::BroadcastMessage

end

Declared params

> Grape allows you to access only the parameters that have been declared by your
params block. It filters out the params that have been passed, but are not
allowed.

– https://github.com/ruby-grape/grape#declared

Exclude params from parent namespaces!

> By default `declared(params) `includes parameters that were defined in all
parent namespaces.

– https://github.com/ruby-grape/grape#include-parent-namespaces

In most cases you will want to exclude params from the parent namespaces:

`ruby
declared(params, include_parent_namespaces: false)
`

When to use declared(params)?

You should always use declared(params) when you pass the params hash as
arguments to a method call.

For instance:

``ruby
bad
User.create(params) # imagine the user submitted `admin=1… :)

good
User.create(declared(params, include_parent_namespaces: false).to_h)
```

>**Note:**
declared(params) return a Hashie::Mash object, on which you will have to
call .to_h.

But we can use params[key] directly when we access single elements.

For instance:

`ruby
# good
Model.create(foo: params[:foo])
`

[Entity]: https://gitlab.com/gitlab-org/gitlab-ce/blob/master/lib/api/entities.rb
[validation, and coercion of the parameters]: https://github.com/ruby-grape/grape#parameter-validation-and-coercion





            

          

      

      

    

  

    
      
          
            
  # GitLab Architecture Overview

## Software delivery

There are two software distributions of GitLab: the open source [Community Edition](https://gitlab.com/gitlab-org/gitlab-ce/) (CE), and the open core [Enterprise Edition](https://gitlab.com/gitlab-org/gitlab-ee/) (EE). GitLab is available under [different subscriptions](https://about.gitlab.com/pricing/).

New versions of GitLab are released in stable branches and the master branch is for bleeding edge development.

For information, see the [GitLab Release Process](https://gitlab.com/gitlab-org/release/docs/tree/master#gitlab-release-process).

Both EE and CE require some add-on components called gitlab-shell and Gitaly. These components are available from the [gitlab-shell](https://gitlab.com/gitlab-org/gitlab-shell/tree/master) and [gitaly](https://gitlab.com/gitlab-org/gitaly/tree/master) repositories respectively. New versions are usually tags but staying on the master branch will give you the latest stable version. New releases are generally around the same time as GitLab CE releases with exception for informal security updates deemed critical.

## Physical office analogy

You can imagine GitLab as a physical office.

The repositories are the goods GitLab handles.
They can be stored in a warehouse.
This can be either a hard disk, or something more complex, such as a NFS filesystem;

Nginx acts like the front-desk.
Users come to Nginx and request actions to be done by workers in the office;


	The database is a series of metal file cabinets with information on:
	
	The goods in the warehouse (metadata, issues, merge requests etc);


	The users coming to the front desk (permissions)








Redis is a communication board with “cubby holes” that can contain tasks for office workers;

Sidekiq is a worker that primarily handles sending out emails.
It takes tasks from the Redis communication board;

A Unicorn worker is a worker that handles quick/mundane tasks.
They work with the communication board (Redis).
Their job description:



	check permissions by checking the user session stored in a Redis “cubby hole”;


	make tasks for Sidekiq;


	fetch stuff from the warehouse or move things around in there;







GitLab-shell is a third kind of worker that takes orders from a fax machine (SSH) instead of the front desk (HTTP).
GitLab-shell communicates with Sidekiq via the “communication board” (Redis), and asks quick questions of the Unicorn workers either directly or via the front desk.

Gitaly is a back desk that is specialized on reaching the disks to perform git operations efficiently and keep a copy of the result of costly operations. All git operations go through Gitaly.

GitLab Enterprise Edition (the application) is the collection of processes and business practices that the office is run by.

## System Layout

When referring to ~git in the pictures it means the home directory of the git user which is typically /home/git.

GitLab is primarily installed within the /home/git user home directory as git user. Within the home directory is where the gitlabhq server software resides as well as the repositories (though the repository location is configurable).

The bare repositories are located in /home/git/repositories. GitLab is a ruby on rails application so the particulars of the inner workings can be learned by studying how a ruby on rails application works.

To serve repositories over SSH there’s an add-on application called gitlab-shell which is installed in /home/git/gitlab-shell.

### Components

<img src=”https://docs.google.com/drawings/d/1fBzAyklyveF-i-2q-OHUIqDkYfjjxC4mq5shwKSZHLs/pub?w=987&amp;h=797”>

_[edit diagram (for GitLab team members only)](https://docs.google.com/drawings/d/1fBzAyklyveF-i-2q-OHUIqDkYfjjxC4mq5shwKSZHLs/edit)_

A typical install of GitLab will be on GNU/Linux. It uses Nginx or Apache as a web front end to proxypass the Unicorn web server. By default, communication between Unicorn and the front end is via a Unix domain socket but forwarding requests via TCP is also supported. The web front end accesses /home/git/gitlab/public bypassing the Unicorn server to serve static pages, uploads (e.g. avatar images or attachments), and precompiled assets. GitLab serves web pages and a [GitLab API](https://gitlab.com/gitlab-org/gitlab-ce/tree/master/doc/api) using the Unicorn web server. It uses Sidekiq as a job queue which, in turn, uses redis as a non-persistent database backend for job information, meta data, and incoming jobs.

The GitLab web app uses MySQL or PostgreSQL for persistent database information (e.g. users, permissions, issues, other meta data). GitLab stores the bare git repositories it serves in /home/git/repositories by default. It also keeps default branch and hook information with the bare repository.

When serving repositories over HTTP/HTTPS GitLab utilizes the GitLab API to resolve authorization and access as well as serving git objects.

The add-on component gitlab-shell serves repositories over SSH. It manages the SSH keys within /home/git/.ssh/authorized_keys which should not be manually edited. gitlab-shell accesses the bare repositories through Gitaly to serve git objects and communicates with redis to submit jobs to Sidekiq for GitLab to process. gitlab-shell queries the GitLab API to determine authorization and access.

Gitaly executes git operations from gitlab-shell and the GitLab web app, and provides an API to the GitLab web app to get attributes from git (e.g. title, branches, tags, other meta data), and to get blobs (e.g. diffs, commits, files).

You may also be interested in the [production architecture of GitLab.com](https://about.gitlab.com/handbook/infrastructure/production-architecture/).

### Installation Folder Summary

To summarize here’s the [directory structure of the git user home directory](../install/structure.md).

### Processes


ps aux | grep ‘^git’




GitLab has several components to operate. As a system user (i.e. any user that is not the git user) it requires a persistent database (MySQL/PostreSQL) and redis database. It also uses Apache httpd or Nginx to proxypass Unicorn. As the git user it starts Sidekiq and Unicorn (a simple ruby HTTP server running on port 8080 by default). Under the GitLab user there are normally 4 processes: unicorn_rails master (1 process), unicorn_rails worker (2 processes), sidekiq (1 process).

### Repository access

Repositories get accessed via HTTP or SSH. HTTP cloning/push/pull utilizes the GitLab API and SSH cloning is handled by gitlab-shell (previously explained).

## Troubleshooting

See the README for more information.

### Init scripts of the services

The GitLab init script starts and stops Unicorn and Sidekiq.

`
/etc/init.d/gitlab
Usage: service gitlab {start|stop|restart|reload|status}
`

Redis (key-value store/non-persistent database)

`
/etc/init.d/redis
Usage: /etc/init.d/redis {start|stop|status|restart|condrestart|try-restart}
`

SSH daemon

`
/etc/init.d/sshd
Usage: /etc/init.d/sshd {start|stop|restart|reload|force-reload|condrestart|try-restart|status}
`

Web server (one of the following)

```
/etc/init.d/httpd
Usage: httpd {start|stop|restart|condrestart|try-restart|force-reload|reload|status|fullstatus|graceful|help|configtest}

$ /etc/init.d/nginx
Usage: nginx {start|stop|restart|reload|force-reload|status|configtest}
```

Persistent database (one of the following)

```
/etc/init.d/mysqld
Usage: /etc/init.d/mysqld {start|stop|status|restart|condrestart|try-restart|reload|force-reload}

$ /etc/init.d/postgresql
Usage: /etc/init.d/postgresql {start|stop|restart|reload|force-reload|status} [version ..]
```

### Log locations of the services

gitlabhq (includes Unicorn and Sidekiq logs)


	/home/git/gitlab/log/ contains application.log, production.log, sidekiq.log, unicorn.stdout.log, githost.log and unicorn.stderr.log normally.




gitlab-shell


	/home/git/gitlab-shell/gitlab-shell.log




ssh


	/var/log/auth.log auth log (on Ubuntu).


	/var/log/secure auth log (on RHEL).




nginx


	/var/log/nginx/ contains error and access logs.




Apache httpd


	[Explanation of Apache logs](https://httpd.apache.org/docs/2.2/logs.html).


	/var/log/apache2/ contains error and output logs (on Ubuntu).


	/var/log/httpd/ contains error and output logs (on RHEL).




redis


	/var/log/redis/redis.log there are also log-rotated logs there.




PostgreSQL


	/var/log/postgresql/*




MySQL


	/var/log/mysql/*


	/var/log/mysql.*




### GitLab specific config files

GitLab has configuration files located in /home/git/gitlab/config/*. Commonly referenced config files include:


	gitlab.yml - GitLab configuration.


	unicorn.rb - Unicorn web server settings.


	database.yml - Database connection settings.




gitlab-shell has a configuration file at /home/git/gitlab-shell/config.yml.

### Maintenance Tasks

[GitLab](https://gitlab.com/gitlab-org/gitlab-ce/tree/master) provides rake tasks with which you see version information and run a quick check on your configuration to ensure it is configured properly within the application. See [maintenance rake tasks](https://gitlab.com/gitlab-org/gitlab-ce/blob/master/doc/raketasks/maintenance.md).
In a nutshell, do the following:

`
sudo -i -u git
cd gitlab
bundle exec rake gitlab:env:info RAILS_ENV=production
bundle exec rake gitlab:check RAILS_ENV=production
`

Note: It is recommended to log into the git user using sudo -i -u git or sudo su - git. While the sudo commands provided by gitlabhq work in Ubuntu they do not always work in RHEL.

## GitLab.com

We’ve also detailed [our architecture of GitLab.com](https://about.gitlab.com/handbook/engineering/infrastructure/production-architecture/) but this is probably over the top unless you have millions of users.



            

          

      

      

    

  

    
      
          
            
  # Automatic CE->EE merge

GitLab Community Edition is merged automatically every 3 hours into the
Enterprise Edition (look for the [CE Upstream merge requests]).

This merge is done automatically in a
[scheduled pipeline](https://gitlab.com/gitlab-org/release-tools/-/jobs/43201679).

## What to do if you are pinged in a CE Upstream merge request to resolve a conflict?


	Please resolve the conflict as soon as possible or ask someone else to do it






	It’s ok to resolve more conflicts than the one that you are asked to resolve.
In that case, it’s a good habit to ask for a double-check on your resolution
by someone who is familiar with the code you touched.







1. Once you have resolved your conflicts, push to the branch (no force-push)
1. Assign the merge request to the next person that has to resolve a conflict
1. If all conflicts are resolved after your resolution is pushed, keep the merge


request assigned to you: you are now responsible for the merge request to be
green





	If you need any help, you can ping the current [release managers], or ask in





the #ce-to-ee Slack channel




A few notes about the automatic CE->EE merge job:


	If a merge is already in progress, the job
[doesn’t create a new one](https://gitlab.com/gitlab-org/release-tools/-/jobs/43157687).


	If there is nothing to merge (i.e. EE is up-to-date with CE), the job doesn’t
create a new one


	The job posts messages to the #ce-to-ee Slack channel to inform what’s the
current CE->EE merge status (e.g. “A new MR has been created”, “A MR is still pending”)




[CE Upstream merge requests]: https://gitlab.com/gitlab-org/gitlab-ee/merge_requests?label_name%5B%5D=CE+upstream
[release managers]: https://about.gitlab.com/release-managers/

## Always merge EE merge requests before their CE counterparts

In order to avoid conflicts in the CE->EE merge, you should always merge the
EE version of your CE merge request first, if present.

The rationale for this is that as CE->EE merges are done automatically every few
hours, it can happen that:

1. A CE merge request that needs EE-specific changes is merged
1. The automatic CE->EE merge happens
1. Conflicts due to the CE merge request occur since its EE merge request isn’t


merged yet





	The automatic merge bot will ping someone to resolve the conflict **that are





already resolved in the EE merge request that isn’t merged yet**




That’s a waste of time, and that’s why you should merge EE merge request before
their CE counterpart.

## Avoiding CE->EE merge conflicts beforehand

To avoid the conflicts beforehand, check out the
[Guidelines for implementing Enterprise Edition features](ee_features.md).

In any case, the CI ee_compat_check job will tell you if you need to open an
EE version of your CE merge request.

### Conflicts detection in CE merge requests

For each commit (except on master), the ee_compat_check CI job tries to
detect if the current branch’s changes will conflict during the CE->EE merge.

The job reports what files are conflicting and how to setup a merge request
against EE.

#### How the job works

1. Generates the diff between your branch and current CE master
1. Tries to apply it to current EE master
1. If it applies cleanly, the job succeeds, otherwise…
1. Detects a branch with the ee- prefix or -ee suffix in EE
1. If it exists, generate the diff between this branch and current EE master
1. Tries to apply it to current EE master
1. If it applies cleanly, the job succeeds

In the case where the job fails, it means you should create an ee-<ce_branch>
or <ce_branch>-ee branch, push it to EE and open a merge request against EE
master.
At this point if you retry the failing job in your CE merge request, it should
now pass.

Notes:


	This task is not a silver-bullet, its current goal is to bring awareness to
developers that their work needs to be ported to EE.


	Community contributors shouldn’t be required to submit merge requests against
EE, but reviewers should take actions by either creating such EE merge request
or asking a GitLab developer to do it before the merge request is merged.


	If you branch is too far behind master, the job will fail. In that case you
should rebase your branch upon latest master.


	Code reviews for merge requests often consist of multiple iterations of
feedback and fixes. There is no need to update your EE MR after each
iteration. Instead, create an EE MR as soon as you see the
ee_compat_check job failing. After you receive the final approval
from a Maintainer (but before the CE MR is merged) update the EE MR.
This helps to identify significant conflicts sooner, but also reduces the
number of times you have to resolve conflicts.


	Please remember to
[always have your EE merge request merged before the CE version](#always-merge-ee-merge-requests-before-their-ce-counterparts).


	You can use [git rerere](https://git-scm.com/docs/git-rerere)
to avoid resolving the same conflicts multiple times.




### Cherry-picking from CE to EE

For avoiding merge conflicts, we use a method of creating equivalent branches
for CE and EE. If the ee-compat-check job fails, this process is required.

This method only requires that you have cloned both CE and EE into your computer.
If you don’t have them yet, please go ahead and clone them:


	Clone CE repo: git clone git@gitlab.com:gitlab-org/gitlab-ce.git


	Clone EE repo: git clone git@gitlab.com:gitlab-org/gitlab-ee.git




And the only additional setup we need is to add CE as remote of EE and vice-versa:


	Open two terminal windows, one in CE, and another one in EE:
- In EE: git remote add ce git@gitlab.com:gitlab-org/gitlab-ce.git
- In CE: git remote add ee git@gitlab.com:gitlab-org/gitlab-ee.git




That’s all setup we need, so that we can cherry-pick a commit from CE to EE, and
from EE to CE.

Now, every time you create an MR for CE and EE:

1. Open two terminal windows, one in CE, and another one in EE
1. In the CE terminal:


1. Create the CE branch, e.g., branch-example
1. Make your changes and push a commit (commit A)
1. Create the CE merge request in GitLab





	In the EE terminal:





1. Create the EE-equivalent branch ending with -ee, e.g.,
git checkout -b branch-example-ee
1. Fetch the CE branch: git fetch ce branch-example
1. Cherry-pick the commit A: git cherry-pick commit-A-SHA
1. If Git prompts you to fix the conflicts, do a git status
to check which files contain conflicts, fix them, save the files
1. Add the changes with git add . but DO NOT commit them
1. Continue cherry-picking: git cherry-pick –continue
1. Push to EE: git push origin branch-example-ee




1. Create the EE-equivalent MR and link to the CE MR from the
description “Ports [CE-MR-LINK] to EE”
1. Once all the jobs are passing in both CE and EE, you’ve addressed the
feedback from your own team, and got them approved, the merge requests can be merged.
1. When both MRs are ready, the EE merge request will be merged first, and the
CE-equivalent will be merged next.

Important notes:


	The commit SHA can be easily found from the GitLab UI. From a merge request,




open the tab Commits and click the copy icon to copy the commit SHA.
- To cherry-pick a commit range, such as [A > B > C > D] use:


`shell
git cherry-pick "oldest-commit-SHA^..newest-commit-SHA"
`

For example, suppose the commit A is the oldest, and its SHA is 4f5e4018c09ed797fdf446b3752f82e46f5af502,
and the commit D is the newest, and its SHA is 80e1c9e56783bd57bd7129828ec20b252ebc0538.
The cherry-pick command will be:

`shell
git cherry-pick "4f5e4018c09ed797fdf446b3752f82e46f5af502^..80e1c9e56783bd57bd7129828ec20b252ebc0538"
`





	To cherry-pick a merge commit, use the flag -m 1. For example, suppose that the




merge commit SHA is 138f5e2f20289bb376caffa0303adb0cac859ce1:


`shell
git cherry-pick -m 1 138f5e2f20289bb376caffa0303adb0cac859ce1
`





	To cherry-pick multiple commits, such as B and D in a range [A > B > C > D], use:


`shell
git cherry-pick commmit-B-SHA commit-D-SHA
`

For example, suppose commit B SHA = 4f5e4018c09ed797fdf446b3752f82e46f5af502,
and the commit D SHA = 80e1c9e56783bd57bd7129828ec20b252ebc0538.
The cherry-pick command will be:

`shell
git cherry-pick 4f5e4018c09ed797fdf446b3752f82e46f5af502 80e1c9e56783bd57bd7129828ec20b252ebc0538
`

This case is particularly useful when you have a merge commit in a sequence of
commits and you want to cherry-pick all but the merge commit.






	If you push more commits to the CE branch, you can safely repeat the procedure




to cherry-pick them to the EE-equivalent branch. You can do that as many times as
necessary, using the same CE and EE branches.
- If you submitted the merge request to the CE repo and the ee-compat-check job passed,
you are not required to submit the EE-equivalent MR, but it’s still recommended. If the
job failed, you are required to submit the EE MR so that you can fix the conflicts in EE
before merging your changes into CE.

—

[Return to Development documentation](README.md)



            

          

      

      

    

  

    
      
          
            
  # Background Migrations

Background migrations can be used to perform data migrations that would
otherwise take a very long time (hours, days, years, etc) to complete. For
example, you can use background migrations to migrate data so that instead of
storing data in a single JSON column the data is stored in a separate table.

If the database cluster is considered to be in an unhealthy state, background
migrations automatically reschedule themselves for a later point in time.

## When To Use Background Migrations

>**Note:**
When adding background migrations _you must_ make sure they are announced in the
monthly release post along with an estimate of how long it will take to complete
the migrations.

In the vast majority of cases you will want to use a regular Rails migration
instead. Background migrations should _only_ be used when migrating _data_ in
tables that have so many rows this process would take hours when performed in a
regular Rails migration.

Background migrations _may not_ be used to perform schema migrations, they
should only be used for data migrations.

Some examples where background migrations can be useful:


	Migrating events from one table to multiple separate tables.


	Populating one column based on JSON stored in another column.


	Migrating data that depends on the output of external services (e.g. an API).




## Isolation

Background migrations must be isolated and can not use application code (e.g.
models defined in app/models). Since these migrations can take a long time to
run it’s possible for new versions to be deployed while they are still running.

It’s also possible for different migrations to be executed at the same time.
This means that different background migrations should not migrate data in a
way that would cause conflicts.

## Idempotence

Background migrations are executed in a context of a Sidekiq process.
Usual Sidekiq rules apply, especially the rule that jobs should be small
and idempotent.

See [Sidekiq best practices guidelines](https://github.com/mperham/sidekiq/wiki/Best-Practices)
for more details.

Make sure that in case that your migration job is going to be retried data
integrity is guaranteed.

## How It Works

Background migrations are simple classes that define a perform method. A
Sidekiq worker will then execute such a class, passing any arguments to it. All
migration classes must be defined in the namespace
Gitlab::BackgroundMigration, the files should be placed in the directory
lib/gitlab/background_migration/.

## Scheduling

Scheduling a migration can be done in either a regular migration or a
post-deployment migration. To do so, simply use the following code while
replacing the class name and arguments with whatever values are necessary for
your migration:

`ruby
BackgroundMigrationWorker.perform_async('BackgroundMigrationClassName', [arg1, arg2, ...])
`

Usually it’s better to enqueue jobs in bulk, for this you can use
BackgroundMigrationWorker.bulk_perform_async:

```ruby
BackgroundMigrationWorker.bulk_perform_async(

	[[‘BackgroundMigrationClassName’, [1]],
	[‘BackgroundMigrationClassName’, [2]]]

)

You’ll also need to make sure that newly created data is either migrated, or
saved in both the old and new version upon creation. For complex and time
consuming migrations it’s best to schedule a background job using an
after_create hook so this doesn’t affect response timings. The same applies to
updates. Removals in turn can be handled by simply defining foreign keys with
cascading deletes.

If you would like to schedule jobs in bulk with a delay, you can use
BackgroundMigrationWorker.bulk_perform_in:

```ruby
jobs = [[‘BackgroundMigrationClassName’, [1]],


[‘BackgroundMigrationClassName’, [2]]]




BackgroundMigrationWorker.bulk_perform_in(5.minutes, jobs)
```

Rescheduling background migrations

If one of the background migrations contains a bug that is fixed in a patch
release, the background migration needs to be rescheduled so the migration would
be repeated on systems that already performed the initial migration.

When you reschedule the background migration, make sure to turn the original
scheduling into a no-op by clearing up the #up and #down methods of the
migration performing the scheduling. Otherwise the background migration would be
scheduled multiple times on systems that are upgrading multiple patch releases at
once.

Cleaning Up

>**Note:**
Cleaning up any remaining background migrations _must_ be done in either a major
or minor release, you _must not_ do this in a patch release.

Because background migrations can take a long time you can’t immediately clean
things up after scheduling them. For example, you can’t drop a column that’s
used in the migration process as this would cause jobs to fail. This means that
you’ll need to add a separate _post deployment_ migration in a future release
that finishes any remaining jobs before cleaning things up (e.g. removing a
column).

As an example, say you want to migrate the data from column foo (containing a
big JSON blob) to column bar (containing a string). The process for this would
roughly be as follows:

	Release A:

1. Create a migration class that perform the migration for a row with a given ID.
1. Deploy the code for this release, this should include some code that will

schedule jobs for newly created data (e.g. using an after_create hook).

	Schedule jobs for all existing rows in a post-deployment migration. It’s
possible some newly created rows may be scheduled twice so your migration
should take care of this.

	Release B:

	Deploy code so that the application starts using the new column and stops
scheduling jobs for newly created data.

	In a post-deployment migration you’ll need to ensure no jobs remain.
1. Use Gitlab::BackgroundMigration.steal to process any remaining

jobs in Sidekiq.

	Reschedule the migration to be run directly (i.e. not through Sidekiq)
on any rows that weren’t migrated by Sidekiq. This can happen if, for
instance, Sidekiq received a SIGKILL, or if a particular batch failed
enough times to be marked as dead.

	Remove the old column.

This may also require a bump to the [import/export version][import-export], if
importing a project from a prior version of GitLab requires the data to be in
the new format.

Example

To explain all this, let’s use the following example: the table services has a
field called properties which is stored in JSON. For all rows you want to
extract the url key from this JSON object and store it in the services.url
column. There are millions of services and parsing JSON is slow, thus you can’t
do this in a regular migration.

To do this using a background migration we’ll start with defining our migration
class:

```ruby
class Gitlab::BackgroundMigration::ExtractServicesUrl



	class Service < ActiveRecord::Base
	self.table_name = ‘services’





end


	def perform(service_id)
	# A row may be removed between scheduling and starting of a job, thus we
# need to make sure the data is still present before doing any work.
service = Service.select(:properties).find_by(id: service_id)

return unless service


	begin
	json = JSON.load(service.properties)



	rescue JSON::ParserError
	# If the JSON is invalid we don’t want to keep the job around forever,
# instead we’ll just leave the “url” field to whatever the default value
# is.
return





end

service.update(url: json[‘url’]) if json[‘url’]





end







end

Next we’ll need to adjust our code so we schedule the above migration for newly
created and updated services. We can do this using something along the lines of
the following:

```ruby
class Service < ActiveRecord::Base

after_commit :schedule_service_migration, on: :update
after_commit :schedule_service_migration, on: :create

	def schedule_service_migration
	BackgroundMigrationWorker.perform_async(‘ExtractServicesUrl’, [id])

end

end

We’re using after_commit here to ensure the Sidekiq job is not scheduled
before the transaction completes as doing so can lead to race conditions where
the changes are not yet visible to the worker.

Next we’ll need a post-deployment migration that schedules the migration for
existing data. Since we’re dealing with a lot of rows we’ll schedule jobs in
batches instead of doing this one by one:

```ruby
class ScheduleExtractServicesUrl < ActiveRecord::Migration


disable_ddl_transaction!


	class Service < ActiveRecord::Base
	self.table_name = ‘services’





end


	def up
	
	Service.select(:id).in_batches do |relation|
	
	jobs = relation.pluck(:id).map do |id|
	[‘ExtractServicesUrl’, [id]]





end

BackgroundMigrationWorker.bulk_perform_async(jobs)





end





end

def down
end







end

Once deployed our application will continue using the data as before but at the
same time will ensure that both existing and new data is migrated.

In the next release we can remove the after_commit hooks and related code. We
will also need to add a post-deployment migration that consumes any remaining
jobs and manually run on any un-migrated rows. Such a migration would look like
this:

```ruby
class ConsumeRemainingExtractServicesUrlJobs < ActiveRecord::Migration

disable_ddl_transaction!

	class Service < ActiveRecord::Base
	include ::EachBatch

self.table_name = ‘services’

end

	def up
	# This must be included
Gitlab::BackgroundMigration.steal(‘ExtractServicesUrl’)

This should be included, but can be skipped - see below
Service.where(url: nil).each_batch(of: 50) do |batch|

range = batch.pluck(‘MIN(id)’, ‘MAX(id)’).first

Gitlab::BackgroundMigration::ExtractServicesUrl.new.perform(*range)

end

end

def down
end

end

The final step runs for any un-migrated rows after all of the jobs have been
processed. This is in case a Sidekiq process running the background migrations
received SIGKILL, leading to the jobs being lost. (See
[more reliable Sidekiq queue][reliable-sidekiq] for more information.)

If the application does not depend on the data being 100% migrated (for
instance, the data is advisory, and not mission-critical), then this final step
can be skipped.

This migration will then process any jobs for the ExtractServicesUrl migration
and continue once all jobs have been processed. Once done you can safely remove
the services.properties column.

Testing

It is required to write tests for background migrations’ scheduling migration
(either a regular migration or a post deployment migration), background
migration itself and a cleanup migration. You can use the :migration RSpec
tag when testing a regular / post deployment migration.
See [README][migrations-readme].

When you do that, keep in mind that before and after RSpec hooks are going
to migrate you database down and up, which can result in other background
migrations being called. That means that using spy test doubles with
have_received is encouraged, instead of using regular test doubles, because
your expectations defined in a it block can conflict with what is being
called in RSpec hooks. See [gitlab-org/gitlab-ce#35351][issue-rspec-hooks]
for more details.

Best practices

1. Make sure to know how much data you’re dealing with
1. Make sure that background migration jobs are idempotent.
1. Make sure that tests you write are not false positives.
1. Make sure that if the data being migrated is critical and cannot be lost, the

clean-up migration also checks the final state of the data before completing.

1. Make sure to know how much time it’ll take to run all scheduled migrations
1. When migrating many columns, make sure it won’t generate too many

dead tuples in the process (you may need to directly query the number of dead tuples
and adjust the scheduling according to this piece of data)

	Make sure to discuss the numbers with a database specialist, the migration may add
more pressure on DB than you expect (measure on staging,
or ask someone to measure on production)

[migrations-readme]: https://gitlab.com/gitlab-org/gitlab-ce/blob/master/spec/migrations/README.md
[issue-rspec-hooks]: https://gitlab.com/gitlab-org/gitlab-ce/issues/35351
[reliable-sidekiq]: https://gitlab.com/gitlab-org/gitlab-ce/issues/36791
[import-export]: ../user/project/settings/import_export.md

 # Building a package for testing

While developing a new feature or modifying an existing one, it is helpful if an
installable package (or a docker image) containing those changes is available
for testing. For this very purpose, a manual job is provided in the GitLab CI/CD
pipeline that can be used to trigger a pipeline in the omnibus-gitlab repository
that will create
1. A deb package for Ubuntu 16.04, available as a build artifact, and
2. A docker image, which is pushed to [Omnibus GitLab’s container
registry](https://gitlab.com/gitlab-org/omnibus-gitlab/container_registry)
(images titled gitlab-ce and gitlab-ee respectively and image tag is the
commit which triggered the pipeline).

When you push a commit to either the gitlab-ce or gitlab-ee project, the
pipeline for that commit will have a build-package manual action you can
trigger.

![Manual actions](img/trigger_ss1.png)

![Build package manual action](img/trigger_ss2.png)

Specifying versions of components

If you want to create a package from a specific branch, commit or tag of any of
the GitLab components (like GitLab Workhorse, Gitaly, GitLab Pages, etc.), you
can specify the branch name, commit sha or tag in the component’s respective
*_VERSION file. For example, if you want to build a package that uses the
branch 0-1-stable, modify the content of GITALY_SERVER_VERSION to
0-1-stable and push the commit. This will create a manual job that can be
used to trigger the build.

Specifying the branch in omnibus-gitlab repository

In scenarios where a configuration change is to be introduced and omnibus-gitlab
repository already has the necessary changes in a specific branch, you can build
a package against that branch through an environment variable named
OMNIBUS_BRANCH. To do this, specify that environment variable with the name of
the branch as value in .gitlab-ci.yml and push a commit. This will create a
manual job that can be used to trigger the build.

 # Changelog entries

This guide contains instructions for when and how to generate a changelog entry
file, as well as information and history about our changelog process.

Overview

Each bullet point, or entry, in our [CHANGELOG.md][changelog.md] file is
generated from a single data file in the [changelogs/unreleased/][unreleased]
(or corresponding EE) folder. The file is expected to be a [YAML] file in the
following format:

`yaml

title: "Change[log]s"
merge_request: 1972
author: Black Sabbath
type: added
`

The merge_request value is a reference to a merge request that adds this
entry, and the author key is used to give attribution to community
contributors. Both are optional.
The type field maps the category of the change,
valid options are: added, fixed, changed, deprecated, removed, security, performance, other. Type field is mandatory.

Community contributors and core team members are encouraged to add their name to
the author field. GitLab team members should not.

[changelog.md]: https://gitlab.com/gitlab-org/gitlab-ce/blob/master/CHANGELOG.md
[unreleased]: https://gitlab.com/gitlab-org/gitlab-ce/tree/master/changelogs/
[YAML]: https://en.wikipedia.org/wiki/YAML

What warrants a changelog entry?

	Any user-facing change should have a changelog entry. Example: “GitLab now
uses system fonts for all text.”

	A fix for a regression introduced and then fixed in the same release (i.e.,
fixing a bug introduced during a monthly release candidate) should not
have a changelog entry.

	Any developer-facing change (e.g., refactoring, technical debt remediation,
test suite changes) should not have a changelog entry. Example: “Reduce
database records created during Cycle Analytics model spec.”

	Any contribution from a community member, no matter how small, may have
a changelog entry regardless of these guidelines if the contributor wants one.
Example: “Fixed a typo on the search results page. (Jane Smith)”

	Performance improvements should have a changelog entry.

	Any change that introduces a database migration must have a
changelog entry.

Writing good changelog entries

A good changelog entry should be descriptive and concise. It should explain the
change to a reader who has _zero context_ about the change. If you have trouble
making it both concise and descriptive, err on the side of descriptive.

	Bad: Go to a project order.

	Good: Show a user’s starred projects at the top of the “Go to project”
dropdown.

The first example provides no context of where the change was made, or why, or
how it benefits the user.

	Bad: Copy [some text] to clipboard.

	Good: Update the “Copy to clipboard” tooltip to indicate what’s being
copied.

Again, the first example is too vague and provides no context.

	Bad: Fixes and Improves CSS and HTML problems in mini pipeline graph and
builds dropdown.

	Good: Fix tooltips and hover states in mini pipeline graph and builds
dropdown.

The first example is too focused on implementation details. The user doesn’t
care that we changed CSS and HTML, they care about the _end result_ of those
changes.

	Bad: Strip out nil`s in the Array of Commit objects returned from
`find_commits_by_message_with_elastic

	Good: Fix 500 errors caused by elasticsearch results referencing
garbage-collected commits

The first example focuses on _how_ we fixed something, not on _what_ it fixes.
The rewritten version clearly describes the _end benefit_ to the user (fewer 500
errors), and _when_ (searching commits with Elasticsearch).

Use your best judgement and try to put yourself in the mindset of someone
reading the compiled changelog. Does this entry add value? Does it offer context
about _where_ and _why_ the change was made?

How to generate a changelog entry

A bin/changelog script is available to generate the changelog entry file
automatically.

Its simplest usage is to provide the value for title:

`text
$ bin/changelog 'Hey DZ, I added a feature to GitLab!'
`

At this point the script would ask you to select the category of the change (mapped to the type field in the entry):

`text
>> Please specify the category of your change:
1. New feature
2. Bug fix
3. Feature change
4. New deprecation
5. Feature removal
6. Security fix
7. Other
`

The entry filename is based on the name of the current Git branch. If you run
the command above on a branch called feature/hey-dz, it will generate a
changelogs/unreleased/feature-hey-dz.yml file.

The command will output the path of the generated file and its contents:

`text
create changelogs/unreleased/my-feature.yml

title: Hey DZ, I added a feature to GitLab!
merge_request:
author:
type:
`
If you’re working on the GitLab EE repository, the entry will be added to
ee/changelogs/unreleased/ instead.

Arguments

Argument | Shorthand | Purpose |

—————– | ——— | ———————————————————————————————————- |

[–amend] | | Amend the previous commit |

[–force] | -f | Overwrite an existing entry |

[–merge-request] | -m | Set merge request ID |

[–dry-run] | -n | Don’t actually write anything, just print |

[–git-username] | -u | Use Git user.name configuration as the author |

[–type] | -t | The category of the change, valid options are: added, fixed, changed, deprecated, removed, security, other |

[–help] | -h | Print help message |

[–amend]: #-amend
[–force]: #-force-or-f
[–merge-request]: #-merge-request-or-m
[–dry-run]: #-dry-run-or-n
[–git-username]: #-git-username-or-u
[–type]: #-type-or-t
[–help]: #-help

–amend

You can pass the `–amend` argument to automatically stage the generated
file and amend it to the previous commit.

If you use `–amend` and don’t provide a title, it will automatically use
the “subject” of the previous commit, which is the first line of the commit
message:

```text
$ git show –oneline
ab88683 Added an awesome new feature to GitLab

$ bin/changelog –amend
create changelogs/unreleased/feature-hey-dz.yml
—
title: Added an awesome new feature to GitLab
merge_request:
author:
type:
```

–force or -f

Use `–force` or `-f` to overwrite an existing changelog entry if it
already exists.

``text
$ bin/changelog ‘Hey DZ, I added a feature to GitLab!’
error changelogs/unreleased/feature-hey-dz.yml already exists! Use `–force to overwrite.

$ bin/changelog ‘Hey DZ, I added a feature to GitLab!’ –force
create changelogs/unreleased/feature-hey-dz.yml
—
title: Hey DZ, I added a feature to GitLab!
merge_request: 1983
author:
type:
```

##### –merge-request or -m

Use the `–merge-request` or `-m` argument to provide the
merge_request value:

`text
$ bin/changelog 'Hey DZ, I added a feature to GitLab!' -m 1983
create changelogs/unreleased/feature-hey-dz.yml
---
title: Hey DZ, I added a feature to GitLab!
merge_request: 1983
author:
type:
`

##### –dry-run or -n

Use the `–dry-run` or `-n` argument to prevent actually writing or
committing anything:

```text
$ bin/changelog –amend –dry-run
create changelogs/unreleased/feature-hey-dz.yml
—
title: Added an awesome new feature to GitLab
merge_request:
author:
type:

$ ls changelogs/unreleased/
```

##### –git-username or -u

Use the `–git-username` or `-u` argument to automatically fill in the
author value with your configured Git user.name value:

```text
$ git config user.name
Jane Doe

$ bin/changelog -u ‘Hey DZ, I added a feature to GitLab!’
create changelogs/unreleased/feature-hey-dz.yml
—
title: Hey DZ, I added a feature to GitLab!
merge_request:
author: Jane Doe
type:
```

##### –type or -t

Use the `–type` or `-t` argument to provide the type value:

`text
$ bin/changelog 'Hey DZ, I added a feature to GitLab!' -t added
create changelogs/unreleased/feature-hey-dz.yml
---
title: Hey DZ, I added a feature to GitLab!
merge_request:
author:
type: added
`

### History and Reasoning

Our CHANGELOG file was previously updated manually by each contributor that
felt their change warranted an entry. When two merge requests added their own
entries at the same spot in the list, it created a merge conflict in one as soon
as the other was merged. When we had dozens of merge requests fighting for the
same changelog entry location, this quickly became a major source of merge
conflicts and delays in development.

This led us to a [boring solution] of “add your entry in a random location in
the list.” This actually worked pretty well as we got further along in each
monthly release cycle, but at the start of a new cycle, when a new version
section was added and there were fewer places to “randomly” add an entry, the
conflicts became a problem again until we had a sufficient number of entries.

On top of all this, it created an entirely different headache for [release managers]
when they cherry-picked a commit into a stable branch for a patch release. If
the commit included an entry in the CHANGELOG, it would include the entire
changelog for the latest version in master, so the release manager would have
to manually remove the later entries. They often would have had to do this
multiple times per patch release. This was compounded when we had to release
multiple patches at once due to a security issue.

We needed to automate all of this manual work. So we [started brainstorming].
After much discussion we settled on the current solution of one file per entry,
and then compiling the entries into the overall CHANGELOG.md file during the
[release process].

[boring solution]: https://about.gitlab.com/handbook/values/#boring-solutions
[release managers]: https://gitlab.com/gitlab-org/release/docs/blob/master/quickstart/release-manager.md
[started brainstorming]: https://gitlab.com/gitlab-org/gitlab-ce/issues/17826
[release process]: https://gitlab.com/gitlab-org/release-tools

—

[Return to Development documentation](README.md)



            

          

      

      

    

  

    
      
          
            
  # Code Review Guidelines

## Getting your merge request reviewed, approved, and merged

There are a few rules to get your merge request accepted:


	Your merge request should only be merged by a [maintainer][team].






	If your merge request includes only backend changes [^1], it must be





approved by a [backend maintainer][projects].





	If your merge request includes only frontend changes [^1], it must be





approved by a [frontend maintainer][projects].





	If your merge request includes UX changes [^1], it must





be approved by a [UX team member][team].





	If your merge request includes adding a new JavaScript library [^1], it must be





approved by a [frontend lead][team].





	If your merge request includes adding a new UI/UX paradigm [^1], it must be





approved by a [UX lead][team].





	If your merge request includes frontend and backend changes [^1], it must





be approved by a [frontend and a backend maintainer][projects].





	If your merge request includes UX and frontend changes [^1], it must





be approved by a [UX team member and a frontend maintainer][team].





	If your merge request includes UX, frontend and backend changes [^1], it must





be approved by a [UX team member, a frontend and a backend maintainer][team].





	If your merge request includes a new dependency or a filesystem change, it must





be approved by a [Distribution team member][team]. See how to work with the [Distribution team for more details.](https://about.gitlab.com/handbook/engineering/dev-backend/distribution/)








	To lower the amount of merge requests maintainers need to review, you can





ask or assign any [reviewers][projects] for a first review.
1. If you need some guidance (e.g. it’s your first merge request), feel free


to ask one of the [Merge request coaches][team].





	The reviewer will assign the merge request to a maintainer once the





reviewer is satisfied with the state of the merge request.








	Keep in mind that maintainers are also going to perform a final code review.
The ideal scenario is that the reviewer has already addressed any concerns
the maintainer would have found, and the maintainer only has to perform the
merge, but be prepared for further review comments.




For more guidance, see [CONTRIBUTING.md](https://gitlab.com/gitlab-org/gitlab-ce/blob/master/CONTRIBUTING.md).

## Best practices

This guide contains advice and best practices for performing code review, and
having your code reviewed.

All merge requests for GitLab CE and EE, whether written by a GitLab team member
or a volunteer contributor, must go through a code review process to ensure the
code is effective, understandable, and maintainable.

Any developer can, and is encouraged to, perform code review on merge requests
of colleagues and contributors. However, the final decision to accept a merge
request is up to one the project’s maintainers, denoted on the
[engineering projects][projects].

### Everyone


	Accept that many programming decisions are opinions. Discuss tradeoffs, which
you prefer, and reach a resolution quickly.


	Ask questions; don’t make demands. (“What do you think about naming this
:user_id?”)


	Ask for clarification. (“I didn’t understand. Can you clarify?”)


	Avoid selective ownership of code. (“mine”, “not mine”, “yours”)


	Avoid using terms that could be seen as referring to personal traits. (“dumb”,
“stupid”). Assume everyone is attractive, intelligent, and well-meaning.


	Be explicit. Remember people don’t always understand your intentions online.


	Be humble. (“I’m not sure - let’s look it up.”)


	Don’t use hyperbole. (“always”, “never”, “endlessly”, “nothing”)


	Be careful about the use of sarcasm. Everything we do is public; what seems
like good-natured ribbing to you and a long-time colleague might come off as
mean and unwelcoming to a person new to the project.


	Consider one-on-one chats or video calls if there are too many “I didn’t
understand” or “Alternative solution:” comments. Post a follow-up comment
summarizing one-on-one discussion.


	If you ask a question to a specific person, always start the comment by
mentioning them; this will ensure they see it if their notification level is
set to “mentioned” and other people will understand they don’t have to respond.




### Having your code reviewed

Please keep in mind that code review is a process that can take multiple
iterations, and reviewers may spot things later that they may not have seen the
first time.


	The first reviewer of your code is _you_. Before you perform that first push
of your shiny new branch, read through the entire diff. Does it make sense?
Did you include something unrelated to the overall purpose of the changes? Did
you forget to remove any debugging code?


	Be grateful for the reviewer’s suggestions. (“Good call. I’ll make that
change.”)


	Don’t take it personally. The review is of the code, not of you.


	Explain why the code exists. (“It’s like that because of these reasons. Would
it be more clear if I rename this class/file/method/variable?”)


	Extract unrelated changes and refactorings into future merge requests/issues.


	Seek to understand the reviewer’s perspective.


	Try to respond to every comment.


	Let the reviewer select the “Resolve discussion” buttons.


	Push commits based on earlier rounds of feedback as isolated commits to the
branch. Do not squash until the branch is ready to merge. Reviewers should be
able to read individual updates based on their earlier feedback.




### Reviewing code

Understand why the change is necessary (fixes a bug, improves the user
experience, refactors the existing code). Then:


	Try to be thorough in your reviews to reduce the number of iterations.


	Communicate which ideas you feel strongly about and those you don’t.


	Identify ways to simplify the code while still solving the problem.


	Offer alternative implementations, but assume the author already considered
them. (“What do you think about using a custom validator here?”)


	Seek to understand the author’s perspective.


	If you don’t understand a piece of code, _say so_. There’s a good chance
someone else would be confused by it as well.


	After a round of line notes, it can be helpful to post a summary note such as
“LGTM :thumbsup:”, or “Just a couple things to address.”


	Assign the merge request to the author if changes are required following your
review.


	Set the milestone before merging a merge request.


	Avoid accepting a merge request before the job succeeds. Of course, “Merge
When Pipeline Succeeds” (MWPS) is fine.


	If you set the MR to “Merge When Pipeline Succeeds”, you should take over
subsequent revisions for anything that would be spotted after that.


	Consider using the [Squash and
merge][squash-and-merge] feature when the merge request has a lot of commits.




[squash-and-merge]: https://docs.gitlab.com/ee/user/project/merge_requests/squash_and_merge.html#squash-and-merge

### The right balance

One of the most difficult things during code review is finding the right
balance in how deep the reviewer can interfere with the code created by a
reviewee.


	Learning how to find the right balance takes time; that is why we have
reviewers that become maintainers after some time spent on reviewing merge
requests.


	Finding bugs and improving code style is important, but thinking about good
design is important as well. Building abstractions and good design is what
makes it possible to hide complexity and makes future changes easier.


	Asking the reviewee to change the design sometimes means the complete rewrite
of the contributed code. It’s usually a good idea to ask another maintainer or
reviewer before doing it, but have the courage to do it when you believe it is
important.


	There is a difference in doing things right and doing things right now.
Ideally, we should do the former, but in the real world we need the latter as
well. A good example is a security fix which should be released as soon as
possible. Asking the reviewee to do the major refactoring in the merge
request that is an urgent fix should be avoided.


	Doing things well today is usually better than doing something perfectly
tomorrow. Shipping a kludge today is usually worse than doing something well
tomorrow. When you are not able to find the right balance, ask other people
about their opinion.




### GitLab-specific concerns

GitLab is used in a lot of places. Many users use
our [Omnibus packages](https://about.gitlab.com/installation/), but some use
the [Docker images](https://docs.gitlab.com/omnibus/docker/), some are
[installed from source](https://docs.gitlab.com/ce/install/installation.html),
and there are other installation methods available. GitLab.com itself is a large
Enterprise Edition instance. This has some implications:


	Query changes should be tested to ensure that they don’t result in worse
performance at the scale of GitLab.com:






	Generating large quantities of data locally can help.


	Asking for query plans from GitLab.com is the most reliable way to validate
these.








	Database migrations must be:






	Reversible.


	Performant at the scale of GitLab.com - ask a maintainer to test the
migration on the staging environment if you aren’t sure.


	Categorised correctly:
- Regular migrations run before the new code is running on the instance.
- [Post-deployment migrations](post_deployment_migrations.md) run _after_


the new code is deployed, when the instance is configured to do that.





	[Background migrations](background_migrations.md) run in Sidekiq, and
should only be done for migrations that would take an extreme amount of
time at GitLab.com scale.












	Sidekiq workers
[cannot change in a backwards-incompatible way](sidekiq_style_guide.md#removing-or-renaming-queues):






	Sidekiq queues are not drained before a deploy happens, so there will be
workers in the queue from the previous version of GitLab.


	If you need to change a method signature, try to do so across two releases,
and accept both the old and new arguments in the first of those.


	Similarly, if you need to remove a worker, stop it from being scheduled in
one release, then remove it in the next. This will allow existing jobs to
execute.


	Don’t forget, not every instance will upgrade to every intermediate version
(some people may go from X.1.0 to X.10.0, or even try bigger upgrades!), so
try to be liberal in accepting the old format if it is cheap to do so.








	Cached values may persist across releases. If you are changing the type a
cached value returns (say, from a string or nil to an array), change the
cache key at the same time.


	Settings should be added as a
[last resort](https://about.gitlab.com/handbook/product/#convention-over-configuration).
If you’re adding a new setting in gitlab.yml:






	Try to avoid that, and add to ApplicationSetting instead.


	Ensure that it is also
[added to Omnibus](https://docs.gitlab.com/omnibus/settings/gitlab.yml.html#adding-a-new-setting-to-gitlab-yml).








	Filesystem access can be slow, so try to avoid
[shared files](shared_files.md) when an alternative solution is available.




### Credits

Largely based on the [thoughtbot code review guide].

[thoughtbot code review guide]: https://github.com/thoughtbot/guides/tree/master/code-review

—

[Return to Development documentation](README.md)

[projects]: https://about.gitlab.com/handbook/engineering/projects/
[team]: https://about.gitlab.com/team/
[build handbook]: https://about.gitlab.com/handbook/build/handbook/build#how-to-work-with-build
[^1]: Please note that specs other than JavaScript specs are considered backend code.



            

          

      

      

    

  

    
      
          
            
  # Database Debugging and Troubleshooting

This section is to help give some copy-pasta you can use as a reference when you
run into some head-banging database problems.

An easy first step is to search for your error in Slack or google “GitLab <my error>”.

—

Available RAILS_ENV



	production (generally not for your main GDK db, but you may need this for e.g. omnibus)


	development (this is your main GDK db)


	test (used for tests like rspec)







## Nuke everything and start over

If you just want to delete everything and start over with an empty DB (~1 minute):



	bundle exec rake db:reset RAILS_ENV=development







If you just want to delete everything and start over with dummy data (~40 minutes). This also does db:reset and runs DB-specific migrations:



	bundle exec rake dev:setup RAILS_ENV=development







If your test DB is giving you problems, it is safe to nuke it because it doesn’t contain important data:



	bundle exec rake db:reset RAILS_ENV=test







## Migration wrangling



	bundle exec rake db:migrate RAILS_ENV=development: Execute any pending migrations that you may have picked up from a MR


	bundle exec rake db:migrate:status RAILS_ENV=development: Check if all migrations are up or down


	bundle exec rake db:migrate:down VERSION=20170926203418 RAILS_ENV=development: Tear down a migration


	bundle exec rake db:migrate:up VERSION=20170926203418 RAILS_ENV=development: Setup a migration


	bundle exec rake db:migrate:redo VERSION=20170926203418 RAILS_ENV=development: Re-run a specific migration







## Manually access the database

Access the database via one of these commands (they all get you to the same place)

`
gdk psql -d gitlabhq_development
bundle exec rails dbconsole RAILS_ENV=development
bundle exec rails db RAILS_ENV=development
`



	q: Quit/exit


	dt: List all tables


	d+ issues: List columns for issues table


	CREATE TABLE board_labels();: Create a table called board_labels


	SELECT * FROM schema_migrations WHERE version = ‘20170926203418’;: Check if a migration was run


	DELETE FROM schema_migrations WHERE version = ‘20170926203418’;: Manually remove a migration







## FAQ

### ActiveRecord::PendingMigrationError with Spring

When running specs with the [Spring preloader](./rake_tasks.md#speed-up-tests-rake-tasks-and-migrations),
the test database can get into a corrupted state. Trying to run the migration or
dropping/resetting the test database has no effect.

```sh
$ bundle exec spring rspec some_spec.rb
…
Failure/Error: ActiveRecord::Migration.maintain_test_schema!

ActiveRecord::PendingMigrationError:

Migrations are pending. To resolve this issue, run:

bin/rake db:migrate RAILS_ENV=test

~/.rvm/gems/ruby-2.3.3/gems/activerecord-4.2.10/lib/active_record/migration.rb:392:in check_pending!’
…
0 examples, 0 failures, 1 error occurred outside of examples
``

To resolve, you can kill the spring server and app that lives between spec runs.

`sh
$ ps aux | grep spring
eric 87304 1.3 2.9 3080836 482596 ?? Ss 10:12AM 4:08.36 spring app | gitlab | started 6 hours ago | test mode
eric 37709 0.0 0.0 2518640 7524 s006 S Wed11AM 0:00.79 spring server | gitlab | started 29 hours ago
$ kill 87304
$ kill 37709
`

 # Merge Request Checklist

When creating a merge request that performs database related changes (schema
changes, adjusting queries to optimise performance, etc) you should use the
merge request template called “Database Changes”. This template contains a
checklist of steps to follow to make sure the changes are up to snuff.

To use the checklist, create a new merge request and click on the “Choose a
template” dropdown, then click “Database Changes”.

An example of this checklist can be found at
https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/12463.

The source code of the checklist can be found in at
https://gitlab.com/gitlab-org/gitlab-ce/blob/master/.gitlab/merge_request_templates/Database%20Changes.md

 # Importing a database dump into a staging environment

Sometimes it is useful to import the database from a production environment
into a staging environment for testing. The procedure below assumes you have
SSH+sudo access to both the production environment and the staging VM.

Destroy your staging VM when you are done with it. It is important to avoid
data leaks.

On the staging VM, add the following line to /etc/gitlab/gitlab.rb to speed up
large database imports.

`
On STAGING
echo "postgresql['checkpoint_segments'] = 64" | sudo tee -a /etc/gitlab/gitlab.rb
sudo touch /etc/gitlab/skip-auto-migrations
sudo gitlab-ctl reconfigure
sudo gitlab-ctl stop unicorn
sudo gitlab-ctl stop sidekiq
`

Next, we let the production environment stream a compressed SQL dump to our
local machine via SSH, and redirect this stream to a psql client on the staging
VM.

```
# On LOCAL MACHINE
ssh -C gitlab.example.com sudo -u gitlab-psql /opt/gitlab/embedded/bin/pg_dump -Cc gitlabhq_production |


ssh -C staging-vm sudo -u gitlab-psql /opt/gitlab/embedded/bin/psql -d template1




```

Recreating directory structure

If you need to re-create some directory structure on the staging server you can
use this procedure.

First, on the production server, create a list of directories you want to
re-create.

`
On PRODUCTION
(umask 077; sudo find /var/opt/gitlab/git-data/repositories -maxdepth 1 -type d -print0 > directories.txt)
`

Copy directories.txt to the staging server and create the directories there.

`
On STAGING
sudo -u git xargs -0 mkdir -p < directories.txt
`

 # Working with Merge Request diffs

Currently we rely on different sources to present merge request diffs, these include:

	Rugged gem

	Gitaly service

	Database (through merge_request_diff_files)

	Redis (cached highlighted diffs)

We’re constantly moving Rugged calls to Gitaly and the progress can be followed through [Gitaly repo](https://gitlab.com/gitlab-org/gitaly).

Architecture overview

When refreshing a Merge Request (pushing to a source branch, force-pushing to target branch, or if the target branch now contains any commits from the MR)
we fetch the comparison information using Gitlab::Git::Compare, which fetches base and head data using Gitaly and diff between them through
Gitlab::Git::Diff.between (which uses _Gitaly_ if it’s enabled, otherwise _Rugged_).
The diffs fetching process _limits_ single file diff sizes and the overall size of the whole diff through a series of constant values. Raw diff files are
then persisted on merge_request_diff_files table.

Even though diffs higher than 10kb are collapsed (Gitlab::Git::Diff::COLLAPSE_LIMIT), we still keep them on Postgres. However, diff files over _safety limits_
(see the [Diff limits section](#diff-limits)) are _not_ persisted.

In order to present diffs information on the Merge Request diffs page, we:

	Fetch all diff files from database merge_request_diff_files

	Fetch the _old_ and _new_ file blobs in batch to:

	Highlight old and new file content

	Know which viewer it should use for each file (text, image, deleted, etc)

	Know if the file content changed

	Know if it was stored externally

	Know if it had storage errors

3. If the diff file is cacheable (text-based), it’s cached on Redis
using Gitlab::Diff::FileCollection::MergeRequestDiff

Diff limits

As explained above, we limit single diff files and the size of the whole diff. There are scenarios where we collapse the diff file,
and cases where the diff file is not presented at all, and the user is guided to the Blob view. Here we’ll go into details about
these limits.

Diff collection limits

Limits that act onto all diff files collection. Files number, lines number and files size are considered.

`ruby
Gitlab::Git::DiffCollection.collection_limits[:safe_max_files] = Gitlab::Git::DiffCollection::DEFAULT_LIMITS[:max_files] = 100
`

File diffs will be collapsed (but be expandable) if 100 files have already been rendered.

`ruby
Gitlab::Git::DiffCollection.collection_limits[:safe_max_lines] = Gitlab::Git::DiffCollection::DEFAULT_LIMITS[:max_lines] = 5000
`

File diffs will be collapsed (but be expandable) if 5000 lines have already been rendered.

`ruby
Gitlab::Git::DiffCollection.collection_limits[:safe_max_bytes] = Gitlab::Git::DiffCollection.collection_limits[:safe_max_files] * 5.kilobytes = 500.kilobytes
`

File diffs will be collapsed (but be expandable) if 500 kilobytes have already been rendered.

`ruby
Gitlab::Git::DiffCollection.collection_limits[:max_files] = Commit::DIFF_HARD_LIMIT_FILES = 1000
`

No more files will be rendered at all if 1000 files have already been rendered.

`ruby
Gitlab::Git::DiffCollection.collection_limits[:max_lines] = Commit::DIFF_HARD_LIMIT_LINES = 50000
`

No more files will be rendered at all if 50,000 lines have already been rendered.

`ruby
Gitlab::Git::DiffCollection.collection_limits[:max_bytes] = Gitlab::Git::DiffCollection.collection_limits[:max_files] * 5.kilobytes = 5000.kilobytes
`

No more files will be rendered at all if 5 megabytes have already been rendered.

Individual diff file limits

Limits that act onto each diff file of a collection. Files number, lines number and files size are considered.

`ruby
Gitlab::Git::Diff::COLLAPSE_LIMIT = 10.kilobytes
`

File diff will be collapsed (but be expandable) if it is larger than 10 kilobytes.

`ruby
Gitlab::Git::Diff::SIZE_LIMIT = 100.kilobytes
`

File diff will not be rendered if it’s larger than 100 kilobytes.

`ruby
Commit::DIFF_SAFE_LINES = Gitlab::Git::DiffCollection::DEFAULT_LIMITS[:max_lines] = 5000
`

File diff will be suppressed (technically different from collapsed, but behaves the same, and is expandable) if it has more than 5000 lines.

Viewers

Diff Viewers, which can be found on models/diff_viewer/* are classes used to map metadata about each type of Diff File. It has information
whether it’s a binary, which partial should be used to render it or which File extensions this class accounts for.

DiffViewer::Base validates _blobs_ (old and new versions) content, extension and file type in order to check if it can be rendered.

 —
redirect_to: ‘documentation/styleguide.md’
—

 # Guidelines for implementing Enterprise Edition features

	Write the code and the tests.: As with any code, EE features should have
good test coverage to prevent regressions.

	Write documentation.: Add documentation to the doc/ directory. Describe
the feature and include screenshots, if applicable.

	Submit a MR to the `www-gitlab-com` project.: Add the new feature to the
[EE features list](https://about.gitlab.com/features/).

Act as CE when unlicensed

Since the implementation of [GitLab CE features to work with unlicensed EE instance][ee-as-ce]
GitLab Enterprise Edition should work like GitLab Community Edition
when no license is active. So EE features always should be guarded by
project.feature_available? or group.feature_available? (or
License.feature_available? if it is a system-wide feature).

CE specs should remain untouched as much as possible and extra specs
should be added for EE. Licensed features can be stubbed using the
spec helper stub_licensed_features in EE::LicenseHelpers.

[ee-as-ce]: https://gitlab.com/gitlab-org/gitlab-ee/issues/2500

Separation of EE code

We want a [single code base][] eventually, but before we reach the goal,
we still need to merge changes from GitLab CE to EE. To help us get there,
we should make sure that we no longer edit CE files in place in order to
implement EE features.

Instead, all EE code should be put inside the ee/ top-level directory. The
rest of the code should be as close to the CE files as possible.

[single code base]: https://gitlab.com/gitlab-org/gitlab-ee/issues/2952#note_41016454

EE-specific comments

When complete separation can’t be achieved with the ee/ directory, you can wrap
code in EE specific comments to designate the difference from CE/EE and add
some context for someone resolving a conflict.

`rb
EE-specific start
stub_licensed_features(variable_environment_scope: true)
EE specific end
`

`haml
-# EE-specific start
= render 'ci/variables/environment_scope', form_field: form_field, variable: variable
-# EE-specific end
`

EE-specific comments should not be backported to CE.

Note: This is only meant as a workaround, we should follow up and
resolve this soon.

Detection of EE-only files

For each commit (except on master), the ee-files-location-check CI job tries
to detect if there are any new files that are EE-only. If any file is detected,
the job fails with an explanation of why and what to do to make it pass.

Basically, the fix is simple: git mv <file> ee/<file>.

How to name your branches?

For any EE branch, the job will try to detect its CE counterpart by removing any
ee- prefix or -ee suffix from the EE branch name, and matching the last
branch that contains it.

For instance, from the EE branch new-shiny-feature-ee (or
ee-new-shiny-feature), the job would find the corresponding CE branches:

	new-shiny-feature

	ce-new-shiny-feature

	new-shiny-feature-ce

	my-super-new-shiny-feature-in-ce

Whitelist some EE-only files that cannot be moved to ee/

The ee-files-location-check CI job provides a whitelist of files or folders
that cannot or should not be moved to ee/. Feel free to open an issue to
discuss adding a new file/folder to this whitelist.

For instance, it was decided that moving EE-only files from qa/ to ee/qa/
would make it difficult to build the gitLab-{ce,ee}-qa Docker images and it
was [not worth the complexity].

[not worth the complexity]: https://gitlab.com/gitlab-org/gitlab-ee/issues/4997#note_59764702

EE-only features

If the feature being developed is not present in any form in CE, we don’t
need to put the codes under EE namespace. For example, an EE model could
go into: ee/app/models/awesome.rb using Awesome as the class name. This
is applied not only to models. Here’s a list of other examples:

	ee/app/controllers/foos_controller.rb

	ee/app/finders/foos_finder.rb

	ee/app/helpers/foos_helper.rb

	ee/app/mailers/foos_mailer.rb

	ee/app/models/foo.rb

	ee/app/policies/foo_policy.rb

	ee/app/serializers/foo_entity.rb

	ee/app/serializers/foo_serializer.rb

	ee/app/services/foo/create_service.rb

	ee/app/validators/foo_attr_validator.rb

	ee/app/workers/foo_worker.rb

	ee/app/views/foo.html.haml

	ee/app/views/foo/_bar.html.haml

This works because for every path that are present in CE’s eager-load/auto-load
paths, we add the same ee/-prepended path in [config/application.rb].
This also applies to views.

[config/application.rb]: https://gitlab.com/gitlab-org/gitlab-ee/blob/925d3d4ebc7a2c72964ce97623ae41b8af12538d/config/application.rb#L42-52

EE features based on CE features

For features that build on existing CE features, write a module in the
EE namespace and prepend it in the CE class. This makes conflicts
less likely to happen during CE to EE merges because only one line is
added to the CE class - the prepend line.

Since the module would require an EE namespace, the file should also be
put in an ee/ sub-directory. For example, we want to extend the user model
in EE, so we have a module called ::EE::User put inside
ee/app/models/ee/user.rb.

This is also not just applied to models. Here’s a list of other examples:

	ee/app/controllers/ee/foos_controller.rb

	ee/app/finders/ee/foos_finder.rb

	ee/app/helpers/ee/foos_helper.rb

	ee/app/mailers/ee/foos_mailer.rb

	ee/app/models/ee/foo.rb

	ee/app/policies/ee/foo_policy.rb

	ee/app/serializers/ee/foo_entity.rb

	ee/app/serializers/ee/foo_serializer.rb

	ee/app/services/ee/foo/create_service.rb

	ee/app/validators/ee/foo_attr_validator.rb

	ee/app/workers/ee/foo_worker.rb

Overriding CE methods

To override a method present in the CE codebase, use prepend. It
lets you override a method in a class with a method from a module, while
still having access the class’s implementation with super.

There are a few gotchas with it:

	you should always [extend ::Gitlab::Utils::Override] and use override to
guard the “overrider” method to ensure that if the method gets renamed in
CE, the EE override won’t be silently forgotten.

	when the “overrider” would add a line in the middle of the CE
implementation, you should refactor the CE method and split it in
smaller methods. Or create a “hook” method that is empty in CE,
and with the EE-specific implementation in EE.

	when the original implementation contains a guard clause (e.g.
return unless condition), we cannot easily extend the behaviour by
overriding the method, because we can’t know when the overridden method
(i.e. calling super in the overriding method) would want to stop early.
In this case, we shouldn’t just override it, but update the original method
to make it call the other method we want to extend, like a [template method
pattern](https://en.wikipedia.org/wiki/Template_method_pattern).
For example, given this base:
``` ruby



	class Base
	
	def execute
	return unless enabled?

# …
# …





end





end




`
Instead of just overriding `Base#execute`, we should update it and extract
the behaviour into another method:
` ruby



	class Base
	
	def execute
	return unless enabled?

do_something





end

private


	def do_something
	# …
# …





end





end




`
Then we're free to override that `do_something` without worrying about the
guards:
` ruby



	module EE::Base
	extend ::Gitlab::Utils::Override

override :do_something
def do_something


# Follow the above pattern to call super and extend it




end





end




```
This would require updating CE first, or make sure this is back ported to CE.

When prepending, place them in the ee/ specific sub-directory, and
wrap class or module in module EE to avoid naming conflicts.

For example to override the CE implementation of
ApplicationController#after_sign_out_path_for:

```ruby
def after_sign_out_path_for(resource)


current_application_settings.after_sign_out_path.presence || new_user_session_path





end

Instead of modifying the method in place, you should add prepend to
the existing file:

```ruby
class ApplicationController < ActionController::Base

prepend EE::ApplicationController
…

	def after_sign_out_path_for(resource)
	current_application_settings.after_sign_out_path.presence || new_user_session_path

end

…

end

And create a new file in the ee/ sub-directory with the altered
implementation:

```ruby
module EE



	module ApplicationController
	extend ::Gitlab::Utils::Override

override :after_sign_out_path_for
def after_sign_out_path_for(resource)



	if Gitlab::Geo.secondary?
	Gitlab::Geo.primary_node.oauth_logout_url(@geo_logout_state)



	else
	super





end




end





end







end

[extend ::Gitlab::Utils::Override]: utilities.md#override

#### Use self-descriptive wrapper methods

When it’s not possible/logical to modify the implementation of a
method. Wrap it in a self-descriptive method and use that method.

For example, in CE only an admin is allowed to access all private
projects/groups, but in EE also an auditor has full private
access. It would be incorrect to override the implementation of
User#admin?, so instead add a method full_private_access? to
app/models/users.rb. The implementation in CE will be:

```ruby
def full_private_access?

admin?

end

In EE, the implementation ee/app/models/ee/users.rb would be:

```ruby
override :full_private_access?
def full_private_access?


super || auditor?







end

In lib/gitlab/visibility_level.rb this method is used to return the
allowed visibility levels:

```ruby
def levels_for_user(user = nil)

	if user.full_private_access?
	[PRIVATE, INTERNAL, PUBLIC]

elsif # …

end

See [CE MR][ce-mr-full-private] and [EE MR][ee-mr-full-private] for
full implementation details.

[ce-mr-full-private]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/12373
[ee-mr-full-private]: https://gitlab.com/gitlab-org/gitlab-ee/merge_requests/2199

Code in app/controllers/

In controllers, the most common type of conflict is with before_action that
has a list of actions in CE but EE adds some actions to that list.

The same problem often occurs for params.require / params.permit calls.

Mitigations

Separate CE and EE actions/keywords. For instance for params.require in
ProjectsController:

```ruby
def project_params


params.require(:project).permit(project_params_attributes)




end

# Always returns an array of symbols, created however best fits the use case.
# It _should_ be sorted alphabetically.
def project_params_attributes



	%i[
	description
name
path





]




end

```

In the EE::ProjectsController module:

```ruby
def project_params_attributes


super + project_params_attributes_ee




end


	def project_params_attributes_ee
	
	%i[
	approvals_before_merge
approver_group_ids
approver_ids
…





]








end

### Code in app/models/

EE-specific models should extend EE::Model.

For example, if EE has a specific Tanuki model, you would
place it in ee/app/models/ee/tanuki.rb.

### Code in app/views/

It’s a very frequent problem that EE is adding some specific view code in a CE
view. For instance the approval code in the project’s settings page.

Mitigations

Blocks of code that are EE-specific should be moved to partials. This
avoids conflicts with big chunks of HAML code that that are not fun to
resolve when you add the indentation to the equation.

EE-specific views should be placed in ee/app/views/, using extra
sub-directories if appropriate.

#### Using render_if_exists

Instead of using regular render, we should use render_if_exists, which
will not render anything if it cannot find the specific partial. We use this
so that we could put render_if_exists in CE, keeping code the same between
CE and EE.

The advantages of this:


	Minimal code difference between CE and EE.


	Very clear hints about where we’re extending EE views while reading CE codes.




The disadvantage of this:


	Slightly more work while developing EE features, because now we need to
port render_if_exists to CE.


	If we have typos in the partial name, it would be silently ignored.




#### Using render_ce

For render and render_if_exists, they search for the EE partial first,
and then CE partial. They would only render a particular partial, not all
partials with the same name. We could take the advantage of this, so that
the same partial path (e.g. shared/issuable/form/default_templates) could
be referring to the CE partial in CE (i.e.
app/views/shared/issuable/form/_default_templates.html.haml), while EE
partial in EE (i.e.
ee/app/views/shared/issuable/form/_default_templates.html.haml). This way,
we could show different things between CE and EE.

However sometimes we would also want to reuse the CE partial in EE partial
because we might just want to add something to the existing CE partial. We
could workaround this by adding another partial with a different name, but it
would be tedious to do so.

In this case, we could as well just use render_ce which would ignore any EE
partials. One example would be
ee/app/views/shared/issuable/form/_default_templates.html.haml:

``` haml
- if @project.feature_available?(:issuable_default_templates)

= render_ce ‘shared/issuable/form/default_templates’

	elsif show_promotions?
= render ‘shared/promotions/promote_issue_templates’


```

In the above example, we can’t use
render ‘shared/issuable/form/default_templates’ because it would find the
same EE partial, causing infinite recursion. Instead, we could use render_ce
so it ignores any partials in ee/ and then it would render the CE partial
(i.e. app/views/shared/issuable/form/_default_templates.html.haml)
for the same path (i.e. shared/issuable/form/default_templates). This way
we could easily wrap around the CE partial.

### Code in lib/

Place EE-specific logic in the top-level EE module namespace. Namespace the
class beneath the EE module just as you would normally.

For example, if CE has LDAP classes in lib/gitlab/ldap/ then you would place
EE-specific LDAP classes in ee/lib/ee/gitlab/ldap.

### Code in lib/api/

It can be very tricky to extend EE features by a single line of prepend,
and for each different [Grape](https://github.com/ruby-grape/grape) feature,
we might need different strategies to extend it. To apply different strategies
easily, we would use extend ActiveSupport::Concern in the EE module.

Put the EE module files following
[EE features based on CE features](#ee-features-based-on-ce-features).

#### EE API routes

For EE API routes, we put them in a prepended block:

``` ruby
module EE

	module API
	
	module MergeRequests
	extend ActiveSupport::Concern

	prepended do
	
	params do
	requires :id, type: String, desc: ‘The ID of a project’

end
resource :projects, requirements: ::API::API::PROJECT_ENDPOINT_REQUIREMENTS do

…

end

end

end

end

end

Note that due to namespace differences, we need to use the full qualifier for some
constants.

EE params

We can define params and utilize use in another params definition to
include params defined in EE. However, we need to define the “interface” first
in CE in order for EE to override it. We don’t have to do this in other places
due to prepend, but Grape is complex internally and we couldn’t easily do
that, so we’ll follow regular object-oriented practices that we define the
interface first here.

For example, suppose we have a few more optional params for EE, given this CE
API code:

``` ruby
module API



	class MergeRequests < Grape::API
	# EE::API::MergeRequests would override the following helpers
helpers do


params :optional_params_ee do
end




end

prepend EE::API::MergeRequests


	params :optional_params do
	# CE specific params go here…

use :optional_params_ee





end





end







end

And then we could override it in EE module:

``` ruby
module EE

	module API
	
	module MergeRequests
	extend ActiveSupport::Concern

	prepended do
	
	helpers do
	
	params :optional_params_ee do
	# EE specific params go here…

end

end

end

end

end

end

This way, the only difference between CE and EE for that API file would be
prepend EE::API::MergeRequests.

EE helpers

To make it easy for an EE module to override the CE helpers, we need to define
those helpers we want to extend first. Try to do that immediately after the
class definition to make it easy and clear:

``` ruby
module API



	class JobArtifacts < Grape::API
	# EE::API::JobArtifacts would override the following helpers
helpers do



	def authorize_download_artifacts!
	authorize_read_builds!





end




end

prepend EE::API::JobArtifacts





end







end

And then we can follow regular object-oriented practices to override it:

``` ruby
module EE

	module API
	
	module JobArtifacts
	extend ActiveSupport::Concern

	prepended do
	
	helpers do
	
	def authorize_download_artifacts!
	super
check_cross_project_pipelines_feature!

end

end

end

end

end

end

EE-specific behaviour

Sometimes we need EE-specific behaviour in some of the APIs. Normally we could
use EE methods to override CE methods, however API routes are not methods and
therefore can’t be simply overridden. We need to extract them into a standalone
method, or introduce some “hooks” where we could inject behavior in the CE
route. Something like this:

``` ruby
module API



	class MergeRequests < Grape::API
	
	helpers do
	# EE::API::MergeRequests would override the following helpers
def update_merge_request_ee(merge_request)
end





end

prepend EE::API::MergeRequests


	put ‘:id/merge_requests/:merge_request_iid/merge’ do
	merge_request = find_project_merge_request(params[:merge_request_iid])

# …

update_merge_request_ee(merge_request)

# …





end





end







end

Note that update_merge_request_ee doesn’t do anything in CE, but
then we could override it in EE:

``` ruby
module EE

	module API
	
	module MergeRequests
	extend ActiveSupport::Concern

	prepended do
	
	helpers do
	
	def update_merge_request_ee(merge_request)
	# …

end

end

end

end

end

end

EE route_setting

It’s very hard to extend this in an EE module, and this is simply storing
some meta-data for a particular route. Given that, we could simply leave the
EE route_setting in CE as it won’t hurt and we are just not going to use
those meta-data in CE.

We could revisit this policy when we’re using route_setting more and whether
or not we really need to extend it from EE. For now we’re not using it much.

Utilizing class methods for setting up EE-specific data

Sometimes we need to use different arguments for a particular API route, and we
can’t easily extend it with an EE module because Grape has different context in
different blocks. In order to overcome this, we could use class methods from the
API class.

For example, in one place we need to pass an extra argument to
at_least_one_of so that the API could consider an EE-only argument as the
least argument. This is not quite beautiful but it’s working:

``` ruby
module API



	class MergeRequests < Grape::API
	
	def self.update_params_at_least_one_of
	
	%i[
	assignee_id
description





]





end

prepend EE::API::MergeRequests


	params do
	at_least_one_of(*::API::MergeRequests.update_params_at_least_one_of)





end





end







end

And then we could easily extend that argument in the EE class method:

``` ruby
module EE

	module API
	
	module MergeRequests
	extend ActiveSupport::Concern

	class_methods do
	
	def update_params_at_least_one_of
	
	super.push(*%i[
	squash

])

end

end

end

end

end

It could be annoying if we need this for a lot of routes, but it might be the
simplest solution right now.

Code in spec/

When you’re testing EE-only features, avoid adding examples to the
existing CE specs. Also do no change existing CE examples, since they
should remain working as-is when EE is running without a license.

Instead place EE specs in the ee/spec folder.

JavaScript code in assets/javascripts/

To separate EE-specific JS-files we should also move the files into an ee folder.

For example there can be an
app/assets/javascripts/protected_branches/protected_branches_bundle.js and an
EE counterpart
ee/app/assets/javascripts/protected_branches/protected_branches_bundle.js.

See the frontend guide [performance section](./fe_guide/performance.md) for
information on managing page-specific javascript within EE.

SCSS code in assets/stylesheets

To separate EE-specific styles in SCSS files, if a component you’re adding styles for
is limited to only EE, it is better to have a separate SCSS file in appropriate directory
within app/assets/stylesheets.
See [backporting changes](#backporting-changes) for instructions on how to merge changes safely.

In some cases, this is not entirely possible or creating dedicated SCSS file is an overkill,
e.g. a text style of some component is different for EE. In such cases,
styles are usually kept in stylesheet that is common for both CE and EE, and it is wise
to isolate such ruleset from rest of CE rules (along with adding comment describing the same)
to avoid conflicts during CE to EE merge.

Bad
```scss
.section-body {



	.section-title {
	background: $gl-header-color;





}


	&.ee-section-body {
	
	.section-title {
	background: $gl-header-color-cyan;





}





}







}

#### Good
```scss
.section-body {

	.section-title {
	background: $gl-header-color;

}

}

// EE-specific start
.section-body.ee-section-body {

	.section-title {
	background: $gl-header-color-cyan;

}

}
// EE-specific end
```

### Backporting changes from EE to CE

When working in EE-specific features, you might have to tweak a few files that are not EE-specific. Here is a workflow to make sure those changes end up backported safely into CE too.
(This approach does not refer to changes introduced via [csslab](https://gitlab.com/gitlab-org/csslab/).)

1. Make your changes in the EE branch. If possible, keep a separated commit (to be squashed) to help backporting and review.
1. Open merge request to EE project.
1. Apply the changes you made to CE files in a branch of the CE project. (Tip: Use patch with the diff from your commit in EE branch)
1. Open merge request to CE project, referring it’s a backport of EE changes and link to MR open in EE.
1. Once EE MR is merged, the MR towards CE can be merged. But not before.

Note: regarding SCSS, make sure the files living outside /ee/ don’t diverge between CE and EE projects.

## gitlab-svgs

Conflicts in app/assets/images/icons.json or app/assets/images/icons.svg can
be resolved simply by regenerating those assets with
[yarn run svg](https://gitlab.com/gitlab-org/gitlab-svgs).





            

          

      

      

    

  

    
      
          
            
  # Dealing with email in development

## Sent emails

To view rendered emails “sent” in your development instance, visit
[/rails/letter_opener](http://localhost:3000/rails/letter_opener).

## Mailer previews

Rails provides a way to preview our mailer templates in HTML and plaintext using
dummy data.

The previews live in [app/mailers/previews][previews] and can be viewed at
[/rails/mailers](http://localhost:3000/rails/mailers).

See the [Rails guides] for more info.

[previews]: https://gitlab.com/gitlab-org/gitlab-ce/tree/master/app/mailers/previews
[Rails guides]: http://guides.rubyonrails.org/action_mailer_basics.html#previewing-emails

## Incoming email


	Go to the GitLab installation directory.





	Find the incoming_email section in config/gitlab.yml, enable the
feature and fill in the details for your specific IMAP server and email
account:


Configuration for Gmail / Google Apps, assumes mailbox gitlab-incoming@gmail.com

```yaml
incoming_email:

enabled: true

The email address including the %{key} placeholder that will be replaced to reference the item being replied to.
The placeholder can be omitted but if present, it must appear in the “user” part of the address (before the @).
address: “gitlab-incoming+%{key}@gmail.com”

Email account username
With third party providers, this is usually the full email address.
With self-hosted email servers, this is usually the user part of the email address.
user: “gitlab-incoming@gmail.com”
Email account password
password: “[REDACTED]”

IMAP server host
host: “imap.gmail.com”
IMAP server port
port: 993
Whether the IMAP server uses SSL
ssl: true
Whether the IMAP server uses StartTLS
start_tls: false

The mailbox where incoming mail will end up. Usually “inbox”.
mailbox: “inbox”
The IDLE command timeout.
idle_timeout: 60


```

As mentioned, the part after + is ignored, and this will end up in the mailbox for gitlab-incoming@gmail.com.









	Run this command in the GitLab root directory to launch mail_room:


`sh
bundle exec mail_room -q -c config/mail_room.yml
`









	Verify that everything is configured correctly:


`sh
bundle exec rake gitlab:incoming_email:check RAILS_ENV=development
`









	Reply by email should now be working.




## Email namespace

If you need to implement a new feature which requires a new email handler, follow these rules:



	You must choose a namespace. The namespace cannot contain / or +, and cannot match h{16}.


	If your feature is related to a project, you will append the namespace after the project path, separated by a +


	If you have different actions in the namespace, you add the actions after the namespace separated by a +. The action name cannot contain / or +, , and cannot match h{16}.


	You will register your handlers in lib/gitlab/email/handler.rb







Therefore, these are the only valid formats for an email handler:



	path/to/project+namespace


	path/to/project+namespace+action


	namespace


	namespace+action







Please note that path/to/project is used in GitLab Premium as handler for the Service Desk feature.

—

[Return to Development documentation](README.md)



            

          

      

      

    

  

    
      
          
            
  # Manage feature flags

Starting from GitLab 9.3 we support feature flags for features in GitLab via
[Flipper](https://github.com/jnunemaker/flipper/). You should use the Feature
class (defined in lib/feature.rb) in your code to get, set and list feature
flags.

During runtime you can set the values for the gates via the
[features API](../api/features.md) (accessible to admins only).

## Feature groups

Starting from GitLab 9.4 we support feature groups via
[Flipper groups](https://github.com/jnunemaker/flipper/blob/v0.10.2/docs/Gates.md#2-group).

Feature groups must be defined statically in lib/feature.rb (in the
.register_feature_groups method), but their implementation can obviously be
dynamic (querying the DB etc.).

Once defined in lib/feature.rb, you will be able to activate a
feature for a given feature group via the [feature_group param of the features API](../api/features.md#set-or-create-a-feature)

## Feature flags for user applications

GitLab does not yet support the use of feature flags in deployed user applications.
You can follow the progress on that [in the issue on our issue tracker](https://gitlab.com/gitlab-org/gitlab-ee/issues/779).



            

          

      

      

    

  

    
      
          
            
  # File Storage in GitLab

We use the [CarrierWave] gem to handle file upload, store and retrieval.

There are many places where file uploading is used, according to contexts:


	System
- Instance Logo (logo visible in sign in/sign up pages)
- Header Logo (one displayed in the navigation bar)


	Group
- Group avatars


	User
- User avatars
- User snippet attachments


	Project
- Project avatars
- Issues/MR/Notes Markdown attachments
- Issues/MR/Notes Legacy Markdown attachments
- CI Artifacts (archive, metadata, trace)
- LFS Objects




## Disk storage

GitLab started saving everything on local disk. While directory location changed from previous versions,
they are still not 100% standardized. You can see them below:


Description                           | In DB? | Relative path (from CarrierWave.root)                       | Uploader class         | model_type |

————————————- | —— | ———————————————————– | ———————- | ———- |

Instance logo                         | yes    | uploads/-/system/appearance/logo/:id/:filename              | AttachmentUploader   | Appearance |

Header logo                           | yes    | uploads/-/system/appearance/header_logo/:id/:filename       | AttachmentUploader   | Appearance |

Group avatars                         | yes    | uploads/-/system/group/avatar/:id/:filename                 | AvatarUploader       | Group      |

User avatars                          | yes    | uploads/-/system/user/avatar/:id/:filename                  | AvatarUploader       | User       |

User snippet attachments              | yes    | uploads/-/system/personal_snippet/:id/:random_hex/:filename | PersonalFileUploader | Snippet    |

Project avatars                       | yes    | uploads/-/system/project/avatar/:id/:filename               | AvatarUploader       | Project    |

Issues/MR/Notes Markdown attachments        | yes    | uploads/:project_path_with_namespace/:random_hex/:filename  | FileUploader         | Project    |

Issues/MR/Notes Legacy Markdown attachments | no     | uploads/-/system/note/attachment/:id/:filename              | AttachmentUploader   | Note       |

CI Artifacts (CE)                     | yes    | shared/artifacts/:disk_hash[0..1]/:disk_hash[2..3]/:disk_hash/:year_:month_:date/:job_id/:job_artifact_id (:disk_hash is SHA256 digest of project_id) | JobArtifactUploader  | Ci::JobArtifact  |

LFS Objects  (CE)                     | yes    | shared/lfs-objects/:hex/:hex/:object_hash                   | LfsObjectUploader    | LfsObject  |



CI Artifacts and LFS Objects behave differently in CE and EE. In CE they inherit the GitlabUploader
while in EE they inherit the ObjectStorage and store files in and S3 API compatible object store.

In the case of Issues/MR/Notes Markdown attachments, there is a different approach using the [Hashed Storage] layout,
instead of basing the path into a mutable variable :project_path_with_namespace, it’s possible to use the
hash of the project ID instead, if project migrates to the new approach (introduced in 10.2).

### Path segments

Files are stored at multiple locations and use different path schemes.
All the GitlabUploader derived classes should comply with this path segment schema:

```
| GitlabUploader
| ———————– + ————————- + ——————————— + ——————————– |
| <gitlab_root>/public/ | uploads/-/system/ | user/avatar/:id/ | :filename |
| ———————– + ————————- + ——————————— + ——————————– |
| CarrierWave.root | GitlabUploader.base_dir | GitlabUploader#dynamic_segment | CarrierWave::Uploader#filename |
| | CarrierWave::Uploader#store_dir | |

FileUploader

———————– + ————————- + ——————————— + ——————————– |

<gitlab_root>/shared/ | artifacts/ | :year_:month/:id | :filename |

<gitlab_root>/shared/ | snippets/ | :secret/ | :filename |

———————– + ————————- + ——————————— + ——————————– |

CarrierWave.root | GitlabUploader.base_dir | GitlabUploader#dynamic_segment | CarrierWave::Uploader#filename |

| CarrierWave::Uploader#store_dir | |

| | `FileUploader#upload_path |

ObjectStore::Concern (store = remote)

———————– + ————————- + ———————————– + ——————————– |

<bucket_name> | <ignored> | user/avatar/:id/ | :filename |

———————– + ————————- + ———————————– + ——————————– |

#fog_dir | GitlabUploader.base_dir | GitlabUploader#dynamic_segment | CarrierWave::Uploader#filename |

| | ObjectStorage::Concern#store_dir | |

| | `ObjectStorage::Concern#upload_path |


```

The RecordsUploads::Concern concern will create an Upload entry for every file stored by a GitlabUploader persisting the dynamic parts of the path using
GitlabUploader#dynamic_path. You may then use the Upload#build_uploader method to manipulate the file.

## Object Storage

By including the ObjectStorage::Concern in the GitlabUploader derived class, you may enable the object storage for this uploader. To enable the object storage
in your uploader, you need to either 1) include RecordsUpload::Concern and prepend ObjectStorage::Extension::RecordsUploads or 2) mount the uploader and create a new field named <mount>_store.

The CarrierWave::Uploader#store_dir is overridden to



	GitlabUploader.base_dir + GitlabUploader.dynamic_segment when the store is LOCAL


	GitlabUploader.dynamic_segment when the store is REMOTE (the bucket name is used to namespace)







### Using ObjectStorage::Extension::RecordsUploads

> Note: this concern will automatically include RecordsUploads::Concern if not already included.

The ObjectStorage::Concern uploader will search for the matching Upload to select the correct object store. The Upload is mapped using #store_dirs + identifier for each store (LOCAL/REMOTE).

```ruby
class SongUploader < GitlabUploader

include RecordsUploads::Concern
include ObjectStorage::Concern
prepend ObjectStorage::Extension::RecordsUploads

…

end

	class Thing < ActiveRecord::Base
	mount :theme, SongUploader # we have a great theme song!

…

end

Using a mounted uploader

The ObjectStorage::Concern will query the model.<mount>_store attribute to select the correct object store.
This column must be present in the model schema.

```ruby
class SongUploader < GitlabUploader


include ObjectStorage::Concern

…




end


	class Thing < ActiveRecord::Base
	attr_reader :theme_store # this is an ActiveRecord attribute
mount :theme, SongUploader # we have a great theme song!


	def theme_store
	super || ObjectStorage::Store::LOCAL





end

…








end

[CarrierWave]: https://github.com/carrierwaveuploader/carrierwave
[Hashed Storage]: ../administration/repository_storage_types.md





            

          

      

      

    

  

    
      
          
            
  # Foreign Keys & Associations

When adding an association to a model you must also add a foreign key. For
example, say you have the following model:

```ruby
class User < ActiveRecord::Base

has_many :posts

end

Here you will need to add a foreign key on column posts.user_id. This ensures
that data consistency is enforced on database level. Foreign keys also mean that
the database can very quickly remove associated data (e.g. when removing a
user), instead of Rails having to do this.

Adding Foreign Keys In Migrations

Foreign keys can be added concurrently using add_concurrent_foreign_key as
defined in Gitlab::Database::MigrationHelpers. See the [Migration Style
Guide](migration_style_guide.md) for more information.

Keep in mind that you can only safely add foreign keys to existing tables after
you have removed any orphaned rows. The method add_concurrent_foreign_key
does not take care of this so you’ll need to do so manually.

Cascading Deletes

Every foreign key must define an ON DELETE clause, and in 99% of the cases
this should be set to CASCADE.

Indexes

When adding a foreign key in PostgreSQL the column is not indexed automatically,
thus you must also add a concurrent index. Not doing so will result in cascading
deletes being very slow.

Dependent Removals

Don’t define options such as dependent: :destroy or dependent: :delete when
defining an association. Defining these options means Rails will handle the
removal of data, instead of letting the database handle this in the most
efficient way possible.

In other words, this is bad and should be avoided at all costs:

```ruby
class User < ActiveRecord::Base


has_many :posts, dependent: :destroy







end

Should you truly have a need for this it should be approved by a database
specialist first.

You should also not define any before_destroy or after_destroy callbacks on
your models _unless_ absolutely required and only when approved by database
specialists. For example, if each row in a table has a corresponding file on a
file system it may be tempting to add a after_destroy hook. This however
introduces non database logic to a model, and means we can no longer rely on
foreign keys to remove the data as this would result in the filesystem data
being left behind. In such a case you should use a service class instead that
takes care of removing non database data.





            

          

      

      

    

  

    
      
          
            
  # Frontend Development Guidelines

This page has moved [here](fe_guide/index.md).



            

          

      

      

    

  

    
      
          
            
  # Gemfile guidelines

When adding a new entry to Gemfile or upgrading an existing dependency pay
attention to the following rules.

## No gems fetched from git repositories

We do not allow gems that are fetched from git repositories. All gems have
to be available in the RubyGems index. We want to minimize external build
dependencies and build times.

## License compliance

Refer to [licensing guidelines](licensing.md) for ensuring license compliance.



            

          

      

      

    

  

    
      
          
            
  # GitLab Developers Guide to Working with Gitaly

[Gitaly](https://gitlab.com/gitlab-org/gitaly) is a high-level Git RPC service used by GitLab CE/EE,
Workhorse and GitLab-Shell. All Rugged operations in GitLab CE/EE are currently being phased out to
be replaced by Gitaly API calls.

Visit the [Gitaly Migration Board](https://gitlab.com/gitlab-org/gitaly/boards/331341) for current
status of the migration.

## Developing new Git features

Starting with Gitlab 10.8, all new Git features should be developed in
Gitaly.

> This is a new process that is not clearly defined yet. If you want
to contribute a Git feature and you’re getting stuck, reach out to the
Gitaly team or @jacobvosmaer-gitlab.

By ‘new feature’ we mean any method or class in lib/gitlab/git that is
called from outside lib/gitlab/git. For new methods that are called
from inside lib/gitlab/git, see ‘Modifying existing Git features’
below.

There should be no new code that touches Git repositories via
disk access (e.g. Rugged, git, rm -rf) anywhere outside
lib/gitlab/git.

The process for adding new Gitaly features is:


	exploration / prototyping


	design and create a new Gitaly RPC [in gitaly-proto](https://gitlab.com/gitlab-org/gitaly-proto)


	release a new version of gitaly-proto


	write implementation and tests for the RPC [in Gitaly](https://gitlab.com/gitlab-org/gitaly), in Go or Ruby


	release a new version of Gitaly


	write client code in gitlab-ce/ee, gitlab-workhorse or gitlab-shell that calls the new Gitaly RPC




These steps often overlap. It is possible to use an unreleased version
of Gitaly and gitaly-proto during testing and development.


	See the [Gitaly repo](https://gitlab.com/gitlab-org/gitaly/blob/master/CONTRIBUTING.md#development-and-testing-with-a-custom-gitaly-proto) for instructions on writing server side code with an unreleased protocol.


	See [below](#running-tests-with-a-locally-modified-version-of-gitaly) for instructions on running gitlab-ce tests with a modified version of Gitaly.


	In GDK run gdk install and restart gdk run (or gdk run app) to use a locally modified Gitaly version for development




### Gitaly-ruby

It is possible to implement and test RPC’s in Gitaly using Ruby code,
in
[gitaly-ruby](https://gitlab.com/gitlab-org/gitaly/tree/master/ruby).
This should make it easier to contribute for developers who are less
comfortable writing Go code.

There is documentation for this approach in [the Gitaly
repo](https://gitlab.com/gitlab-org/gitaly/blob/master/doc/ruby_endpoint.md).

## Modifying existing Git features

If you modify existing Git features in lib/gitlab/git you need to make
sure the changes also work in Gitaly. Because we are still in the
migration process there are a number of subtle pitfalls. Features that
have been migrated have dual implementations (Gitaly and local). The
Gitaly implementation may or may not use a vendored (and therefore
possibly outdated) copy of the local implementation in lib/gitlab/git.

To avoid unexpected problems and conflicts, all changes to
lib/gitlab/git need to be approved by a member of the Gitaly team.

For the time being, while the Gitaly migration is still in progress,
there should be no Enterprise Edition-only Git code in
lib/gitlab/git. Also no mixins.

## Feature Flags

Gitaly makes heavy use of [feature flags](feature_flags.md).

Each Rugged-to-Gitaly migration goes through a [series of phases](https://gitlab.com/gitlab-org/gitaly/blob/master/doc/MIGRATION_PROCESS.md):


	Opt-In: by default the Rugged implementation is used.
* Production instances can choose to enable the Gitaly endpoint by enabling the feature flag.
* For testing purposes, you may wish to enable all feature flags by default. This can be done by exporting the following


environment variable: GITALY_FEATURE_DEFAULT_ON=1.





	On developer instances (ie, when Rails.env.development? is true), the Gitaly endpoint
is enabled by default, but can be _disabled_ using feature flags.






	Opt-Out: by default, the Gitaly endpoint is used, but the feature can be explicitly disabled using the feature flag.


	Mandatory: The migration is complete and cannot be disabled. The old codepath is removed.




### Enabling and Disabling Feature

In the Rails console, type:

`ruby
Feature.enable(:gitaly_feature_name)
Feature.disable(:gitaly_feature_name)
`

Where gitaly_feature_name is the name of the Gitaly feature. This can be determined by finding the appropriate
gitaly_migrate code block, for example:

`ruby
gitaly_migrate(:tag_names) do
...
end
`

Since Gitaly features are always prefixed with gitaly_, the name of the feature flag in this case would be gitaly_tag_names.

## Gitaly-Related Test Failures

If your test-suite is failing with Gitaly issues, as a first step, try running:

`shell
rm -rf tmp/tests/gitaly
`

## TooManyInvocationsError errors

During development and testing, you may experience Gitlab::GitalyClient::TooManyInvocationsError failures.
The GitalyClient will attempt to block against potential n+1 issues by raising this error
when Gitaly is called more than 30 times in a single Rails request or Sidekiq execution.

As a temporary measure, export GITALY_DISABLE_REQUEST_LIMITS=1 to suppress the error. This will disable the n+1 detection
in your development environment.

Please raise an issue in the GitLab CE or EE repositories to report the issue. Include the labels ~Gitaly
~performance ~”technical debt”. Please ensure that the issue contains the full stack trace and error message of the
TooManyInvocationsError. Also include any known failing tests if possible.

Isolate the source of the n+1 problem. This will normally be a loop that results in Gitaly being called for each
element in an array. If you are unable to isolate the problem, please contact a member
of the [Gitaly Team](https://gitlab.com/groups/gl-gitaly/group_members) for assistance.

Once the source has been found, wrap it in an allow_n_plus_1_calls block, as follows:

```ruby
n+1: link to n+1 issue
Gitlab::GitalyClient.allow_n_plus_1_calls do

original code
commits.each { |commit| … }

end

Once the code is wrapped in this block, this code-path will be excluded from n+1 detection.

Request counts

Commits and other git data, is now fetched through Gitaly. These fetches can,
much like with a database, be batched. This improves performance for the client
and for Gitaly itself and therefore for the users too. To keep performance stable
and guard performance regressions, Gitaly calls can be counted and the call count
can be tested against. This requires the :request_store flag to be set.

```ruby
describe ‘Gitaly Request count tests’ do



	context ‘when the request store is activated’, :request_store do
	
	it ‘correctly counts the gitaly requests made’ do
	expect { subject }.to change { Gitlab::GitalyClient.get_request_count }.by(10)





end





end







end

## Running tests with a locally modified version of Gitaly

Normally, gitlab-ce/ee tests use a local clone of Gitaly in
tmp/tests/gitaly pinned at the version specified in
GITALY_SERVER_VERSION. The GITALY_SERVER_VERSION file supports
=my-branch syntax to use a custom branch in gitlab-org/gitaly. If
you want to run tests locally against a modified version of Gitaly you
can replace tmp/tests/gitaly with a symlink. This is much faster
because the =my-branch syntax forces a Gitaly re-install each time
you run rspec.

`shell
rm -rf tmp/tests/gitaly
ln -s /path/to/gitaly tmp/tests/gitaly
`

Make sure you run make in your local Gitaly directory before running
tests. Otherwise, Gitaly will fail to boot.

If you make changes to your local Gitaly in between test runs you need
to manually run make again.

Note that CI tests will not use your locally modified version of
Gitaly. To use a custom Gitaly version in CI you need to update
GITALY_SERVER_VERSION. You can use the format =revision to use a
non-tagged commit from https://gitlab.com/gitlab-org/gitaly in CI.

—

[Return to Development documentation](README.md)





            

          

      

      

    

  

    
      
          
            
  # Working with the GitHub importer

In GitLab 10.2 a new version of the GitHub importer was introduced. This new
importer performs its work in parallel using Sidekiq, greatly reducing the time
necessary to import GitHub projects into a GitLab instance.

The GitHub importer offers two different types of importers: a sequential
importer and a parallel importer. The Rake task import:github uses the
sequential importer, while everything else uses the parallel importer. The
difference between these two importers is quite simple: the sequential importer
does all work in a single thread, making it more useful for debugging purposes
or Rake tasks. The parallel importer on the other hand uses Sidekiq.

## Requirements


	GitLab CE 10.2.0 or newer.


	Sidekiq workers that process the github_importer and
github_importer_advance_stage queues (this is enabled by default).


	Octokit (used for interacting with the GitHub API)




## Code structure

The importer’s codebase is broken up into the following directories:


	lib/gitlab/github_import: this directory contains most of the code such as
the classes used for importing resources.


	app/workers/gitlab/github_import: this directory contains the Sidekiq
workers.


	app/workers/concerns/gitlab/github_import: this directory contains a few
modules reused by the various Sidekiq workers.




## Architecture overview

When a GitHub project is imported we schedule and execute a job for the
RepositoryImportworker worker as all other importers. However, unlike other
importers we don’t immediately perform the work necessary. Instead work is
divided into separate stages, with each stage consisting out of a set of Sidekiq
jobs that are executed. Between every stage a job is scheduled that periodically
checks if all work of the current stage is completed, advancing the import
process to the next stage when this is the case. The worker handling this is
called Gitlab::GithubImport::AdvanceStageWorker.

## Stages

### 1. RepositoryImportWorker

This worker will kick off the import process by simply scheduling a job for the
next worker.

### 2. Stage::ImportRepositoryWorker

This worker will import the repository and wiki, scheduling the next stage when
done.

### 3. Stage::ImportBaseDataWorker

This worker will import base data such as labels, milestones, and releases. This
work is done in a single thread since it can be performed fast enough that we
don’t need to perform this work in parallel.

### 4. Stage::ImportPullRequestsWorker

This worker will import all pull requests. For every pull request a job for the
Gitlab::GithubImport::ImportPullRequestWorker worker is scheduled.

### 5. Stage::ImportIssuesAndDiffNotesWorker

This worker will import all issues and pull request comments. For every issue we
schedule a job for the Gitlab::GithubImport::ImportIssueWorker worker. For
pull request comments we instead schedule jobs for the
Gitlab::GithubImport::DiffNoteImporter worker.

This worker processes both issues and diff notes in parallel so we don’t need to
schedule a separate stage and wait for the previous one to complete.

Issues are imported separately from pull requests because only the “issues” API
includes labels for both issue and pull requests. Importing issues and setting
label links in the same worker removes the need for performing a separate crawl
through the API data, reducing the number of API calls necessary to import a
project.

### 6. Stage::ImportNotesWorker

This worker imports regular comments for both issues and pull requests. For
every comment we schedule a job for the
Gitlab::GithubImport::ImportNoteWorker worker.

Regular comments have to be imported at the end since the GitHub API used
returns comments for both issues and pull requests. This means we have to wait
for all issues and pull requests to be imported before we can import regular
comments.

### 7. Stage::FinishImportWorker

This worker will wrap up the import process by performing some housekeeping
(such as flushing any caches) and by marking the import as completed.

## Advancing stages

Advancing stages is done in one of two ways:


	Scheduling the worker for the next stage directly.


	Scheduling a job for Gitlab::GithubImport::AdvanceStageWorker which will
advance the stage when all work of the current stage has been completed.




The first approach should only be used by workers that perform all their work in
a single thread, while AdvanceStageWorker should be used for everything else.

The way AdvanceStageWorker works is fairly simple. When scheduling a job it
will be given a project ID, a list of Redis keys, and the name of the next
stage. The Redis keys (produced by Gitlab::JobWaiter) are used to check if the
currently running stage has been completed or not. If the stage has not yet been
completed AdvanceStageWorker will reschedule itself. Once a stage finishes
AdvanceStageworker will refresh the import JID (more on this below) and
schedule the worker of the next stage.

To reduce the number of AdvanceStageWorker jobs scheduled this worker will
briefly wait for jobs to complete before deciding what the next action should
be. For small projects this may slow down the import process a bit, but it will
also reduce pressure on the system as a whole.

## Refreshing import JIDs

GitLab includes a worker called StuckImportJobsWorker that will periodically
run and mark project imports as failed if they have been running for more than
15 hours. For GitHub projects this poses a bit of a problem: importing large
projects could take several hours depending on how often we hit the GitHub rate
limit (more on this below), but we don’t want StuckImportJobsWorker to mark
our import as failed because of this.

To prevent this from happening we periodically refresh the expiration time of
the import process. This works by storing the JID of the import job in the
database, then refreshing this JID’s TTL at various stages throughout the import
process. This is done by calling Project#refresh_import_jid_expiration. By
refreshing this TTL we can ensure our import does not get marked as failed so
long we’re still performing work.

## GitHub rate limit

GitHub has a rate limit of 5 000 API calls per hour. The number of requests
necessary to import a project is largely dominated by the number of unique users
involved in a project (e.g. issue authors). Other data such as issue pages
and comments typically only requires a few dozen requests to import.  This is
because we need the Email address of users in order to map them to GitLab users.

We handle this by doing the following:


	Once we hit the rate limit all jobs will automatically reschedule themselves
in such a way that they are not executed until the rate limit has been reset.


	We cache the mapping of GitHub users to GitLab users in Redis.




More information on user caching can be found below.

## Caching user lookups

When mapping GitHub users to GitLab users we need to (in the worst case)
perform:


	One API call to get the user’s Email address.


	Two database queries to see if a corresponding GitLab user exists. One query
will try to find the user based on the GitHub user ID, while the second query
is used to find the user using their GitHub Email address.




Because this process is quite expensive we cache the result of these lookups in
Redis. For every user looked up we store three keys:


	A Redis key mapping GitHub usernames to their Email addresses.


	A Redis key mapping a GitHub Email addresses to a GitLab user ID.


	A Redis key mapping a GitHub user ID to GitLab user ID.




There are two types of lookups we cache:


	A positive lookup, meaning we found a GitLab user ID.


	A negative lookup, meaning we didn’t find a GitLab user ID. Caching this
prevents us from performing the same work for users that we know don’t exist
in our GitLab database.




The expiration time of these keys is 24 hours. When retrieving the cache of a
positive lookups we refresh the TTL automatically. The TTL of false lookups is
never refreshed.

Because of this caching layer it’s possible newly registered GitLab accounts
won’t be linked to their corresponding GitHub accounts. This however will sort
itself out once the cached keys expire.

The user cache lookup is shared across projects. This means that the more
projects get imported the fewer GitHub API calls will be needed.

The code for this resides in:


	lib/gitlab/github_import/user_finder.rb


	lib/gitlab/github_import/caching.rb




## Mapping labels and milestones

To reduce pressure on the database we do not query it when setting labels and
milestones on issues and merge requests. Instead we cache this data when we
import labels and milestones, then we reuse this cache when assigning them to
issues/merge requests. Similar to the user lookups these cache keys are expired
automatically after 24 hours of not being used.

Unlike the user lookup caches these label and milestone caches are scoped to the
project that is being imported.

The code for this resides in:


	lib/gitlab/github_import/label_finder.rb


	lib/gitlab/github_import/milestone_finder.rb


	lib/gitlab/github_import/caching.rb






            

          

      

      

    

  

    
      
          
            
  # Gotchas

The purpose of this guide is to document potential “gotchas” that contributors
might encounter or should avoid during development of GitLab CE and EE.

## Do not assert against the absolute value of a sequence-generated attribute

Consider the following factory:

```ruby
FactoryBot.define do

	factory :label do
	sequence(:title) { |n| “label#{n}” }

end

end

Consider the following API spec:

```ruby
require ‘rails_helper’


	describe API::Labels do
	
	it ‘creates a first label’ do
	create(:label)

get api(“/projects/#{project.id}/labels”, user)

expect(response).to have_http_status(200)
expect(json_response.first[‘name’]).to eq(‘label1’)





end


	it ‘creates a second label’ do
	create(:label)

get api(“/projects/#{project.id}/labels”, user)

expect(response).to have_http_status(200)
expect(json_response.first[‘name’]).to eq(‘label1’)





end








end

When run, this spec doesn’t do what we might expect:

```sh
1) API::API reproduce sequence issue creates a second label

Failure/Error: expect(json_response.first[‘name’]).to eq(‘label1’)

	expected: “label1”
	got: “label2”

(compared using ==)


```

That’s because FactoryBot sequences are not reseted for each example.

Please remember that sequence-generated values exist only to avoid having to
explicitly set attributes that have a uniqueness constraint when using a factory.

### Solution

If you assert against a sequence-generated attribute’s value, you should set it
explicitly. Also, the value you set shouldn’t match the sequence pattern.

For instance, using our :label factory, writing create(:label, title: ‘foo’)
is ok, but create(:label, title: ‘label1’) is not.

Following is the fixed API spec:

```ruby
require ‘rails_helper’

	describe API::Labels do
	
	it ‘creates a first label’ do
	create(:label, title: ‘foo’)

get api(“/projects/#{project.id}/labels”, user)

expect(response).to have_http_status(200)
expect(json_response.first[‘name’]).to eq(‘foo’)

end

	it ‘creates a second label’ do
	create(:label, title: ‘bar’)

get api(“/projects/#{project.id}/labels”, user)

expect(response).to have_http_status(200)
expect(json_response.first[‘name’]).to eq(‘bar’)

end

end

Avoid using allow_any_instance_of in RSpec

Why

	Because it is not isolated therefore it might be broken at times.

	Because it doesn’t work whenever the method we want to stub was defined
in a prepended module, which is very likely the case in EE. We could see
error like this:

	1.1) Failure/Error: allow_any_instance_of(ApplicationSetting).to receive_messages(messages)
	Using any_instance to stub a method (elasticsearch_indexing) that has been defined on a prepended module (EE::ApplicationSetting) is not supported.

Alternative: expect_next_instance_of

Instead of writing:

`ruby
Don't do this:
allow_any_instance_of(Project).to receive(:add_import_job)
`

We could write:

```ruby
# Do this:
expect_next_instance_of(Project) do |project|


expect(project).to receive(:add_import_job)







end

If we also want to expect the instance was initialized with some particular
arguments, we could also pass it to expect_next_instance_of like:

```ruby
Do this:
expect_next_instance_of(MergeRequests::RefreshService, project, user) do |refresh_service|

expect(refresh_service).to receive(:execute).with(oldrev, newrev, ref)

end

This would expect the following:

`ruby
Above expects:
refresh_service = MergeRequests::RefreshService.new(project, user)
refresh_service.execute(oldrev, newrev, ref)
`

Do not rescue Exception

See [“Why is it bad style to rescue Exception => e in Ruby?”][Exception].

_**Note:** This rule is [enforced automatically by
Rubocop](https://gitlab.com/gitlab-org/gitlab-ce/blob/8-4-stable/.rubocop.yml#L911-914)._

[Exception]: http://stackoverflow.com/q/10048173/223897

Do not use inline JavaScript in views

Using the inline :javascript Haml filters comes with a
performance overhead. Using inline JavaScript is not a good way to structure your code and should be avoided.

_**Note:** We’ve [removed these two filters](https://gitlab.com/gitlab-org/gitlab-ce/blob/master/config/initializers/hamlit.rb)
in an initializer._

Further reading

	Stack Overflow: [Why you should not write inline JavaScript](http://programmers.stackexchange.com/questions/86589/why-should-i-avoid-inline-scripting)

 # Hash Indexes

Both PostgreSQL and MySQL support hash indexes besides the regular btree
indexes. Hash indexes however are to be avoided at all costs. While they may
sometimes provide better performance the cost of rehashing can be very high.
More importantly: at least until PostgreSQL 10.0 hash indexes are not
WAL-logged, meaning they are not replicated to any replicas. From the PostgreSQL
documentation:

> Hash index operations are not presently WAL-logged, so hash indexes might need
> to be rebuilt with REINDEX after a database crash if there were unwritten
> changes. Also, changes to hash indexes are not replicated over streaming or
> file-based replication after the initial base backup, so they give wrong
> answers to queries that subsequently use them. For these reasons, hash index
> use is presently discouraged.

RuboCop is configured to register an offence when it detects the use of a hash
index.

Instead of using hash indexes you should use regular btree indexes.

 This document was moved to [a new location](i18n/index.md).

 # Instrumenting Ruby Code

GitLab Performance Monitoring allows instrumenting of both methods and custom
blocks of Ruby code. Method instrumentation is the primary form of
instrumentation with block-based instrumentation only being used when we want to
drill down to specific regions of code within a method.

Instrumenting Methods

Instrumenting methods is done by using the Gitlab::Metrics::Instrumentation
module. This module offers a few different methods that can be used to
instrument code:

	instrument_method: instruments a single class method.

	instrument_instance_method: instruments a single instance method.

	instrument_class_hierarchy: given a Class this method will recursively
instrument all sub-classes (both class and instance methods).

	instrument_methods: instruments all public and private class methods of a Module.

	instrument_instance_methods: instruments all public and private instance methods of a
Module.

To remove the need for typing the full Gitlab::Metrics::Instrumentation
namespace you can use the configure class method. This method simply yields
the supplied block while passing Gitlab::Metrics::Instrumentation as its
argument. An example:

```ruby
Gitlab::Metrics::Instrumentation.configure do |conf|


conf.instrument_method(Foo, :bar)
conf.instrument_method(Foo, :baz)





end

Using this method is in general preferred over directly calling the various
instrumentation methods.

Method instrumentation should be added in the initializer
config/initializers/8_metrics.rb.

### Examples

Instrumenting a single method:

```ruby
Gitlab::Metrics::Instrumentation.configure do |conf|

conf.instrument_method(User, :find_by)

end

Instrumenting an entire class hierarchy:

```ruby
Gitlab::Metrics::Instrumentation.configure do |conf|


conf.instrument_class_hierarchy(ActiveRecord::Base)







end

Instrumenting all public class methods:

```ruby
Gitlab::Metrics::Instrumentation.configure do |conf|

conf.instrument_methods(User)

end

Checking Instrumented Methods

The easiest way to check if a method has been instrumented is to check its
source location. For example:

```ruby
method = Rugged::TagCollection.instance_method(:[])

method.source_location
```

If the source location points to lib/gitlab/metrics/instrumentation.rb you
know the method has been instrumented.

If you’re using Pry you can use the $ command to display the source code of a
method (along with its source location), this is easier than running the above
Ruby code. In case of the above snippet you’d run the following:

`
$ Rugged::TagCollection#[]
`

This will print out something along the lines of:

```
From: /path/to/your/gitlab/lib/gitlab/metrics/instrumentation.rb @ line 148:
Owner: #<Module:0x0055f0865c6d50>
Visibility: public
Number of lines: 21


	def #{name}(#{args_signature})
	
	if trans = Gitlab::Metrics::Instrumentation.transaction
	trans.measure_method(#{label.inspect}) { super }



	else
	super





end








end

## Instrumenting Ruby Blocks

Measuring blocks of Ruby code is done by calling Gitlab::Metrics.measure and
passing it a block. For example:

```ruby
Gitlab::Metrics.measure(:foo) do

…

end

The block is executed and the execution time is stored as a set of fields in the
currently running transaction. If no transaction is present the block is yielded
without measuring anything.

3 values are measured for a block:

	The real time elapsed, stored in NAME_real_time.

	The CPU time elapsed, stored in NAME_cpu_time.

	The call count, stored in NAME_call_count.

Both the real and CPU timings are measured in milliseconds.

Multiple calls to the same block will result in the final values being the sum
of all individual values. Take this code for example:

```ruby
3.times do



	Gitlab::Metrics.measure(:sleep) do
	sleep 1





end







end

Here the final value of sleep_real_time will be 3, _not_ 1.

## Tracking Custom Events

Besides instrumenting code GitLab Performance Monitoring also supports tracking
of custom events. This is primarily intended to be used for tracking business
metrics such as the number of Git pushes, repository imports, and so on.

To track a custom event simply call Gitlab::Metrics.add_event passing it an
event name and a custom set of (optional) tags. For example:

`ruby
Gitlab::Metrics.add_event(:user_login, email: current_user.email)
`

Event names should be verbs such as push_repository and remove_branch.





            

          

      

      

    

  

    
      
          
            
  # Iterating Tables In Batches

Rails provides a method called in_batches that can be used to iterate over
rows in batches. For example:

```ruby
User.in_batches(of: 10) do |relation|

relation.update_all(updated_at: Time.now)

end

Unfortunately this method is implemented in a way that is not very efficient,
both query and memory usage wise.

To work around this you can include the EachBatch module into your models,
then use the each_batch class method. For example:

```ruby
class User < ActiveRecord::Base


include EachBatch




end


	User.each_batch(of: 10) do |relation|
	relation.update_all(updated_at: Time.now)








end

This will end up producing queries such as:

```
User Load (0.7ms) SELECT “users”.”id” FROM “users” WHERE (“users”.”id” >= 41654) ORDER BY “users”.”id” ASC LIMIT 1 OFFSET 1000

(0.7ms) SELECT COUNT(*) FROM “users” WHERE (“users”.”id” >= 41654) AND (“users”.”id” < 42687)


```

The API of this method is similar to in_batches, though it doesn’t support
all of the arguments that in_batches supports. You should always use
each_batch _unless_ you have a specific need for in_batches.





            

          

      

      

    

  

    
      
          
            
  # GitLab Licensing and Compatibility

[GitLab Community Edition](https://gitlab.com/gitlab-org/gitlab-ce/) (CE) is licensed [under the terms of the MIT License][CE]. [GitLab Enterprise Edition](https://gitlab.com/gitlab-org/gitlab-ee/) (EE) is licensed under “[The GitLab Enterprise Edition (EE) license][EE]” wherein there are more restrictions.

## Automated Testing

In order to comply with the terms the libraries we use are licensed under, we have to make sure to check new gems for compatible licenses whenever they’re added. To automate this process, we use the [license_finder][license_finder] gem by Pivotal. It runs every time a new commit is pushed and verifies that all gems and node modules in the bundle use a license that doesn’t conflict with the licensing of either GitLab Community Edition or GitLab Enterprise Edition.

There are some limitations with the automated testing, however. CSS, JavaScript, or Ruby libraries which are not included by way of Bundler, NPM, or Yarn (for instance those manually copied into our source tree in the vendor directory), must be verified manually and independently. Take care whenever one such library is used, as automated tests won’t catch problematic licenses from them.

Some gems may not include their license information in their gemspec file, and some node modules may not include their license information in their package.json file. These won’t be detected by License Finder, and will have to be verified manually.

### License Finder commands

There are a few basic commands License Finder provides that you’ll need in order to manage license detection.

To verify that the checks are passing, and/or to see what dependencies are causing the checks to fail:

`
bundle exec license_finder
`

To whitelist a new license:

`
license_finder whitelist add MIT
`

To blacklist a new license:

`
license_finder blacklist add GPLv2
`

To tell License Finder about a dependency’s license if it isn’t auto-detected:

`
license_finder licenses add my_unknown_dependency MIT
`

For all of the above, please include –why “Reason” and –who “My Name” so the decisions.yml file can keep track of when, why, and who approved of a dependency.

More detailed information on how the gem and its commands work is available in the [License Finder README][license_finder].

## Acceptable Licenses

Libraries with the following licenses are acceptable for use:


	[The MIT License][MIT] (the MIT Expat License specifically): The MIT License requires that the license itself is included with all copies of the source. It is a permissive (non-copyleft) license as defined by the Open Source Initiative.


	[LGPL][LGPL] (version 2, version 3): GPL constraints regarding modification and redistribution under the same license are not required of projects using an LGPL library, only upon modification of the LGPL-licensed library itself.


	[Apache 2.0 License][apache-2]: A permissive license that also provides an express grant of patent rights from contributors to users.


	[Ruby 1.8 License][ruby-1.8]: Dual-licensed under either itself or the GPLv2, defer to the Ruby License itself. Acceptable because of point 3b: “You may distribute the software in object code or binary form, provided that you do at least ONE of the following: b) accompany the distribution with the machine-readable source of the software.”


	[Ruby 1.9 License][ruby-1.9]: Dual-licensed under either itself or the BSD 2-Clause License, defer to BSD 2-Clause.


	[BSD 2-Clause License][BSD-2-Clause]: A permissive (non-copyleft) license as defined by the Open Source Initiative.


	[BSD 3-Clause License][BSD-3-Clause] (also known as New BSD or Modified BSD): A permissive (non-copyleft) license as defined by the Open Source Initiative


	[ISC License][ISC] (also known as the OpenBSD License): A permissive (non-copyleft) license as defined by the Open Source Initiative.


	[Creative Commons Zero (CC0)][CC0]: A public domain dedication, recommended as a way to disclaim copyright on your work to the maximum extent possible.


	[Unlicense][UNLICENSE]: Another public domain dedication.


	[OWFa 1.0][OWFa1]: An open-source license and patent grant designed for specifications.




## Unacceptable Licenses

Libraries with the following licenses require legal approval for use:


	[GNU GPL][GPL] (version 1, [version 2][GPLv2], [version 3][GPLv3], or any future versions): GPL-licensed libraries cannot be linked to from non-GPL projects.


	[GNU AGPLv3][AGPLv3]: AGPL-licensed libraries cannot be linked to from non-GPL projects.


	[Open Software License (OSL)][OSL]: is a copyleft license. In addition, the FSF [recommend against its use][OSL-GNU].


	[Facebook BSD + PATENTS][Facebook]: is a 3-clause BSD license with a patent grant that has been deemed [Category X][x-list] by the Apache foundation.


	[WTFPL][WTFPL]: is a public domain dedication [rejected by the OSI (3.2)][WTFPL-OSI]. Also has a strong language which is not in accordance with our diversity policy.




## GPL Cooperation Commitment

Before filing or continuing to prosecute any legal proceeding or claim (other than a Defensive Action) arising from termination of a Covered License, GitLab commits to extend to the person or entity (“you”) accused of violating the Covered License the following provisions regarding cure and reinstatement, taken from GPL version 3. As used here, the term ‘this License’ refers to the specific Covered License being enforced.

However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder notifies you of the violation by some reasonable means, this is the first time you have received notice of violation of this License (for any work) from that copyright holder, and you cure the violation prior to 30 days after your receipt of the notice.

GitLab intends this Commitment to be irrevocable, and binding and enforceable against GitLab and assignees of or successors to GitLab’s copyrights.

GitLab may modify this Commitment by publishing a new edition on this page or a successor location.

Definitions

‘Covered License’ means the GNU General Public License, version 2 (GPLv2), the GNU Lesser General Public License, version 2.1 (LGPLv2.1), or the GNU Library General Public License, version 2 (LGPLv2), all as published by the Free Software Foundation.

‘Defensive Action’ means a legal proceeding or claim that GitLab brings against you in response to a prior proceeding or claim initiated by you or your affiliate.

GitLab means GitLab Inc. and its affiliates and subsidiaries.

## Requesting Approval for Licenses

Libraries that are not listed in the [Acceptable Licenses][Acceptable-Licenses] or [Unacceptable Licenses][Unacceptable-Licenses] list can be submitted to the legal team for review. Please email legal@gitlab.com with the details. After a decision has been made, the original requestor is responsible for updating this document.

## Notes

Decisions regarding the GNU GPL licenses are based on information provided by [The GNU Project][GNU-GPL-FAQ], as well as [the Open Source Initiative][OSI-GPL], which both state that linking GPL libraries makes the program itself GPL.

If a gem uses a license which is not listed above, open an issue and ask. If a license is not included in the “acceptable” list, operate under the assumption that it is not acceptable.

Keep in mind that each license has its own restrictions (typically defined in their body text). Please make sure to comply with those restrictions at all times whenever an external library is used.

Gems which are included only in the “development” or “test” groups by Bundler are exempt from license requirements, as they’re not distributed for use in production.

NOTE: This document is not legal advice, nor is it comprehensive. It should not be taken as such.

[CE]: https://gitlab.com/gitlab-org/gitlab-ce/blob/master/LICENSE
[EE]: https://gitlab.com/gitlab-org/gitlab-ee/blob/master/LICENSE
[license_finder]: https://github.com/pivotal/LicenseFinder
[MIT]: http://choosealicense.com/licenses/mit/
[LGPL]: http://choosealicense.com/licenses/lgpl-3.0/
[apache-2]: http://choosealicense.com/licenses/apache-2.0/
[ruby-1.8]: https://github.com/ruby/ruby/blob/ruby_1_8_6/COPYING
[ruby-1.9]: https://www.ruby-lang.org/en/about/license.txt
[BSD-2-Clause]: https://opensource.org/licenses/BSD-2-Clause
[BSD-3-Clause]: https://opensource.org/licenses/BSD-3-Clause
[ISC]: https://opensource.org/licenses/ISC
[CC0]: https://creativecommons.org/publicdomain/zero/1.0/
[GPL]: http://choosealicense.com/licenses/gpl-3.0/
[GPLv2]: http://www.gnu.org/licenses/gpl-2.0.txt
[GPLv3]: http://www.gnu.org/licenses/gpl-3.0.txt
[AGPLv3]: http://choosealicense.com/licenses/agpl-3.0/
[GNU-GPL-FAQ]: http://www.gnu.org/licenses/gpl-faq.html#IfLibraryIsGPL
[OSI-GPL]: https://opensource.org/faq#linking-proprietary-code
[OSL]: https://opensource.org/licenses/OSL-3.0
[OSL-GNU]: https://www.gnu.org/licenses/license-list.en.html#OSL
[Org-Repo]: https://gitlab.com/gitlab-com/organization
[UNLICENSE]: https://unlicense.org
[OWFa1]: http://www.openwebfoundation.org/legal/the-owf-1-0-agreements/owfa-1-0
[Facebook]: https://code.facebook.com/pages/850928938376556
[x-list]: https://www.apache.org/legal/resolved.html#category-x
[Acceptable-Licenses]: #acceptable-licenses
[Unacceptable-Licenses]: #unacceptable-licenses
[WTFPL]: https://wtfpl.net
[WTFPL-OSI]: https://opensource.org/minutes20090304



            

          

      

      

    

  

    
      
          
            
  # Merge Request Performance Guidelines

To ensure a merge request does not negatively impact performance of GitLab
_every_ merge request must adhere to the guidelines outlined in this
document. There are no exceptions to this rule unless specifically discussed
with and agreed upon by backend maintainers and performance specialists.

To measure the impact of a merge request you can use
[Sherlock](profiling.md#sherlock). It’s also highly recommended that you read
the following guides:


	[Performance Guidelines](performance.md)


	[What requires downtime?](what_requires_downtime.md)




## Impact Analysis

Summary: think about the impact your merge request may have on performance
and those maintaining a GitLab setup.

Any change submitted can have an impact not only on the application itself but
also those maintaining it and those keeping it up and running (e.g. production
engineers). As a result you should think carefully about the impact of your
merge request on not only the application but also on the people keeping it up
and running.

Can the queries used potentially take down any critical services and result in
engineers being woken up in the night? Can a malicious user abuse the code to
take down a GitLab instance? Will my changes simply make loading a certain page
slower? Will execution time grow exponentially given enough load or data in the
database?

These are all questions one should ask themselves before submitting a merge
request. It may sometimes be difficult to assess the impact, in which case you
should ask a performance specialist to review your code. See the “Reviewing”
section below for more information.

## Performance Review

Summary: ask performance specialists to review your code if you’re not sure
about the impact.

Sometimes it’s hard to assess the impact of a merge request. In this case you
should ask one of the merge request reviewers to review your changes. You can
find a list of these reviewers at <https://about.gitlab.com/team/>. A reviewer
in turn can request a performance specialist to review the changes.

## Query Counts

Summary: a merge request should not increase the number of executed SQL
queries unless absolutely necessary.

The number of queries executed by the code modified or added by a merge request
must not increase unless absolutely necessary. When building features it’s
entirely possible you will need some extra queries, but you should try to keep
this at a minimum.

As an example, say you introduce a feature that updates a number of database
rows with the same value. It may be very tempting (and easy) to write this using
the following pseudo code:

```ruby
objects_to_update.each do |object|

object.some_field = some_value
object.save

end

This will end up running one query for every object to update. This code can
easily overload a database given enough rows to update or many instances of this
code running in parallel. This particular problem is known as the
[“N+1 query problem”](http://guides.rubyonrails.org/active_record_querying.html#eager-loading-associations). You can write a test with [QueryRecoder](query_recorder.md) to detect this and prevent regressions.

In this particular case the workaround is fairly easy:

`ruby
objects_to_update.update_all(some_field: some_value)
`

This uses ActiveRecord’s update_all method to update all rows in a single
query. This in turn makes it much harder for this code to overload a database.

Executing Queries in Loops

Summary: SQL queries must not be executed in a loop unless absolutely
necessary.

Executing SQL queries in a loop can result in many queries being executed
depending on the number of iterations in a loop. This may work fine for a
development environment with little data, but in a production environment this
can quickly spiral out of control.

There are some cases where this may be needed. If this is the case this should
be clearly mentioned in the merge request description.

Eager Loading

Summary: always eager load associations when retrieving more than one row.

When retrieving multiple database records for which you need to use any
associations you must eager load these associations. For example, if you’re
retrieving a list of blog posts and you want to display their authors you
must eager load the author associations.

In other words, instead of this:

```ruby
Post.all.each do |post|


puts post.author.name







end

You should use this:

```ruby
Post.all.includes(:author).each do |post|

puts post.author.name

end

Also consider using [QueryRecoder tests](query_recorder.md) to prevent a regression when eager loading.

Memory Usage

Summary: merge requests must not increase memory usage unless absolutely
necessary.

A merge request must not increase the memory usage of GitLab by more than the
absolute bare minimum required by the code. This means that if you have to parse
some large document (e.g. an HTML document) it’s best to parse it as a stream
whenever possible, instead of loading the entire input into memory. Sometimes
this isn’t possible, in that case this should be stated explicitly in the merge
request.

Lazy Rendering of UI Elements

Summary: only render UI elements when they’re actually needed.

Certain UI elements may not always be needed. For example, when hovering over a
diff line there’s a small icon displayed that can be used to create a new
comment. Instead of always rendering these kind of elements they should only be
rendered when actually needed. This ensures we don’t spend time generating
Haml/HTML when it’s not going to be used.

Instrumenting New Code

Summary: always add instrumentation for new classes, modules, and methods.

Newly added classes, modules, and methods must be instrumented. This ensures
we can track the performance of this code over time.

For more information see [Instrumentation](instrumentation.md). This guide
describes how to add instrumentation and where to add it.

Use of Caching

Summary: cache data in memory or in Redis when it’s needed multiple times in
a transaction or has to be kept around for a certain time period.

Sometimes certain bits of data have to be re-used in different places during a
transaction. In these cases this data should be cached in memory to remove the
need for running complex operations to fetch the data. You should use Redis if
data should be cached for a certain time period instead of the duration of the
transaction.

For example, say you process multiple snippets of text containing username
mentions (e.g. Hello @alice and How are you doing @alice?). By caching the
user objects for every username we can remove the need for running the same
query for every mention of @alice.

Caching data per transaction can be done using
[RequestStore](https://github.com/steveklabnik/request_store). Caching data in
Redis can be done using [Rails’ caching
system](http://guides.rubyonrails.org/caching_with_rails.html).

 # Migration Style Guide

When writing migrations for GitLab, you have to take into account that
these will be ran by hundreds of thousands of organizations of all sizes, some with
many years of data in their database.

In addition, having to take a server offline for an upgrade small or big is a
big burden for most organizations. For this reason it is important that your
migrations are written carefully, can be applied online and adhere to the style
guide below.

Migrations are not allowed to require GitLab installations to be taken
offline unless _absolutely necessary_. Downtime assumptions should be based on
the behaviour of a migration when performed using PostgreSQL, as various
operations in MySQL may require downtime without there being alternatives.

When downtime is necessary the migration has to be approved by:

1. The VP of Engineering
1. A Backend Lead
1. A Database Specialist

An up-to-date list of people holding these titles can be found at
<https://about.gitlab.com/team/>.

When writing your migrations, also consider that databases might have stale data
or inconsistencies and guard for that. Try to make as few assumptions as
possible about the state of the database.

Please don’t depend on GitLab-specific code since it can change in future
versions. If needed copy-paste GitLab code into the migration to make it forward
compatible.

Schema Changes

Migrations that make changes to the database schema (e.g. adding a column) can
only be added in the monthly release, patch releases may only contain data
migrations _unless_ schema changes are absolutely required to solve a problem.

What Requires Downtime?

The document [“What Requires Downtime?”](what_requires_downtime.md) specifies
various database operations, such as

	[adding, dropping, and renaming columns](what_requires_downtime.md#adding-columns)

	[changing column constraints and types](what_requires_downtime.md#changing-column-constraints)

	[adding and dropping indexes, tables, and foreign keys](what_requires_downtime.md#adding-indexes)

and whether they require downtime and how to work around that whenever possible.

Downtime Tagging

Every migration must specify if it requires downtime or not, and if it should
require downtime it must also specify a reason for this. This is required even
if 99% of the migrations won’t require downtime as this makes it easier to find
the migrations that _do_ require downtime.

To tag a migration, add the following two constants to the migration class’
body:

	DOWNTIME: a boolean that when set to true indicates the migration requires
downtime.

	DOWNTIME_REASON: a String containing the reason for the migration requiring
downtime. This constant must be set when DOWNTIME is set to true.

For example:

```ruby
class MyMigration < ActiveRecord::Migration


DOWNTIME = true
DOWNTIME_REASON = ‘This migration requires downtime because …’


	def change
	…





end





end

It is an error (that is, CI will fail) if the DOWNTIME constant is missing
from a migration class.

## Reversibility

Your migration must be reversible. This is very important, as it should
be possible to downgrade in case of a vulnerability or bugs.

In your migration, add a comment describing how the reversibility of the
migration was tested.

## Multi Threading

Sometimes a migration might need to use multiple Ruby threads to speed up a
migration. For this to work your migration needs to include the module
Gitlab::Database::MultiThreadedMigration:

```ruby
class MyMigration < ActiveRecord::Migration

include Gitlab::Database::MigrationHelpers
include Gitlab::Database::MultiThreadedMigration

end

You can then use the method with_multiple_threads to perform work in separate
threads. For example:

```ruby
class MyMigration < ActiveRecord::Migration


include Gitlab::Database::MigrationHelpers
include Gitlab::Database::MultiThreadedMigration


	def up
	
	with_multiple_threads(4) do
	disable_statement_timeout

# …





end





end







end

Here the call to disable_statement_timeout will use the connection local to
the with_multiple_threads block, instead of re-using the global connection
pool.  This ensures each thread has its own connection object, and won’t time
out when trying to obtain one.

NOTE: PostgreSQL has a maximum amount of connections that it allows. This
limit can vary from installation to installation. As a result it’s recommended
you do not use more than 32 threads in a single migration. Usually 4-8 threads
should be more than enough.

## Removing indexes

When removing an index make sure to use the method remove_concurrent_index instead
of the regular remove_index method. The remove_concurrent_index method
automatically drops concurrent indexes when using PostgreSQL, removing the
need for downtime. To use this method you must disable transactions by calling
the method disable_ddl_transaction! in the body of your migration class like
so:

```ruby
class MyMigration < ActiveRecord::Migration

include Gitlab::Database::MigrationHelpers
disable_ddl_transaction!

	def up
	remove_concurrent_index :table_name, :column_name

end

end

Note that it is not necessary to check if the index exists prior to
removing it.

Adding indexes

If you need to add a unique index please keep in mind there is the possibility
of existing duplicates being present in the database. This means that should
always _first_ add a migration that removes any duplicates, before adding the
unique index.

When adding an index make sure to use the method add_concurrent_index instead
of the regular add_index method. The add_concurrent_index method
automatically creates concurrent indexes when using PostgreSQL, removing the
need for downtime. To use this method you must disable transactions by calling
the method disable_ddl_transaction! in the body of your migration class like
so:

```ruby
class MyMigration < ActiveRecord::Migration


include Gitlab::Database::MigrationHelpers

disable_ddl_transaction!


	def up
	add_concurrent_index :table, :column





end


	def down
	remove_index :table, :column if index_exists?(:table, :column)





end







end

## Adding Columns With Default Values

When adding columns with default values you must use the method
add_column_with_default. This method ensures the table is updated without
requiring downtime. This method is not reversible so you must manually define
the up and down methods in your migration class.

For example, to add the column foo to the projects table with a default
value of 10 you’d write the following:

```ruby
class MyMigration < ActiveRecord::Migration

include Gitlab::Database::MigrationHelpers
disable_ddl_transaction!

	def up
	add_column_with_default(:projects, :foo, :integer, default: 10)

end

	def down
	remove_column(:projects, :foo)

end

end

Keep in mind that this operation can easily take 10-15 minutes to complete on
larger installations (e.g. GitLab.com). As a result you should only add default
values if absolutely necessary. There is a RuboCop cop that will fail if this
method is used on some tables that are very large on GitLab.com, which would
cause other issues.

Updating an existing column

To update an existing column to a particular value, you can use
update_column_in_batches (add_column_with_default uses this internally to
fill in the default value). This will split the updates into batches, so we
don’t update too many rows at in a single statement.

This updates the column foo in the projects table to 10, where some_column
is ‘hello’:

```ruby
update_column_in_batches(:projects, :foo, 10) do |table, query|


query.where(table[:some_column].eq(‘hello’))







end

To perform a computed update, the value can be wrapped in Arel.sql, so Arel
treats it as an SQL literal. The below example is the same as the one above, but
the value is set to the product of the bar and baz columns:

```ruby
update_value = Arel.sql(‘bar * baz’)

	update_column_in_batches(:projects, :foo, update_value) do |table, query|
	query.where(table[:some_column].eq(‘hello’))

end

Like add_column_with_default, there is a RuboCop cop to detect usage of this
on large tables. In the case of update_column_in_batches, it may be acceptable
to run on a large table, as long as it is only updating a small subset of the
rows in the table, but do not ignore that without validating on the GitLab.com
staging environment - or asking someone else to do so for you - beforehand.

Integer column type

By default, an integer column can hold up to a 4-byte (32-bit) number. That is
a max value of 2,147,483,647. Be aware of this when creating a column that will
hold file sizes in byte units. If you are tracking file size in bytes this
restricts the maximum file size to just over 2GB.

To allow an integer column to hold up to an 8-byte (64-bit) number, explicitly
set the limit to 8-bytes. This will allow the column to hold a value up to
9,223,372,036,854,775,807.

Rails migration example:

```ruby
add_column_with_default(:projects, :foo, :integer, default: 10, limit: 8)

# or

add_column(:projects, :foo, :integer, default: 10, limit: 8)
```

Timestamp column type

By default, Rails uses the timestamp data type that stores timestamp data without timezone information.
The timestamp data type is used by calling either the add_timestamps or the timestamps method.
Also Rails converts the :datetime data type to the timestamp one.

Example:

```ruby
# timestamps
create_table :users do |t|


t.timestamps




end

# add_timestamps
def up


add_timestamps :users




end

# :datetime
def up


add_column :users, :last_sign_in, :datetime







end

Instead of using these methods one should use the following methods to store timestamps with timezones:


	add_timestamps_with_timezone


	timestamps_with_timezone




This ensures all timestamps have a time zone specified. This in turn means existing timestamps won’t
suddenly use a different timezone when the system’s timezone changes. It also makes it very clear which
timezone was used in the first place.

## Testing

Make sure that your migration works with MySQL and PostgreSQL with data. An
empty database does not guarantee that your migration is correct.

Make sure your migration can be reversed.

## Data migration

Please prefer Arel and plain SQL over usual ActiveRecord syntax. In case of
using plain SQL you need to quote all input manually with quote_string helper.

Example with Arel:

```ruby
users = Arel::Table.new(:users)
users.group(users[:user_id]).having(users[:id].count.gt(5))

#update other tables with these results
```

Example with plain SQL and quote_string helper:

```ruby
select_all(“SELECT name, COUNT(id) as cnt FROM tags GROUP BY name HAVING COUNT(id) > 1”).each do |tag|

tag_name = quote_string(tag[“name”])
duplicate_ids = select_all(“SELECT id FROM tags WHERE name = ‘#{tag_name}’”).map{|tag| tag[“id”]}
origin_tag_id = duplicate_ids.first
duplicate_ids.delete origin_tag_id

execute(“UPDATE taggings SET tag_id = #{origin_tag_id} WHERE tag_id IN(#{duplicate_ids.join(“,”)})”)
execute(“DELETE FROM tags WHERE id IN(#{duplicate_ids.join(“,”)})”)

end

If you need more complex logic you can define and use models local to a
migration. For example:

```ruby
class MyMigration < ActiveRecord::Migration



	class Project < ActiveRecord::Base
	self.table_name = ‘projects’





end







end

When doing so be sure to explicitly set the model’s table name so it’s not
derived from the class name or namespace.

### Renaming reserved paths

When a new route for projects is introduced that could conflict with any
existing records. The path for this records should be renamed, and the
related data should be moved on disk.

Since we had to do this a few times already, there are now some helpers to help
with this.

To use this you can include Gitlab::Database::RenameReservedPathsMigration::V1
in your migration. This will provide 3 methods which you can pass one or more
paths that need to be rejected.

`rename_root_paths`: This will rename the path of all _namespaces_ with the
given name that don’t have a parent_id.

`rename_child_paths`: This will rename the path of all _namespaces_ with the
given name that have a parent_id.

`rename_wildcard_paths`: This will rename the path of all _projects_, and all
_namespaces_ that have a project_id.

The path column for these rows will be renamed to their previous value followed
by an integer. For example: users would turn into users0





            

          

      

      

    

  

    
      
          
            
  ## Modules with instance variables could be considered harmful

### Background

Rails somehow encourages people using modules and instance variables
everywhere. For example, using instance variables in the controllers,
helpers, and views. They’re also encouraging the use of
ActiveSupport::Concern, which further strengthens the idea of
saving everything in a giant, single object, and people could access
everything in that one giant object.

### The problems

Of course this is convenient to develop, because we just have everything
within reach. However this has a number of downsides when that chosen object
is growing, it would later become out of control for the same reason.

There are just too many things in the same context, and we don’t know if
those things are tightly coupled or not, depending on each others or not.
It’s very hard to tell when the complexity grows to a point, and it makes
tracking the code also extremely hard. For example, a class could be using
3 different instance variables, and all of them could be initialized and
manipulated from 3 different modules. It’s hard to track when those variables
start giving us troubles. We don’t know which module would suddenly change
one of the variables. Everything could touch anything.

### Similar concerns

People are saying multiple inheritance is bad. Mixing multiple modules with
multiple instance variables scattering everywhere suffer from the same issue.
The same applies to ActiveSupport::Concern. See:
[Consider replacing concerns with dedicated classes & composition](
https://gitlab.com/gitlab-org/gitlab-ce/issues/23786)

There’s also a similar idea:
[Use decorators and interface segregation to solve overgrowing models problem](
https://gitlab.com/gitlab-org/gitlab-ce/issues/13484)

Note that included doesn’t solve the whole issue. They define the
dependencies, but they still allow each modules to talk implicitly via the
instance variables in the final giant object, and that’s where the problem is.

### Solutions

We should split the giant object into multiple objects, and they communicate
with each other with the API, i.e. public methods. In short, composition over
inheritance. This way, each smaller objects would have their own respective
limited states, i.e. instance variables. If one instance variable goes wrong,
we would be very clear that it’s from that single small object, because
no one else could be touching it.

With clearly defined API, this would make things less coupled and much easier
to debug and track, and much more extensible for other objects to use, because
they communicate in a clear way, rather than implicit dependencies.

### Acceptable use

However, it’s not always bad to use instance variables in a module,
as long as it’s contained in the same module; that is, no other modules or
objects are touching them, then it would be an acceptable use.

We especially allow the case where a single instance variable is used with
||= to setup the value. This would look like:

``` ruby
module M

	def f
	@f ||= true

end

end

Unfortunately it’s not easy to code more complex rules into the cop, so
we rely on people’s best judgement. If we could find another good pattern
we could easily add to the cop, we should do it.

How to rewrite and avoid disabling this cop

Even if we could just disable the cop, we should avoid doing so. Some code
could be easily rewritten in simple form. Consider this acceptable method:

``` ruby
module Gitlab



	module Emoji
	
	def emoji_unicode_version(name)
	
	@emoji_unicode_versions_by_name ||=
	JSON.parse(File.read(Rails.root.join(‘fixtures’, ‘emojis’, ‘emoji-unicode-version-map.json’)))





@emoji_unicode_versions_by_name[name]





end





end







end

This method is totally fine because it’s already self-contained. No other
methods should be using @emoji_unicode_versions_by_name and we’re good.
However it’s still offending the cop because it’s not just ||=, and the
cop is not smart enough to judge that this is fine.

On the other hand, we could split this method into two:

``` ruby
module Gitlab

	module Emoji
	
	def emoji_unicode_version(name)
	emoji_unicode_versions_by_name[name]

end

private

	def emoji_unicode_versions_by_name
	
	@emoji_unicode_versions_by_name ||=
	JSON.parse(File.read(Rails.root.join(‘fixtures’, ‘emojis’, ‘emoji-unicode-version-map.json’)))

end

end

end

Now the cop won’t complain. Here’s a bad example which we could rewrite:

``` ruby
module SpamCheckService



	def filter_spam_check_params
	@request            = params.delete(:request)
@api                = params.delete(:api)
@recaptcha_verified = params.delete(:recaptcha_verified)
@spam_log_id        = params.delete(:spam_log_id)





end


	def spam_check(spammable, user)
	spam_service = SpamService.new(spammable, @request)


	spam_service.when_recaptcha_verified(@recaptcha_verified, @api) do
	user.spam_logs.find_by(id: @spam_log_id)&.update!(recaptcha_verified: true)





end





end







end

There are several implicit dependencies here. First, params should be
defined before use. Second, filter_spam_check_params should be called
before spam_check. These are all implicit and the includer could be using
those instance variables without awareness.

This should be rewritten like:

``` ruby
class SpamCheckService

	def initialize(request:, api:, recaptcha_verified:, spam_log_id:)
	@request = request
@api = api
@recaptcha_verified = recaptcha_verified
@spam_log_id = spam_log_id

end

	def spam_check(spammable, user)
	spam_service = SpamService.new(spammable, @request)

	spam_service.when_recaptcha_verified(@recaptcha_verified, @api) do
	user.spam_logs.find_by(id: @spam_log_id)&.update!(recaptcha_verified: true)

end

end

end

And use it like:

``` ruby
class UpdateSnippetService < BaseService



	def execute
	# …
spam = SpamCheckService.new(params.slice!(:request, :api, :recaptcha_verified, :spam_log_id))

spam.check(snippet, current_user)
# …





end







end

This way, all those instance variables are isolated in SpamCheckService
rather than whatever includes the module, and those modules which were also
included, making it much easier to track down any issues,
and reducing the chance of having name conflicts.

### How to disable this cop

Put the disabling comment right after your code in the same line:

``` ruby
module M

	def violating_method
	@f + @g # rubocop:disable Gitlab/ModuleWithInstanceVariables

end

end

If there are multiple lines, you could also enable and disable for a section:

``` ruby
module M


# rubocop:disable Gitlab/ModuleWithInstanceVariables
def violating_method


@f = 0
@g = 1
@h = 2




end
# rubocop:enable Gitlab/ModuleWithInstanceVariables







end

Note that you need to enable it at some point, otherwise everything below
won’t be checked.

### Things we might need to ignore right now

Because of the way Rails helpers and mailers work, we might not be able to
avoid the use of instance variables there. For those cases, we could ignore
them at the moment. At least we’re not going to share those modules with
other random objects, so they’re still somewhat isolated.

### Instance variables in views

They’re bad because we can’t easily tell who’s using the instance variables
(from controller’s point of view) and where we set them up (from partials’
point of view), making it extremely hard to track data dependency.

We’re trying to use something like this instead:

` haml
= render 'projects/commits/commit', commit: commit, ref: ref, project: project
`

And in the partial:

` haml
- ref = local_assigns.fetch(:ref)
- commit = local_assigns.fetch(:commit)
- project = local_assigns.fetch(:project)
`

This way it’s clearer where those values were coming from, and we gain the
benefit to have typo check over using instance variables. In the future,
we should also forbid the use of instance variables in partials.





            

          

      

      

    

  

    
      
          
            
  # Newlines styleguide

This style guide recommends best practices for newlines in Ruby code.

## Rule: separate code with newlines only to group together related logic

```ruby
bad
def method

issue = Issue.new

issue.save

render json: issue

end

```ruby
# good
def method


issue = Issue.new
issue.save

render json: issue







end

## Rule: separate code and block with newlines

### Newline before block

```ruby
bad
def method

issue = Issue.new
if issue.save

render json: issue

end

end

```ruby
# good
def method


issue = Issue.new


	if issue.save
	render json: issue





end







end

## Newline after block

```ruby
bad
def method

	if issue.save
	issue.send_email

end
render json: issue

end

```ruby
# good
def method



	if issue.save
	issue.send_email





end

render json: issue







end

### Exception: no need for newline when code block starts or ends right inside another code block

```ruby
bad
def method

if issue

	if issue.valid?
	issue.save

end

end

end

```ruby
# good
def method



	if issue
	
	if issue.valid?
	issue.save





end





end







end





            

          

      

      

    

  

    
      
          
            
  # What you should know about omnibus packages

Most users install GitLab using our omnibus packages. As a developer it can be
good to know how the omnibus packages differ from what you have on your laptop
when you are coding.

## Files are owned by root by default

All the files in the Rails tree (app/, config/ etc.) are owned by ‘root’ in
omnibus installations. This makes the installation simpler and it provides
extra security. The omnibus reconfigure script contains commands that give
write access to the ‘git’ user only where needed.

For example, the ‘git’ user is allowed to write in the log/ directory, in
public/uploads, and they are allowed to rewrite the db/schema.rb file.

In other cases, the reconfigure script tricks GitLab into not trying to write a
file. For instance, GitLab will generate a .secret file if it cannot find one
and write it to the Rails root. In the omnibus packages, reconfigure writes the
.secret file first, so that GitLab never tries to write it.

## Code, data and logs are in separate directories

The omnibus design separates code (read-only, under /opt/gitlab) from data
(read/write, under /var/opt/gitlab) and logs (read/write, under
/var/log/gitlab). To make this happen the reconfigure script sets custom
paths where it can in GitLab config files, and where there are no path
settings, it uses symlinks.

For example, config/gitlab.yml is treated as data so that file is a symlink.
The same goes for public/uploads. The log/ directory is replaced by omnibus
with a symlink to /var/log/gitlab/gitlab-rails.



            

          

      

      

    

  

    
      
          
            
  # Ordering Table Columns

Similar to C structures the space of a table is influenced by the order of
columns. This is because the size of columns is aligned depending on the type of
the column. Take the following column order for example:


	id (integer, 4 bytes)


	name (text, variable)


	user_id (integer, 4 bytes)




Integers are aligned to the word size. This means that on a 64 bit platform the
actual size of each column would be: 8 bytes, variable, 8 bytes. This means that
each row will require at least 16 bytes for the two integers, and a variable
amount for the text field. If a table has a few rows this is not an issue, but
once you start storing millions of rows you can save space by using a different
order. For the above example a more ideal column order would be the following:


	id (integer, 4 bytes)


	user_id (integer, 4 bytes)


	name (text, variable)




In this setup the id and user_id columns can be packed together, which means
we only need 8 bytes to store _both_ of them. This in turn each row will require
8 bytes less of space.

For GitLab we require that columns of new tables are ordered based to use the
least amount of space. An easy way of doing this is to order them based on the
type size in descending order with variable sizes (string and text columns for
example) at the end.

## Type Sizes

While the PostgreSQL documentation
(https://www.postgresql.org/docs/current/static/datatype.html) contains plenty
of information we will list the sizes of common types here so it’s easier to
look them up. Here “word” refers to the word size, which is 4 bytes for a 32
bits platform and 8 bytes for a 64 bits platform.


Type             | Size                                 | Aligned To |



|:-----------------|:————————————-|:-----------|
| smallint         | 2 bytes                              | 1 word     |
| integer          | 4 bytes                              | 1 word     |
| bigint           | 8 bytes                              | 8 bytes    |
| real             | 4 bytes                              | 1 word     |
| double precision | 8 bytes                              | 8 bytes    |
| boolean          | 1 byte                               | not needed |
| text / string    | variable, 1 byte plus the data       | 1 word     |
| bytea            | variable, 1 or 4 bytes plus the data | 1 word     |
| timestamp        | 8 bytes                              | 8 bytes    |
| timestamptz      | 8 bytes                              | 8 bytes    |
| date             | 4 bytes                              | 1 word     |

A “variable” size means the actual size depends on the value being stored. If
PostgreSQL determines this can be embedded directly into a row it may do so, but
for very large values it will store the data externally and store a pointer (of
1 word in size) in the column. Because of this variable sized columns should
always be at the end of a table.

## Real Example

Let’s use the “events” table as an example, which currently has the following
layout:


Column      | Type                        | Size     |



|:------------|:—————————-|:---------|
| id          | integer                     | 4 bytes  |
| target_type | character varying           | variable |
| target_id   | integer                     | 4 bytes  |
| title       | character varying           | variable |
| data        | text                        | variable |
| project_id  | integer                     | 4 bytes  |
| created_at  | timestamp without time zone | 8 bytes  |
| updated_at  | timestamp without time zone | 8 bytes  |
| action      | integer                     | 4 bytes  |
| author_id   | integer                     | 4 bytes  |

After adding padding to align the columns this would translate to columns being
divided into fixed size chunks as follows:


Chunk Size | Columns           |



|:-----------|:——————|
| 8 bytes    | id                |
| variable   | target_type       |
| 8 bytes    | target_id         |
| variable   | title             |
| variable   | data              |
| 8 bytes    | project_id        |
| 8 bytes    | created_at        |
| 8 bytes    | updated_at        |
| 8 bytes    | action, author_id |

This means that excluding the variable sized data we need at least 48 bytes per
row.

We can optimise this by using the following column order instead:


Column      | Type                        | Size     |



|:------------|:—————————-|:---------|
| created_at  | timestamp without time zone | 8 bytes  |
| updated_at  | timestamp without time zone | 8 bytes  |
| id          | integer                     | 4 bytes  |
| target_id   | integer                     | 4 bytes  |
| project_id  | integer                     | 4 bytes  |
| action      | integer                     | 4 bytes  |
| author_id   | integer                     | 4 bytes  |
| target_type | character varying           | variable |
| title       | character varying           | variable |
| data        | text                        | variable |

This would produce the following chunks:


Chunk Size | Columns            |



|:-----------|:——————-|
| 8 bytes    | created_at         |
| 8 bytes    | updated_at         |
| 8 bytes    | id, target_id      |
| 8 bytes    | project_id, action |
| 8 bytes    | author_id          |
| variable   | target_type        |
| variable   | title              |
| variable   | data               |

Here we only need 40 bytes per row excluding the variable sized data. 8 bytes
being saved may not sound like much, but for tables as large as the “events”
table it does begin to matter. For example, when storing 80 000 000 rows this
translates to a space saving of at least 610 MB: all by just changing the order
of a few columns.



            

          

      

      

    

  

    
      
          
            
  # Performance Guidelines

This document describes various guidelines to follow to ensure good and
consistent performance of GitLab.

## Workflow

The process of solving performance problems is roughly as follows:


	Make sure there’s an issue open somewhere (e.g., on the GitLab CE issue
tracker), create one if there isn’t. See [#15607][#15607] for an example.


	Measure the performance of the code in a production environment such as
GitLab.com (see the [Tooling](#tooling) section below). Performance should be
measured over a period of _at least_ 24 hours.


	Add your findings based on the measurement period (screenshots of graphs,
timings, etc) to the issue mentioned in step 1.


	Solve the problem.


	Create a merge request, assign the “Performance” label and assign it to
[@yorickpeterse][yorickpeterse] for reviewing.


	Once a change has been deployed make sure to _again_ measure for at least 24
hours to see if your changes have any impact on the production environment.


	Repeat until you’re done.




When providing timings make sure to provide:


	The 95th percentile


	The 99th percentile


	The mean




When providing screenshots of graphs, make sure that both the X and Y axes and
the legend are clearly visible. If you happen to have access to GitLab.com’s own
monitoring tools you should also provide a link to any relevant
graphs/dashboards.

## Tooling

GitLab provides built-in tools to aid the process of improving performance:


	[Profiling](profiling.md)
* [Sherlock](profiling.md#sherlock)


	[GitLab Performance Monitoring](../administration/monitoring/performance/index.md)


	[Request Profiling](../administration/monitoring/performance/request_profiling.md)


	[QueryRecoder](query_recorder.md) for preventing N+1 regressions




GitLab employees can use GitLab.com’s performance monitoring systems located at
<http://performance.gitlab.net>, this requires you to log in using your
@gitlab.com Email address. Non-GitLab employees are advised to set up their
own InfluxDB + Grafana stack.

## Benchmarks

Benchmarks are almost always useless. Benchmarks usually only test small bits of
code in isolation and often only measure the best case scenario. On top of that,
benchmarks for libraries (e.g., a Gem) tend to be biased in favour of the
library. After all there’s little benefit to an author publishing a benchmark
that shows they perform worse than their competitors.

Benchmarks are only really useful when you need a rough (emphasis on “rough”)
understanding of the impact of your changes. For example, if a certain method is
slow a benchmark can be used to see if the changes you’re making have any impact
on the method’s performance. However, even when a benchmark shows your changes
improve performance there’s no guarantee the performance also improves in a
production environment.

When writing benchmarks you should almost always use
[benchmark-ips](https://github.com/evanphx/benchmark-ips). Ruby’s Benchmark
module that comes with the standard library is rarely useful as it runs either a
single iteration (when using Benchmark.bm) or two iterations (when using
Benchmark.bmbm). Running this few iterations means external factors (e.g. a
video streaming in the background) can very easily skew the benchmark
statistics.

Another problem with the Benchmark module is that it displays timings, not
iterations. This means that if a piece of code completes in a very short period
of time it can be very difficult to compare the timings before and after a
certain change. This in turn leads to patterns such as the following:

```ruby
Benchmark.bmbm(10) do |bench|

	bench.report ‘do something’ do
	
	100.times do
	… work here …

end

end

end

This however leads to the question: how many iterations should we run to get
meaningful statistics?

The benchmark-ips Gem basically takes care of all this and much more, and as a
result of this should be used instead of the Benchmark module.

In short:

	Don’t trust benchmarks you find on the internet.

	Never make claims based on just benchmarks, always measure in production to
confirm your findings.

	X being N times faster than Y is meaningless if you don’t know what impact it
will actually have on your production environment.

	A production environment is the _only_ benchmark that always tells the truth
(unless your performance monitoring systems are not set up correctly).

	If you must write a benchmark use the benchmark-ips Gem instead of Ruby’s
Benchmark module.

Profiling

By collecting snapshots of process state at regular intervals, profiling allows
you to see where time is spent in a process. The [StackProf](https://github.com/tmm1/stackprof)
gem is included in GitLab’s development environment, allowing you to investigate
the behaviour of suspect code in detail.

It’s important to note that profiling an application alters its performance,
and will generally be done in an unrepresentative environment. In particular,
a method is not necessarily troublesome just because it is executed many times,
or takes a long time to execute. Profiles are tools you can use to better
understand what is happening in an application - using that information wisely
is up to you!

Keeping that in mind, to create a profile, identify (or create) a spec that
exercises the troublesome code path, then run it using the bin/rspec-stackprof
helper, e.g.:

```
$ LIMIT=10 bin/rspec-stackprof spec/policies/project_policy_spec.rb
8/8 |====== 100 ======>| Time: 00:00:18

Finished in 18.19 seconds (files took 4.8 seconds to load)
8 examples, 0 failures


GC: 1901 (11.16%)





2018  (11.8%)         888   (5.2%)     ActiveRecord::ConnectionAdapters::PostgreSQLAdapter#exec_no_cache
1338   (7.9%)         640   (3.8%)     ActiveRecord::ConnectionAdapters::PostgreSQL::DatabaseStatements#execute
3125  (18.3%)         394   (2.3%)     Sprockets::Cache::FileStore#safe_open


913   (5.4%)         301   (1.8%)     ActiveRecord::ConnectionAdapters::PostgreSQLAdapter#exec_cache
288   (1.7%)         288   (1.7%)     ActiveRecord::Attribute#initialize
246   (1.4%)         246   (1.4%)     Sprockets::Cache::FileStore#safe_stat
295   (1.7%)         193   (1.1%)     block (2 levels) in class_attribute
187   (1.1%)         187   (1.1%)     block (4 levels) in class_attribute







```

You can limit the specs that are run by passing any arguments rspec would
normally take.

The output is sorted by the Samples column by default. This is the number of
samples taken where the method is the one currently being executed. The Total
column shows the number of samples taken where the method, or any of the methods
it calls, were being executed.

To create a graphical view of the call stack:

`shell
$ stackprof tmp/project_policy_spec.rb.dump --graphviz > project_policy_spec.dot
$ dot -Tsvg project_policy_spec.dot > project_policy_spec.svg
`

To load the profile in [kcachegrind](https://kcachegrind.github.io/):

`
$ stackprof tmp/project_policy_spec.dump --callgrind > project_policy_spec.callgrind
$ kcachegrind project_policy_spec.callgrind # Linux
$ qcachegrind project_policy_spec.callgrind # Mac
`

It may be useful to zoom in on a specific method, e.g.:

```
$ stackprof tmp/project_policy_spec.rb.dump –method warm_asset_cache
TestEnv#warm_asset_cache (/Users/lupine/dev/gitlab.com/gitlab-org/gitlab-development-kit/gitlab/spec/support/test_env.rb:164)



samples:     0 self (0.0%)  /   6288 total (36.9%)
callers:


6288  (  100.0%)  block (2 levels) in <top (required)>





	callees (6288 total):
	6288  (  100.0%)  Capybara::RackTest::Driver#visit



	code:
	
164  |   def warm_asset_cache

165  |     return if warm_asset_cache?

166  |     return unless defined?(Capybara)

167  |











	6288   (36.9%)                   |   168  |     Capybara.current_session.driver.visit ‘/’
	
169  |   end










$ stackprof tmp/project_policy_spec.rb.dump –method BasePolicy#abilities
BasePolicy#abilities (/Users/lupine/dev/gitlab.com/gitlab-org/gitlab-development-kit/gitlab/app/policies/base_policy.rb:79)


samples:     0 self (0.0%)  /     50 total (0.3%)
callers:


25  (   50.0%)  BasePolicy.abilities
25  (   50.0%)  BasePolicy#collect_rules





	callees (50 total):
	25  (   50.0%)  ProjectPolicy#rules
25  (   50.0%)  BasePolicy#collect_rules



	code:
	

79  |   def abilities

80  |     return RuleSet.empty if @user && @user.blocked?

81  |     return anonymous_abilities if @user.nil?







	50    (0.3%)                   |    82  |     collect_rules { rules }
	
83  |   end














```

Since the profile includes the work done by the test suite as well as the
application code, these profiles can be used to investigate slow tests as well.
However, for smaller runs (like this example), this means that the cost of
setting up the test suite will tend to dominate.

It’s also possible to modify the application code in-place to output profiles
whenever a particular code path is triggered without going through the test
suite first. See the
[StackProf documentation](https://github.com/tmm1/stackprof/blob/master/README.md)
for details.

RSpec profiling

GitLab’s development environment also includes the
[rspec_profiling](https://github.com/foraker/rspec_profiling) gem, which is used
to collect data on spec execution times. This is useful for analyzing the
performance of the test suite itself, or seeing how the performance of a spec
may have changed over time.

To activate profiling in your local environment, run the following:

`
$ export RSPEC_PROFILING=yes
$ rake rspec_profiling:install
`

This creates an SQLite3 database in tmp/rspec_profiling, into which statistics
are saved every time you run specs with the RSPEC_PROFILING environment
variable set.

Ad-hoc investigation of the collected results can be performed in an interactive
shell:

`
$ rake rspec_profiling:console
irb(main):001:0> results.count
=> 231
irb(main):002:0> results.last.attributes.keys
=> ["id", "commit", "date", "file", "line_number", "description", "time", "status", "exception", "query_count", "query_time", "request_count", "request_time", "created_at", "updated_at"]
irb(main):003:0> results.where(status: "passed").average(:time).to_s
=> "0.211340155844156"
`
These results can also be placed into a PostgreSQL database by setting the
RSPEC_PROFILING_POSTGRES_URL variable. This is used to profile the test suite
when running in the CI environment.

Importance of Changes

When working on performance improvements, it’s important to always ask yourself
the question “How important is it to improve the performance of this piece of
code?”. Not every piece of code is equally important and it would be a waste to
spend a week trying to improve something that only impacts a tiny fraction of
our users. For example, spending a week trying to squeeze 10 milliseconds out of
a method is a waste of time when you could have spent a week squeezing out 10
seconds elsewhere.

There is no clear set of steps that you can follow to determine if a certain
piece of code is worth optimizing. The only two things you can do are:

	Think about what the code does, how it’s used, how many times it’s called and
how much time is spent in it relative to the total execution time (e.g., the
total time spent in a web request).

	Ask others (preferably in the form of an issue).

Some examples of changes that aren’t really important/worth the effort:

	Replacing double quotes with single quotes.

	Replacing usage of Array with Set when the list of values is very small.

	Replacing library A with library B when both only take up 0.1% of the total
execution time.

	Calling freeze on every string (see [String Freezing](#string-freezing)).

Slow Operations & Sidekiq

Slow operations (e.g. merging branches) or operations that are prone to errors
(using external APIs) should be performed in a Sidekiq worker instead of
directly in a web request as much as possible. This has numerous benefits such
as:

	An error won’t prevent the request from completing.

	The process being slow won’t affect the loading time of a page.

	In case of a failure it’s easy to re-try the process (Sidekiq takes care of
this automatically).

	By isolating the code from a web request it will hopefully be easier to test
and maintain.

It’s especially important to use Sidekiq as much as possible when dealing with
Git operations as these operations can take quite some time to complete
depending on the performance of the underlying storage system.

Git Operations

Care should be taken to not run unnecessary Git operations. For example,
retrieving the list of branch names using Repository#branch_names can be done
without an explicit check if a repository exists or not. In other words, instead
of this:

```ruby
if repository.exists?



	repository.branch_names.each do |name|
	…





end







end

You can just write:

```ruby
repository.branch_names.each do |name|

…

end

Caching

Operations that will often return the same result should be cached using Redis,
in particular Git operations. When caching data in Redis, make sure the cache is
flushed whenever needed. For example, a cache for the list of tags should be
flushed whenever a new tag is pushed or a tag is removed.

When adding cache expiration code for repositories, this code should be placed
in one of the before/after hooks residing in the Repository class. For example,
if a cache should be flushed after importing a repository this code should be
added to Repository#after_import. This ensures the cache logic stays within
the Repository class instead of leaking into other classes.

When caching data, make sure to also memoize the result in an instance variable.
While retrieving data from Redis is much faster than raw Git operations, it still
has overhead. By caching the result in an instance variable, repeated calls to
the same method won’t end up retrieving data from Redis upon every call. When
memoizing cached data in an instance variable, make sure to also reset the
instance variable when flushing the cache. An example:

```ruby
def first_branch


@first_branch ||= cache.fetch(:first_branch) { branches.first }




end


	def expire_first_branch_cache
	cache.expire(:first_branch)
@first_branch = nil








end

## String Freezing

In recent Ruby versions calling freeze on a String leads to it being allocated
only once and re-used. For example, on Ruby 2.3 this will only allocate the
“foo” String once:

```ruby
10.times do

‘foo’.freeze

end

Depending on the size of the String and how frequently it would be allocated
(before the .freeze call was added), this _may_ make things faster, but
there’s no guarantee it will.

Strings will be frozen by default in Ruby 3.0. To prepare our code base for
this eventuality, it’s a good practice to add the following header to all
Ruby files:

`ruby
frozen_string_literal: true
`

This may cause test failures in the code that expects to be able to manipulate
strings. Instead of using dup, use the unary plus to get an unfrozen string:

`ruby
test = +"hello"
test += " world"
`

Anti-Patterns

This is a collection of [anti-patterns][anti-pattern] that should be avoided
unless these changes have a measurable, significant and positive impact on
production environments.

Moving Allocations to Constants

Storing an object as a constant so you only allocate it once _may_ improve
performance, but there’s no guarantee this will. Looking up constants has an
impact on runtime performance, and as such, using a constant instead of
referencing an object directly may even slow code down. For example:

```ruby
SOME_CONSTANT = ‘foo’.freeze


	9000.times do
	SOME_CONSTANT








end

The only reason you should be doing this is to prevent somebody from mutating
the global String. However, since you can just re-assign constants in Ruby
there’s nothing stopping somebody from doing this elsewhere in the code:

`ruby
SOME_CONSTANT = 'bar'
`

[#15607]: https://gitlab.com/gitlab-org/gitlab-ce/issues/15607
[yorickpeterse]: https://gitlab.com/yorickpeterse
[anti-pattern]: https://en.wikipedia.org/wiki/Anti-pattern





            

          

      

      

    

  

    
      
          
            
  # DeclarativePolicy framework

The DeclarativePolicy framework is designed to assist in performance of policy checks, and to enable ease of extension for EE. The DSL code in app/policies is what Ability.allowed? uses to check whether a particular action is allowed on a subject.

The policy used is based on the subject’s class name - so Ability.allowed?(user, :some_ability, project) will create a ProjectPolicy and check permissions on that.

## Managing Permission Rules

Permissions are broken into two parts: conditions and rules. Conditions are boolean expressions that can access the database and the environment, while rules are statically configured combinations of expressions and other rules that enable or prevent certain abilities. For an ability to be allowed, it must be enabled by at least one rule, and not prevented by any.

### Conditions

Conditions are defined by the condition method, and are given a name and a block. The block will be executed in the context of the policy object - so it can access @user and @subject, as well as call any methods defined on the policy. Note that @user may be nil (in the anonymous case), but @subject is guaranteed to be a real instance of the subject class.

``` ruby
class FooPolicy < BasePolicy

	condition(:is_public) do
	# @subject guaranteed to be an instance of Foo
@subject.public?

end

instance methods can be called from the condition as well
condition(:thing) { check_thing }

	def check_thing
	# …

end

end

When you define a condition, a predicate method is defined on the policy to check whether that condition passes - so in the above example, an instance of FooPolicy will also respond to #is_public? and #thing?.

Conditions are cached according to their scope. Scope and ordering will be covered later.

Rules

A rule is a logical combination of conditions and other rules, that are configured to enable or prevent certain abilities. It is important to note that the rule configuration is static - a rule’s logic cannot touch the database or know about @user or @subject. This allows us to cache only at the condition level. Rules are specified through the rule method, which takes a block of DSL configuration, and returns an object that responds to #enable or #prevent:

``` ruby
class FooPolicy < BasePolicy


# …

rule { is_public }.enable :read
rule { thing }.prevent :read

# equivalently,
rule { is_public }.policy do


enable :read




end


	rule { ~thing }.policy do
	prevent :read





end







end

Within the rule DSL, you can use:


	A regular word mentions a condition by name - a rule that is in effect when that condition is truthy.


	~ indicates negation


	& and | are logical combinations, also available as all?(…) and any?(…)


	can?(:other_ability) delegates to the rules that apply to :other_ability. Note that this is distinct from the instance method can?, which can check dynamically - this only configures a delegation to another ability.




## Scores, Order, Performance

To see how the rules get evaluated into a judgment, it is useful in a console to use policy.debug(:some_ability). This will print the rules in the order they are evaluated.

When a policy is asked whether a particular ability is allowed (policy.allowed?(:some_ability)), it does not necessarily have to compute all the conditions on the policy. First, only the rules relevant to that particular ability are selected. Then, the execution model takes advantage of short-circuiting, and attempts to sort rules based on a heuristic of how expensive they will be to calculate. The sorting is dynamic and cache-aware, so that previously calculated conditions will be considered first, before computing other conditions.

## Scope

Sometimes, a condition will only use data from @user or only from @subject. In this case, we want to change the scope of the caching, so that we don’t recalculate conditions unnecessarily. For example, given:

``` ruby
class FooPolicy < BasePolicy

condition(:expensive_condition) { @subject.expensive_query? }

rule { expensive_condition }.enable :some_ability

end

Naively, if we call Ability.can?(user1, :some_ability, foo) and Ability.can?(user2, :some_ability, foo), we would have to calculate the condition twice - since they are for different users. But if we use the scope: :subject option:


	``` ruby
	condition(:expensive_condition, scope: :subject) { @subject.expensive_query? }





```

then the result of the condition will be cached globally only based on the subject - so it will not be calculated repeatedly for different users. Similarly, scope: :user will cache only based on the user.

DANGER: If you use a :scope option when the condition actually uses data from
both user and subject (including a simple anonymous check!) your result will be cached at too global of a scope and will result in cache bugs.

Sometimes we are checking permissions for a lot of users for one subject, or a lot of subjects for one user. In this case, we want to set a preferred scope - i.e. tell the system that we prefer rules that can be cached on the repeated parameter. For example, in Ability.users_that_can_read_project:

``` ruby
def users_that_can_read_project(users, project)



	DeclarativePolicy.subject_scope do
	users.select { |u| allowed?(u, :read_project, project) }





end







end

This will, for example, prefer checking project.public? to checking user.admin?.

## Delegation

Delegation is the inclusion of rules from another policy, on a different subject. For example,

``` ruby
class FooPolicy < BasePolicy

delegate { @subject.project }

end

will include all rules from ProjectPolicy. The delegated conditions will be evaluated with the correct delegated subject, and will be sorted along with the regular rules in the policy. Note that only the relevant rules for a particular ability will actually be considered.

 # Polling with ETag caching

Polling for changes (repeatedly asking server if there are any new changes)
introduces high load on a GitLab instance, because it usually requires
executing at least a few SQL queries. This makes scaling large GitLab
instances (like GitLab.com) very difficult so we do not allow adding new
features that require polling and hit the database.

Instead you should use polling mechanism with ETag caching in Redis.

How to use it

	Add the path of the endpoint which you want to poll to
Gitlab::EtagCaching::Middleware.

	Implement cache invalidation for the path of your endpoint using
Gitlab::EtagCaching::Store. Whenever a resource changes you
have to invalidate the ETag for the path that depends on this
resource.

	Check that the mechanism works:
- requests should return status code 304
- there should be no SQL queries logged in log/development.log

How it works

Cache Miss:

![Cache miss](img/cache-miss.svg)

Cache Hit:

![Cache hit](img/cache-hit.svg)

	Whenever a resource changes we generate a random value and store it in
Redis.

	When a client makes a request we set the ETag response header to the value
from Redis.

	The client caches the response (client-side caching) and sends the ETag as
the If-None-Match header with every subsequent request for the same
resource.

	If the If-None-Match header matches the current value in Redis we know
that the resource did not change so we can send 304 response immediately,
without querying the database at all. The client’s browser will use the
cached response.

	If the If-None-Match header does not match the current value in Redis
we have to generate a new response, because the resource changed.

Do not use query parameters (for example ?scope=all) for endpoints where you
want to enable ETag caching. The middleware takes into account only the request
path and ignores query parameters. All parameters should be included in the
request path. By doing this we avoid query parameter ordering problems and make
route matching easier.

For more information see:
- [Poll-Interval header](fe_guide/performance.md#realtime-components)
- [RFC 7232](https://tools.ietf.org/html/rfc7232)
- [ETag proposal](https://gitlab.com/gitlab-org/gitlab-ce/issues/26926)

 # Polymorphic Associations

Summary: always use separate tables instead of polymorphic associations.

Rails makes it possible to define so called “polymorphic associations”. This
usually works by adding two columns to a table: a target type column, and a
target id. For example, at the time of writing we have such a setup for
members with the following columns:

	source_type: a string defining the model to use, can be either Project or
Namespace.

	source_id: the ID of the row to retrieve based on source_type. For
example, when source_type is Project then source_id will contain a
project ID.

While such a setup may appear to be useful, it comes with many drawbacks; enough
that you should avoid this at all costs.

Space Wasted

Because this setup relies on string values to determine the model to use it will
end up wasting a lot of space. For example, for Project and Namespace the
maximum size is 9 bytes, plus 1 extra byte for every string when using
PostgreSQL. While this may only be 10 bytes per row, given enough tables and
rows using such a setup we can end up wasting quite a bit of disk space and
memory (for any indexes).

Indexes

Because our associations are broken up into two columns this may result in
requiring composite indexes for queries to be performed efficiently. While
composite indexes are not wrong at all, they can be tricky to set up as the
ordering of columns in these indexes is important to ensure optimal performance.

Consistency

One really big problem with polymorphic associations is being unable to enforce
data consistency on the database level using foreign keys. For consistency to be
enforced on the database level one would have to write their own foreign key
logic to support polymorphic associations.

Enforcing consistency on the database level is absolutely crucial for
maintaining a healthy environment, and thus is another reason to avoid
polymorphic associations.

Query Overhead

When using polymorphic associations you always need to filter using both
columns. For example, you may end up writing a query like this:

`sql
SELECT *
FROM members
WHERE source_type = 'Project'
AND source_id = 13083;
`

Here PostgreSQL can perform the query quite efficiently if both columns are
indexed, but as the query gets more complex it may not be able to use these
indexes efficiently.

Mixed Responsibilities

Similar to functions and classes a table should have a single responsibility:
storing data with a certain set of pre-defined columns. When using polymorphic
associations you are instead storing different types of data (possibly with
different columns set) in the same table.

The Solution

Fortunately there is a very simple solution to these problems: simply use a
separate table for every type you would otherwise store in the same table. Using
a separate table allows you to use everything a database may provide to ensure
consistency and query data efficiently, without any additional application logic
being necessary.

Let’s say you have a members table storing both approved and pending members,
for both projects and groups, and the pending state is determined by the column
requested_at being set or not. Schema wise such a setup can lead to various
columns only being set for certain rows, wasting space. It’s also possible that
certain indexes will only be set for certain rows, again wasting space. Finally,
querying such a table requires less than ideal queries. For example:

`sql
SELECT *
FROM members
WHERE requested_at IS NULL
AND source_type = 'GroupMember'
AND source_id = 4
`

Instead such a table should be broken up into separate tables. For example, you
may end up with 4 tables in this case:

	project_members

	group_members

	pending_project_members

	pending_group_members

This makes querying data trivial. For example, to get the members of a group
you’d run:

`sql
SELECT *
FROM group_members
WHERE group_id = 4
`

To get all the pending members of a group in turn you’d run:

`sql
SELECT *
FROM pending_group_members
WHERE group_id = 4
`

If you want to get both you can use a UNION, though you need to be explicit
about what columns you want to SELECT as otherwise the result set will use the
columns of the first query. For example:

```sql
SELECT id, ‘Group’ AS target_type, group_id AS target_id
FROM group_members

UNION ALL

SELECT id, ‘Project’ AS target_type, project_id AS target_id
FROM project_members
```

The above example is perhaps a bit silly, but it shows that there’s nothing
stopping you from merging the data together and presenting it on the same page.
Selecting columns explicitly can also speed up queries as the database has to do
less work to get the data (compared to selecting all columns, even ones you’re
not using).

Our schema also becomes easier. No longer do we need to both store and index the
source_type column, we can define foreign keys easily, and we don’t need to
filter rows using the IS NULL condition.

To summarize: using separate tables allows us to use foreign keys effectively,
create indexes only where necessary, conserve space, query data more
efficiently, and scale these tables more easily (e.g. by storing them on
separate disks). A nice side effect of this is that code can also become easier
as you won’t end up with a single model having to handle different kinds of
data.

 # Post Deployment Migrations

Post deployment migrations are regular Rails migrations that can optionally be
executed after a deployment. By default these migrations are executed alongside
the other migrations. To skip these migrations you will have to set the
environment variable SKIP_POST_DEPLOYMENT_MIGRATIONS to a non-empty value
when running rake db:migrate.

For example, this would run all migrations including any post deployment
migrations:

`bash
bundle exec rake db:migrate
`

This however will skip post deployment migrations:

`bash
SKIP_POST_DEPLOYMENT_MIGRATIONS=true bundle exec rake db:migrate
`

Deployment Integration

Say you’re using Chef for deploying new versions of GitLab and you’d like to run
post deployment migrations after deploying a new version. Let’s assume you
normally use the command chef-client to do so. To make use of this feature
you’d have to run this command as follows:

`bash
SKIP_POST_DEPLOYMENT_MIGRATIONS=true sudo chef-client
`

Once all servers have been updated you can run chef-client again on a single
server _without_ the environment variable.

The process is similar for other deployment techniques: first you would deploy
with the environment variable set, then you’ll essentially re-deploy a single
server but with the variable _unset_.

Creating Migrations

To create a post deployment migration you can use the following Rails generator:

`bash
bundle exec rails g post_deployment_migration migration_name_here
`

This will generate the migration file in db/post_migrate. These migrations
behave exactly like regular Rails migrations.

Use Cases

Post deployment migrations can be used to perform migrations that mutate state
that an existing version of GitLab depends on. For example, say you want to
remove a column from a table. This requires downtime as a GitLab instance
depends on this column being present while it’s running. Normally you’d follow
these steps in such a case:

	Stop the GitLab instance

	Run the migration removing the column

	Start the GitLab instance again

Using post deployment migrations we can instead follow these steps:

	Deploy a new version of GitLab while ignoring post deployment migrations

	Re-run rake db:migrate but without the environment variable set

Here we don’t need any downtime as the migration takes place _after_ a new
version (which doesn’t depend on the column anymore) has been deployed.

Some other examples where these migrations are useful:

	Cleaning up data generated due to a bug in GitLab

	Removing tables

	Migrating jobs from one Sidekiq queue to another

 # Profiling

To make it easier to track down performance problems GitLab comes with a set of
profiling tools, some of these are available by default while others need to be
explicitly enabled.

Profiling a URL

There is a Gitlab::Profiler.profile method, and corresponding
bin/profile-url script, that enable profiling a GET or POST request to a
specific URL, either as an anonymous user (the default) or as a specific user.

When using the script, command-line documentation is available by passing no
arguments.

When using the method in an interactive console session, any changes to the
application code within that console session will be reflected in the profiler
output.

For example:

`ruby
Gitlab::Profiler.profile('/my-user')
Returns a RubyProf::Profile for the regular operation of this request
class UsersController; def show; sleep 100; end; end
Gitlab::Profiler.profile('/my-user')
Returns a RubyProf::Profile where 100 seconds is spent in UsersController#show
`

For routes that require authorization you will need to provide a user to
Gitlab::Profiler. You can do this like so:

`ruby
Gitlab::Profiler.profile('/gitlab-org/gitlab-test', user: User.first)
`

The user you provide will need to have a [personal access
token](https://docs.gitlab.com/ce/user/profile/personal_access_tokens.html) in
the GitLab instance.

Passing a logger: keyword argument to Gitlab::Profiler.profile will send
ActiveRecord and ActionController log output to that logger. Further options are
documented with the method source.

There is also a RubyProf printer available:
Gitlab::Profiler::TotalTimeFlatPrinter. This acts like
RubyProf::FlatPrinter, but its min_percent option works on the method’s
total time, not its self time. (This is because we often spend most of our time
in library code, but this comes from calls in our application.) It also offers a
max_percent option to help filter out outer calls that aren’t useful (like
ActionDispatch::Integration::Session#process).

There is a convenience method for using this,
Gitlab::Profiler.print_by_total_time:

`ruby
result = Gitlab::Profiler.profile('/my-user')
Gitlab::Profiler.print_by_total_time(result, max_percent: 60, min_percent: 2)
Measure Mode: wall_time
Thread ID: 70005223698240
Fiber ID: 70004894952580
Total: 1.768912
Sort by: total_time
#
%self total self wait child calls name
0.00 1.017 0.000 0.000 1.017 14 *ActionView::Helpers::RenderingHelper#render
0.00 1.017 0.000 0.000 1.017 14 *ActionView::Renderer#render_partial
0.00 1.017 0.000 0.000 1.017 14 *ActionView::PartialRenderer#render
0.00 1.007 0.000 0.000 1.007 14 *ActionView::PartialRenderer#render_partial
0.00 0.930 0.000 0.000 0.930 14 Hamlit::TemplateHandler#call
0.00 0.928 0.000 0.000 0.928 14 Temple::Engine#call
0.02 0.865 0.000 0.000 0.864 638 *Enumerable#inject
`

[GitLab-Profiler](https://gitlab.com/gitlab-com/gitlab-profiler) is a project
that builds on this to add some additional niceties, such as allowing
configuration with a single Yaml file for multiple URLs, and uploading of the
profile and log output to S3.

For GitLab.com, you can find the latest results here:
<http://redash.gitlab.com/dashboard/gitlab-profiler-statistics>

Sherlock

Sherlock is a custom profiling tool built into GitLab. Sherlock is _only_
available when running GitLab in development mode _and_ when setting the
environment variable ENABLE_SHERLOCK to a non empty value. For example:

ENABLE_SHERLOCK=1 bundle exec rails s

Recorded transactions can be found by navigating to /sherlock/transactions.

Bullet

Bullet is a Gem that can be used to track down N+1 query problems. Because
Bullet adds quite a bit of logging noise it’s disabled by default. To enable
Bullet, set the environment variable ENABLE_BULLET to a non-empty value before
starting GitLab. For example:

ENABLE_BULLET=true bundle exec rails s

Bullet will log query problems to both the Rails log as well as the Chrome
console.

As a follow up to finding N+1 queries with Bullet, consider writing a [QueryRecoder test](query_recorder.md) to prevent a regression.

 # Pry debugging

Invoking pry debugging

To invoke the debugger, place binding.pry somewhere in your
code. When the Ruby interpreter hits that code, execution will stop,
and you can type in commands to debug the state of the program

byebug vs binding.pry

byebug has a very similar interface as gdb, but byebug does not
use the powerful Pry REPL.

binding.pry uses Pry, but lacks some of the byebug
features. GitLab uses the [pry-byebug](https://github.com/deivid-rodriguez/pry-byebug)
gem. This gem brings some capabilities byebug to binding.pry, so
using that, will give you the most debugging powers.

byebug

Check out [the docs](https://github.com/deivid-rodriguez/byebug) for the full list of commands.

You can start the Pry REPL with the pry command.

pry

There are a lot of features present in pry, too much to cover in
this document, so for the full documentation head over to the [Pry wiki](https://github.com/pry/pry/wiki).

Below are a few features definitely worth checking out, also run
help in a pry session to see what else you can do.

State navigation

With the [state navigation](https://github.com/pry/pry/wiki/State-navigation)
you can move around in the code to discover methods and such:

```ruby
# Change context
[1] pry(main)> cd Pry
[2] pry(Pry):1>

# Print methods
[2] pry(Pry):1> ls -m

# Find a method
[3] pry(Pry):1> find-method to_yaml
```

Source browsing

You [look at the source code](https://github.com/pry/pry/wiki/Source-browsing)
from your pry session:

`ruby
[1] pry(main)> $ Array#first
The above is equivalent to
[2] pry(main)> cd Array
[3] pry(Array):1> show-source first
`

$ is an alias for show-source.

Documentation browsing

Similar to source browsing, is [Documentation browsing](https://github.com/pry/pry/wiki/Documentation-browsing).

`ruby
[1] pry(main)> show-doc Array#first
`

? is an alias for show-doc.

Command history

With <kdb>Ctrl+R</kbd> you can search your [command history](https://github.com/pry/pry/wiki/History).

Stepping

To step through the code, you can use the following commands:

	break: Manage breakpoints.

	step: Step execution into the next line or method. Takes an
optional numeric argument to step multiple times.

	next: Step over to the next line within the same frame. Also takes
an optional numeric argument to step multiple lines.

	finish: Execute until current stack frame returns.

	continue: Continue program execution and end the Pry session.

Callstack navigation

You also can move around in the callstack with these commands:

	backtrace: Shows the current stack. You can use the numbers on the
left side with the frame command to navigate the stack.

	up: Moves the stack frame up. Takes an optional numeric argument
to move multiple frames.

	down: Moves the stack frame down. Takes an optional numeric
argument to move multiple frames.

	frame <n>: Moves to a specific frame. Called without arguments
will show the current frame.

Short commands

When you use binding.pry instead of byebug, the short commands
like s, n, f, and c do not work. To reinstall them, add this
to ~/.pryrc:

```ruby
if defined?(PryByebug)


Pry.commands.alias_command ‘s’, ‘step’
Pry.commands.alias_command ‘n’, ‘next’
Pry.commands.alias_command ‘f’, ‘finish’
Pry.commands.alias_command ‘c’, ‘continue’





end

## Repeat last command

You can repeat the last command by just hitting the <kbd>Enter</kbd>
key (e.g., with step or`next`), if you place the following snippet
in your ~/.pryrc:

```ruby
Pry::Commands.command /^$/, “repeat last command” do

pry.run_command Pry.history.to_a.last

end

byebug supports this out-of-the-box.

 # Query Count Limits

Each controller or API endpoint is allowed to execute up to 100 SQL queries and
in test environments we’ll raise an error when this threshold is exceeded.

Solving Failing Tests

When a test fails because it executes more than 100 SQL queries there are two
solutions to this problem:

	Reduce the number of SQL queries that are executed.

	Whitelist the controller or API endpoint.

You should only resort to whitelisting when an existing controller or endpoint
is to blame as in this case reducing the number of SQL queries can take a lot of
effort. Newly added controllers and endpoints are not allowed to execute more
than 100 SQL queries and no exceptions will be made for this rule. _If_ a large
number of SQL queries is necessary to perform certain work it’s best to have
this work performed by Sidekiq instead of doing this directly in a web request.

Whitelisting

In the event that you _have_ to whitelist a controller you’ll first need to
create an issue. This issue should (preferably in the title) mention the
controller or endpoint and include the appropriate labels (database,
performance, and at least a team specific label such as Discussion).

Once the issue has been created you can whitelist the code in question. For
Rails controllers it’s best to create a before_action hook that runs as early
as possible. The called method in turn should call
Gitlab::QueryLimiting.whitelist(‘issue URL here’). For example:

```ruby
class MyController < ApplicationController


before_action :whitelist_query_limiting, only: [:show]


	def index
	# …





end


	def show
	# …





end


	def whitelist_query_limiting
	Gitlab::QueryLimiting.whitelist(‘https://gitlab.com/gitlab-org/…’)





end





end

By using a before_action you don’t have to modify the controller method in
question, reducing the likelihood of merge conflicts.

For Grape API endpoints there unfortunately is not a reliable way of running a
hook before a specific endpoint. This means that you have to add the whitelist
call directly into the endpoint like so:

```ruby
get ‘/projects/:id/foo’ do

Gitlab::QueryLimiting.whitelist(‘…’)

…

end

 # QueryRecorder

QueryRecorder is a tool for detecting the [N+1 queries problem](http://guides.rubyonrails.org/active_record_querying.html#eager-loading-associations) from tests.

> Implemented in [spec/support/query_recorder.rb](https://gitlab.com/gitlab-org/gitlab-ce/blob/master/spec/support/helpers/query_recorder.rb) via [9c623e3e](https://gitlab.com/gitlab-org/gitlab-ce/commit/9c623e3e5d7434f2e30f7c389d13e5af4ede770a)

As a rule, merge requests [should not increase query counts](merge_request_performance_guidelines.md#query-counts). If you find yourself adding something like .includes(:author, :assignee) to avoid having N+1 queries, consider using QueryRecorder to enforce this with a test. Without this, a new feature which causes an additional model to be accessed will silently reintroduce the problem.

How it works

This style of test works by counting the number of SQL queries executed by ActiveRecord. First a control count is taken, then you add new records to the database and rerun the count. If the number of queries has significantly increased then an N+1 queries problem exists.

```ruby
it “avoids N+1 database queries” do


control_count = ActiveRecord::QueryRecorder.new { visit_some_page }.count
create_list(:issue, 5)
expect { visit_some_page }.not_to exceed_query_limit(control_count)





end

As an example you might create 5 issues in between counts, which would cause the query count to increase by 5 if an N+1 problem exists.

> Note: In some cases the query count might change slightly between runs for unrelated reasons. In this case you might need to test exceed_query_limit(control_count + acceptable_change), but this should be avoided if possible.

## Cached queries

By default, QueryRecorder will ignore cached queries in the count. However, it may be better to count
all queries to avoid introducing an N+1 query that may be masked by the statement cache. To do this,
pass the skip_cached variable to QueryRecorder and use the exceed_all_query_limit matcher:

```
it “avoids N+1 database queries” do

control_count = ActiveRecord::QueryRecorder.new(skip_cached: false) { visit_some_page }.count
create_list(:issue, 5)
expect { visit_some_page }.not_to exceed_all_query_limit(control_count)

end

Finding the source of the query

It may be useful to identify the source of the queries by looking at the call backtrace.
To enable this, run the specs with the QUERY_RECORDER_DEBUG environment variable set. For example:

`
QUERY_RECORDER_DEBUG=1 bundle exec rspec spec/requests/api/projects_spec.rb
`

This will log calls to QueryRecorder into the test.log. For example:

```
QueryRecorder SQL: SELECT COUNT(*) FROM “issues” WHERE “issues”.”deleted_at” IS NULL AND “issues”.”project_id” = $1 AND (“issues”.”state” IN (‘opened’)) AND “issues”.”confidential” = $2


–> /home/user/gitlab/gdk/gitlab/spec/support/query_recorder.rb:19:in `callback’
–> /home/user/.rbenv/versions/2.3.5/lib/ruby/gems/2.3.0/gems/activesupport-4.2.8/lib/active_support/notifications/fanout.rb:127:in `finish’
–> /home/user/.rbenv/versions/2.3.5/lib/ruby/gems/2.3.0/gems/activesupport-4.2.8/lib/active_support/notifications/fanout.rb:46:in `block in finish’
–> /home/user/.rbenv/versions/2.3.5/lib/ruby/gems/2.3.0/gems/activesupport-4.2.8/lib/active_support/notifications/fanout.rb:46:in `each’
–> /home/user/.rbenv/versions/2.3.5/lib/ruby/gems/2.3.0/gems/activesupport-4.2.8/lib/active_support/notifications/fanout.rb:46:in `finish’
–> /home/user/.rbenv/versions/2.3.5/lib/ruby/gems/2.3.0/gems/activesupport-4.2.8/lib/active_support/notifications/instrumenter.rb:36:in `finish’
–> /home/user/.rbenv/versions/2.3.5/lib/ruby/gems/2.3.0/gems/activesupport-4.2.8/lib/active_support/notifications/instrumenter.rb:25:in `instrument’
–> /home/user/.rbenv/versions/2.3.5/lib/ruby/gems/2.3.0/gems/activerecord-4.2.8/lib/active_record/connection_adapters/abstract_adapter.rb:478:in `log’
–> /home/user/.rbenv/versions/2.3.5/lib/ruby/gems/2.3.0/gems/activerecord-4.2.8/lib/active_record/connection_adapters/postgresql_adapter.rb:601:in `exec_cache’
–> /home/user/.rbenv/versions/2.3.5/lib/ruby/gems/2.3.0/gems/activerecord-4.2.8/lib/active_record/connection_adapters/postgresql_adapter.rb:585:in `execute_and_clear’
–> /home/user/.rbenv/versions/2.3.5/lib/ruby/gems/2.3.0/gems/activerecord-4.2.8/lib/active_record/connection_adapters/postgresql/database_statements.rb:160:in `exec_query’
–> /home/user/.rbenv/versions/2.3.5/lib/ruby/gems/2.3.0/gems/activerecord-4.2.8/lib/active_record/connection_adapters/abstract/database_statements.rb:356:in `select’
–> /home/user/.rbenv/versions/2.3.5/lib/ruby/gems/2.3.0/gems/activerecord-4.2.8/lib/active_record/connection_adapters/abstract/database_statements.rb:32:in `select_all’
–> /home/user/.rbenv/versions/2.3.5/lib/ruby/gems/2.3.0/gems/activerecord-4.2.8/lib/active_record/connection_adapters/abstract/query_cache.rb:68:in `block in select_all’
–> /home/user/.rbenv/versions/2.3.5/lib/ruby/gems/2.3.0/gems/activerecord-4.2.8/lib/active_record/connection_adapters/abstract/query_cache.rb:83:in `cache_sql’
–> /home/user/.rbenv/versions/2.3.5/lib/ruby/gems/2.3.0/gems/activerecord-4.2.8/lib/active_record/connection_adapters/abstract/query_cache.rb:68:in `select_all’
–> /home/user/.rbenv/versions/2.3.5/lib/ruby/gems/2.3.0/gems/activerecord-4.2.8/lib/active_record/relation/calculations.rb:270:in `execute_simple_calculation’
–> /home/user/.rbenv/versions/2.3.5/lib/ruby/gems/2.3.0/gems/activerecord-4.2.8/lib/active_record/relation/calculations.rb:227:in `perform_calculation’
–> /home/user/.rbenv/versions/2.3.5/lib/ruby/gems/2.3.0/gems/activerecord-4.2.8/lib/active_record/relation/calculations.rb:133:in `calculate’
–> /home/user/.rbenv/versions/2.3.5/lib/ruby/gems/2.3.0/gems/activerecord-4.2.8/lib/active_record/relation/calculations.rb:48:in `count’
–> /home/user/gitlab/gdk/gitlab/app/services/base_count_service.rb:20:in `uncached_count’
–> /home/user/gitlab/gdk/gitlab/app/services/base_count_service.rb:12:in `block in count’
–> /home/user/.rbenv/versions/2.3.5/lib/ruby/gems/2.3.0/gems/activesupport-4.2.8/lib/active_support/cache.rb:299:in `block in fetch’
–> /home/user/.rbenv/versions/2.3.5/lib/ruby/gems/2.3.0/gems/activesupport-4.2.8/lib/active_support/cache.rb:585:in `block in save_block_result_to_cache’
–> /home/user/.rbenv/versions/2.3.5/lib/ruby/gems/2.3.0/gems/activesupport-4.2.8/lib/active_support/cache.rb:547:in `block in instrument’
–> /home/user/.rbenv/versions/2.3.5/lib/ruby/gems/2.3.0/gems/activesupport-4.2.8/lib/active_support/notifications.rb:166:in `instrument’
–> /home/user/.rbenv/versions/2.3.5/lib/ruby/gems/2.3.0/gems/activesupport-4.2.8/lib/active_support/cache.rb:547:in `instrument’
–> /home/user/.rbenv/versions/2.3.5/lib/ruby/gems/2.3.0/gems/activesupport-4.2.8/lib/active_support/cache.rb:584:in `save_block_result_to_cache’
–> /home/user/.rbenv/versions/2.3.5/lib/ruby/gems/2.3.0/gems/activesupport-4.2.8/lib/active_support/cache.rb:299:in `fetch’
–> /home/user/gitlab/gdk/gitlab/app/services/base_count_service.rb:12:in `count’
–> /home/user/gitlab/gdk/gitlab/app/models/project.rb:1296:in `open_issues_count’




```

See also

	[Bullet](profiling.md#Bullet) For finding N+1 query problems

	[Performance guidelines](performance.md)

	[Merge request performance guidelines](merge_request_performance_guidelines.md#query-counts)

 # Rake tasks for developers

Setup db with developer seeds

Note that if your db user does not have advanced privileges you must create the db manually before running this command.

`
bundle exec rake setup
`

The setup task is an alias for gitlab:setup.
This tasks calls db:reset to create the database, calls add_limits_mysql that adds limits to the database schema in case of a MySQL database and finally it calls db:seed_fu to seed the database.
Note: db:setup calls db:seed but this does nothing.

Automation

If you’re very sure that you want to wipe the current database and refill
seeds, you could:

` shell
echo 'yes' | bundle exec rake setup
`

To save you from answering yes manually.

Discard stdout

Since the script would print a lot of information, it could be slowing down
your terminal, and it would generate more than 20G logs if you just redirect
it to a file. If we don’t care about the output, we could just redirect it to
/dev/null:

` shell
echo 'yes' | bundle exec rake setup > /dev/null
`

Note that since you can’t see the questions from stdout, you might just want
to echo ‘yes’ to keep it running. It would still print the errors on stderr
so no worries about missing errors.

Notes for MySQL

Since the seeds would contain various UTF-8 characters, such as emojis or so,
we’ll need to make sure that we’re using utf8mb4 for all the encoding
settings and utf8mb4_unicode_ci for collation. Please check
[MySQL utf8mb4 support](../install/database_mysql.md#mysql-utf8mb4-support)

Make sure that config/database.yml has encoding: utf8mb4, too.

Next, we’ll need to update the schema to make the indices fit:

` shell
sed -i 's/limit: 255/limit: 191/g' db/schema.rb
`

Then run the setup script:

` shell
bundle exec rake setup
`

To make sure that indices still fit. You could find great details in:
[How to support full Unicode in MySQL databases](https://mathiasbynens.be/notes/mysql-utf8mb4)

Run tests

In order to run the test you can use the following commands:
- rake spec to run the rspec suite
- rake karma to run the karma test suite
- rake gitlab:test to run all the tests

Note: rake spec takes significant time to pass.
Instead of running full test suite locally you can save a lot of time by running
a single test or directory related to your changes. After you submit merge request
CI will run full test suite for you. Green CI status in the merge request means
full test suite is passed.

Note: You can’t run rspec . since this will try to run all the _spec.rb
files it can find, also the ones in /tmp

To run a single test file you can use:

	bin/rspec spec/controllers/commit_controller_spec.rb for a rspec test

To run several tests inside one directory:

	bin/rspec spec/requests/api/ for the rspec tests if you want to test API only

Speed-up tests, rake tasks, and migrations

[Spring](https://github.com/rails/spring) is a Rails application preloader. It
speeds up development by keeping your application running in the background so
you don’t need to boot it every time you run a test, rake task or migration.

If you want to use it, you’ll need to export the ENABLE_SPRING environment
variable to 1:

`
export ENABLE_SPRING=1
`

Alternatively you can use the following on each spec run,

`
bundle exec spring rspec some_spec.rb
`

Compile Frontend Assets

You shouldn’t ever need to compile frontend assets manually in development, but
if you ever need to test how the assets get compiled in a production
environment you can do so with the following command:

`
RAILS_ENV=production NODE_ENV=production bundle exec rake gitlab:assets:compile
`

This will compile and minify all JavaScript and CSS assets and copy them along
with all other frontend assets (images, fonts, etc) into /public/assets where
they can be easily inspected.

Generate API documentation for project services (e.g. Slack)

`
bundle exec rake services:doc
`

Updating Emoji Aliases

To update the Emoji aliases file (used for Emoji autocomplete) you must run the
following:

`
bundle exec rake gemojione:aliases
`

Updating Emoji Digests

To update the Emoji digests file (used for Emoji autocomplete) you must run the
following:

`
bundle exec rake gemojione:digests
`

This will update the file fixtures/emojis/digests.json based on the currently
available Emoji.

Emoji Sprites

Generating a sprite file containing all the Emoji can be done by running:

`
bundle exec rake gemojione:sprite
`

If new emoji are added, the spritesheet may change size. To compensate for
such changes, first generate the emoji.png spritesheet with the above Rake
task, then check the dimensions of the new spritesheet and update the
SPRITESHEET_WIDTH and SPRITESHEET_HEIGHT constants accordingly.

Updating project templates

Starting a project from a template needs this project to be exported. On a
up to date master branch with run:

`
gdk run
In a new terminal window
bundle exec rake gitlab:update_project_templates
git checkout -b update-project-templates
git add vendor/project_templates
git commit
git push -u origin update-project-templates
`

Now create a merge request and merge that to master.

Generate route lists

To see the full list of API routes, you can run:

`shell
bundle exec rake grape:path_helpers
`

For the Rails controllers, run:

`shell
bundle exec rake routes
`

Since these take some time to create, it’s often helpful to save the output to
a file for quick reference.

 # Serializing Data

Summary: don’t store serialized data in the database, use separate columns
and/or tables instead. This includes storing of comma separated values as a
string.

Rails makes it possible to store serialized data in JSON, YAML or other formats.
Such a field can be defined as follows:

```ruby
class Issue < ActiveRecord::Model


serialize :custom_fields





end

While it may be tempting to store serialized data in the database there are many
problems with this. This document will outline these problems and provide an
alternative.

## Serialized Data Is Less Powerful

When using a relational database you have the ability to query individual
fields, change the schema, index data and so forth. When you use serialized data
all of that becomes either very difficult or downright impossible. While
PostgreSQL does offer the ability to query JSON fields it is mostly meant for
very specialized use cases, and not for more general use. If you use YAML in
turn there’s no way to query the data at all.

## Waste Of Space

Storing serialized data such as JSON or YAML will end up wasting a lot of space.
This is because these formats often include additional characters (e.g. double
quotes or newlines) besides the data that you are storing.

## Difficult To Manage

There comes a time where you will need to add a new field to the serialized
data, or change an existing one. Using serialized data this becomes difficult
and very time consuming as the only way of doing so is to re-write all the
stored values. To do so you would have to:

1. Retrieve the data
1. Parse it into a Ruby structure
1. Mutate it
1. Serialize it back to a String
1. Store it in the database

On the other hand, if one were to use regular columns adding a column would be
as easy as this:

`sql
ALTER TABLE table_name ADD COLUMN column_name type;
`

Such a query would take very little to no time and would immediately apply to
all rows, without having to re-write large JSON or YAML structures.

Finally, there comes a time when the JSON or YAML structure is no longer
sufficient and you need to migrate away from it. When storing only a few rows
this may not be a problem, but when storing millions of rows such a migration
can easily take hours or even days to complete.

## Relational Databases Are Not Document Stores

When storing data as JSON or YAML you’re essentially using your database as if
it were a document store (e.g. MongoDB), except you’re not using any of the
powerful features provided by a typical RDBMS _nor_ are you using any of the
features provided by a typical document store (e.g. the ability to index fields
of documents with variable fields). In other words, it’s a waste.

## Consistent Fields

One argument sometimes made in favour of serialized data is having to store
widely varying fields and values. Sometimes this is truly the case, and then
perhaps it might make sense to use serialized data. However, in 99% of the cases
the fields and types stored tend to be the same for every row. Even if there is
a slight difference you can still use separate columns and just not set the ones
you don’t need.

## The Solution

The solution is very simple: just use separate columns and/or separate tables.
This will allow you to use all the features provided by your database, it will
make it easier to manage and migrate the data, you’ll conserve space, you can
index the data efficiently and so forth.





            

          

      

      

    

  

    
      
          
            
  # Storing SHA1 Hashes As Binary

Storing SHA1 hashes as strings is not very space efficient. A SHA1 as a string
requires at least 40 bytes, an additional byte to store the encoding, and
perhaps more space depending on the internals of PostgreSQL and MySQL.

On the other hand, if one were to store a SHA1 as binary one would only need 20
bytes for the actual SHA1, and 1 or 4 bytes of additional space (again depending
on database internals). This means that in the best case scenario we can reduce
the space usage by 50%.

To make this easier to work with you can include the concern ShaAttribute into
a model and define a SHA attribute using the sha_attribute class method. For
example:

```ruby
class Commit < ActiveRecord::Base

include ShaAttribute

sha_attribute :sha

end

This allows you to use the value of the sha attribute as if it were a string,
while storing it as binary. This means that you can do something like this,
without having to worry about converting data to the right binary format:

`ruby
commit = Commit.find_by(sha: '88c60307bd1f215095834f09a1a5cb18701ac8ad')
commit.sha = '971604de4cfa324d91c41650fabc129420c8d1cc'
commit.save
`

There is however one requirement: the column used to store the SHA has _must_ be
a binary type. For Rails this means you need to use the :binary type instead
of :text or :string.

 # Shared files

Historically, GitLab has been storing shared files in many different
directories: public/uploads, builds, tmp/repositories, tmp/rebase (EE),
etc. Having so many shared directories makes it difficult to deploy GitLab on
shared storage (e.g. NFS). Working towards GitLab 9.0 we are consolidating
these different directories under the shared directory.

This means that if GitLab will start storing puppies in some future version
then we should put them in shared/puppies. Temporary puppy files should be
stored in shared/tmp.

In the GitLab application code you can get the full path to the shared
directory with Gitlab.config.shared.path.

What is not a ‘shared file’

Files that belong to only one process, or on only one server, should not go in
shared. Examples include PID files and sockets.

Temporary files and shared storage

Sometimes you create a temporary file on disk with the intention of it becoming
‘official’. For example you might be first streaming an upload from a user to
disk in a temporary file so you can perform some checks on it. When the checks
pass, you make the file official. In scenarios like this please follow these
rules:

	Store the temporary file under shared/tmp, i.e. on the same filesystem you
want the official file to be on.

	Use move/rename operations when operating on the file instead of copy
operations where possible, because renaming a file is much faster than
copying it.

 # Guidelines for shell commands in the GitLab codebase

This document contains guidelines for working with processes and files in the GitLab codebase.
These guidelines are meant to make your code more reliable _and_ secure.

References

	[Google Ruby Security Reviewer’s Guide](https://code.google.com/p/ruby-security/wiki/Guide)

	[OWASP Command Injection](https://www.owasp.org/index.php/Command_Injection)

	[Ruby on Rails Security Guide Command Line Injection](http://guides.rubyonrails.org/security.html#command-line-injection)

Use File and FileUtils instead of shell commands

Sometimes we invoke basic Unix commands via the shell when there is also a Ruby API for doing it. Use the Ruby API if it exists. <http://www.ruby-doc.org/stdlib-2.0.0/libdoc/fileutils/rdoc/FileUtils.html#module-FileUtils-label-Module+Functions>

```ruby
# Wrong
system “mkdir -p tmp/special/directory”
# Better (separate tokens)
system *%W(mkdir -p tmp/special/directory)
# Best (do not use a shell command)
FileUtils.mkdir_p “tmp/special/directory”

# Wrong
contents = cat #{filename}
# Correct
contents = File.read(filename)

# Sometimes a shell command is just the best solution. The example below has no
# user input, and is hard to implement correctly in Ruby: delete all files and
# directories older than 120 minutes under /some/path, but not /some/path
# itself.
Gitlab::Popen.popen(%W(find /some/path -not -path /some/path -mmin +120 -delete))
```

This coding style could have prevented CVE-2013-4490.

Always use the configurable git binary path for git commands

```ruby
# Wrong
system(*%W(git branch -d – #{branch_name}))

# Correct
system(*%W(#{Gitlab.config.git.bin_path} branch -d – #{branch_name}))
```

Bypass the shell by splitting commands into separate tokens

When we pass shell commands as a single string to Ruby, Ruby will let /bin/sh evaluate the entire string. Essentially, we are asking the shell to evaluate a one-line script. This creates a risk for shell injection attacks. It is better to split the shell command into tokens ourselves. Sometimes we use the scripting capabilities of the shell to change the working directory or set environment variables. All of this can also be achieved securely straight from Ruby

```ruby
# Wrong
system “cd /home/git/gitlab && bundle exec rake db:#{something} RAILS_ENV=production”
# Correct
system({‘RAILS_ENV’ => ‘production’}, *%W(bundle exec rake db:#{something}), chdir: ‘/home/git/gitlab’)

# Wrong
system “touch #{myfile}”
# Better
system “touch”, myfile
# Best (do not run a shell command at all)
FileUtils.touch myfile
```

This coding style could have prevented CVE-2013-4546.

Separate options from arguments with –

Make the difference between options and arguments clear to the argument parsers of system commands with –. This is supported by many but not all Unix commands.

To understand what – does, consider the problem below.

`
Example
$ echo hello > -l
$ cat -l
cat: illegal option -- l
usage: cat [-benstuv] [file ...]
`

In the example above, the argument parser of cat assumes that -l is an option. The solution in the example above is to make it clear to cat that -l is really an argument, not an option. Many Unix command line tools follow the convention of separating options from arguments with –.

`
Example (continued)
$ cat -- -l
hello
`

In the GitLab codebase, we avoid the option/argument ambiguity by _always_ using –.

`ruby
Wrong
system(*%W(#{Gitlab.config.git.bin_path} branch -d #{branch_name}))
Correct
system(*%W(#{Gitlab.config.git.bin_path} branch -d -- #{branch_name}))
`

This coding style could have prevented CVE-2013-4582.

Do not use the backticks

Capturing the output of shell commands with backticks reads nicely, but you are forced to pass the command as one string to the shell. We explained above that this is unsafe. In the main GitLab codebase, the solution is to use Gitlab::Popen.popen instead.

``ruby
Wrong
logs = `cd #{repo_dir} && #{Gitlab.config.git.bin_path} log
Correct
logs, exit_status = Gitlab::Popen.popen(%W(#{Gitlab.config.git.bin_path} log), repo_dir)

Wrong
user = whoami
Correct
user, exit_status = Gitlab::Popen.popen(%W(whoami))
```

In other repositories, such as gitlab-shell you can also use IO.popen.

`ruby
# Safe IO.popen example
logs = IO.popen(%W(#{Gitlab.config.git.bin_path} log), chdir: repo_dir) { |p| p.read }
`

Note that unlike Gitlab::Popen.popen, IO.popen does not capture standard error.

## Avoid user input at the start of path strings

Various methods for opening and reading files in Ruby can be used to read the
standard output of a process instead of a file.  The following two commands do
roughly the same:

`ruby
`touch /tmp/pawned-by-backticks`
File.read('|touch /tmp/pawned-by-file-read')
`

The key is to open a ‘file’ whose name starts with a |.
Affected methods include Kernel#open, File::read, File::open, IO::open and IO::read.

You can protect against this behavior of ‘open’ and ‘read’ by ensuring that an
attacker cannot control the start of the filename string you are opening.  For
instance, the following is sufficient to protect against accidentally starting
a shell command with |:

`ruby
# we assume repo_path is not controlled by the attacker (user)
path = File.join(repo_path, user_input)
# path cannot start with '|' now.
File.read(path)
`

If you have to use user input a relative path, prefix ./ to the path.

Prefixing user-supplied paths also offers extra protection against paths
starting with - (see the discussion about using – above).

## Guard against path traversal

Path traversal is a security where the program (GitLab) tries to restrict user
access to a certain directory on disk, but the user manages to open a file
outside that directory by taking advantage of the ../ path notation.

```ruby
Suppose the user gave us a path and they are trying to trick us
user_input = ‘../other-repo.git/other-file’

We look up the repo path somewhere
repo_path = ‘repositories/user-repo.git’

The intention of the code below is to open a file under repo_path, but
because the user used ‘..’ she can ‘break out’ into
‘repositories/other-repo.git’
full_path = File.join(repo_path, user_input)
File.open(full_path) do # Oops!
```

A good way to protect against this is to compare the full path with its
‘absolute path’ according to Ruby’s File.absolute_path.

```ruby
full_path = File.join(repo_path, user_input)
if full_path != File.absolute_path(full_path)

raise “Invalid path: #{full_path.inspect}”

end

File.open(full_path) do # Etc.
```

A check like this could have avoided CVE-2013-4583.

## Properly anchor regular expressions to the start and end of strings

When using regular expressions to validate user input that is passed as an argument to a shell command, make sure to use the A and z anchors that designate the start and end of the string, rather than ^ and $, or no anchors at all.

If you don’t, an attacker could use this to execute commands with potentially harmful effect.

For example, when a project’s import_url is validated like below, the user could trick GitLab into cloning from a Git repository on the local filesystem.

`ruby
validates :import_url, format: { with: URI.regexp(%w(ssh git http https)) }
# URI.regexp(%w(ssh git http https)) roughly evaluates to /(ssh|git|http|https):(something_that_looks_like_a_url)/
`

Suppose the user submits the following as their import URL:

`
file://git:/tmp/lol
`

Since there are no anchors in the used regular expression, the git:/tmp/lol in the value would match, and the validation would pass.

When importing, GitLab would execute the following command, passing the import_url as an argument:

`sh
git clone file://git:/tmp/lol
`

Git would simply ignore the git: part, interpret the path as file:///tmp/lol and import the repository into the new project, in turn potentially giving the attacker access to any repository in the system, whether private or not.



            

          

      

      

    

  

    
      
          
            
  # Sidekiq debugging

## Log arguments to Sidekiq jobs

If you want to see what arguments are being passed to Sidekiq jobs you can set
the SIDEKIQ_LOG_ARGUMENTS [environment variable]
(https://docs.gitlab.com/omnibus/settings/environment-variables.html) to 1 (true).

Example:

`
gitlab_rails['env'] = {"SIDEKIQ_LOG_ARGUMENTS" => "1"}
`

Please note: It is not recommend to enable this setting in production because some
Sidekiq jobs (such as sending a password reset email) take secret arguments (for
example the password reset token).



            

          

      

      

    

  

    
      
          
            
  # Sidekiq Style Guide

This document outlines various guidelines that should be followed when adding or
modifying Sidekiq workers.

## ApplicationWorker

All workers should include ApplicationWorker instead of Sidekiq::Worker,
which adds some convenience methods and automatically sets the queue based on
the worker’s name.

## Dedicated Queues

All workers should use their own queue, which is automatically set based on the
worker class name. For a worker named ProcessSomethingWorker, the queue name
would be process_something. If you’re not sure what queue a worker uses,
you can find it using SomeWorker.queue. There is almost never a reason to
manually override the queue name using sidekiq_options queue: :some_queue.

You must always add any new queues to app/workers/all_queues.yml otherwise
your worker will not run.

## Queue Namespaces

While different workers cannot share a queue, they can share a queue namespace.

Defining a queue namespace for a worker makes it possible to start a Sidekiq
process that automatically handles jobs for all workers in that namespace,
without needing to explicitly list all their queue names. If, for example, all
workers that are managed by sidekiq-cron use the cronjob queue namespace, we
can spin up a Sidekiq process specifically for these kinds of scheduled jobs.
If a new worker using the cronjob namespace is added later on, the Sidekiq
process will automatically pick up jobs for that worker too (after having been
restarted), without the need to change any configuration.

A queue namespace can be set using the queue_namespace DSL class method:

```ruby
class SomeScheduledTaskWorker

include ApplicationWorker

queue_namespace :cronjob

…

end

Behind the scenes, this will set SomeScheduledTaskWorker.queue to
cronjob:some_scheduled_task. Commonly used namespaces will have their own
concern module that can easily be included into the worker class, and that may
set other Sidekiq options besides the queue namespace. CronjobQueue, for
example, sets the namespace, but also disables retries.

bundle exec sidekiq is namespace-aware, and will automatically listen on all
queues in a namespace (technically: all queues prefixed with the namespace name)
when a namespace is provided instead of a simple queue name in the –queue
(-q) option, or in the :queues: section in config/sidekiq_queues.yml.

Note that adding a worker to an existing namespace should be done with care, as
the extra jobs will take resources away from jobs from workers that were already
there, if the resources available to the Sidekiq process handling the namespace
are not adjusted appropriately.

Tests

Each Sidekiq worker must be tested using RSpec, just like any other class. These
tests should be placed in spec/workers.

Removing or renaming queues

Try to avoid renaming or removing workers and their queues in minor and patch releases.
During online update instance can have pending jobs and removing the queue can
lead to those jobs being stuck forever. If you can’t write migration for those
Sidekiq jobs, please consider doing rename or remove queue in major release only.

 # Single Table Inheritance

Summary: don’t use Single Table Inheritance (STI), use separate tables
instead.

Rails makes it possible to have multiple models stored in the same table and map
these rows to the correct models using a type column. This can be used to for
example store two different types of SSH keys in the same table.

While tempting to use one should avoid this at all costs for the same reasons as
outlined in the document [“Polymorphic Associations”](polymorphic_associations.md).

Solution

The solution is very simple: just use a separate table for every type you’d
otherwise store in the same table. For example, instead of having a keys table
with type set to either Key or DeployKey you’d have two separate tables:
keys and deploy_keys.

 # SQL Query Guidelines

This document describes various guidelines to follow when writing SQL queries,
either using ActiveRecord/Arel or raw SQL queries.

Using LIKE Statements

The most common way to search for data is using the LIKE statement. For
example, to get all issues with a title starting with “WIP:” you’d write the
following query:

`sql
SELECT *
FROM issues
WHERE title LIKE 'WIP:%';
`

On PostgreSQL the LIKE statement is case-sensitive. On MySQL this depends on
the case-sensitivity of the collation, which is usually case-insensitive. To
perform a case-insensitive LIKE on PostgreSQL you have to use ILIKE instead.
This statement in turn isn’t supported on MySQL.

To work around this problem you should write LIKE queries using Arel instead
of raw SQL fragments as Arel automatically uses ILIKE on PostgreSQL and LIKE
on MySQL. This means that instead of this:

`ruby
Issue.where('title LIKE ?', 'WIP:%')
`

You’d write this instead:

`ruby
Issue.where(Issue.arel_table[:title].matches('WIP:%'))
`

Here matches generates the correct LIKE / ILIKE statement depending on the
database being used.

If you need to chain multiple OR conditions you can also do this using Arel:

```ruby
table = Issue.arel_table

Issue.where(table[:title].matches(‘WIP:%’).or(table[:foo].matches(‘WIP:%’)))
```

For PostgreSQL this produces:

`sql
SELECT *
FROM issues
WHERE (title ILIKE 'WIP:%' OR foo ILIKE 'WIP:%')
`

In turn for MySQL this produces:

`sql
SELECT *
FROM issues
WHERE (title LIKE 'WIP:%' OR foo LIKE 'WIP:%')
`

LIKE & Indexes

Neither PostgreSQL nor MySQL use any indexes when using LIKE / ILIKE with a
wildcard at the start. For example, this will not use any indexes:

`sql
SELECT *
FROM issues
WHERE title ILIKE '%WIP:%';
`

Because the value for ILIKE starts with a wildcard the database is not able to
use an index as it doesn’t know where to start scanning the indexes.

MySQL provides no known solution to this problem. Luckily PostgreSQL _does_
provide a solution: trigram GIN indexes. These indexes can be created as
follows:

`sql
CREATE INDEX [CONCURRENTLY] index_name_here
ON table_name
USING GIN(column_name gin_trgm_ops);
`

The key here is the GIN(column_name gin_trgm_ops) part. This creates a [GIN
index][gin-index] with the operator class set to gin_trgm_ops. These indexes
can be used by ILIKE / LIKE and can lead to greatly improved performance.
One downside of these indexes is that they can easily get quite large (depending
on the amount of data indexed).

To keep naming of these indexes consistent please use the following naming
pattern:

index_TABLE_on_COLUMN_trigram

For example, a GIN/trigram index for issues.title would be called
index_issues_on_title_trigram.

Due to these indexes taking quite some time to be built they should be built
concurrently. This can be done by using CREATE INDEX CONCURRENTLY instead of
just CREATE INDEX. Concurrent indexes can _not_ be created inside a
transaction. Transactions for migrations can be disabled using the following
pattern:

```ruby
class MigrationName < ActiveRecord::Migration


disable_ddl_transaction!





end

For example:

```ruby
class AddUsersLowerUsernameEmailIndexes < ActiveRecord::Migration

disable_ddl_transaction!

	def up
	return unless Gitlab::Database.postgresql?

execute ‘CREATE INDEX CONCURRENTLY index_on_users_lower_username ON users (LOWER(username));’
execute ‘CREATE INDEX CONCURRENTLY index_on_users_lower_email ON users (LOWER(email));’

end

	def down
	return unless Gitlab::Database.postgresql?

remove_index :users, :index_on_users_lower_username
remove_index :users, :index_on_users_lower_email

end

end

Plucking IDs

This can’t be stressed enough: never use ActiveRecord’s pluck to pluck a
set of values into memory only to use them as an argument for another query. For
example, this will make the database very sad:

```ruby
projects = Project.all.pluck(:id)

MergeRequest.where(source_project_id: projects)
```

Instead you can just use sub-queries which perform far better:

`ruby
MergeRequest.where(source_project_id: Project.all.select(:id))
`

The _only_ time you should use pluck is when you actually need to operate on
the values in Ruby itself (e.g. write them to a file). In almost all other cases
you should ask yourself “Can I not just use a sub-query?”.

Use UNIONs

UNIONs aren’t very commonly used in most Rails applications but they’re very
powerful and useful. In most applications queries tend to use a lot of JOINs to
get related data or data based on certain criteria, but JOIN performance can
quickly deteriorate as the data involved grows.

For example, if you want to get a list of projects where the name contains a
value _or_ the name of the namespace contains a value most people would write
the following query:

`sql
SELECT *
FROM projects
JOIN namespaces ON namespaces.id = projects.namespace_id
WHERE projects.name ILIKE '%gitlab%'
OR namespaces.name ILIKE '%gitlab%';
`

Using a large database this query can easily take around 800 milliseconds to
run. Using a UNION we’d write the following instead:

```sql
SELECT projects.*
FROM projects
WHERE projects.name ILIKE ‘%gitlab%’

UNION

SELECT projects.*
FROM projects
JOIN namespaces ON namespaces.id = projects.namespace_id
WHERE namespaces.name ILIKE ‘%gitlab%’;
```

This query in turn only takes around 15 milliseconds to complete while returning
the exact same records.

This doesn’t mean you should start using UNIONs everywhere, but it’s something
to keep in mind when using lots of JOINs in a query and filtering out records
based on the joined data.

GitLab comes with a Gitlab::SQL::Union class that can be used to build a UNION
of multiple ActiveRecord::Relation objects. You can use this class as
follows:

```ruby
union = Gitlab::SQL::Union.new([projects, more_projects, …])

Project.from(“(#{union.to_sql}) projects”)
```

Ordering by Creation Date

When ordering records based on the time they were created you can simply order
by the id column instead of ordering by created_at. Because IDs are always
unique and incremented in the order that rows are created this will produce the
exact same results. This also means there’s no need to add an index on
created_at to ensure consistent performance as id is already indexed by
default.

Use WHERE EXISTS instead of WHERE IN

While WHERE IN and WHERE EXISTS can be used to produce the same data it is
recommended to use WHERE EXISTS whenever possible. While in many cases
PostgreSQL can optimise WHERE IN quite well there are also many cases where
WHERE EXISTS will perform (much) better.

In Rails you have to use this by creating SQL fragments:

`ruby
Project.where('EXISTS (?)', User.select(1).where('projects.creator_id = users.id AND users.foo = X'))
`

This would then produce a query along the lines of the following:

```sql
SELECT *
FROM projects
WHERE EXISTS (


SELECT 1
FROM users
WHERE projects.creator_id = users.id
AND users.foo = X







)

[gin-index]: http://www.postgresql.org/docs/current/static/gin.html

## .find_or_create_by is not atomic

The inherent pattern with methods like .find_or_create_by and
.first_or_create and others is that they are not atomic. This means,
it first runs a SELECT, and if there are no results an INSERT is
performed. With concurrent processes in mind, there is a race condition
which may lead to trying to insert two similar records. This may not be
desired, or may cause one of the queries to fail due to a constraint
violation, for example.

Using transactions does not solve this problem.

The following pattern should be used to avoid the problem:

```ruby
Project.transaction do

	begin
	User.find_or_create_by(username: “foo”)

	rescue ActiveRecord::RecordNotUnique
	retry

end

end

If the above block is run inside a transaction and hits the race
condition, the transaction is aborted and we cannot simply retry (any
further queries inside the aborted transaction are going to fail). We
can employ [nested transactions](http://api.rubyonrails.org/classes/ActiveRecord/Transactions/ClassMethods.html#module-ActiveRecord::Transactions::ClassMethods-label-Nested+transactions)
here to only rollback the “inner transaction”. Note that requires_new: true is required here.

```ruby
Project.transaction do



	begin
	
	User.transaction(requires_new: true) do
	User.find_or_create_by(username: “foo”)





end



	rescue ActiveRecord::RecordNotUnique
	retry





end







end





            

          

      

      

    

  

    
      
          
            
  # Swapping Tables

Sometimes you need to replace one table with another. For example, when
migrating data in a very large table it’s often better to create a copy of the
table and insert & migrate the data into this new table in the background.

Let’s say you want to swap the table “events” with “events_for_migration”. In
this case you need to follow 3 steps:


	Rename “events” to “events_temporary”


	Rename “events_for_migration” to “events”


	Rename “events_temporary” to “events_for_migration”




Rails allows you to do this using the rename_table method:

`ruby
rename_table :events, :events_temporary
rename_table :events_for_migration, :events
rename_table :events_temporary, :events_for_migration
`

This does not require any downtime as long as the 3 rename_table calls are
executed in the _same_ database transaction. Rails by default uses database
transactions for migrations, but if it doesn’t you’ll need to start one
manually:

```ruby
Event.transaction do

rename_table :events, :events_temporary
rename_table :events_for_migration, :events
rename_table :events_temporary, :events_for_migration

end

Once swapped you _have to_ reset the primary key of the new table. For
PostgreSQL you can use the reset_pk_sequence! method like so:

`ruby
reset_pk_sequence!('events')
`

For MySQL however you need to do run the following:

```ruby
amount = Event.pluck(‘COALESCE(MAX(id), 1)’).first

execute “ALTER TABLE events AUTO_INCREMENT = #{amount}”
```

Failure to reset the primary keys will result in newly created rows starting
with an ID value of 1. Depending on the existing data this can then lead to
duplicate key constraints from popping up, preventing users from creating new
data.

 This document was moved to testing_guide/index.md.

 # UI Guide for building GitLab

GitLab UI development kit

We created a page inside GitLab where you can check commonly used html and css elements.

When you run GitLab instance locally - just visit http://localhost:3000/help/ui page to see UI examples
you can use during GitLab development.

Design repository

All design files are stored in the [gitlab-design](https://gitlab.com/gitlab-org/gitlab-design)
repository and maintained by GitLab UX designers.

Navigation

GitLab’s layout contains 2 sections: the left sidebar and the content. The left sidebar contains a static navigation menu.
This menu will be visible regardless of what page you visit.
The content section contains a header and the content itself. The header describes the current GitLab page and what navigation is
available to the user in this area. Depending on the area (project, group, profile setting) the header name and navigation may change. For example, when the user visits one of the
project pages the header will contain the project’s name and navigation for that project. When the user visits a group page it will contain the group’s name and navigation related to this group.

You can see a visual representation of the navigation in GitLab in the GitLab Product Map, which is located in the [Design Repository][gitlab-map-graffle]
along with [PDF][gitlab-map-pdf] and [PNG][gitlab-map-png] exports.

Adding new tab to header navigation

We try to keep the amount of tabs in the header navigation between 5 and 10 so that it fits on a typical laptop screen. We also try not to confuse the user with too many options. Ideally each
tab should represent separate functionality. Everything related to the issue
tracker should be under the ‘Issues’ tab while everything related to the wiki should
be under ‘Wiki’ tab and so on and so forth.
When adding a new tab to the header don’t use more than 2 words for text in the link.
We want to keep links short and easy to remember and fit all of them in the small screen.

Mobile screen size

We want GitLab to work well on small mobile screens as well. Size limitations make it is impossible to fit everything on a mobile screen. In this case it is OK to hide
part of the UI for smaller resolutions in favor of a better user experience.
However core functionality like browsing files, creating issues, writing comments, should
be available on all resolutions.

Icons

	trash icon for button or link that does destructive action like removing

information from database or file system
* x icon for closing/hiding UI element. For example close modal window
* pencil icon for edit button or link
* eye icon for subscribe action
* rss for rss/atom feed
* plus for link or dropdown that lead to page where you create new object (For example new issue page)

SVGs

When exporting SVGs, be sure to follow the following guidelines:

	Convert all strokes to outlines.

	Use pathfinder tools to combine overlapping paths and create compound paths.

	SVGs that are limited to one color should be exported without a fill color so the color can be set using CSS.

	Ensure that exported SVGs have been run through an [SVG cleaner](https://github.com/RazrFalcon/SVGCleaner) to remove unused elements and attributes.

You can open your svg in a text editor to ensure that it is clean.
Incorrect files will look like this:

```xml
<?xml version=”1.0” encoding=”UTF-8” standalone=”no”?>
<svg width=”16px” height=”17px” viewBox=”0 0 16 17” version=”1.1” xmlns=”http://www.w3.org/2000/svg” xmlns:xlink=”http://www.w3.org/1999/xlink”>


<!– Generator: Sketch 3.7.2 (28276) - http://www.bohemiancoding.com/sketch –>
<title>Group</title>
<desc>Created with Sketch.</desc>
<defs></defs>
<g id=”Page-1” stroke=”none” stroke-width=”1” fill=”none” fill-rule=”evenodd”>



	<g id=”Group” fill=”#7E7C7C”>
	<path d=”M15.1111,1 L0.8891,1 C0.3981,1 0.0001,1.446 0.0001,1.996 L0.0001,15.945 C0.0001,16.495 0.3981,16.941 0.8891,16.941 L15.1111,16.941 C15.6021,16.941 16.0001,16.495 16.0001,15.945 L16.0001,1.996 C16.0001,1.446 15.6021,1 15.1111,1 L15.1111,1 L15.1111,1 Z M14.0001,6.0002 L14.0001,14.949 L2.0001,14.949 L2.0001,6.0002 L14.0001,6.0002 Z M14.0001,4.0002 L14.0001,2.993 L2.0001,2.993 L2.0001,4.0002 L14.0001,4.0002 Z” id=”Combined-Shape”></path>
<polygon id=”Fill-11” points=”3 2.0002 5 2.0002 5 0.0002 3 0.0002”></polygon>
<polygon id=”Fill-16” points=”11 2.0002 13 2.0002 13 0.0002 11 0.0002”></polygon>
<path d=”M5.37709616,11.5511984 L6.92309616,12.7821984 C7.35112915,13.123019 7.97359761,13.0565604 8.32002627,12.6330535 L10.7740263,9.63305349 C11.1237073,9.20557058 11.0606364,8.57555475 10.6331535,8.22587373 C10.2056706,7.87619272 9.57565475,7.93926361 9.22597373,8.36674651 L6.77197373,11.3667465 L8.16890384,11.2176016 L6.62290384,9.98660159 C6.19085236,9.6425813 5.56172188,9.71394467 5.21770159,10.1459962 C4.8736813,10.5780476 4.94504467,11.2071781 5.37709616,11.5511984 L5.37709616,11.5511984 Z” id=”Stroke-21”></path>





</g>




</g>




</svg>
```

Correct file will look like this:

`xml
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 16 17" enable-background="new 0 0 16 17"><path d="m15.1 1h-2.1v-1h-2v1h-6v-1h-2v1h-2.1c-.5 0-.9.5-.9 1v14c0 .6.4 1 .9 1h14.2c.5 0 .9-.4.9-1v-14c0-.5-.4-1-.9-1m-1.1 14h-12v-9h12v9m0-11h-12v-1h12v1"/><path d="m5.4 11.6l1.5 1.2c.4.3 1.1.3 1.4-.1l2.5-3c.3-.4.3-1.1-.1-1.4-.5-.4-1.1-.3-1.5.1l-1.8 2.2-.8-.6c-.4-.3-1.1-.3-1.4.2-.3.4-.3 1 .2 1.4"/></svg>
`

Buttons

	Button should contain icon or text. Exceptions should be approved by UX designer.

	Use red button for destructive actions (not revertable). For example removing issue.

	Use green or blue button for primary action. Primary button should be only one.

Do not use both green and blue button in one form.
* For all other cases use default white button.
* Text button should have only first word capitalized. So should be “Create issue” instead of “Create Issue”

Counts

	Always use the [number_with_delimiter][number_with_delimiter] helper to
display counts in the UI.

[number_with_delimiter]: http://api.rubyonrails.org/classes/ActionView/Helpers/NumberHelper.html#method-i-number_with_delimiter
[gitlab-map-graffle]: https://gitlab.com/gitlab-org/gitlab-design/blob/master/production/resources/gitlab-map.graffle
[gitlab-map-pdf]: https://gitlab.com/gitlab-org/gitlab-design/raw/master/production/resources/gitlab-map.pdf
[gitlab-map-png]: https://gitlab.com/gitlab-org/gitlab-design/raw/master/production/resources/gitlab-map.png

 # GitLab utilities

We developed a number of utilities to ease development.

[MergeHash](https://gitlab.com/gitlab-org/gitlab-ce/blob/master/lib/gitlab/utils/merge_hash.rb)

	Deep merges an array of hashes:


``` ruby
Gitlab::Utils::MergeHash.merge(



	[{ hello: [“world”] },
	{ hello: “Everyone” },
{ hello: { greetings: [‘Bonjour’, ‘Hello’, ‘Hallo’, ‘Dzien dobry’] } },


“Goodbye”, “Hallo”]











Gives:

``` ruby
[

	{
	
	hello:
	
	[
	“world”,
“Everyone”,
{ greetings: [‘Bonjour’, ‘Hello’, ‘Hallo’, ‘Dzien dobry’] }

]

},
“Goodbye”

	Extracts all keys and values from a hash into an array:


``` ruby
Gitlab::Utils::MergeHash.crush(


{ hello: “world”, this: { crushes: [“an entire”, “hash”] } }




Gives:

` ruby
[:hello, "world", :this, :crushes, "an entire", "hash"]
`








## [Override](https://gitlab.com/gitlab-org/gitlab-ce/blob/master/lib/gitlab/utils/override.rb)


	This utility could help us check if a particular method would override
another method or not. It has the same idea of Java’s @Override annotation
or Scala’s override keyword. However we only do this check when
ENV[‘STATIC_VERIFICATION’] is set to avoid production runtime overhead.
This is useful to check:



	If we have typos in overriding methods.


	If we renamed the overridden methods, making original overriding methods
overrides nothing.




Here’s a simple example:

``` ruby
class Base

def execute
end

end

	class Derived < Base
	extend ::Gitlab::Utils::Override

override :execute # Override check happens here
def execute
end

This also works on modules:

``` ruby
module Extension


extend ::Gitlab::Utils::Override

override :execute # Modules do not check this immediately
def execute
end




end


	class Derived < Base
	prepend Extension # Override check happens here, not in the module












## [StrongMemoize](https://gitlab.com/gitlab-org/gitlab-ce/blob/master/lib/gitlab/utils/strong_memoize.rb)


	Memoize the value even if it is nil or false.


We often do @value ||= compute, however this doesn’t work well if
compute might eventually give nil and we don’t want to compute again.
Instead we could use defined? to check if the value is set or not.
However it’s tedious to write such pattern, and StrongMemoize would
help us use such pattern.

Instead of writing patterns like this:

``` ruby
class Find

	def result
	return @result if defined?(@result)

@result = search

end

We could write it like:

``` ruby
class Find


include Gitlab::Utils::StrongMemoize


	def result
	
	strong_memoize(:result) do
	search





end





end









	Clear memoization


``` ruby
class Find

include Gitlab::Utils::StrongMemoize

end

Find.new.clear_memoization(:result)
```








## [RequestCache](https://gitlab.com/gitlab-org/gitlab-ce/blob/master/lib/gitlab/cache/request_cache.rb)

This module provides a simple way to cache values in RequestStore,
and the cache key would be based on the class name, method name,
optionally customized instance level values, optionally customized
method level values, and optional method arguments.

A simple example that only uses the instance level customised values:

``` ruby
class UserAccess

extend Gitlab::Cache::RequestCache

	request_cache_key do
	[user&.id, project&.id]

end

	request_cache def can_push_to_branch?(ref)
	# …

end

end

This way, the result of can_push_to_branch? would be cached in
RequestStore.store based on the cache key. If RequestStore is not
currently active, then it would be stored in a hash saved in an
instance variable, so the cache logic would be the same.

We can also set different strategies for different methods:

``` ruby
class Commit


extend Gitlab::Cache::RequestCache


	def author
	User.find_by_any_email(author_email.downcase)





end
request_cache(:author) { author_email.downcase }







end





            

          

      

      

    

  

    
      
          
            
  # Verifying Database Capabilities

Sometimes certain bits of code may only work on a certain database and/or
version. While we try to avoid such code as much as possible sometimes it is
necessary to add database (version) specific behaviour.

To facilitate this we have the following methods that you can use:


	Gitlab::Database.postgresql?: returns true if PostgreSQL is being used


	Gitlab::Database.mysql?: returns true if MySQL is being used


	Gitlab::Database.version: returns the PostgreSQL version number as a string
in the format X.Y.Z. This method does not work for MySQL




This allows you to write code such as:

```ruby
if Gitlab::Database.postgresql?

	if Gitlab::Database.version.to_f >= 9.6
	run_really_fast_query

	else
	run_fast_query

end

	else
	run_query

end

Read-only database

The database can be used in read-only mode. In this case we have to
make sure all GET requests don’t attempt any write operations to the
database. If one of those requests wants to write to the database, it needs
to be wrapped in a Gitlab::Database.read_only? or Gitlab::Database.read_write?
guard, to make sure it doesn’t for read-only databases.

We have a Rails Middleware that filters any potentially writing
operations (the CUD operations of CRUD) and prevent the user from trying
to update the database and getting a 500 error (see Gitlab::Middleware::ReadOnly).

 # What requires downtime?

When working with a database certain operations can be performed without taking
GitLab offline, others do require a downtime period. This guide describes
various operations, their impact, and how to perform them without requiring
downtime.

Adding Columns

On PostgreSQL you can safely add a new column to an existing table as long as it
does not have a default value. For example, this query would not require
downtime:

`sql
ALTER TABLE projects ADD COLUMN random_value int;
`

Add a column _with_ a default however does require downtime. For example,
consider this query:

`sql
ALTER TABLE projects ADD COLUMN random_value int DEFAULT 42;
`

This requires updating every single row in the projects table so that
random_value is set to 42 by default. This requires updating all rows and
indexes in a table. This in turn acquires enough locks on the table for it to
effectively block any other queries.

As of MySQL 5.6 adding a column to a table is still quite an expensive
operation, even when using ALGORITHM=INPLACE and LOCK=NONE. This means
downtime _may_ be required when modifying large tables as otherwise the
operation could potentially take hours to complete.

Adding a column with a default value _can_ be done without requiring downtime
when using the migration helper method
Gitlab::Database::MigrationHelpers#add_column_with_default. This method works
similar to add_column except it updates existing rows in batches without
blocking access to the table being modified. See [“Adding Columns With Default
Values”](migration_style_guide.md#adding-columns-with-default-values) for more
information on how to use this method.

Dropping Columns

Removing columns is tricky because running GitLab processes may still be using
the columns. To work around this you will need two separate merge requests and
releases: one to ignore and then remove the column, and one to remove the ignore
rule.

Step 1: Ignoring The Column

The first step is to ignore the column in the application code. This is
necessary because Rails caches the columns and re-uses this cache in various
places. This can be done by including the IgnorableColumn module into the
model, followed by defining the columns to ignore. For example, to ignore
updated_at in the User model you’d use the following:

```ruby
class User < ActiveRecord::Base


include IgnorableColumn

ignore_column :updated_at





end

Once added you should create a _post-deployment_ migration that removes the
column. Both these changes should be submitted in the same merge request.

### Step 2: Removing The Ignore Rule

Once the changes from step 1 have been released & deployed you can set up a
separate merge request that removes the ignore rule. This merge request can
simply remove the ignore_column line, and the include IgnorableColumn line
if no other ignore_column calls remain.

## Renaming Columns

Renaming columns the normal way requires downtime as an application may continue
using the old column name during/after a database migration. To rename a column
without requiring downtime we need two migrations: a regular migration, and a
post-deployment migration. Both these migration can go in the same release.

### Step 1: Add The Regular Migration

First we need to create the regular migration. This migration should use
Gitlab::Database::MigrationHelpers#rename_column_concurrently to perform the
renaming. For example

```ruby
A regular migration in db/migrate
class RenameUsersUpdatedAtToUpdatedAtTimestamp < ActiveRecord::Migration

include Gitlab::Database::MigrationHelpers

disable_ddl_transaction!

	def up
	rename_column_concurrently :users, :updated_at, :updated_at_timestamp

end

	def down
	cleanup_concurrent_column_rename :users, :updated_at_timestamp, :updated_at

end

end

This will take care of renaming the column, ensuring data stays in sync, copying
over indexes and foreign keys, etc.

NOTE: if a column contains 1 or more indexes that do not contain the name of
the original column, the above procedure will fail. In this case you will first
need to rename these indexes.

Step 2: Add A Post-Deployment Migration

The renaming procedure requires some cleaning up in a post-deployment migration.
We can perform this cleanup using
Gitlab::Database::MigrationHelpers#cleanup_concurrent_column_rename:

```ruby
# A post-deployment migration in db/post_migrate
class CleanupUsersUpdatedAtRename < ActiveRecord::Migration


include Gitlab::Database::MigrationHelpers

disable_ddl_transaction!


	def up
	cleanup_concurrent_column_rename :users, :updated_at, :updated_at_timestamp





end


	def down
	rename_column_concurrently :users, :updated_at_timestamp, :updated_at





end







end

## Changing Column Constraints

Adding or removing a NOT NULL clause (or another constraint) can typically be
done without requiring downtime. However, this does require that any application
changes are deployed _first_. Thus, changing the constraints of a column should
happen in a post-deployment migration.
NOTE: Avoid using change_column as it produces inefficient query because it re-defines
the whole column type. For example, to add a NOT NULL constraint, prefer `change_column_null `

## Changing Column Types

Changing the type of a column can be done using
Gitlab::Database::MigrationHelpers#change_column_type_concurrently. This
method works similarly to rename_column_concurrently. For example, let’s say
we want to change the type of users.username from string to text.

### Step 1: Create A Regular Migration

A regular migration is used to create a new column with a temporary name along
with setting up some triggers to keep data in sync. Such a migration would look
as follows:

```ruby
A regular migration in db/migrate
class ChangeUsersUsernameStringToText < ActiveRecord::Migration

include Gitlab::Database::MigrationHelpers

disable_ddl_transaction!

	def up
	change_column_type_concurrently :users, :username, :text

end

	def down
	cleanup_concurrent_column_type_change :users, :username

end

end

Step 2: Create A Post Deployment Migration

Next we need to clean up our changes using a post-deployment migration:

```ruby
# A post-deployment migration in db/post_migrate
class ChangeUsersUsernameStringToTextCleanup < ActiveRecord::Migration


include Gitlab::Database::MigrationHelpers

disable_ddl_transaction!


	def up
	cleanup_concurrent_column_type_change :users





end


	def down
	change_column_type_concurrently :users, :username, :string





end







end

And that’s it, we’re done!

## Changing The Schema For Large Tables

While change_column_type_concurrently and rename_column_concurrently can be
used for changing the schema of a table without downtime, it doesn’t work very
well for large tables. Because all of the work happens in sequence the migration
can take a very long time to complete, preventing a deployment from proceeding.
They can also produce a lot of pressure on the database due to it rapidly
updating many rows in sequence.

To reduce database pressure you should instead use
change_column_type_using_background_migration or rename_column_using_background_migration
when migrating a column in a large table (e.g. issues). These methods work
similarly to the concurrent counterparts but uses background migration to spread
the work / load over a longer time period, without slowing down deployments.

For example, to change the column type using a background migration:

```ruby
class ExampleMigration < ActiveRecord::Migration

include Gitlab::Database::MigrationHelpers

disable_ddl_transaction!

	class Issue < ActiveRecord::Base
	self.table_name = ‘issues’

include EachBatch

	def self.to_migrate
	where(‘closed_at IS NOT NULL’)

end

end

	def up
	
	change_column_type_using_background_migration(
	Issue.to_migrate,
:closed_at,
:datetime_with_timezone

)

end

	def down
	
	change_column_type_using_background_migration(
	Issue.to_migrate,
:closed_at,
:datetime

)

end

end

This would change the type of issues.closed_at to timestamp with time zone.

Keep in mind that the relation passed to
change_column_type_using_background_migration _must_ include EachBatch,
otherwise it will raise a TypeError.

This migration then needs to be followed in a separate release (_not_ a patch
release) by a cleanup migration, which should steal from the queue and handle
any remaining rows. For example:

```ruby
class MigrateRemainingIssuesClosedAt < ActiveRecord::Migration


include Gitlab::Database::MigrationHelpers

DOWNTIME = false

disable_ddl_transaction!


	class Issue < ActiveRecord::Base
	self.table_name = ‘issues’
include EachBatch





end


	def up
	Gitlab::BackgroundMigration.steal(‘CopyColumn’)
Gitlab::BackgroundMigration.steal(‘CleanupConcurrentTypeChange’)

migrate_remaining_rows if migrate_column_type?





end


	def down
	# Previous migrations already revert the changes made here.





end


	def migrate_remaining_rows
	
	Issue.where(‘closed_at_for_type_change IS NULL AND closed_at IS NOT NULL’).each_batch do |batch|
	batch.update_all(‘closed_at_for_type_change = closed_at’)





end

cleanup_concurrent_column_type_change(:issues, :closed_at)





end


	def migrate_column_type?
	# Some environments may have already executed the previous version of this
# migration, thus we don’t need to migrate those environments again.
column_for(‘issues’, ‘closed_at’).type == :datetime # rubocop:disable Migration/Datetime





end







end

The same applies to rename_column_using_background_migration:


	Create a migration using the helper, which will schedule background
migrations to spread the writes over a longer period of time.


	In the next monthly release, create a clean-up migration to steal from the
Sidekiq queues, migrate any missing rows, and cleanup the rename. This
migration should skip the steps after stealing from the Sidekiq queues if the
column has already been renamed.




For more information, see [the documentation on cleaning up background
migrations](background_migrations.md#cleaning-up).

## Adding Indexes

Adding indexes is an expensive process that blocks INSERT and UPDATE queries for
the duration. When using PostgreSQL one can work around this by using the
CONCURRENTLY option:

`sql
CREATE INDEX CONCURRENTLY index_name ON projects (column_name);
`

Migrations can take advantage of this by using the method
add_concurrent_index. For example:

```ruby
class MyMigration < ActiveRecord::Migration

	def up
	add_concurrent_index :projects, :column_name

end

	def down
	remove_index(:projects, :column_name) if index_exists?(:projects, :column_name)

end

end

Note that add_concurrent_index can not be reversed automatically, thus you
need to manually define up and down.

When running this on PostgreSQL the CONCURRENTLY option mentioned above is
used. On MySQL this method produces a regular CREATE INDEX query.

MySQL doesn’t really have a workaround for this. Supposedly it _can_ create
indexes without the need for downtime but only for variable width columns. The
details on this are a bit sketchy. Since it’s better to be safe than sorry one
should assume that adding indexes requires downtime on MySQL.

Dropping Indexes

Dropping an index does not require downtime on both PostgreSQL and MySQL.

Adding Tables

This operation is safe as there’s no code using the table just yet.

Dropping Tables

Dropping tables can be done safely using a post-deployment migration, but only
if the application no longer uses the table.

Adding Foreign Keys

Adding foreign keys usually works in 3 steps:

1. Start a transaction
1. Run ALTER TABLE to add the constraint(s)
1. Check all existing data

Because ALTER TABLE typically acquires an exclusive lock until the end of a
transaction this means this approach would require downtime.

GitLab allows you to work around this by using
Gitlab::Database::MigrationHelpers#add_concurrent_foreign_key. This method
ensures that when PostgreSQL is used no downtime is needed.

Removing Foreign Keys

This operation does not require downtime.

Data Migrations

Data migrations can be tricky. The usual approach to migrate data is to take a 3
step approach:

1. Migrate the initial batch of data
1. Deploy the application code
1. Migrate any remaining data

Usually this works, but not always. For example, if a field’s format is to be
changed from JSON to something else we have a bit of a problem. If we were to
change existing data before deploying application code we’ll most likely run
into errors. On the other hand, if we were to migrate after deploying the
application code we could run into the same problems.

If you merely need to correct some invalid data, then a post-deployment
migration is usually enough. If you need to change the format of data (e.g. from
JSON to something else) it’s typically best to add a new column for the new data
format, and have the application use that. In such a case the procedure would
be:

1. Add a new column in the new format
1. Copy over existing data to this new column
1. Deploy the application code
1. In a post-deployment migration, copy over any remaining data

In general there is no one-size-fits-all solution, therefore it’s best to
discuss these kind of migrations in a merge request to make sure they are
implemented in the best way possible.

 —
redirect_to: ‘documentation/index.md’
—

 —
description: Learn how to contribute to GitLab Documentation.
—

GitLab Documentation guidelines

	General Documentation: written by the [developers responsible by creating features](#contributing-to-docs). Should be submitted in the same merge request containing code. Feature proposals (by GitLab contributors) should also be accompanied by its respective documentation. They can be later improved by PMs and Technical Writers.

	[Technical Articles](#technical-articles): written by any [GitLab Team](https://about.gitlab.com/team/) member, GitLab contributors, or [Community Writers](https://about.gitlab.com/handbook/product/technical-writing/community-writers/).

	Indexes per topic: initially prepared by the Technical Writing Team, and kept up-to-date by developers and PMs in the same merge request containing code. They gather all resources for that topic in a single page (user and admin documentation, articles, and third-party docs).

Contributing to docs

Whenever a feature is changed, updated, introduced, or deprecated, the merge
request introducing these changes must be accompanied by the documentation
(either updating existing ones or creating new ones). This is also valid when
changes are introduced to the UI.

The one responsible for writing the first piece of documentation is the developer who
wrote the code. It’s the job of the Product Manager to ensure all features are
shipped with its docs, whether is a small or big change. At the pace GitLab evolves,
this is the only way to keep the docs up-to-date. If you have any questions about it,
ask a Technical Writer. Otherwise, when your content is ready, assign one of
them to review it for you.

We use the [monthly release blog post](https://about.gitlab.com/handbook/marketing/blog/release-posts/#monthly-releases) as a changelog checklist to ensure everything
is documented.

Whenever you submit a merge request for the documentation, use the documentation MR description template.

Please check the [documentation workflow](https://about.gitlab.com/handbook/product/technical-writing/workflow/) before getting started.

Documentation structure

	Overview and use cases: what it is, why it is necessary, why one would use it

	Requirements: what do we need to get started

	Tutorial: how to set it up, how to use it

Always link a new document from its topic-related index, otherwise, it will
not be included it in the documentation site search.

Note: to be extended.

Feature overview and use cases

Every major feature (regardless if present in GitLab Community or Enterprise editions)
should present, at the beginning of the document, two main sections: overview and
use cases. Every GitLab EE-only feature should also contain these sections.

Overview: as the name suggests, the goal here is to provide an overview of the feature.
Describe what is it, what it does, why it is important/cool/nice-to-have,
what problem it solves, and what you can do with this feature that you couldn’t
do before.

Use cases: provide at least two, ideally three, use cases for every major feature.
You should answer this question: what can you do with this feature/change? Use cases
are examples of how this feature or change can be used in real life.

Examples:
- CE and EE: [Issues](../user/project/issues/index.md#use-cases)
- CE and EE: [Merge Requests](../user/project/merge_requests/index.md#overview)
- EE-only: [Geo](https://docs.gitlab.com/ee/gitlab-geo/README.html#overview)
- EE-only: [Jenkins integration](https://docs.gitlab.com/ee/integration/jenkins.md#overview)

Note that if you don’t have anything to add between the doc title (<h1>) and
the header ## Overview, you can omit the header, but keep the content of the
overview there.

> Overview and use cases are required to every Enterprise Edition feature,
and for every major feature present in Community Edition.

Markdown and styles

Currently GitLab docs use Redcarpet as [markdown](../user/markdown.md) engine, but there’s an [open discussion](https://gitlab.com/gitlab-com/gitlab-docs/issues/50) for implementing Kramdown in the near future.

All the docs follow the [documentation style guidelines](styleguide.md).

Documentation directory structure

The documentation is structured based on the GitLab UI structure itself,
separated by [user](https://gitlab.com/gitlab-org/gitlab-ce/tree/master/doc/user),
[administrator](https://gitlab.com/gitlab-org/gitlab-ce/tree/master/doc/administration), and [contributor](https://gitlab.com/gitlab-org/gitlab-ce/tree/master/doc/development).

In order to have a [solid site structure](https://searchengineland.com/seo-benefits-developing-solid-site-structure-277456) for our documentation,
all docs should be linked. Every new document should be cross-linked to its related documentation, and linked from its topic-related index, when existent.

The directories /workflow/, /gitlab-basics/, /university/, and /articles/ have
been deprecated and the majority their docs have been moved to their correct location
in small iterations. Please don’t create new docs in these folders.

Location and naming documents

The documentation hierarchy can be vastly improved by providing a better layout
and organization of directories.

Having a structured document layout, we will be able to have meaningful URLs
like docs.gitlab.com/user/project/merge_requests/index.html. With this pattern,
you can immediately tell that you are navigating a user related documentation
and is about the project and its merge requests.

Do not create summaries of similar types of content (e.g. an index of all articles, videos, etc.),
rather organize content by its subject (e.g. everything related to CI goes together)
and cross-link between any related content.

The table below shows what kind of documentation goes where.

Directory | What belongs here |

——— | ————– |

doc/user/ | User related documentation. Anything that can be done within the GitLab UI goes here including /admin. |

doc/administration/ | Documentation that requires the user to have access to the server where GitLab is installed. The admin settings that can be accessed via GitLab’s interface go under doc/user/admin_area/. |

doc/api/ | API related documentation. |

doc/development/ | Documentation related to the development of GitLab. Any styleguides should go here. |

doc/legal/ | Legal documents about contributing to GitLab. |

doc/install/`| Probably the most visited directory, since `installation.md is there. Ideally this should go under doc/administration/, but it’s best to leave it as-is in order to avoid confusion (still debated though). |

doc/update/ | Same with doc/install/. Should be under administration/, but this is a well known location, better leave as-is, at least for now. |

doc/topics/ | Indexes per Topic (doc/topics/topic-name/index.md): all resources for that topic (user and admin documentation, articles, and third-party docs) |

—

General rules:

	The correct naming and location of a new document, is a combination
of the relative URL of the document in question and the GitLab Map design
that is used for UX purposes ([source][graffle], [image][gitlab-map]).

	When creating a new document and it has more than one word in its name,
make sure to use underscores instead of spaces or dashes (-). For example,
a proper naming would be import_projects_from_github.md. The same rule
applies to images.

1. Start a new directory with an index.md file.
1. There are four main directories, user, administration, api and development.
1. The doc/user/ directory has five main subdirectories: project/, group/,

profile/, dashboard/ and admin_area/.
1. doc/user/project/ should contain all project related documentation.
1. doc/user/group/ should contain all group related documentation.
1. doc/user/profile/ should contain all profile related documentation.

Every page you would navigate under /profile should have its own document,
i.e. account.md, applications.md, emails.md, etc.

1. doc/user/dashboard/ should contain all dashboard related documentation.
1. doc/user/admin_area/ should contain all admin related documentation

describing what can be achieved by accessing GitLab’s admin interface
(_not to be confused with doc/administration where server access is
required_).
1. Every category under /admin/application_settings should have its

own document located at doc/user/admin_area/settings/. For example,
the Visibility and Access Controls category should have a document
located at doc/user/admin_area/settings/visibility_and_access_controls.md.

	The doc/topics/ directory holds topic-related technical content. Create
doc/topics/topic-name/subtopic-name/index.md when subtopics become necessary.
General user- and admin- related documentation, should be placed accordingly.

If you are unsure where a document should live, you can ping @axil or @marcia in your
merge request.

Changing document location

Changing a document’s location is not to be taken lightly. Remember that the
documentation is available to all installations under help/ and not only to
GitLab.com or http://docs.gitlab.com. Make sure this is discussed with the
Documentation team beforehand.

If you indeed need to change a document’s location, do NOT remove the old
document, but rather replace all of its contents with a new line:

`
This document was moved to [another location](path/to/new_doc.md).
`

where path/to/new_doc.md is the relative path to the root directory doc/.

—

For example, if you were to move doc/workflow/lfs/lfs_administration.md to
doc/administration/lfs.md, then the steps would be:

1. Copy doc/workflow/lfs/lfs_administration.md to doc/administration/lfs.md
1. Replace the contents of doc/workflow/lfs/lfs_administration.md with:

`
This document was moved to [another location](../../administration/lfs.md).
`

	Find and replace any occurrences of the old location with the new one.
A quick way to find them is to use git grep. First go to the root directory
where you cloned the gitlab-ce repository and then do:

`
git grep -n "workflow/lfs/lfs_administration"
git grep -n "lfs/lfs_administration"
`

NOTE: Note:
If the document being moved has any Disqus comments on it, there are extra steps
to follow documented just [below](#redirections-for-pages-with-disqus-comments).

Things to note:

	Since we also use inline documentation, except for the documentation itself,
the document might also be referenced in the views of GitLab (app/) which will
render when visiting /help, and sometimes in the testing suite (spec/).

	The above git grep command will search recursively in the directory you run
it in for workflow/lfs/lfs_administration and lfs/lfs_administration
and will print the file and the line where this file is mentioned.
You may ask why the two greps. Since we use relative paths to link to
documentation, sometimes it might be useful to search a path deeper.

	The *.md extension is not used when a document is linked to GitLab’s
built-in help page, that’s why we omit it in git grep.

	Use the checklist on the documentation MR description template.

Alternative redirection method

Alternatively to the method described above, you can simply replace the content
of the old file with a frontmatter containing a redirect link:

`yaml

redirect_to: '../path/to/file/README.md'

`

It supports both full and relative URLs, e.g. https://docs.gitlab.com/ee/path/to/file.html, ../path/to/file.html, path/to/file.md. Note that any *.md paths will be compiled to *.html.

Redirections for pages with Disqus comments

If the documentation page being relocated already has any Disqus comments,
we need to preserve the Disqus thread.

Disqus uses an identifier per page, and for docs.gitlab.com, the page identifier
is configured to be the page URL. Therefore, when we change the document location,
we need to preserve the old URL as the same Disqus identifier.

To do that, add to the frontmatter the variable redirect_from,
using the old URL as value. For example, let’s say I moved the document
available under https://docs.gitlab.com/my-old-location/README.html to a new location,
https://docs.gitlab.com/my-new-location/index.html.

Into the new document frontmatter add the following:

`yaml

redirect_from: 'https://docs.gitlab.com/my-old-location/README.html'

`

Note: it is necessary to include the file name in the redirect_from URL,
even if it’s index.html or README.html.

Testing

We treat documentation as code, thus have implemented some testing.
Currently, the following tests are in place:

	docs lint: Check that all internal (relative) links work correctly and
that all cURL examples in API docs use the full switches. It’s recommended
to [check locally](#previewing-locally) before pushing to GitLab by executing the command
bundle exec nanoc check internal_links on your local
[gitlab-docs](https://gitlab.com/gitlab-com/gitlab-docs) directory.

	
	[ee_compat_check](../automatic_ce_ee_merge.md#avoiding-ce-gt-ee-merge-conflicts-beforehand) (runs on CE only):
	When you submit a merge request to GitLab Community Edition (CE),
there is this additional job that runs against Enterprise Edition (EE)
and checks if your changes can apply cleanly to the EE codebase.
If that job fails, read the instructions in the job log for what to do next.
As CE is merged into EE once a day, it’s important to avoid merge conflicts.
Submitting an EE-equivalent merge request cherry-picking all commits from CE to EE is
essential to avoid them.

Branch naming

If your contribution contains only documentation changes, you can speed up
the CI process by following some branch naming conventions. You have three
choices:

Branch name | Valid example |

———– | ————- |

Starting with docs/ | docs/update-api-issues |

Starting with docs- | docs-update-api-issues |

Ending in -docs | 123-update-api-issues-docs |

If your branch name matches any of the above, it will run only the docs
tests. If it doesn’t, the whole test suite will run (including docs).

Merge requests for GitLab documentation

Before getting started, make sure you read the introductory section
“[contributing to docs](#contributing-to-docs)” above and the
[tech writing workflow](https://about.gitlab.com/handbook/product/technical-writing/workflow/)
for GitLab Team members.

	Use the current [merge request description template](https://gitlab.com/gitlab-org/gitlab-ce/blob/master/.gitlab/merge_request_templates/Documentation.md)

	Use the correct [branch name](#branch-naming)

	Label the MR Documentation

	Assign the correct milestone (see note below)

NOTE: Note:
If the release version you want to add the documentation to has already been
frozen or released, use the label Pick into X.Y to get it merged into
the correct release. Avoid picking into a past release as much as you can, as
it increases the work of the release managers.

Cherry-picking from CE to EE

As we have the master branch of CE merged into EE once a day, it’s common to
run into merge conflicts. To avoid them, we [test for merge conflicts against EE](#testing)
with the ee-compat-check job, and use the following method of creating equivalent
branches for CE and EE.

Follow this [method for cherry-picking from CE to EE](../automatic_ce_ee_merge.md#cherry-picking-from-ce-to-ee), with a few adjustments:

	Create the [CE branch](#branch-naming) starting with docs-,
e.g.: git checkout -b docs-example

	Create the EE-equivalent branch ending with -ee, e.g.,
git checkout -b docs-example-ee

	Once all the jobs are passing in CE and EE, and you’ve addressed the

feedback from your own team, assign the CE MR to a technical writer for review
- When both MRs are ready, the EE merge request will be merged first, and the
CE-equivalent will be merged next.
- Note that the review will occur only in the CE MR, as the EE MR
contains the same commits as the CE MR.
- If you have a few more changes that apply to the EE-version only, you can submit
a couple more commits to the EE branch, but ask the reviewer to review the EE merge request
additionally to the CE MR. If there are many EE-only changes though, start a new MR
to EE only.

Previewing the changes live

NOTE: Note:
To preview your changes to documentation locally, follow this
[development guide](https://gitlab.com/gitlab-com/gitlab-docs/blob/master/README.md#development).

The live preview is currently enabled for the following projects:

	https://gitlab.com/gitlab-org/gitlab-ce

	https://gitlab.com/gitlab-org/gitlab-ee

	https://gitlab.com/gitlab-org/gitlab-runner

If your branch contains only documentation changes, you can use
[special branch names](#branch-naming) to avoid long running pipelines.

For [docs-only changes](#branch-naming), the review app is run automatically.
For all other branches, you can use the manual review-docs-deploy-manual job
in your merge request. You will need at least Maintainer permissions to be able
to run it. In the mini pipeline graph, you should see an >> icon. Clicking on it will
reveal the review-docs-deploy-manual job. Hit the play button for the job to start.

![Manual trigger a docs build](img/manual_build_docs.png)

NOTE: Note:
You will need to push a branch to those repositories, it doesn’t work for forks.

The review-docs-deploy* job will:

	Create a new branch in the [gitlab-docs](https://gitlab.com/gitlab-com/gitlab-docs)
project named after the scheme: $DOCS_GITLAB_REPO_SUFFIX-$CI_ENVIRONMENT_SLUG,
where DOCS_GITLAB_REPO_SUFFIX is the suffix for each product, e.g, ce for
CE, etc.

	Trigger a cross project pipeline and build the docs site with your changes

After a few minutes, the Review App will be deployed and you will be able to
preview the changes. The docs URL can be found in two places:

	In the merge request widget

	In the output of the review-docs-deploy* job, which also includes the
triggered pipeline so that you can investigate whether something went wrong

In case the Review App URL returns 404, follow these steps to debug:

	Did you follow the URL from the merge request widget? If yes, then check if
the link is the same as the one in the job output.

	Did you follow the URL from the job output? If yes, then it means that
either the site is not yet deployed or something went wrong with the remote
pipeline. Give it a few minutes and it should appear online, otherwise you
can check the status of the remote pipeline from the link in the job output.
If the pipeline failed or got stuck, drop a line in the #docs chat channel.

TIP: Tip:
Someone that has no merge rights to the CE/EE projects (think of forks from
contributors) will not be able to run the manual job. In that case, you can
ask someone from the GitLab team who has the permissions to do that for you.

NOTE: Note:
Make sure that you always delete the branch of the merge request you were
working on. If you don’t, the remote docs branch won’t be removed either,
and the server where the Review Apps are hosted will eventually be out of
disk space.

Technical aspects

If you want to know the hot details, here’s what’s really happening:

1. You manually run the review-docs-deploy job in a CE/EE merge request.
1. The job runs the [scripts/trigger-build-docs](https://gitlab.com/gitlab-org/gitlab-ce/blob/master/scripts/trigger-build-docs)

script with the deploy flag, which in turn:
1. Takes your branch name and applies the following:

	The slug of the branch name is used to avoid special characters since
ultimately this will be used by NGINX.

	The preview- prefix is added to avoid conflicts if there’s a remote branch
with the same name that you created in the merge request.

	The final branch name is truncated to 42 characters to avoid filesystem
limitations with long branch names (> 63 chars).

	The remote branch is then created if it doesn’t exist (meaning you can
re-run the manual job as many times as you want and this step will be skipped).

1. A new cross-project pipeline is triggered in the docs project.
1. The preview URL is shown both at the job output and in the merge request

widget. You also get the link to the remote pipeline.

	In the docs project, the pipeline is created and it
[skips the test jobs](https://gitlab.com/gitlab-com/gitlab-docs/blob/8d5d5c750c602a835614b02f9db42ead1c4b2f5e/.gitlab-ci.yml#L50-55)
to lower the build time.

1. Once the docs site is built, the HTML files are uploaded as artifacts.
1. A specific Runner tied only to the docs project, runs the Review App job

that downloads the artifacts and uses rsync to transfer the files over
to a location where NGINX serves them.

The following GitLab features are used among others:

	[Manual actions](../../ci/yaml/README.md#manual-actions)

	[Multi project pipelines](https://docs.gitlab.com/ee/ci/multi_project_pipeline_graphs.html)

	[Review Apps](../../ci/review_apps/index.md)

	[Artifacts](../../ci/yaml/README.md#artifacts)

	[Specific Runner](../../ci/runners/README.md#locking-a-specific-runner-from-being-enabled-for-other-projects)

GitLab /help

Every GitLab instance includes the documentation, which is available from /help
(http://my-instance.com/help), e.g., <https://gitlab.com/help>.

When you’re building a new feature, you may need to link the documentation
from GitLab, the application. This is normally done in files inside the
app/views/ directory with the help of the help_page_path helper method.

In its simplest form, the HAML code to generate a link to the /help page is:

`haml
= link_to 'Help page', help_page_path('user/permissions')
`

The help_page_path contains the path to the document you want to link to with
the following conventions:

	it is relative to the doc/ directory in the GitLab repository

	the .md extension must be omitted

	it must not end with a slash (/)

Below are some special cases where should be used depending on the context.
You can combine one or more of the following:

	Linking to an anchor link. Use anchor as part of the help_page_path
method:

`haml
= link_to 'Help page', help_page_path('user/permissions', anchor: 'anchor-link')
`

	Opening links in a new tab. This should be the default behavior:

`haml
= link_to 'Help page', help_page_path('user/permissions'), target: '_blank'
`

	Linking to a circle icon. Usually used in settings where a long
description cannot be used, like near checkboxes. You can basically use
any font awesome icon, but prefer the question-circle:

`haml
= link_to icon('question-circle'), help_page_path('user/permissions')
`

	Using a button link. Useful in places where text would be out of context
with the rest of the page layout:

`haml
= link_to 'Help page', help_page_path('user/permissions'), class: 'btn btn-info'
`

	Using links inline of some text.

`haml
Description to #{link_to 'Help page', help_page_path('user/permissions')}.
`

	Adding a period at the end of the sentence. Useful when you don’t want
the period to be part of the link:


```haml
= succeed ‘.’ do


Learn more in the
= link_to ‘Help page’, help_page_path(‘user/permissions’)




```


General Documentation vs Technical Articles

General documentation

General documentation is categorized by _User_, _Admin_, and _Contributor_, and describe what that feature is, what it does, and its available settings.

Technical Articles

Technical articles replace technical content that once lived in the [GitLab Blog](https://about.gitlab.com/blog/), where they got out-of-date and weren’t easily found.

They are topic-related documentation, written with an user-friendly approach and language, aiming to provide the community with guidance on specific processes to achieve certain objectives.

A technical article guides users and/or admins to achieve certain objectives (within guides and tutorials), or provide an overview of that particular topic or feature (within technical overviews). It can also describe the use, implementation, or integration of third-party tools with GitLab.

They should be placed in a new directory named /article-title/index.md under a topic-related folder, and their images should be placed in /article-title/img/. For example, a new article on GitLab Pages should be placed in doc/user/project/pages/article-title/ and a new article on GitLab CI/CD should be placed in doc/ci/examples/article-title/.

Types of Technical Articles

	User guides: technical content to guide regular users from point A to point B

	Admin guides: technical content to guide administrators of GitLab instances from point A to point B

	Technical Overviews: technical content describing features, solutions, and third-party integrations

	Tutorials: technical content provided step-by-step on how to do things, or how to reach very specific objectives

Understanding guides, tutorials, and technical overviews

Suppose there’s a process to go from point A to point B in 5 steps: (A) 1 > 2 > 3 > 4 > 5 (B).

A guide can be understood as a description of certain processes to achieve a particular objective. A guide brings you from A to B describing the characteristics of that process, but not necessarily going over each step. It can mention, for example, steps 2 and 3, but does not necessarily explain how to accomplish them.

	Live example: “[Static sites and GitLab Pages domains (Part 1)](../user/project/pages/getting_started_part_one.md) to [Creating and Tweaking GitLab CI/CD for GitLab Pages (Part 4)](../../user/project/pages/getting_started_part_four.md)”

A tutorial requires a clear step-by-step guidance to achieve a singular objective. It brings you from A to B, describing precisely all the necessary steps involved in that process, showing each of the 5 steps to go from A to B.
It does not only describes steps 2 and 3, but also shows you how to accomplish them.

	Live example (on the blog): [Hosting on GitLab.com with GitLab Pages](https://about.gitlab.com/2016/04/07/gitlab-pages-setup/)

A technical overview is a description of what a certain feature is, and what it does, but does not walk
through the process of how to use it systematically.

	Live example (on the blog): [GitLab Workflow, an overview](https://about.gitlab.com/2016/10/25/gitlab-workflow-an-overview/)

Special format

Every Technical Article contains a frontmatter at the beginning of the doc
with the following information:

	Type of article (user guide, admin guide, technical overview, tutorial)

	Knowledge level expected from the reader to be able to follow through (beginner, intermediate, advanced)

	Author’s name and GitLab.com handle

	Publication date (ISO format YYYY-MM-DD)

For example:

`yaml

author: John Doe
author_gitlab: johnDoe
level: beginner
article_type: user guide
date: 2017-02-01

`

Technical Articles - Writing Method

Use the [writing method](https://about.gitlab.com/handbook/product/technical-writing/#writing-method) defined by the Technical Writing team.

[gitlab-map]: https://gitlab.com/gitlab-org/gitlab-design/raw/master/production/resources/gitlab-map.png
[graffle]: https://gitlab.com/gitlab-org/gitlab-design/blob/d8d39f4a87b90fb9ae89ca12dc565347b4900d5e/production/resources/gitlab-map.graffle

 —
description: ‘Writing styles, markup, formatting, and reusing regular expressions throughout the GitLab Documentation.’
—

Documentation style guidelines

The documentation style guide defines the markup structure used in
GitLab documentation. Check the
[documentation guidelines](index.md) for general development instructions.

Check the GitLab handbook for the [writing styles guidelines](https://about.gitlab.com/handbook/communication/#writing-style-guidelines).

Text

	Split up long lines (wrap text), this makes it much easier to review and edit. Only
double line breaks are shown as a full line break in [GitLab markdown][gfm].
80-100 characters is a good line length

	Make sure that the documentation is added in the correct
[directory](index.md#documentation-directory-structure) and that
there’s a link to it somewhere useful

	Do not duplicate information

	Be brief and clear

	Unless there’s a logical reason not to, add documents in alphabetical order

	Write in US English

	Use [single spaces][] instead of double spaces

	Jump a line between different markups (e.g., after every paragraph, header, list, etc)

	Capitalize “G” and “L” in GitLab

	Use sentence case for titles, headings, labels, menu items, and buttons.

	Use title case when referring to [features](https://about.gitlab.com/features/) or

[products](https://about.gitlab.com/pricing/) (e.g., GitLab Runner, Geo,
Issue Boards, GitLab Core, Git, Prometheus, Kubernetes, etc), and methods or methodologies
(e.g., Continuous Integration, Continuous Deployment, Scrum, Agile, etc). Note that
some features are also objects (e.g. “Merge Requests” and “merge requests”).

Formatting

	Use double asterisks (**) to mark a word or text in bold (**bold**)

	Use undescore (_) for text in italics (_italic_)

	Jump a line between different markups, for example:


```md
## Header

Paragraph.


	List item


	List item




```


Punctuation

For punctuation rules, please refer to the [GitLab UX guide](https://design.gitlab.com/content/punctuation/).

Ordered and unordered lists

	Use dashes (-) for unordered lists instead of asterisks (*)

	Use the number one (1) for ordered lists

	For punctuation in bullet lists, please refer to the [GitLab UX guide](https://design.gitlab.com/content/punctuation/)

Headings

	Add only one H1 in each document, by adding # at the beginning of
it (when using markdown). The h1 will be the document <title>.

	For subheadings, use ##, ### and so on

	Avoid putting numbers in headings. Numbers shift, hence documentation anchor
links shift too, which eventually leads to dead links. If you think it is
compelling to add numbers in headings, make sure to at least discuss it with
someone in the Merge Request

	[Avoid using symbols and special chars](https://gitlab.com/gitlab-com/gitlab-docs/issues/84)
in headers. Whenever possible, they should be plain and short text.

	Avoid adding things that show ephemeral statuses. For example, if a feature is
considered beta or experimental, put this info in a note, not in the heading.

	When introducing a new document, be careful for the headings to be
grammatically and syntactically correct. Mention one or all
of the following GitLab members for a review: @axil or @marcia.
This is to ensure that no document with wrong heading is going
live without an audit, thus preventing dead links and redirection issues when
corrected

	Leave exactly one new line after a heading

Links

	Use the regular inline link markdown markup [Text](https://example.com).
It’s easier to read, review, and maintain.

	If there’s a link that repeats several times through the same document,
you can use [Text][identifier] and at the bottom of the section or the
document add: [identifier]: https://example.com, in which case, we do
encourage you to also add an alternative text: [identifier]: https://example.com “Alternative text” that appears when hovering your mouse on a link.

	To link to internal documentation, use relative links, not full URLs. Use ../ to
navigate tp high-level directories, and always add the file name file.md at the
end of the link with the .md extension, not .html.
Example: instead of [text](../../merge_requests/), use
[text](../../merge_requests/index.md) or, [text](../../ci/README.md), or,
for anchor links, [text](../../ci/README.md#examples).
Using the markdown extension is necessary for the [/help](index.md#gitlab-help)
section of GitLab.

	To link from CE to EE-only documentation, use the EE-only doc full URL.

	Use [meaningful anchor texts](https://www.futurehosting.com/blog/links-should-have-meaningful-anchor-text-heres-why/).
E.g., instead of writing something like Read more about GitLab Issue Boards [here](LINK),
write Read more about [GitLab Issue Boards](LINK).

Navigation

To indicate the steps of navigation through the UI:

	Use the exact word as shown in the UI, including any capital letters as-is

	Use bold text for navigation items and the char > as separator

(e.g., Navigate to your project’s **Settings > CI/CD**)
- If there are any expandable menus, make sure to mention that the user
needs to expand the tab to find the settings you’re referring to

Images

	Place images in a separate directory named img/ in the same directory where
the .md document that you’re working on is located. Always prepend their
names with the name of the document that they will be included in. For
example, if there is a document called twitter.md, then a valid image name
could be twitter_login_screen.png. [Exception: images for
[articles](index.md#technical-articles) should be
put in a directory called img underneath /articles/article_title/img/, therefore,
there’s no need to prepend the document name to their filenames.]

	Images should have a specific, non-generic name that will differentiate them.

	Keep all file names in lower case.

	Consider using PNG images instead of JPEG.

	Compress all images with <https://tinypng.com/> or similar tool.

	Compress gifs with <https://ezgif.com/optimize> or similar tool.

	Images should be used (only when necessary) to _illustrate_ the description

of a process, not to _replace_ it.

Inside the document:

	The Markdown way of using an image inside a document is:
![Proper description what the image is about](img/document_image_title.png)

	Always use a proper description for what the image is about. That way, when a
browser fails to show the image, this text will be used as an alternative
description

	If there are consecutive images with little text between them, always add
three dashes (—) between the image and the text to create a horizontal
line for better clarity

	If a heading is placed right after an image, always add three dashes (—)
between the image and the heading

Alert boxes

Whenever you want to call the attention to a particular sentence,
use the following markup for highlighting.

_Note that the alert boxes only work for one paragraph only. Multiple paragraphs,
lists, headers, etc will not render correctly._

Note

`md
NOTE: **Note:**
This is something to note.
`

How it renders in docs.gitlab.com:

NOTE: Note:
This is something to note.

Tip

`md
TIP: **Tip:**
This is a tip.
`

How it renders in docs.gitlab.com:

TIP: Tip:
This is a tip.

Caution

`md
CAUTION: **Caution:**
This is something to be cautious about.
`

How it renders in docs.gitlab.com:

CAUTION: Caution:
This is something to be cautious about.

Danger

`md
DANGER: **Danger:**
This is a breaking change, a bug, or something very important to note.
`

How it renders in docs.gitlab.com:

DANGER: Danger:
This is a breaking change, a bug, or something very important to note.

Blockquotes

For highlighting a text within a blue blockquote, use this format:

`md
> This is a blockquote.
`

which renders in docs.gitlab.com to:

> This is a blockquote.

If the text spans across multiple lines it’s OK to split the line.

Specific sections and terms

To mention and/or reference specific terms in GitLab, please follow the styles
below.

GitLab versions and tiers

	Every piece of documentation that comes with a new feature should declare the
GitLab version that feature got introduced. Right below the heading add a
blockquote:

`md
> Introduced in GitLab 8.3.
`

	Whenever possible, every feature should have a link to the issue, MR or epic
(in that order) that introduced it. The above quote would be then transformed to:

`md
> [Introduced](https://gitlab.com/gitlab-org/gitlab-ce/issues/1242) in GitLab 8.3.
`

	If the feature is only available in GitLab Enterprise Edition, don’t forget to mention
the [paid tier](https://about.gitlab.com/handbook/marketing/product-marketing/#tiers)
the feature is available in:

`md
> [Introduced](https://gitlab.com/gitlab-org/gitlab-ce/issues/1242)
in [GitLab Starter](https://about.gitlab.com/pricing/) 8.3.
`

Product badges

When a feature is available in EE-only tiers, add the corresponding tier according to the
feature availability:

	For GitLab Starter and GitLab.com Bronze: **[STARTER]**

	For GitLab Premium and GitLab.com Silver: **[PREMIUM]**

	For GitLab Ultimate and GitLab.com Gold: **[ULTIMATE]**

	For GitLab Core and GitLab.com Free: **[CORE]**

To exclude GitLab.com tiers (when the feature is not available in GitLab.com), add the
keyword “only”:

	For GitLab Starter: **[STARTER ONLY]**

	For GitLab Premium: **[PREMIUM ONLY]**

	For GitLab Ultimate: **[ULTIMATE ONLY]**

	For GitLab Core: **[CORE ONLY]**

The tier should be ideally added to headers, so that the full badge will be displayed.
But it can be also mentioned from paragraphs, list items, and table cells. For these cases,
the tier mention will be represented by an orange question mark.
E.g., **[STARTER]** renders [STARTER], **[STARTER ONLY]** renders [STARTER ONLY].

The absence of tiers’ mentions mean that the feature is available in GitLab Core,
GitLab.com Free, and higher tiers.

How it works

Introduced by [!244](https://gitlab.com/gitlab-com/gitlab-docs/merge_requests/244),
the special markup **[STARTER]** will generate a span element to trigger the
badges and tooltips (). When the keyword
“only” is added, the corresponding GitLab.com badge will not be displayed.

GitLab Restart

There are many cases that a restart/reconfigure of GitLab is required. To
avoid duplication, link to the special document that can be found in
[doc/administration/restart_gitlab.md][doc-restart]. Usually the text will
read like:

`
Save the file and [reconfigure GitLab](../../administration/restart_gitlab.md)
for the changes to take effect.
`

If the document you are editing resides in a place other than the GitLab CE/EE
doc/ directory, instead of the relative link, use the full path:
http://docs.gitlab.com/ce/administration/restart_gitlab.html.
Replace reconfigure with restart where appropriate.

Installation guide

Ruby:
In [step 2 of the installation guide](../../install/installation.md#2-ruby),
we install Ruby from source. Whenever there is a new version that needs to
be updated, remember to change it throughout the codeblock and also replace
the sha256sum (it can be found in the [downloads page][ruby-dl] of the Ruby
website).

[ruby-dl]: https://www.ruby-lang.org/en/downloads/ “Ruby download website”

Configuration documentation for source and Omnibus installations

GitLab currently officially supports two installation methods: installations
from source and Omnibus packages installations.

Whenever there is a setting that is configurable for both installation methods,
prefer to document it in the CE docs to avoid duplication.

Configuration settings include:

	settings that touch configuration files in config/

	NGINX settings and settings in lib/support/ in general

When there is a list of steps to perform, usually that entails editing the
configuration file and reconfiguring/restarting GitLab. In such case, follow
the style below as a guide:

```md
For Omnibus installations


	Edit /etc/gitlab/gitlab.rb:


`ruby
external_url "https://gitlab.example.com"
`









	Save the file and [reconfigure] GitLab for the changes to take effect.




—

For installations from source


	Edit config/gitlab.yml:


```yaml
gitlab:

host: “gitlab.example.com”


```









	Save the file and [restart] GitLab for the changes to take effect.




[reconfigure]: path/to/administration/restart_gitlab.md#omnibus-gitlab-reconfigure
[restart]: path/to/administration/restart_gitlab.md#installations-from-source
```

In this case:

	before each step list the installation method is declared in bold

	three dashes (—) are used to create a horizontal line and separate the
two methods

	the code blocks are indented one or more spaces under the list item to render
correctly

	different highlighting languages are used for each config in the code block

	the [references](#references) guide is used for reconfigure/restart

Fake tokens

There may be times where a token is needed to demonstrate an API call using
cURL or a variable used in CI. It is strongly advised not to use real
tokens in documentation even if the probability of a token being exploited is
low.

You can use the following fake tokens as examples.

Token type | Token value |

——————— | ——————————— |

Private user token | 9koXpg98eAheJpvBs5tK |

Personal access token | n671WNGecHugsdEDPsyo |

Application ID | 2fcb195768c39e9a94cec2c2e32c59c0aad7a3365c10892e8116b5d83d4096b6 |

Application secret | 04f294d1eaca42b8692017b426d53bbc8fe75f827734f0260710b83a556082df |

Secret CI variable | Li8j-mLUVA3eZYjPfd_H |

Specific Runner token | yrnZW46BrtBFqM7xDzE7dddd |

Shared Runner token | 6Vk7ZsosqQyfreAxXTZr |

Trigger token | be20d8dcc028677c931e04f3871a9b |

Webhook secret token | 6XhDroRcYPM5by_h-HLY |

Health check token | Tu7BgjR9qeZTEyRzGG2P |

Request profile token | 7VgpS4Ax5utVD2esNstz |

API

Here is a list of must-have items. Use them in the exact order that appears
on this document. Further explanation is given below.

	Every method must have the REST API request. For example:

`
GET /projects/:id/repository/branches
`

	Every method must have a detailed
[description of the parameters](#method-description).

	Every method must have a cURL example.

	Every method must have a response body (in JSON format).

Method description

Use the following table headers to describe the methods. Attributes should
always be in code blocks using backticks (` ` `).

`
| Attribute | Type | Required | Description |
| --------- | ---- | -------- | ----------- |
`

Rendered example:

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

user | string | yes | The GitLab username |

cURL commands

	Use https://gitlab.example.com/api/v4/ as an endpoint.

	Wherever needed use this personal access token: 9koXpg98eAheJpvBs5tK.

	Always put the request first. GET is the default so you don’t have to
include it.

	Use double quotes to the URL when it includes additional parameters.

	Prefer to use examples using the personal access token and don’t pass data of
username and password.

Methods | Description |

——- | ———– |

-H “PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK” | Use this method as is, whenever authentication needed |

-X POST | Use this method when creating new objects |

-X PUT | Use this method when updating existing objects |

-X DELETE | Use this method when removing existing objects |

cURL Examples

Below is a set of [cURL][] examples that you can use in the API documentation.

Simple cURL command

Get the details of a group:

`bash
curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" https://gitlab.example.com/api/v4/groups/gitlab-org
`

cURL example with parameters passed in the URL

Create a new project under the authenticated user’s namespace:

`bash
curl --request POST --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" "https://gitlab.example.com/api/v4/projects?name=foo"
`

Post data using cURL’s –data

Instead of using -X POST and appending the parameters to the URI, you can use
cURL’s –data option. The example below will create a new project foo under
the authenticated user’s namespace.

`bash
curl --data "name=foo" --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" "https://gitlab.example.com/api/v4/projects"
`

Post data using JSON content

> Note: In this example we create a new group. Watch carefully the single
and double quotes.

`bash
curl --request POST --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" --header "Content-Type: application/json" --data '{"path": "my-group", "name": "My group"}' https://gitlab.example.com/api/v4/groups
`

Post data using form-data

Instead of using JSON or urlencode you can use multipart/form-data which
properly handles data encoding:

`bash
curl --request POST --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" --form "title=ssh-key" --form "key=ssh-rsa AAAAB3NzaC1yc2EA..." https://gitlab.example.com/api/v4/users/25/keys
`

The above example is run by and administrator and will add an SSH public key
titled ssh-key to user’s account which has an id of 25.

Escape special characters

Spaces or slashes (/) may sometimes result to errors, thus it is recommended
to escape them when possible. In the example below we create a new issue which
contains spaces in its title. Observe how spaces are escaped using the %20
ASCII code.

`bash
curl --request POST --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" "https://gitlab.example.com/api/v4/projects/42/issues?title=Hello%20Dude"
`

Use %2F for slashes (/).

Pass arrays to API calls

The GitLab API sometimes accepts arrays of strings or integers. For example, to
restrict the sign-up e-mail domains of a GitLab instance to *.example.com and
example.net, you would do something like this:

`bash
curl --request PUT --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" --data "domain_whitelist[]=*.example.com" --data "domain_whitelist[]=example.net" https://gitlab.example.com/api/v4/application/settings
`

[cURL]: http://curl.haxx.se/ “cURL website”
[single spaces]: http://www.slate.com/articles/technology/technology/2011/01/space_invaders.html
[gfm]: http://docs.gitlab.com/ce/user/markdown.html#newlines “GitLab flavored markdown documentation”
[ce-1242]: https://gitlab.com/gitlab-org/gitlab-ce/issues/1242
[doc-restart]: ../../administration/restart_gitlab.md “GitLab restart documentation”

 # Accessibility

Resources

[Chrome Accessibility Developer Tools][chrome-accessibility-developer-tools]
are useful for testing for potential accessibility problems in GitLab.

Accessibility best-practices and more in-depth information is available on
[the Audit Rules page][audit-rules] for the Chrome Accessibility Developer Tools.

[chrome-accessibility-developer-tools]: https://github.com/GoogleChrome/accessibility-developer-tools
[audit-rules]: https://github.com/GoogleChrome/accessibility-developer-tools/wiki/Audit-Rules

 # Architecture

When you are developing a new feature that requires architectural design, or if
you are changing the fundamental design of an existing feature, make sure it is
discussed with one of the Frontend Architecture Experts.

A Frontend Architect is an expert who makes high-level Frontend design decisions
and decides on technical standards, including coding standards and frameworks.

Architectural decisions should be accessible to everyone, so please document
them in the relevant Merge Request discussion or by updating our documentation
when appropriate.

You can find the Frontend Architecture experts on the [team page][team-page].

Examples

You can find documentation about the desired architecture for a new feature
built with Vue.js [here][vue-section].

[team-page]: https://about.gitlab.com/team
[vue-section]: vue.md#frontend.html#how-to-build-a-new-feature-with-vue-js

 # Axios
We use [axios][axios] to communicate with the server in Vue applications and most new code.

In order to guarantee all defaults are set you should not use `axios` directly, you should import axios from axios_utils.

CSRF token
All our request require a CSRF token.
To guarantee this token is set, we are importing [axios][axios], setting the token, and exporting axios .

This exported module should be used instead of directly using axios to ensure the token is set.

Usage
```javascript


import axios from ‘./lib/utils/axios_utils’;


	axios.get(url)
	
	.then((response) => {
	// data is the response that was provided by the server
const data = response.data;

// headers the headers that the server responded with
// All header names are lower cased
const paginationData = response.headers;





})
.catch(() => {


//handle the error




});








```

Mock axios response in tests

To help us mock the responses we are using [axios-mock-adapter][axios-mock-adapter].

Advantages over [spyOn()]:

	no need to create response objects

	does not allow call through (which we want to avoid)

	simple API to test error cases

	provides replyOnce() to allow for different responses

We have also decided against using [axios interceptors] because they are not suitable for mocking.

[axios interceptors]: https://github.com/axios/axios#interceptors
[spyOn()]: https://jasmine.github.io/api/edge/global.html#spyOn

Example


	```javascript
	import axios from ‘~/lib/utils/axios_utils’;
import MockAdapter from ‘axios-mock-adapter’;

let mock;
beforeEach(() => {


// This sets the mock adapter on the default instance
mock = new MockAdapter(axios);
// Mock any GET request to /users
// arguments for reply are (status, data, headers)
mock.onGet(‘/users’).reply(200, {



	users: [
	{ id: 1, name: ‘John Smith’ }





]




});




});


	afterEach(() => {
	mock.restore();





});





```

Mock poll requests in tests with axios

Because polling function requires a header object, we need to always include an object as the third argument:


	```javascript
	mock.onGet(‘/users’).reply(200, { foo: ‘bar’ }, {});





```

[axios]: https://github.com/axios/axios
[axios-instance]: #creating-an-instance
[axios-interceptors]: https://github.com/axios/axios#interceptors
[axios-mock-adapter]: https://github.com/ctimmerm/axios-mock-adapter

 # Components

Contents
* [Dropdowns](#dropdowns)
* [Modals](#modals)

Dropdowns

See also the [corresponding UX guide](../ux_guide/components.md#dropdowns).

How to style a bootstrap dropdown
1. Use the HTML structure provided by the [docs][bootstrap-dropdowns]
1. Add a specific class to the top level .dropdown element


```Haml
.dropdown.my-dropdown



	%button{ type: ‘button’, data: { toggle: ‘dropdown’ }, ‘aria-haspopup’: true, ‘aria-expanded’: false }
	
	%span.dropdown-toggle-text
	Toggle Dropdown





= icon(‘chevron-down’)



	%ul.dropdown-menu
	
	%li
	
	%a
	item!
















```

Or use the helpers
```Haml
.dropdown.my-dropdown


= dropdown_toggle(‘Toogle!’, { toggle: ‘dropdown’ })
= dropdown_content



	%li
	
	%a
	item!















```


[bootstrap-dropdowns]: https://getbootstrap.com/docs/3.3/javascript/#dropdowns

Modals

See also the [corresponding UX guide](../ux_guide/components.md#modals).

We have a reusable Vue component for modals: [vue_shared/components/gl-modal.vue](https://gitlab.com/gitlab-org/gitlab-ce/blob/master/app/assets/javascripts/vue_shared/components/gl-modal.vue)

Here is an example of how to use it:


	```html
	
	<gl-modal
	id=”dogs-out-modal”
:header-title-text=”s__(‘ModalExample|Let the dogs out?’)”
footer-primary-button-variant=”danger”
:footer-primary-button-text=”s__(‘ModalExample|Let them out’)”
@submit=”letOut(theDogs)”






	>
	{{ s__(‘ModalExample|You’re about to let the dogs out.’) }}





</gl-modal>





```

![example modal](img/gl-modal.png)

 # Design Patterns

Singletons

When exactly one object is needed for a given task, prefer to define it as a
class rather than as an object literal. Prefer also to explicitly restrict
instantiation, unless flexibility is important (e.g. for testing).

```javascript
// bad


	const MyThing = {
	prop1: ‘hello’,
method1: () => {}





};

export default MyThing;

// good


	class MyThing {
	
	constructor() {
	this.prop1 = ‘hello’;





}
method1() {}





}

export default new MyThing();

// best


	export default class MyThing {
	
	constructor() {
	
	if (!this.prototype.singleton) {
	this.init();
this.prototype.singleton = this;





}
return this.prototype.singleton;





}


	init() {
	this.prop1 = ‘hello’;





}

method1() {}





}

```

Manipulating the DOM in a JS Class

When writing a class that needs to manipulate the DOM guarantee a container option is provided.
This is useful when we need that class to be instantiated more than once in the same page.

Bad:
```javascript
class Foo {



	constructor() {
	document.querySelector(‘.bar’);





}




}
new Foo();
```

Good:
```javascript
class Foo {



	constructor(opts) {
	document.querySelector(${opts.container} .bar);





}




}

new Foo({ container: ‘.my-element’ });
```
You can find an example of the above in this [class][container-class-example];

[container-class-example]: https://gitlab.com/gitlab-org/gitlab-ce/blob/master/app/assets/javascripts/mini_pipeline_graph_dropdown.js

 # Frontend Development Process

You can find more about the organization of the frontend team in the [handbook](https://about.gitlab.com/handbook/engineering/frontend/).

Development Checklist

The idea is to remind us about specific topics during the time we build a new feature or start something. This is a common practice in other industries (like pilots) that also use standardised checklists to reduce problems early on.

Copy the content over to your issue or merge request and if something doesn’t apply simply remove it from your current list.

This checklist is intended to help us during development of bigger features/refactorings, it’s not a “use it always and every point always matches” list.

Please use your best judgement when to use it and please contribute new points through merge requests if something comes to your mind.

—

Frontend development

Planning development

	[] Check the current set weight of the issue, does it fit your estimate?

	[] Are all [departments](https://about.gitlab.com/handbook/engineering/#engineering-teams) that are needed from your perspective already involved in the issue? (For example is UX missing?)

	[] Is the specification complete? Are you missing decisions? How about error handling/defaults/edge cases? Take your time to understand the needed implementation and go through its flow.

	[] Are all necessary UX specifications available that you will need in order to implement? Are there new UX components/patterns in the designs? Then contact the UI component team early on. How should error messages or validation be handled?

	[] Library usage Use Vuex as soon as you have even a medium state to manage, use Vue router if you need to have different views internally and want to link from the outside. Check what libraries we already have for which occasions.

	
	[] Plan your implementation:
	
	[] Architecture plan: Create a plan aligned with GitLab’s architecture, how you are going to do the implementation, for example Vue application setup and its components (through [onion skinning](https://gitlab.com/gitlab-org/gitlab-ce/issues/35873#note_39994091)), Store structure and data flow, which existing Vue components can you reuse. It’s a good idea to go through your plan with another engineer to refine it.

	[] Backend: The best way is to kickoff the implementation in a call and discuss with the assigned Backend engineer what you will need from the backend and also when. Can you reuse existing API’s? How is the performance with the planned architecture? Maybe create together a JSON mock object to already start with development.

	[] Communication: It also makes sense to have for bigger features an own slack channel (normally called #f_{feature_name}) and even weekly demo calls with all people involved.

	[] Dependency Plan: Are there big dependencies in the plan between you and others, then maybe create an execution diagram to show what is blocking which part and the order of the different parts.

	[] Task list: Create a simple checklist of the subtasks that are needed for the implementation, also consider creating even sub issues. (for example show a comment, delete a comment, update a comment, etc.). This helps you and also everyone else following the implementation

	
	[] Keep it small To make it easier for you and also all reviewers try to keep merge requests small and merge into a feature branch if needed. To accomplish that you need to plan that from the start. Different methods are:
	
	[] Skeleton based plan Start with an MR that has the skeleton of the components with placeholder content. In following MRs you can fill the components with interactivity. This also makes it easier to spread out development on multiple people.

	[] Cookie Mode Think about hiding the feature behind a cookie flag if the implementation is on top of existing features

	[] New route Are you refactoring something big then you might consider adding a new route where you implement the new feature and when finished delete the current route and rename the new one. (for example ‘merge_request’ and ‘new_merge_request’)

	[] Setup Is there any specific setup needed for your implementation (for example a kubernetes cluster)? Then let everyone know if it is not already mentioned where they can find documentation (if it doesn’t exist - create it)

	[] Security Are there any new security relevant implementations? Then please contact the security team for an app security review. If you are not sure ask our [domain expert](https://about.gitlab.com/handbook/engineering/frontend/#frontend-domain-experts)

During development

	[] Check off tasks on your created task list to keep everyone updated on the progress

	[] [Share your work early with reviewers/maintainers](#share-your-work-early)

	[] Share your work with UXer and Product Manager with Screenshots and/or [GIF’s](https://about.gitlab.com/handbook/product/making-gifs/). They are easy to create for you and keep them up to date.

	[] If you are blocked on something let everyone on the issue know through a comment.

	[] Are you unable to work on this issue for a longer period of time, also let everyone know.

	[] Documentation Update/add docs for the new feature, see docs/. Ping one of the documentation experts/reviewers

Finishing development + Review

	[] Keep it in the scope Try to focus on the actual scope and avoid a scope creep during review and keep new things to new issues.

	[] Performance Have you checked performance? For example do the same thing with 500 comments instead of 1. Document the tests and possible findings in the MR so a reviewer can directly see it.

	[] Have you tested with a variety of our [supported browsers](../../install/requirements.md#supported-web-browsers)? You can use [browserstack](https://www.browserstack.com/) to be able to access a wide variety of browsers and operating systems.

	[] Did you check the mobile view?

	[] Check the built webpack bundle (For the report run WEBPACK_REPORT=true gdk run, then open webpack-report/index.html) if we have unnecessary bloat due to wrong references, including libraries multiple times, etc.. If you need help contact the webpack [domain expert](https://about.gitlab.com/handbook/engineering/frontend/#frontend-domain-experts)

	[] Tests Not only greenfield tests - Test also all bad cases that come to your mind.

	[] If you have multiple MR’s then also smoke test against the final merge.

	[] Are there any big changes on how and especially how frequently we use the API then let production know about it

	[] Smoke test of the RC on dev., staging., canary deployments and .com

	[] Follow up on issues that came out of the review. Create issues for discovered edge cases that should be covered in future iterations.

—

Share your work early
1. Before writing code, ensure your vision of the architecture is aligned with
GitLab’s architecture.
1. Add a diagram to the issue and ask a frontend architect in the slack channel #fe_architectural about it.

![Diagram of Issue Boards Architecture](img/boards_diagram.png)

1. Don’t take more than one week between starting work on a feature and
sharing a Merge Request with a reviewer or a maintainer.

Vue features
1. Follow the steps in [Vue.js Best Practices](vue.md)
1. Follow the style guide.
1. Only a handful of people are allowed to merge Vue related features.
Reach out to one of Vue experts early in this process.

 This page has moved [here](components.md#dropdowns).

 # Emojis

GitLab supports native unicode emojis and fallsback to image-based emojis selectively
when your platform does not support it.

How to update Emojis

1. Update the gemojione gem
1. Update fixtures/emojis/index.json from [Gemojione](https://github.com/jonathanwiesel/gemojione/blob/master/config/index.json).

In the future, we could grab the file directly from the gem.
We should probably make a PR on the Gemojione project to get access to
all emojis after being parsed or just a raw path to the json file itself.

	Ensure [emoji-unicode-version](https://www.npmjs.com/package/emoji-unicode-version)
is up to date with the latest version.

1. Run bundle exec rake gemojione:aliases
1. Run bundle exec rake gemojione:digests
1. Run bundle exec rake gemojione:sprite
1. Ensure new sprite sheets generated for 1x and 2x

	app/assets/images/emoji.png

	app/assets/images/emoji@2x.png

1. Ensure you see new individual images copied into app/assets/images/emoji/
1. Ensure you can see the new emojis and their aliases in the GFM Autocomplete
1. Ensure you can see the new emojis and their aliases in the award emoji menu
1. You might need to add new emoji unicode support checks and rules for platforms

that do not support a certain emoji and we need to fallback to an image.
See app/assets/javascripts/emoji/support/is_emoji_unicode_supported.js
and app/assets/javascripts/emoji/support/unicode_support_map.js

 # Icons and SVG Illustrations

We manage our own Icon and Illustration library in the [gitlab-svgs][gitlab-svgs] repository.
This repository is published on [npm][npm] and managed as a dependency via yarn.
You can browse all available Icons and Illustrations [here][svg-preview].
To upgrade to a new version run yarn upgrade @gitlab-org/gitlab-svgs.

Icons

We are using SVG Icons in GitLab with a SVG Sprite.
This means the icons are only loaded once, and are referenced through an ID.
The sprite SVG is located under /assets/icons.svg.

Our goal is to replace one by one all inline SVG Icons (as those currently bloat the HTML) and also all Font Awesome icons.

Usage in HAML/Rails

To use a sprite Icon in HAML or Rails we use a specific helper function :

`ruby
sprite_icon(icon_name, size: nil, css_class: '')
`

	icon_name Use the icon_name that you can find in the SVG Sprite
([Overview is available here][svg-preview]).

	size (optional) Use one of the following sizes : 16, 24, 32, 48, 72 (this will be translated into a s16 class)

	css_class (optional) If you want to add additional css classes

Example

`haml
= sprite_icon('issues', size: 72, css_class: 'icon-danger')
`

Output from example above

```html
<svg class=”s72 icon-danger”>


<use xmlns:xlink=”http://www.w3.org/1999/xlink” xlink:href=”/assets/icons.svg#issues”></use>




</svg>
```

Usage in Vue

We have a special Vue component for our sprite icons in vue_sharedcomponentsicon.vue.

Sample usage :

```javascript
<script>
import Icon from “~/vue_shared/components/icon.vue”


	export default {
	
	components: {
	Icon,





},





};
<script>
<template>



	<icon
	name=”issues”
:size=”72”
css-classes=”icon-danger”





/>




</template>
```


	name Name of the Icon in the SVG Sprite ([Overview is available here][svg-preview]).

	size (optional) Number value for the size which is then mapped to a specific CSS class
(Available Sizes: 8, 12, 16, 18, 24, 32, 48, 72 are mapped to sXX css classes)

	css-classes (optional) Additional CSS Classes to add to the svg tag.

Usage in HTML/JS

Please use the following function inside JS to render an icon:
gl.utils.spriteIcon(iconName)

SVG Illustrations

Please use from now on for any SVG based illustrations simple img tags to show an illustration by simply using either image_tag or image_path helpers.
Please use the class svg-content around it to ensure nice rendering.

Usage in HAML/Rails

Example

```haml
.svg-content


= image_tag ‘illustrations/merge_requests.svg’




```

Usage in Vue

To use an SVG illustrations in a template provide the path as a property and display it through a standard img tag.

Component:

```js
<script>
export default {



	props: {
	
	svgIllustrationPath: {
	type: String,
required: true,





},





},




};
<script>
<template>


<img :src=”svgIllustrationPath” />




</template>
```

[npm]: https://www.npmjs.com/package/@gitlab-org/gitlab-svgs
[gitlab-svgs]: https://gitlab.com/gitlab-org/gitlab-svgs
[svg-preview]: https://gitlab-org.gitlab.io/gitlab-svgs

 # Frontend Development Guidelines

> Notice:
We are currently in the process of re-writing our development guide to make it easier to find information. The new guide is still WIP but viewable in [development/new_fe_guide](../new_fe_guide/index.md)

This document describes various guidelines to ensure consistency and quality
across GitLab’s frontend team.

Overview

GitLab is built on top of [Ruby on Rails][rails] using [Haml][haml] and also a JavaScript based Frontend with [Vue.js][vue].
Be wary of [the limitations that come with using Hamlit][hamlit-limits]. We also use [SCSS][scss] and plain JavaScript with
modern ECMAScript standards supported through [Babel][babel] and ES module support through [webpack][webpack].

Javascript development

[Vue.js][vue] is used for particularly advanced, dynamic elements and based on previous iterations [jQuery][jquery] is used in lot of places through the application’s JavaScript.

We also use [Axios][axios] to handle all of our network requests.

We also utilize [webpack][webpack] to handle the bundling, minification, and
compression of our assets.

Working with our frontend assets requires Node (v6.0 or greater) and Yarn
(v1.2 or greater). You can find information on how to install these on our
[installation guide][install].

Browser Support

For our currently-supported browsers, see our [requirements][requirements].

—

[Development Process](development_process.md)
How we plan and execute the work on the frontend.

[Architecture](architecture.md)
How we go about making fundamental design decisions in GitLab’s frontend team
or make changes to our frontend development guidelines.

[Testing](../testing_guide/frontend_testing.md)
How we write frontend tests, run the GitLab test suite, and debug test related
issues.

[Design Patterns](design_patterns.md)
Common JavaScript design patterns in GitLab’s codebase.

[Vue.js Best Practices](vue.md)
Vue specific design patterns and practices.

[Vuex](vuex.md)
Vuex specific design patterns and practices.

[Axios](axios.md)
Axios specific practices and gotchas.

[Icons and Illustrations](icons.md)
How we use SVG for our Icons and Illustrations.

[Components](components.md)

How we use UI components.

—

Style Guides

[JavaScript Style Guide](style_guide_js.md)

We use eslint to enforce our JavaScript style guides. Our guide is based on
the excellent [Airbnb][airbnb-js-style-guide] style guide with a few small
changes.

[SCSS Style Guide](style_guide_scss.md)

Our SCSS conventions which are enforced through [scss-lint][scss-lint].

—

[Performance](performance.md)
Best practices for monitoring and maximizing frontend performance.

—

[Security](security.md)
Frontend security practices.

—

[Accessibility](accessibility.md)
Our accessibility standards and resources.

[Internationalization (i18n) and Translations](../i18n/externalization.md)
Frontend internationalization support is described in [this document](../i18n/).
The [externalization part of the guide](../i18n/externalization.md) explains the helpers/methods available.

[rails]: http://rubyonrails.org/
[haml]: http://haml.info/
[hamlit]: https://github.com/k0kubun/hamlit
[hamlit-limits]: https://github.com/k0kubun/hamlit/blob/master/REFERENCE.md#limitations
[scss]: http://sass-lang.com/
[babel]: https://babeljs.io/
[webpack]: https://webpack.js.org/
[jquery]: https://jquery.com/
[vue]: http://vuejs.org/
[axios]: https://github.com/axios/axios
[airbnb-js-style-guide]: https://github.com/airbnb/javascript
[scss-lint]: https://github.com/brigade/scss-lint
[install]: ../../install/installation.md#4-node
[requirements]: ../../install/requirements.md#supported-web-browsers

—

[DropLab](droplab/droplab.md)
Our internal DropLab dropdown library.

	[DropLab](droplab/droplab.md)

	[Ajax plugin](droplab/plugins/ajax.md)

	[Filter plugin](droplab/plugins/filter.md)

	[InputSetter plugin](droplab/plugins/input_setter.md)

 # Performance

Best Practices

Realtime Components

When writing code for realtime features we have to keep a couple of things in mind:
1. Do not overload the server with requests.
1. It should feel realtime.

Thus, we must strike a balance between sending requests and the feeling of realtime.
Use the following rules when creating realtime solutions.

1. The server will tell you how much to poll by sending Poll-Interval in the header.
Use that as your polling interval. This way it is [easy for system administrators to change the
polling rate](../../administration/polling.md).
A Poll-Interval: -1 means you should disable polling, and this must be implemented.
1. A response with HTTP status different from 2XX should disable polling as well.
1. Use a common library for polling.
1. Poll on active tabs only. Please use [Visibility](https://github.com/ai/visibilityjs).
1. Use regular polling intervals, do not use backoff polling, or jitter, as the interval will be
controlled by the server.
1. The backend code will most likely be using etags. You do not and should not check for status
304 Not Modified. The browser will transform it for you.

Lazy Loading Images

To improve the time to first render we are using lazy loading for images. This works by setting
the actual image source on the data-src attribute. After the HTML is rendered and JavaScript is loaded,
the value of data-src will be moved to src automatically if the image is in the current viewport.

	Prepare images in HTML for lazy loading by renaming the src attribute to data-src AND adding the class lazy

	If you are using the Rails image_tag helper, all images will be lazy-loaded by default unless lazy: false is provided.

If you are asynchronously adding content which contains lazy images then you need to call the function
gl.lazyLoader.searchLazyImages() which will search for lazy images and load them if needed.
But in general it should be handled automatically through a MutationObserver in the lazy loading function.

Animations

Only animate opacity & transform properties. Other properties (such as top, left, margin, and padding) all cause
Layout to be recalculated, which is much more expensive. For details on this, see “Styles that Affect Layout” in
[High Performance Animations][high-perf-animations].

If you _do_ need to change layout (e.g. a sidebar that pushes main content over), prefer [FLIP][flip] to change expensive
properties once, and handle the actual animation with transforms.

Reducing Asset Footprint

Universal code

Code that is contained within main.js and commons/index.js are loaded and
run on _all_ pages. DO NOT ADD anything to these files unless it is truly
needed _everywhere_. These bundles include ubiquitous libraries like vue,
axios, and jQuery, as well as code for the main navigation and sidebar.
Where possible we should aim to remove modules from these bundles to reduce our
code footprint.

Page-specific JavaScript

Webpack has been configured to automatically generate entry point bundles based
on the file structure within app/assets/javascripts/pages/*. The directories
within the pages directory correspond to Rails controllers and actions. These
auto-generated bundles will be automatically included on the corresponding
pages.

For example, if you were to visit gitlab.com/gitlab-org/gitlab-ce/issues,
you would be accessing the app/controllers/projects/issues_controller.rb
controller with the index action. If a corresponding file exists at
pages/projects/issues/index/index.js, it will be compiled into a webpack
bundle and included on the page.

> Note: Previously we had encouraged the use of
> content_for :page_specific_javascripts within haml files, along with
> manually generated webpack bundles. However under this new system you should
> not ever need to manually add an entry point to the webpack.config.js file.

> Tip:
> If you are unsure what controller and action corresponds to a given page, you
> can find this out by inspecting document.body.dataset.page within your
> browser’s developer console while on any page within gitlab.

Important Considerations:

	Keep Entry Points Lite:
Page-specific javascript entry points should be as lite as possible. These
files are exempt from unit tests, and should be used primarily for
instantiation and dependency injection of classes and methods that live in
modules outside of the entry point script. Just import, read the DOM,
instantiate, and nothing else.

	Entry Points May Be Asynchronous:
DO NOT ASSUME that the DOM has been fully loaded and available when an
entry point script is run. If you require that some code be run after the
DOM has loaded, you should attach an event handler to the DOMContentLoaded
event with:


```javascript
import initMyWidget from ‘./my_widget’;


	document.addEventListener(‘DOMContentLoaded’, () => {
	initMyWidget();










	
	Supporting Module Placement:
	
	If a class or a module is _specific to a particular route_, try to locate
it close to the entry point it will be used. For instance, if
my_widget.js is only imported within pages/widget/show/index.js, you
should place the module at pages/widget/show/my_widget.js and import it
with a relative path (e.g. import initMyWidget from ‘./my_widget’;).


	If a class or module is _used by multiple routes_, place it within a
shared directory at the closest common parent directory for the entry
points that import it.  For example, if my_widget.js is imported within
both pages/widget/show/index.js and pages/widget/run/index.js, then
place the module at pages/widget/shared/my_widget.js and import it with
a relative path if possible (e.g. ../shared/my_widget).










	Enterprise Edition Caveats:
For GitLab Enterprise Edition, page-specific entry points will override their
Community Edition counterparts with the same name, so if
ee/app/assets/javascripts/pages/foo/bar/index.js exists, it will take
precedence over app/assets/javascripts/pages/foo/bar/index.js.  If you want
to minimize duplicate code, you can import one entry point from the other.
This is not done automatically to allow for flexibility in overriding
functionality.




### Code Splitting

For any code that does not need to be run immediately upon page load, (e.g.
modals, dropdowns, and other behaviors that can be lazy-loaded), you can split
your module into asynchronous chunks with dynamic import statements.  These
imports return a Promise which will be resolved once the script has loaded:

```javascript
import(/* webpackChunkName: ‘emoji’ */ ‘~/emoji’)

.then(/* do something /)
.catch(/ report error */)


```

Please try to use webpackChunkName when generating these dynamic imports as
it will provide a deterministic filename for the chunk which can then be cached
the browser across GitLab versions.

More information is available in [webpack’s code splitting documentation](https://webpack.js.org/guides/code-splitting/#dynamic-imports).

### Minimizing page size

A smaller page size means the page loads faster (especially important on mobile
and poor connections), the page is parsed more quickly by the browser, and less
data is used for users with capped data plans.

General tips:


	Don’t add new fonts.


	Prefer font formats with better compression, e.g. WOFF2 is better than WOFF, which is better than TTF.


	Compress and minify assets wherever possible (For CSS/JS, Sprockets and webpack do this for us).


	If some functionality can reasonably be achieved without adding extra libraries, avoid them.


	Use page-specific JavaScript as described above to load libraries that are only needed on certain pages.


	Use code-splitting dynamic imports wherever possible to lazy-load code that is not needed initially.


	[High Performance Animations][high-perf-animations]






## Additional Resources


	[WebPage Test][web-page-test] for testing site loading time and size.


	[Google PageSpeed Insights][pagespeed-insights] grades web pages and provides feedback to improve the page.


	[Profiling with Chrome DevTools][google-devtools-profiling]


	[Browser Diet][browser-diet] is a community-built guide that catalogues practical tips for improving web page performance.




[web-page-test]: http://www.webpagetest.org/
[pagespeed-insights]: https://developers.google.com/speed/pagespeed/insights/
[google-devtools-profiling]: https://developers.google.com/web/tools/chrome-devtools/profile/?hl=en
[browser-diet]: https://browserdiet.com/
[high-perf-animations]: https://www.html5rocks.com/en/tutorials/speed/high-performance-animations/
[flip]: https://aerotwist.com/blog/flip-your-animations/



            

          

      

      

    

  

    
      
          
            
  # Security
### Resources

[Mozilla’s HTTP Observatory CLI][observatory-cli] and the
[Qualys SSL Labs Server Test][qualys-ssl] are good resources for finding
potential problems and ensuring compliance with security best practices.

<!– Uncomment these sections when CSP/SRI are implemented.
### Content Security Policy (CSP)

Content Security Policy is a web standard that intends to mitigate certain
forms of Cross-Site Scripting (XSS) as well as data injection.

Content Security Policy rules should be taken into consideration when
implementing new features, especially those that may rely on connection with
external services.

GitLab’s CSP is used for the following:


	Blocking plugins like Flash and Silverlight from running at all on our pages.


	Blocking the use of scripts and stylesheets downloaded from external sources.


	Upgrading http requests to https when possible.


	Preventing iframe elements from loading in most contexts.




Some exceptions include:


	Scripts from Google Analytics and Piwik if either is enabled.


	Connecting with GitHub, Bitbucket, GitLab.com, etc. to allow project importing.


	Connecting with Google, Twitter, GitHub, etc. to allow OAuth authentication.




We use [the Secure Headers gem][secure_headers] to enable Content
Security Policy headers in the GitLab Rails app.

Some resources on implementing Content Security Policy:


	[MDN Article on CSP][mdn-csp]


	[GitHub’s CSP Journey on the GitHub Engineering Blog][github-eng-csp]


	The Dropbox Engineering Blog’s series on CSP: [1][dropbox-csp-1], [2][dropbox-csp-2], [3][dropbox-csp-3], [4][dropbox-csp-4]




### Subresource Integrity (SRI)

Subresource Integrity prevents malicious assets from being provided by a CDN by
guaranteeing that the asset downloaded is identical to the asset the server
is expecting.

The Rails app generates a unique hash of the asset, which is used as the
asset’s integrity attribute. The browser generates the hash of the asset
on-load and will reject the asset if the hashes do not match.

All CSS and JavaScript assets should use Subresource Integrity.

Some resources on implementing Subresource Integrity:


	[MDN Article on SRI][mdn-sri]


	[Subresource Integrity on the GitHub Engineering Blog][github-eng-sri]




–>

### Including external resources

External fonts, CSS, and JavaScript should never be used with the exception of
Google Analytics and Piwik - and only when the instance has enabled it. Assets
should always be hosted and served locally from the GitLab instance. Embedded
resources via iframes should never be used except in certain circumstances
such as with ReCaptcha, which cannot be used without an iframe.

### Avoiding inline scripts and styles

In order to protect users from [XSS vulnerabilities][xss], we will disable
inline scripts in the future using Content Security Policy.

While inline scripts can be useful, they’re also a security concern. If
user-supplied content is unintentionally left un-sanitized, malicious users can
inject scripts into the web app.

Inline styles should be avoided in almost all cases, they should only be used
when no alternatives can be found. This allows reusability of styles as well as
readability.

[observatory-cli]: https://github.com/mozilla/http-observatory-cli
[qualys-ssl]: https://www.ssllabs.com/ssltest/analyze.html
[secure_headers]: https://github.com/twitter/secureheaders
[mdn-csp]: https://developer.mozilla.org/en-US/docs/Web/Security/CSP
[github-eng-csp]: http://githubengineering.com/githubs-csp-journey/
[dropbox-csp-1]: https://blogs.dropbox.com/tech/2015/09/on-csp-reporting-and-filtering/
[dropbox-csp-2]: https://blogs.dropbox.com/tech/2015/09/unsafe-inline-and-nonce-deployment/
[dropbox-csp-3]: https://blogs.dropbox.com/tech/2015/09/csp-the-unexpected-eval/
[dropbox-csp-4]: https://blogs.dropbox.com/tech/2015/09/csp-third-party-integrations-and-privilege-separation/
[mdn-sri]: https://developer.mozilla.org/en-US/docs/Web/Security/Subresource_Integrity
[github-eng-sri]: http://githubengineering.com/subresource-integrity/
[xss]: https://en.wikipedia.org/wiki/Cross-site_scripting



            

          

      

      

    

  

    
      
          
            
  # Style guides and linting
See the relevant style guides for our guidelines and for information on linting:

## JavaScript
We defer to [Airbnb][airbnb-js-style-guide] on most style-related
conventions and enforce them with eslint.

See [our current .eslintrc][eslintrc] for specific rules and patterns.

### Common

#### ESlint

1. Never disable eslint rules unless you have a good reason.
You may see a lot of legacy files with /* eslint-disable some-rule, some-other-rule */
at the top, but legacy files are a special case.  Any time you develop a new feature or
refactor an existing one, you should abide by the eslint rules.


	Never Ever EVER disable eslint globally for a file






	```javascript
	// bad
/* eslint-disable */

// better
/* eslint-disable some-rule, some-other-rule */

// best
// nothing :)


```





	If you do need to disable a rule for a single violation, try to do it as locally as possible






	```javascript
	// bad
/* eslint-disable no-new */

import Foo from ‘foo’;

new Foo();

// better
import Foo from ‘foo’;

// eslint-disable-next-line no-new
new Foo();


```





	There are few rules that we need to disable due to technical debt. Which are:





1. [no-new][eslint-new]
1. [class-methods-use-this][eslint-this]




1. When they are needed _always_ place ESlint directive comment blocks on the first line of a script,
followed by any global declarations, then a blank newline prior to any imports or code.



	```javascript
	// bad
/* global Foo /
/ eslint-disable no-new */
import Bar from ‘./bar’;

// good
/* eslint-disable no-new /
/ global Foo */

import Bar from ‘./bar’;


```





	Never disable the no-undef rule. Declare globals with /* global Foo */ instead.





	When declaring multiple globals, always use one /* global [name] */ line per variable.






	```javascript
	// bad
/* globals Flash, Cookies, jQuery */

// good
/* global Flash /
/ global Cookies /
/ global jQuery */


```





	Use up to 3 parameters for a function or class. If you need more accept an Object instead.






	```javascript
	// bad
fn(p1, p2, p3, p4) {}

// good
fn(options) {}


```




#### Modules, Imports, and Exports
1. Use ES module syntax to import modules



	```javascript
	// bad
const SomeClass = require(‘some_class’);

// good
import SomeClass from ‘some_class’;

// bad
module.exports = SomeClass;

// good
export default SomeClass;


```

Import statements are following usual naming guidelines, for example object literals use camel case:


	```javascript
	// some_object file
export default {

key: ‘value’,

};

// bad
import ObjectLiteral from ‘some_object’;

// good
import objectLiteral from ‘some_object’;


```




1. Relative paths: when importing a module in the same directory, a child
directory, or an immediate parent directory prefer relative paths.  When
importing a module which is two or more levels up, prefer either ~/ or ee/.


In app/assets/javascripts/my-feature/subdir:

```javascript
// bad
import Foo from ‘~/my-feature/foo’;
import Bar from ‘~/my-feature/subdir/bar’;
import Bin from ‘~/my-feature/subdir/lib/bin’;

// good
import Foo from ‘../foo’;
import Bar from ‘./bar’;
import Bin from ‘./lib/bin’;
```

In spec/javascripts:

```javascript
// bad
import Foo from ‘../../app/assets/javascripts/my-feature/foo’;

// good
import Foo from ‘~/my-feature/foo’;
```

When referencing an EE component:

```javascript
// bad
import Foo from ‘../../../../../ee/app/assets/javascripts/my-feature/ee-foo’;

// good
import Foo from ‘ee/my-feature/foo’;
```




1. Avoid using IIFE. Although we have a lot of examples of files which wrap their
contents in IIFEs (immediately-invoked function expressions),
this is no longer necessary after the transition from Sprockets to webpack.
Do not use them anymore and feel free to remove them when refactoring legacy code.


	
	Avoid adding to the global namespace.
	
	```javascript
	// bad
window.MyClass = class { /* … */ };

// good
export default class MyClass { /* … */ }


```










	
	Side effects are forbidden in any script which contains exports
	
	```javascript
	// bad
export default class MyClass { /* … */ }

	document.addEventListener(“DOMContentLoaded”, function(event) {
	new MyClass();

}


```









#### Data Mutation and Pure functions
1. Strive to write many small pure functions, and minimize where mutations occur.



	```javascript
	// bad
const values = {foo: 1};

	function impureFunction(items) {
	const bar = 1;

items.foo = items.a * bar + 2;

return items.a;

}

const c = impureFunction(values);

// good
var values = {foo: 1};

	function pureFunction (foo) {
	var bar = 1;

foo = foo * bar + 2;

return foo;

}

var c = pureFunction(values.foo);


```




1. Avoid constructors with side-effects.
Although we aim for code without side-effects we need some side-effects for our code to run.

If the class won’t do anything if we only instantiate it, it’s ok to add side effects into the constructor (_Note:_ The following is just an example. If the only purpose of the class is to add an event listener and handle the callback a function will be more suitable.)

```javascript
// Bad
export class Foo {

	constructor() {
	this.init();

}
init() {

document.addEventListener(‘click’, this.handleCallback)

},
handleCallback() {

}

}

// Good
export class Foo {

	constructor() {
	document.addEventListener()

}
handleCallback() {
}

}

On the other hand, if a class only needs to extend a third party/add event listeners in some specific cases, they should be initialized outside of the constructor.

1. Prefer .map, .reduce or .filter over .forEach
A forEach will most likely cause side effects, it will be mutating the array being iterated. Prefer using .map,
.reduce or .filter


	```javascript
	const users = [ { name: ‘Foo’ }, { name: ‘Bar’ } ];

// bad
users.forEach((user, index) => {


user.id = index;




});

// good
const usersWithId = users.map((user, index) => {


return Object.assign({}, user, { id: index });




});





```


Parse Strings into Numbers
1. parseInt() is preferable over Number() or +


	```javascript
	// bad
+’10’ // 10

// good
Number(‘10’) // 10

// better
parseInt(‘10’, 10);





```


CSS classes used for JavaScript
1. If the class is being used in Javascript it needs to be prepend with js-


	```html
	// bad
<button class=”add-user”>


Add User




</button>

// good
<button class=”js-add-user”>


Add User




</button>





```


Vue.js

eslint-vue-plugin
We default to [eslint-vue-plugin][eslint-plugin-vue], with the plugin:vue/recommended.
Please check this [rules][eslint-plugin-vue-rules] for more documentation.

Basic Rules
1. The service has it’s own file
1. The store has it’s own file
1. Use a function in the bundle file to instantiate the Vue component:


	```javascript
	// bad
class {



	init() {
	new Component({})





}




}

// good
document.addEventListener(‘DOMContentLoaded’, () => new Vue({


el: ‘#element’,
components: {


componentName




},
render: createElement => createElement(‘component-name’),




}));





```


	Do not use a singleton for the service or the store


	```javascript
	// bad
class Store {



	constructor() {
	
	if (!this.prototype.singleton) {
	// do something





}





}




}

// good
class Store {



	constructor() {
	// do something





}




}





```


	Use .vue for Vue templates. Do not use %template in HAML.

Naming

1. Extensions: Use .vue extension for Vue components. Do not use .js as file extension ([#34371]).
1. Reference Naming: Use PascalCase for their instances:


	```javascript
	// bad
import cardBoard from ‘cardBoard.vue’


	components: {
	cardBoard,





};

// good
import CardBoard from ‘cardBoard.vue’


	components: {
	CardBoard,





};





```


1. Props Naming: Avoid using DOM component prop names.
1. Props Naming: Use kebab-case instead of camelCase to provide props in templates.


	```javascript
	// bad
<component class=”btn”>

// good
<component css-class=”btn”>

// bad
<component myProp=”prop” />

// good
<component my-prop=”prop” />





```


[#34371]: https://gitlab.com/gitlab-org/gitlab-ce/issues/34371

Alignment
1. Follow these alignment styles for the template method:

	
	With more than one attribute, all attributes should be on a new line:
	
	```javascript
	// bad
<component v-if=”bar”


param=”baz” />




<button class=”btn”>Click me</button>

// good
<component


v-if=”bar”
param=”baz”




/>


	<button class=”btn”>
	Click me





</button>





```


	
	The tag can be inline if there is only one attribute:
	
	```javascript
	
	// good
	<component bar=”bar” />



	// good
	
	<component
	bar=”bar”
/>







	// bad
	
	<component
	bar=”bar” />













```


Quotes
1. Always use double quotes “ inside templates and single quotes ‘ for all other JS.


	```javascript
	// bad
template: `


<button :class=’style’>Button</button>




`

// good
template: `


<button :class=”style”>Button</button>




`





```


Props
1. Props should be declared as an object


	```javascript
	// bad
props: [‘foo’]

// good
props: {



	foo: {
	type: String,
required: false,
default: ‘bar’





}




}





```


	Required key should always be provided when declaring a prop


	```javascript
	// bad
props: {



	foo: {
	type: String,





}




}

// good
props: {



	foo: {
	type: String,
required: false,
default: ‘bar’





}




}





```


1. Default key should be provided if the prop is not required.
Note: There are some scenarios where we need to check for the existence of the property.
On those a default key should not be provided.


	```javascript
	// good
props: {



	foo: {
	type: String,
required: false,





}




}

// good
props: {



	foo: {
	type: String,
required: false,
default: ‘bar’





}




}

// good
props: {



	foo: {
	type: String,
required: true





}




}





```


Data
1. data method should always be a function


	```javascript
	// bad
data: {


foo: ‘foo’




}

// good
data() {



	return {
	foo: ‘foo’





};




}





```


Directives

	Shorthand @ is preferable over v-on


	```javascript
	// bad
<component v-on:click=”eventHandler”/>

// good
<component @click=”eventHandler”/>





```


	Shorthand : is preferable over v-bind


	```javascript
	// bad
<component v-bind:class=”btn”/>

// good
<component :class=”btn”/>





```


Closing tags
1. Prefer self closing component tags


	```javascript
	// bad
<component></component>

// good
<component />





```


Ordering

	
	Tag order in .vue file
	```
<script>


// …




</script>


	<template>
	// …





</template>

// We don’t use scoped styles but there are few instances of this
<style>


// …




</style>
```


	Properties in a Vue Component:

Check [order of properties in components rule][vue-order].

:key
When using v-for you need to provide a unique :key attribute for each item.

	
	If the elements of the array being iterated have an unique id it is advised to use it:
	
	```html
	
	<div
	v-for=”item in items”
:key=”item.id”






	>
	<!– content –>





</div>





```


	
	When the elements being iterated don’t have a unique id, you can use the array index as the :key attribute
	
	```html
	
	<div
	v-for=”(item, index) in items”
:key=”index”






	>
	<!– content –>





</div>





```


	
	When using v-for with template and there is more than one child element, the :key values must be unique. It’s advised to use kebab-case namespaces.
	
	```html
	
	<template v-for=”(item, index) in items”>
	<span :key=”span-${index}”></span>
<button :key=”button-${index}”></button>





</template>





```


	
	When dealing with nested v-for use the same guidelines as above.
	
	```html
	
	<div
	v-for=”item in items”
:key=”item.id”






	>
	
	<span
	v-for=”element in array”
:key=”element.id”






	>
	<!– content –>





</span>





</div>





```


Useful links:
1. [key](https://vuejs.org/v2/guide/list.html#key)
1. [Vue Style Guide: Keyed v-for](https://vuejs.org/v2/style-guide/#Keyed-v-for-essential)
Vue and Bootstrap

	Tooltips: Do not rely on has-tooltip class name for Vue components


	```javascript
	// bad
<span


class=”has-tooltip”
title=”Some tooltip text”>
Text




</span>

// good
<span


v-tooltip
title=”Some tooltip text”>
Text




</span>





```


	Tooltips: When using a tooltip, include the tooltip directive, ./app/assets/javascripts/vue_shared/directives/tooltip.js

	Don’t change data-original-title.


	```javascript
	// bad
<span data-original-title=”tooltip text”>Foo</span>

// good
<span title=”tooltip text”>Foo</span>

$(‘span’).tooltip(‘_fixTitle’);





```


The Javascript/Vue Accord
The goal of this accord is to make sure we are all on the same page.

	When writing Vue, you may not use jQuery in your application.

1. If you need to grab data from the DOM, you may query the DOM 1 time while bootstrapping your application to grab data attributes using dataset. You can do this without jQuery.
1. You may use a jQuery dependency in Vue.js following [this example from the docs](https://vuejs.org/v2/examples/select2.html).
1. If an outside jQuery Event needs to be listen to inside the Vue application, you may use jQuery event listeners.
1. We will avoid adding new jQuery events when they are not required. Instead of adding new jQuery events take a look at [different methods to do the same task](https://vuejs.org/v2/api/#vm-emit).

1. You may query the window object 1 time, while bootstrapping your application for application specific data (e.g. scrollTo is ok to access anytime). Do this access during the bootstrapping of your application.
1. You may have a temporary but immediate need to create technical debt by writing code that does not follow our standards, to be refactored later. Maintainers need to be ok with the tech debt in the first place. An issue should be created for that tech debt to evaluate it further and discuss. In the coming months you should fix that tech debt, with it’s priority to be determined by maintainers.
1. When creating tech debt you must write the tests for that code before hand and those tests may not be rewritten. e.g. jQuery tests rewritten to Vue tests.
1. You may choose to use VueX as a centralized state management. If you choose not to use VueX, you must use the store pattern which can be found in the [Vue.js documentation](https://vuejs.org/v2/guide/state-management.html#Simple-State-Management-from-Scratch).
1. Once you have chosen a centralized state management solution you must use it for your entire application. i.e. Don’t mix and match your state management solutions.

SCSS
- [SCSS](style_guide_scss.md)

[airbnb-js-style-guide]: https://github.com/airbnb/javascript
[eslintrc]: https://gitlab.com/gitlab-org/gitlab-ce/blob/master/.eslintrc
[eslint-this]: http://eslint.org/docs/rules/class-methods-use-this
[eslint-new]: http://eslint.org/docs/rules/no-new
[eslint-plugin-vue]: https://github.com/vuejs/eslint-plugin-vue
[eslint-plugin-vue-rules]: https://github.com/vuejs/eslint-plugin-vue#bulb-rules
[vue-order]: https://github.com/vuejs/eslint-plugin-vue/blob/master/docs/rules/order-in-components.md

 # SCSS styleguide

This style guide recommends best practices for SCSS to make styles easy to read,
easy to maintain, and performant for the end-user.

Rules

Naming

Filenames should use snake_case.

CSS classes should use the lowercase-hyphenated format rather than
snake_case or camelCase.

```scss
// Bad
.class_name {


color: #fff;




}

// Bad
.className {


color: #fff;




}

// Good
.class-name {


color: #fff;





}

### Formatting

You should always use a space before a brace, braces should be on the same
line, each property should each get its own line, and there should be a space
between the property and its value.

```scss
// Bad
.container-item {

width: 100px; height: 100px;
margin-top: 0;

}

// Bad
.container-item
{

width: 100px;
height: 100px;
margin-top: 0;

}

// Bad
.container-item{

width:100px;
height:100px;
margin-top:0;

}

// Good
.container-item {

width: 100px;
height: 100px;
margin-top: 0;

}

Note that there is an exception for single-line rulesets, although these are
not typically recommended.

`scss
p { margin: 0; padding: 0; }
`

Colors

HEX (hexadecimal) colors should use shorthand where possible, and should use
lower case letters to differentiate between letters and numbers, e.g. #E3E3E3
vs. #e3e3e3.

```scss
// Bad
p {


color: #ffffff;




}

// Bad
p {


color: #FFFFFF;




}

// Good
p {


color: #fff;







}

### Indentation

Indentation should always use two spaces for each indentation level.

```scss
// Bad, four spaces
p {

color: #f00;

}

// Good
p {

color: #f00;

}

Semicolons

Always include semicolons after every property. When the stylesheets are
minified, the semicolons will be removed automatically.

```scss
// Bad
.container-item {


width: 100px;
height: 100px




}

// Good
.container-item {


width: 100px;
height: 100px;







}

### Shorthand

The shorthand form should be used for properties that support it.

```scss
// Bad
margin: 10px 15px 10px 15px;
padding: 10px 10px 10px 10px;

// Good
margin: 10px 15px;
padding: 10px;
```

### Zero Units

Omit length units on zero values, they’re unnecessary and not including them
is slightly more performant.

```scss
// Bad
.item-with-padding {

padding: 0px;

}

// Good
.item-with-padding {

padding: 0;

}

Selectors with a js- Prefix

Do not use any selector prefixed with js- for styling purposes. These
selectors are intended for use only with JavaScript to allow for removal or
renaming without breaking styling.

IDs
Don’t use ID selectors in CSS.

```scss
// Bad
#my-element {


padding: 0;




}

// Good
.my-element {


padding: 0;







}

### Variables
Before adding a new variable for a color or a size, guarantee:
1. There isn’t already one
2. There isn’t a similar one we can use instead.

## Linting

We use [SCSS Lint][scss-lint] to check for style guide conformity. It uses the
ruleset in .scss-lint.yml, which is located in the home directory of the
project.

To check if any warnings will be produced by your changes, you can run rake
scss_lint in the GitLab directory. SCSS Lint will also run in GitLab CI to
catch any warnings.

If the Rake task is throwing warnings you don’t understand, SCSS Lint’s
documentation includes [a full list of their linters][scss-lint-documentation].

### Fixing issues

If you want to automate changing a large portion of the codebase to conform to
the SCSS style guide, you can use [CSSComb][csscomb]. First install
[Node][node] and [NPM][npm], then run npm install csscomb -g to install
CSSComb globally (system-wide). Run it in the GitLab directory with
csscomb app/assets/stylesheets to automatically fix issues with CSS/SCSS.

Note that this won’t fix every problem, but it should fix a majority.

### Ignoring issues

If you want a line or set of lines to be ignored by the linter, you can use
// scss-lint:disable RuleName ([more info][disabling-linters]):

```scss
// This lint rule is disabled because it is supported only in Chrome/Safari
// scss-lint:disable PropertySpelling
body {

text-decoration-skip: ink;

}
// scss-lint:enable PropertySpelling
```

Make sure a comment is added on the line above the disable rule, otherwise the
linter will throw a warning. DisableLinterReason is enabled to make sure the
style guide isn’t being ignored, and to communicate to others why the style
guide is ignored in this instance.

[csscomb]: https://github.com/csscomb/csscomb.js
[node]: https://github.com/nodejs/node
[npm]: https://www.npmjs.com/
[scss-lint]: https://github.com/brigade/scss-lint
[scss-lint-documentation]: https://github.com/brigade/scss-lint/blob/master/lib/scss_lint/linter/README.md
[disabling-linters]: https://github.com/brigade/scss-lint#disabling-linters-via-source





            

          

      

      

    

  

    
      
          
            
  This document was moved to [../testing_guide/frontend_testing.md](../testing_guide/frontend_testing.md).



            

          

      

      

    

  

    
      
          
            
  # Vue

To get started with Vue, read through [their documentation][vue-docs].

## Examples

What is described in the following sections can be found in these examples:


	web ide: https://gitlab.com/gitlab-org/gitlab-ce/tree/master/app/assets/javascripts/ide/stores


	security products: https://gitlab.com/gitlab-org/gitlab-ee/tree/master/ee/app/assets/javascripts/vue_shared/security_reports


	registry: https://gitlab.com/gitlab-org/gitlab-ce/tree/master/app/assets/javascripts/registry/stores




## Vue architecture

All new features built with Vue.js must follow a [Flux architecture][flux].
The main goal we are trying to achieve is to have only one data flow and only one data entry.
In order to achieve this goal we use [vuex](#vuex).

You can also read about this architecture in vue docs about [state management][state-management]
and about [one way data flow][one-way-data-flow].

### Components and Store

In some features implemented with Vue.js, like the [issue board][issue-boards]
or [environments table][environments-table]
you can find a clear separation of concerns:

`
new_feature
├── components
│   └── component.vue
│   └── ...
├── store
│  └── new_feature_store.js
├── index.js
`
_For consistency purposes, we recommend you to follow the same structure._

Let’s look into each of them:

### A index.js file

This is the index file of your new feature. This is where the root Vue instance
of the new feature should be.

The Store and the Service should be imported and initialized in this file and
provided as a prop to the main component.

Don’t forget to follow [these steps][page_specific_javascript].

### Bootstrapping Gotchas
#### Providing data from HAML to JavaScript
While mounting a Vue application may be a need to provide data from Rails to JavaScript.
To do that, provide the data through data attributes in the HTML element and query them while mounting the application.

_Note:_ You should only do this while initializing the application, because the mounted element will be replaced with Vue-generated DOM.

The advantage of providing data from the DOM to the Vue instance through props in the render function
instead of querying the DOM inside the main vue component is that makes tests easier by avoiding the need to
create a fixture or an HTML element in the unit test. See the following example:

```javascript
// haml
.js-vue-app{ data: { endpoint: ‘foo’ }}

// index.js
document.addEventListener(‘DOMContentLoaded’, () => new Vue({

el: ‘.js-vue-app’,
data() {

const dataset = this.$options.el.dataset;
return {

endpoint: dataset.endpoint,

};

},
render(createElement) {

	return createElement(‘my-component’, {
	
	props: {
	endpoint: this.isLoading,

},

});

},

}));
```

#### Accessing the gl object
When we need to query the gl object for data that won’t change during the application’s life cyle, we should do it in the same place where we query the DOM.
By following this practice, we can avoid the need to mock the gl object, which will make tests easier.
It should be done while initializing our Vue instance, and the data should be provided as props to the main component:

```javascript
document.addEventListener(‘DOMContentLoaded’, () => new Vue({

el: ‘.js-vue-app’,
render(createElement) {

	return createElement(‘my-component’, {
	
	props: {
	username: gon.current_username,

},

});

},

}));
```

### A folder for Components

This folder holds all components that are specific of this new feature.
If you need to use or create a component that will probably be used somewhere
else, please refer to vue_shared/components.

A good thumb rule to know when you should create a component is to think if
it will be reusable elsewhere.

For example, tables are used in a quite amount of places across GitLab, a table
would be a good fit for a component. On the other hand, a table cell used only
in one table would not be a good use of this pattern.

You can read more about components in Vue.js site, [Component System][component-system]

### A folder for the Store

#### Vuex
Check this [page](vuex.md) for more details.

## Style guide

Please refer to the Vue section of our [style guide](style_guide_js.md#vue-js)
for best practices while writing your Vue components and templates.

## Testing Vue Components

Each Vue component has a unique output. This output is always present in the render function.

Although we can test each method of a Vue component individually, our goal must be to test the output
of the render/template function, which represents the state at all times.

Make use of the [axios mock adapter](axios.md#mock-axios-response-on-tests) to mock data returned.

Here’s how we would test the Todo App above:

```javascript
import Vue from ‘vue’;
import axios from ‘~/lib/utils/axios_utils’;
import MockAdapter from ‘axios-mock-adapter’;

	describe(‘Todos App’, () => {
	let vm;
let mock;

	beforeEach(() => {
	// Create a mock adapter for stubbing axios API requests
mock = new MockAdapter(axios);

const Component = Vue.extend(component);

// Mount the Component
vm = new Component().$mount();

});

	afterEach(() => {
	// Reset the mock adapter
mock.restore();
// Destroy the mounted component
vm.$destroy();

});

	it(‘should render the loading state while the request is being made’, () => {
	expect(vm.$el.querySelector(‘i.fa-spin’)).toBeDefined();

});

	it(‘should render todos returned by the endpoint’, done => {
	// Mock the get request on the API endpoint to return data
mock.onGet(‘/todos’).replyOnce(200, [

	{
	title: ‘This is a todo’,
text: ‘This is the text’,

},

]);

	Vue.nextTick(() => {
	const items = vm.$el.querySelectorAll(‘.js-todo-list div’)
expect(items.length).toBe(1);
expect(items[0].textContent).toContain(‘This is the text’);
done();

});

});

it(‘should add a todos on button click’, (done) => {

// Mock the put request and check that the sent data object is correct
mock.onPut(‘/todos’).replyOnce((req) => {

expect(req.data).toContain(‘text’);
expect(req.data).toContain(‘title’);

return [201, {}];

});

vm.$el.querySelector(‘.js-add-todo’).click();

// Add a new interceptor to mock the add Todo request
Vue.nextTick(() => {

expect(vm.$el.querySelectorAll(‘.js-todo-list div’).length).toBe(2);
done();

});

});

});

mountComponent helper
There is a helper in spec/javascripts/helpers/vue_mount_component_helper.js that allows you to mount a component with the given props:

```javascript
import Vue from ‘vue’;
import mountComponent from ‘spec/helpers/vue_mount_component_helper’
import component from ‘component.vue’

const Component = Vue.extend(component);
const data = {prop: ‘foo’};
const vm = mountComponent(Component, data);
```

Test the component’s output
The main return value of a Vue component is the rendered output. In order to test the component we
need to test the rendered output. [Vue][vue-test] guide’s to unit test show us exactly that:

[vue-docs]: http://vuejs.org/guide/index.html
[issue-boards]: https://gitlab.com/gitlab-org/gitlab-ce/tree/master/app/assets/javascripts/boards
[environments-table]: https://gitlab.com/gitlab-org/gitlab-ce/tree/master/app/assets/javascripts/environments
[page_specific_javascript]: https://docs.gitlab.com/ce/development/frontend.html#page-specific-javascript
[component-system]: https://vuejs.org/v2/guide/#Composing-with-Components
[state-management]: https://vuejs.org/v2/guide/state-management.html#Simple-State-Management-from-Scratch
[one-way-data-flow]: https://vuejs.org/v2/guide/components.html#One-Way-Data-Flow
[vue-test]: https://vuejs.org/v2/guide/unit-testing.html
[flux]: https://facebook.github.io/flux
[axios]: https://github.com/axios/axios

 # Vuex
To manage the state of an application you should use [Vuex][vuex-docs].

Note: All of the below is explained in more detail in the official [Vuex documentation][vuex-docs].

Separation of concerns
Vuex is composed of State, Getters, Mutations, Actions and Modules.

When a user clicks on an action, we need to dispatch it. This action will commit a mutation that will change the state.
Note: The action itself will not update the state, only a mutation should update the state.

File structure
When using Vuex at GitLab, separate this concerns into different files to improve readability:

```
└── store


├── index.js          # where we assemble modules and export the store
├── actions.js        # actions
├── mutations.js      # mutations
├── getters.js        # getters
├── state.js          # state
└── mutation_types.js # mutation types




```
The following example shows an application that lists and adds users to the state.
(For a more complex example implementation take a look at the security applications store in [here](https://gitlab.com/gitlab-org/gitlab-ee/tree/master/ee/app/assets/javascripts/vue_shared/security_reports/store))

index.js
This is the entry point for our store. You can use the following as a guide:

```javascript
import Vue from ‘vue’;
import Vuex from ‘vuex’;
import * as actions from ‘./actions’;
import * as getters from ‘./getters’;
import mutations from ‘./mutations’;
import state from ‘./state’;

Vue.use(Vuex);


	export const createStore = () => new Vuex.Store({
	actions,
getters,
mutations,
state,





});
export default createStore();
```

state.js
The first thing you should do before writing any code is to design the state.

Often we need to provide data from haml to our Vue application. Let’s store it in the state for better access.


	```javascript
	
	export default {
	endpoint: null,

isLoading: false,
error: null,

isAddingUser: false,
errorAddingUser: false,

users: [],





};





```

Access state properties
You can use mapState to access state properties in the components.

actions.js
An action is a payload of information to send data from our application to our store.

An action is usually composed by a type and a payload and they describe what happened.
Enforcing that every change is described as an action lets us have a clear understanding of what is going on in the app.

In this file, we will write the actions that will call the respective mutations:


	```javascript
	import * as types from ‘./mutation_types’;
import axios from ‘~/lib/utils/axios_utils’;
import createFlash from ‘~/flash’;

export const requestUsers = ({ commit }) => commit(types.REQUEST_USERS);
export const receiveUsersSuccess = ({ commit }, data) => commit(types.RECEIVE_USERS_SUCCESS, data);
export const receiveUsersError = ({ commit }, error) => commit(types.REQUEST_USERS_ERROR, error);


	export const fetchUsers = ({ state, dispatch }) => {
	dispatch(‘requestUsers’);


	axios.get(state.endpoint)
	.then(({ data }) => dispatch(‘receiveUsersSuccess’, data))
.catch((error) => {


dispatch(‘receiveUsersError’, error)
createFlash(‘There was an error’)




});









}

export const requestAddUser = ({ commit }) => commit(types.REQUEST_ADD_USER);
export const receiveAddUserSuccess = ({ commit }, data) => commit(types.RECEIVE_ADD_USER_SUCCESS, data);
export const receiveAddUserError = ({ commit }, error) => commit(types.REQUEST_ADD_USER_ERROR, error);


	export const addUser = ({ state, dispatch }, user) => {
	dispatch(‘requestAddUser’);


	axios.post(state.endpoint, user)
	.then(({ data }) => dispatch(‘receiveAddUserSuccess’, data))
.catch((error) => dispatch(‘receiveAddUserError’, error));









}





```

Actions Pattern: request and receive namespaces
When a request is made we often want to show a loading state to the user.

Instead of creating an action to toggle the loading state and dispatch it in the component,
create:
1. An action requestSomething, to toggle the loading state
1. An action receiveSomethingSuccess, to handle the success callback
1. An action receiveSomethingError, to handle the error callback
1. An action fetchSomething to make the request.

	
	In case your application does more than a GET request you can use these as examples:
	
	PUT: createSomething

	POST: updateSomething

	DELETE: deleteSomething

The component MUST only dispatch the fetchNamespace action. Actions namespaced with request or receive should not be called from the component
The fetch action will be responsible to dispatch requestNamespace, receiveNamespaceSuccess and receiveNamespaceError

By following this pattern we guarantee:
1. All applications follow the same pattern, making it easier for anyone to maintain the code
1. All data in the application follows the same lifecycle pattern
1. Actions are contained and human friendly
1. Unit tests are easier
1. Actions are simple and straightforward

Dispatching actions
To dispatch an action from a component, use the mapActions helper:
```javascript
import { mapActions } from ‘vuex’;


	{
	
	methods: {
	
	…mapActions([
	‘addUser’,





]),
onClickUser(user) {


this.addUser(user);




},





},






};

### mutations.js
The mutations specify how the application state changes in response to actions sent to the store.
The only way to change state in a Vuex store should be by committing a mutation.

It’s a good idea to think of the state before writing any code.

Remember that actions only describe that something happened, they don’t describe how the application state changes.

Never commit a mutation directly from a component


	```javascript
	import * as types from ‘./mutation_types’;

	export default {
	
	[types.REQUEST_USERS](state) {
	state.isLoading = true;

},
[types.RECEIVE_USERS_SUCCESS](state, data) {

// Do any needed data transformation to the received payload here
state.users = data;
state.isLoading = false;

},
[types.REQUEST_USERS_ERROR](state, error) {

state.isLoading = false;

},
[types.REQUEST_ADD_USER](state, user) {

state.isAddingUser = true;

},
[types.RECEIVE_ADD_USER_SUCCESS](state, user) {

state.isAddingUser = false;
state.users.push(user);

},
[types.REQUEST_ADD_USER_ERROR](state, error) {

state.isAddingUser = true;
state.errorAddingUser = error;

},

};


```

### getters.js
Sometimes we may need to get derived state based on store state, like filtering for a specific prop.
Using a getter will also cache the result based on dependencies due to [how computed props work](https://vuejs.org/v2/guide/computed.html#Computed-Caching-vs-Methods)
This can be done through the getters:

```javascript
// get all the users with pets
export const getUsersWithPets = (state, getters) => {

return state.users.filter(user => user.pet !== undefined);

};

To access a getter from a component, use the mapGetters helper:
```javascript
import { mapGetters } from ‘vuex’;


	{
	
	computed: {
	
	…mapGetters([
	‘getUsersWithPets’,





]),





},








};

### mutation_types.js
From [vuex mutations docs][vuex-mutations]:
> It is a commonly seen pattern to use constants for mutation types in various Flux implementations. This allows the code to take advantage of tooling like linters, and putting all constants in a single file allows your collaborators to get an at-a-glance view of what mutations are possible in the entire application.

`javascript
export const ADD_USER = 'ADD_USER';
`

### How to include the store in your application
The store should be included in the main component of your application:
```javascript


// app.vue
import store from ‘store’; // it will include the index.js file

	export default {
	name: ‘application’,
store,
…

};


```

### Communicating with the Store
```javascript
<script>
import { mapActions, mapState, mapGetters } from ‘vuex’;
import store from ‘./store’;

	export default {
	store,
computed: {

	…mapGetters([
	‘getUsersWithPets’

]),
…mapState([

‘isLoading’,
‘users’,
‘error’,

]),

},
methods: {

	…mapActions([
	‘fetchUsers’,
‘addUser’,

]),

	onClickAddUser(data) {
	this.addUser(data);

}

},

	created() {
	this.fetchUsers()

}

}
</script>
<template>

	
	
	<li v-if=”isLoading”>
	Loading…

<li v-else-if=”error”>

{{ error }}

<template v-else>

	<li
	v-for=”user in users”
:key=”user.id”

	>
	{{ user }}

</template>

</template>
```

### Vuex Gotchas
1. Do not call a mutation directly. Always use an action to commit a mutation. Doing so will keep consistency throughout the application. From Vuex docs:


>  why don’t we just call store.commit(‘action’) directly? Well, remember that mutations must be synchronous? Actions aren’t. We can perform asynchronous operations inside an action.


	```javascript
	// component.vue

// bad
created() {

this.$store.commit(‘mutation’);

}

// good
created() {

this.$store.dispatch(‘action’);

}


```




1. Use mutation types instead of hardcoding strings. It will be less error prone.
1. The State will be accessible in all components descending from the use where the store is instantiated.

### Testing Vuex
#### Testing Vuex concerns
Refer to [vuex docs][vuex-testing] regarding testing Actions, Getters and Mutations.

#### Testing components that need a store
Smaller components might use store properties to access the data.
In order to write unit tests for those components, we need to include the store and provide the correct state:

```javascript
//component_spec.js
import Vue from ‘vue’;
import { createStore } from ‘./store’;
import component from ‘./component.vue’

	describe(‘component’, () => {
	let store;
let vm;
let Component;

	beforeEach(() => {
	Component = Vue.extend(issueActions);

});

	afterEach(() => {
	vm.$destroy();

});

	it(‘should show a user’, () => {
	
	const user = {
	name: ‘Foo’,
age: ‘30’,

};

store = createStore();

// populate the store
store.dispatch(‘addUser’, user);

	vm = new Component({
	store,
propsData: props,

}).$mount();

});

});

Testing Vuex actions and getters
Because we’re currently using [babel-plugin-rewire](https://github.com/speedskater/babel-plugin-rewire), you may encounter the following error when testing your Vuex actions and getters:
[vuex] actions should be function or object with “handler” function

To prevent this error from happening, you need to export an empty function as default:
```
// getters.js or actions.js

// prevent babel-plugin-rewire from generating an invalid default during karma tests
export default () => {};
```

[vuex-docs]: https://vuex.vuejs.org
[vuex-structure]: https://vuex.vuejs.org/en/structure.html
[vuex-mutations]: https://vuex.vuejs.org/en/mutations.html
[vuex-testing]: https://vuex.vuejs.org/en/testing.html

 # DropLab

A generic dropdown for all of your custom dropdown needs.

Usage

DropLab can be used by simply adding a data-dropdown-trigger HTML attribute.
This attribute allows us to find the “trigger” _(toggle)_ for the dropdown,
whether that is a button, link or input.

The value of the data-dropdown-trigger should be a CSS selector that
DropLab can use to find the trigger’s dropdown list.

You should also add the data-dropdown attribute to declare the dropdown list.
The value is irrelevant.

The DropLab class has no side effects, so you must always call .init when
the DOM is ready. DropLab.prototype.init takes the same arguments as DropLab.prototype.addHook.
If you do not provide any arguments, it will globally query and instantiate all droplab compatible dropdowns.

```html
<a href=”#” data-dropdown-trigger=”#list”>Toggle</a>


	<ul id=”list” data-dropdown>
	<!– … –>





<ul>
`
```js
const droplab = new DropLab();
droplab.init();
`

As you can see, we have a “Toggle” link, that is declared as a trigger.
It provides a selector to find the dropdown list it should control.

Static data

You can add static list items.

```html
<a href=”#” data-dropdown-trigger=”#list”>Toggle</a>


	<ul id=”list” data-dropdown>
	<li>Static value 1</li>
<li>Static value 2</li>





<ul>
`
```js
const droplab = new DropLab();
droplab.init();
`

Explicit instantiation

You can pass the trigger and list elements as constructor arguments to return
a non-global instance of DropLab using the DropLab.prototype.init method.

```html
<a href=”#” id=”trigger” data-dropdown-trigger=”#list”>Toggle</a>


	<ul id=”list” data-dropdown>
	<!– … –>





<ul>
```
```js
const trigger = document.getElementById(‘trigger’);
const list = document.getElementById(‘list’);

const droplab = new DropLab();
droplab.init(trigger, list);
```

You can also add hooks to an existing DropLab instance using DropLab.prototype.addHook.

```html
<a href=”#” data-dropdown-trigger=”#auto-dropdown”>Toggle</a>
<ul id=”auto-dropdown” data-dropdown><!– … –><ul>

<a href=”#” id=”trigger” data-dropdown-trigger=”#list”>Toggle</a>
<ul id=”list” data-dropdown><!– … –><ul>
```
```js
const droplab = new DropLab();

droplab.init();

const trigger = document.getElementById(‘trigger’);
const list = document.getElementById(‘list’);

droplab.addHook(trigger, list);
```

Dynamic data

Adding data-dynamic to your dropdown element will enable dynamic list rendering.

You can template a list item using the keys of the data object provided.
Use the handlebars syntax {{ value }} to HTML escape the value.
Use the <%= value %> syntax to simply interpolate the value.
Use the <%= value %> syntax to evaluate the value.

Passing an array of objects to DropLab.prototype.addData will render that data
for all data-dynamic dropdown lists tracked by that DropLab instance.

```html
<a href=”#” data-dropdown-trigger=”#list”>Toggle</a>


	<ul id=”list” data-dropdown data-dynamic>
	<li><a href=”#” data-id=”{{id}}”>{{text}}</a></li>





</ul>
```
```js
const droplab = new DropLab();


	droplab.init().addData([{
	id: 0,
text: ‘Jacob’,



	}, {
	id: 1,
text: ‘Jeff’,





}]);
```

Alternatively, you can specify a specific dropdown to add this data to but passing
the data as the second argument and and the id of the trigger element as the first argument.

```html
<a href=”#” data-dropdown-trigger=”#list” id=”trigger”>Toggle</a>


	<ul id=”list” data-dropdown data-dynamic>
	<li><a href=”#” data-id=”{{id}}”>{{text}}</a></li>





</ul>
```
```js
const droplab = new DropLab();


	droplab.init().addData(‘trigger’, [{
	id: 0,
text: ‘Jacob’,



	}, {
	id: 1,
text: ‘Jeff’,





}]);
```

This allows you to mix static and dynamic content with ease, even with one trigger.

Note the use of scoping regarding the data-dropdown attribute to capture both
dropdown lists, one of which is dynamic.

```html
<input id=”trigger” data-dropdown-trigger=”#list”>
<div id=”list” data-dropdown>



	<ul>
	<li><a href=”#”>Static item 1</a></li>
<li><a href=”#”>Static item 2</a></li>





</ul>
<ul data-dynamic>


<li><a href=”#” data-id=”{{id}}”>{{text}}</a></li>




</ul>




</div>
```
```js
const droplab = new DropLab();


	droplab.init().addData(‘trigger’, [{
	id: 0,
text: ‘Jacob’,



	}, {
	id: 1,
text: ‘Jeff’,





}]);
```

Internal selectors

DropLab adds some CSS classes to help lower the barrier to integration.

For example,

	The droplab-item-selected css class is added to items that have been selected

either by a mouse click or by enter key selection.
* The droplab-item-active css class is added to items that have been selected
using arrow key navigation.
* You can add the droplab-item-ignore css class to any item that you do not want to be selectable. For example,
an <li class=”divider”> list divider element that should not be interactive.

Internal events

DropLab uses some custom events to help lower the barrier to integration.

For example,

	The click.dl event is fired when an li list item has been clicked. It is also

fired when a list item has been selected with the keyboard. It is also fired when a
HookButton button is clicked (a registered button tag or a tag trigger).
* The input.dl event is fired when a HookInput (a registered input tag trigger) triggers an input event.
* The mousedown.dl event is fired when a HookInput triggers a mousedown event.
* The keyup.dl event is fired when a HookInput triggers a keyup event.
* The keydown.dl event is fired when a HookInput triggers a keydown event.

These custom events add a detail object to the vanilla Event object that provides some potentially useful data.

Plugins

Plugins are objects that are registered to be executed when a hook is added (when a droplab trigger and dropdown are instantiated).

If no modules API is detected, the library will fall back as it does with window.DropLab and will add window.DropLab.plugins.PluginName.

Usage

To use plugins, you can pass them in an array as the third argument of DropLab.prototype.init or DropLab.prototype.addHook.
Some plugins require configuration values, the config object can be passed as the fourth argument.

`html
Toggle
<ul id="list" data-dropdown><!-- ... -->
`
```js
const droplab = new DropLab();

const trigger = document.getElementById(‘trigger’);
const list = document.getElementById(‘list’);


	droplab.init(trigger, list, [droplabAjax], {
	
	droplabAjax: {
	endpoint: ‘/some-endpoint’,
method: ‘setData’,





},






});

### Documentation


	[Ajax plugin](plugins/ajax.md)


	[Filter plugin](plugins/filter.md)


	[InputSetter plugin](plugins/input_setter.md)




### Development

When plugins are initialised for a droplab trigger+dropdown, DropLab will
call the plugins init function, so this must be implemented in the plugin.

```js
class MyPlugin {

	static init() {
	this.someProp = ‘someProp’;
this.someMethod();

}

	static someMethod() {
	this.otherProp = ‘otherProp’;

}

}

export default MyPlugin;
```





            

          

      

      

    

  

    
      
          
            
  # Ajax

Ajax is a droplab plugin that allows for retrieving and rendering list data from a server.

## Usage

Add the Ajax object to the plugins array of a DropLab.prototype.init or DropLab.prototype.addHook call.

Ajax requires 2 config values, the endpoint and method.


	endpoint should be a URL to the request endpoint.


	method should be setData or addData.


	setData completely replaces the dropdown with the response data.


	addData appends the response data to the current dropdown list.




`html
<a href="#" id="trigger" data-dropdown-trigger="#list">Toggle</a>
<ul id="list" data-dropdown><!-- ... --><ul>
`
```js


const droplab = new DropLab();

const trigger = document.getElementById(‘trigger’);
const list = document.getElementById(‘list’);

	droplab.addHook(trigger, list, [Ajax], {
	
	Ajax: {
	endpoint: ‘/some-endpoint’,
method: ‘setData’,

},

});


```

Optionally you can set loadingTemplate to a HTML string. This HTML string will
replace the dropdown list whilst the request is pending.

Additionally, you can set onError to a function to catch any XHR errors.



            

          

      

      

    

  

    
      
          
            
  # Filter

Filter is a plugin that allows for filtering data that has been added
to the dropdown using a simple fuzzy string search of an input value.

## Usage

Add the Filter object to the plugins array of a DropLab.prototype.init or DropLab.prototype.addHook call.


	Filter requires a config value for template.


	template should be the key of the objects within your data array that you want to compare




to the user input string, for filtering.

```html
<input href=”#” id=”trigger” data-dropdown-trigger=”#list”>
<ul id=”list” data-dropdown data-dynamic>

{{text}}


```
```js


const droplab = new DropLab();

const trigger = document.getElementById(‘trigger’);
const list = document.getElementById(‘list’);

	droplab.init(trigger, list, [Filter], {
	
	Filter: {
	template: ‘text’,

},

});

	droplab.addData(‘trigger’, [{
	id: 0,
text: ‘Jacob’,

	}, {
	id: 1,
text: ‘Jeff’,

}]);


```

Above, the input string will be compared against the test key of the passed data objects.

Optionally you can set filterFunction to a function. This function will be used instead
of Filter’s built in string search. filterFunction is passed 2 arguments, the first
is one of the data objects, the second is the current input value.



            

          

      

      

    

  

    
      
          
            
  # InputSetter

InputSetter is a plugin that allows for updating DOM out of the scope of droplab when a list item is clicked.

## Usage

Add the InputSetter object to the plugins array of a DropLab.prototype.init or DropLab.prototype.addHook call.


	InputSetter requires a config value for input and valueAttribute.


	input should be the DOM element that you want to manipulate.


	valueAttribute should be a string that is the name of an attribute on your list items that is used to get the value




to update the input element with.

You can also set the InputSetter config to an array of objects, which will allow you to update multiple elements.

```html
<input id=”input” value=””>
<div id=”div” data-selected-id=””></div>

<input href=”#” id=”trigger” data-dropdown-trigger=”#list”>
<ul id=”list” data-dropdown data-dynamic>

{{text}}


```
```js


const droplab = new DropLab();

const trigger = document.getElementById(‘trigger’);
const list = document.getElementById(‘list’);

const input = document.getElementById(‘input’);
const div = document.getElementById(‘div’);

	droplab.init(trigger, list, [InputSetter], {
	
	InputSetter: [{
	input: input,
valueAttribute: ‘data-id’,

	} {
	input: div,
valueAttribute: ‘data-id’,
inputAttribute: ‘data-selected-id’,

}],

});

	droplab.addData(‘trigger’, [{
	id: 0,
text: ‘Jacob’,

	}, {
	id: 1,
text: ‘Jeff’,

}]);


```

Above, if the second list item was clicked, it would update the #input element
to have a value of 1, it would also update the #div element’s data-selected-id to 1.

Optionally you can set inputAttribute to a string that is the name of an attribute on your input element that you want to update.
If you do not provide an inputAttribute, InputSetter will update the value of the input element if it is an INPUT element,
or the textContent of the input element if it is not an INPUT element.



            

          

      

      

    

  

    
      
          
            
  # Internationalization for GitLab

> [Introduced](https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/10669) in GitLab 9.2.

For working with internationalization (i18n),
[GNU gettext](https://www.gnu.org/software/gettext/) is used given it’s the most
used tool for this task and there are a lot of applications that will help us to
work with it.

## Setting up GitLab Development Kit (GDK)

In order to be able to work on the [GitLab Community Edition](https://gitlab.com/gitlab-org/gitlab-ce)
project you must download and configure it through [GDK](https://gitlab.com/gitlab-org/gitlab-development-kit/blob/master/doc/set-up-gdk.md).

Once you have the GitLab project ready, you can start working on the translation.

## Tools

The following tools are used:


	[gettext_i18n_rails](https://github.com/grosser/gettext_i18n_rails): this
gem allow us to translate content from models, views and controllers. Also
it gives us access to the following raketasks:



	rake gettext:find: Parses almost all the files from the
Rails application looking for content that has been marked for
translation. Finally, it updates the PO files with the new content that
it has found.


	rake gettext:pack: Processes the PO files and generates the
MO files that are binary and are finally used by the application.












	[gettext_i18n_rails_js](https://github.com/webhippie/gettext_i18n_rails_js):
this gem is useful to make the translations available in JavaScript. It
provides the following raketask:



	rake gettext:po_to_json: Reads the contents from the PO files and
generates JSON files containing all the available translations.












	PO editor: there are multiple applications that can help us to work with PO
files, a good option is [Poedit](https://poedit.net/download) which is
available for macOS, GNU/Linux and Windows.




## Preparing a page for translation

We basically have 4 types of files:

1. Ruby files: basically Models and Controllers.
1. HAML files: these are the view files.
1. ERB files: used for email templates.
1. JavaScript files: we mostly need to work with Vue templates.

### Ruby files

If there is a method or variable that works with a raw string, for instance:

```ruby
def hello

“Hello world!”

end

Or:

`ruby
hello = "Hello world!"
`

You can easily mark that content for translation with:

```ruby
def hello


_(“Hello world!”)







end

Or:

`ruby
hello = _("Hello world!")
`

### HAML files

Given the following content in HAML:

`haml
%h1 Hello world!
`

You can mark that content for translation with:

`haml
%h1= _("Hello world!")
`

### ERB files

Given the following content in ERB:

`erb
<h1>Hello world!</h1>
`

You can mark that content for translation with:

`erb
<h1><%= _("Hello world!") %></h1>
`

### JavaScript files

In JavaScript we added the __() (double underscore parenthesis) function that
you can import from the ~/locale file. For instance:

`js
import { __ } from '~/locale';
const label = __('Subscribe');
`

In order to test JavaScript translations you have to change the GitLab
localization to other language than English and you have to generate JSON files
using bin/rake gettext:po_to_json or bin/rake gettext:compile.

### Dynamic translations

Sometimes there are some dynamic translations that can’t be found by the
parser when running bin/rake gettext:find. For these scenarios you can
use the [N_ method](https://github.com/grosser/gettext_i18n_rails/blob/c09e38d481e0899ca7d3fc01786834fa8e7aab97/Readme.md#unfound-translations-with-rake-gettextfind).

There is also and alternative method to [translate messages from validation errors](https://github.com/grosser/gettext_i18n_rails/blob/c09e38d481e0899ca7d3fc01786834fa8e7aab97/Readme.md#option-a).

## Working with special content

### Interpolation

Placeholders in translated text should match the code style of the respective source file.
For example use %{created_at} in Ruby but %{createdAt} in JavaScript.


	In Ruby/HAML:


`ruby
_("Hello %{name}") % { name: 'Joe' } => 'Hello Joe'
`






	In JavaScript:


```js
import { __, sprintf } from ‘~/locale’;

sprintf(__(‘Hello %{username}’), { username: ‘Joe’ }); // => ‘Hello Joe’
```

By default, sprintf escapes the placeholder values.
If you want to take care of that yourself, you can pass false as third argument.

```js
import { __, sprintf } from ‘~/locale’;

sprintf(__(‘This is %{value}’), { value: ‘bold’ }); // => ‘This is bold’
sprintf(__(‘This is %{value}’), { value: ‘bold’ }, false); // => ‘This is bold’
```








### Plurals


	In Ruby/HAML:


`ruby
n_('Apple', 'Apples', 3)
# => 'Apples'
`

Using interpolation:
`ruby
n_("There is a mouse.", "There are %d mice.", size) % size
# => When size == 1: 'There is a mouse.'
# => When size == 2: 'There are 2 mice.'
`

Avoid using %d or count variables in sigular strings. This allows more natural translation in some languages.






	In JavaScript:


`js
n__('Apple', 'Apples', 3)
// => 'Apples'
`

Using interpolation:

`js
n__('Last day', 'Last %d days', x)
// => When x == 1: 'Last day'
// => When x == 2: 'Last 2 days'
`








### Namespaces

Sometimes you need to add some context to the text that you want to translate
(if the word occurs in a sentence and/or the word is ambiguous).


	In Ruby/HAML:


`ruby
s_('OpenedNDaysAgo|Opened')
`

In case the translation is not found it will return Opened.






	In JavaScript:


`js
s__('OpenedNDaysAgo|Opened')
`








Note: The namespace should be removed from the translation. See the [translation
guidelines for more details](./translation.md#namespaced-strings).

### Dates / times


	In JavaScript:




```js
import { createDateTimeFormat } from ‘~/locale’;

const dateFormat = createDateTimeFormat({ year: ‘numeric’, month: ‘long’, day: ‘numeric’ });
console.log(dateFormat.format(new Date(‘2063-04-05’))) // April 5, 2063
```

This makes use of [Intl.DateTimeFormat].

[Intl.DateTimeFormat]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/DateTimeFormat

## Best practices

### Splitting sentences

Please never split a sentence as that would assume the sentence grammar and
structure is the same in all languages.

For instance, the following:

`js
{{ s__("mrWidget|Set by") }}
{{ author.name }}
{{ s__("mrWidget|to be merged automatically when the pipeline succeeds") }}
`

should be externalized as follows:

`js
{{ sprintf(s__("mrWidget|Set by %{author} to be merged automatically when the pipeline succeeds"), { author: author.name }) }}
`

#### Avoid splitting sentences when adding links

This also applies when using links in between translated sentences, otherwise these texts are not translatable in certain languages.

Instead of:

`haml
- zones_link = link_to(s_('ClusterIntegration|zones'), 'https://cloud.google.com/compute/docs/regions-zones/regions-zones', target: '_blank', rel: 'noopener noreferrer')
= s_('ClusterIntegration|Learn more about %{zones_link}').html_safe % { zones_link: zones_link }
`

Set the link starting and ending HTML fragments as variables like so:

`haml
- zones_link_url = 'https://cloud.google.com/compute/docs/regions-zones/regions-zones'
- zones_link_start = '<a href="%{url}" target="_blank" rel="noopener noreferrer">'.html_safe % { url: zones_link_url }
= s_('ClusterIntegration|Learn more about %{zones_link_start}zones%{zones_link_end}').html_safe % { zones_link_start: zones_link_start, zones_link_end: '</a>'.html_safe }
`

The reasoning behind this is that in some languages words change depending on context. For example in Japanese は is added to the subject of a sentence and を to the object. This is impossible to translate correctly if we extract individual words from the sentence.

When in doubt, try to follow the best practices described in this [Mozilla
Developer documentation][mdn].

[mdn]: https://developer.mozilla.org/en-US/docs/Mozilla/Localization/Localization_content_best_practices#Splitting

## Updating the PO files with the new content

Now that the new content is marked for translation, we need to update the PO
files with the following command:

`sh
bin/rake gettext:regenerate
`

This command will update the locale/gitlab.pot file with the newly externalized
strings and remove any strings that aren’t used anymore. You should check this
file in. Once the changes are on master, they will be picked up by
[Crowdin](http://translate.gitlab.com) and be presented for translation.

If there are merge conflicts in the gitlab.pot file, you can delete the file
and regenerate it using the same command. Confirm that you are not deleting any strings accidentally by looking over the diff.

### Validating PO files

To make sure we keep our translation files up to date, there’s a linter that is
running on CI as part of the static-analysis job.

To lint the adjustments in PO files locally you can run rake gettext:lint.

The linter will take the following into account:


	Valid PO-file syntax


	Variable usage
- Only one unnamed (%d) variable, since the order of variables might change


in different languages





	All variables used in the message-id are used in the translation


	There should be no variables used in a translation that aren’t in the
message-id






	Errors during translation.




The errors are grouped per file, and per message ID:

```
Errors in locale/zh_HK/gitlab.po:

	PO-syntax errors
	SimplePoParser::ParserErrorSyntax error in lines
Syntax error in msgctxt
Syntax error in msgid
Syntax error in msgstr
Syntax error in message_line
There should be only whitespace until the end of line after the double quote character of a message text.
Parseing result before error: ‘{:msgid=>[“”, “You are going to remove %{project_name_with_namespace}.\n”, “Removed project CANNOT be restored!\n”, “Are you ABSOLUTELY sure?”]}’
SimplePoParser filtered backtrace: SimplePoParser::ParserError

	Errors in locale/zh_TW/gitlab.po:
	
	1 pipeline
	<%d 條流水線> is using unknown variables: [%d]
Failure translating to zh_TW with []: too few arguments


```

In this output the locale/zh_HK/gitlab.po has syntax errors.
The locale/zh_TW/gitlab.po has variables that are used in the translation that
aren’t in the message with id 1 pipeline.

## Adding a new language

Let’s suppose you want to add translations for a new language, let’s say French.


	The first step is to register the new language in lib/gitlab/i18n.rb:


```ruby
…
AVAILABLE_LANGUAGES = {

…,
‘fr’ => ‘Français’

}.freeze
…
```









	Next, you need to add the language:


`sh
bin/rake gettext:add_language[fr]
`

If you want to add a new language for a specific region, the command is similar,
you just need to separate the region with an underscore (_). For example:

`sh
bin/rake gettext:add_language[en_GB]
`

Please note that you need to specify the region part in capitals.









	Now that the language is added, a new directory has been created under the
path: locale/fr/. You can now start using your PO editor to edit the PO file
located in: locale/fr/gitlab.edit.po.





	After you’re done updating the translations, you need to process the PO files
in order to generate the binary MO files and finally update the JSON files
containing the translations:


`sh
bin/rake gettext:compile
`









	In order to see the translated content we need to change our preferred language
which can be found under the user’s Settings (/profile).





	After checking that the changes are ok, you can proceed to commit the new files.
For example:


`sh
git add locale/fr/ app/assets/javascripts/locale/fr/
git commit -m "Add French translations for Cycle Analytics page"
`












            

          

      

      

    

  

    
      
          
            
  # Translate GitLab to your language

The text in GitLab’s user interface is in American English by default.
Each string can be translated to other languages.
As each string is translated, it is added to the languages translation file,
and will be available in future releases of GitLab.

Contributions to translations are always needed.
Many strings are not yet available for translation because they have not been externalized.
Helping externalize strings benefits all languages.
Some translations are incomplete or inconsistent.
Translating strings will help complete and improve each language.

## How to contribute

There are many ways you can contribute in translating GitLab.

### Externalize strings

Before a string can be translated, it must be externalized.
This is the process where English strings in the GitLab source code are wrapped in a function that
retrieves the translated string for the user’s language.

As new features are added and existing features are updated, the surrounding strings are being
externalized, however, there are many parts of GitLab that still need more work to externalize all
strings.

See [Externalization for GitLab](externalization.md).

### Translate strings

The translation process is managed at [translate.gitlab.com](https://translate.gitlab.com)
using [Crowdin](https://crowdin.com/).
You will need to create an account before you can submit translations.
Once you are signed in, select the language you wish to contribute translations to.

Voting for translations is also valuable, helping to confirm good and flag inaccurate translations.

See [Translation guidelines](translation.md).

### Proof reading

Proof reading helps ensure the accuracy and consistency of translations. All
translations are proof read before being accepted. If a translations requires
changes, you will be notified with a comment explaining why.

See [Proofreading Translations](proofreader.md) for more information on who’s
able to proofread and instructions on becoming a proofreader yourself.

## Release

Translations are typically included in the next major or minor release.



            

          

      

      

    

  

    
      
          
            
  # Proofread Translations

Most translations are contributed, reviewed, and accepted by the community. We
are very appreciative of the work done by translators and proofreaders!

## Proofreaders


	Bulgarian


	Chinese Simplified
- Huang Tao - [GitLab](https://gitlab.com/htve), [Crowdin](https://crowdin.com/profile/htve)


	Chinese Traditional
- Huang Tao - [GitLab](https://gitlab.com/htve), [Crowdin](https://crowdin.com/profile/htve)
- Weizhe Ding - [GitLab](https://gitlab.com/d.weizhe), [Crowdin](https://crowdin.com/profile/d.weizhe)
- Yi-Jyun Pan - [GitLab](https://gitlab.com/pan93412), [Crowdin](https://crowdin.com/profile/pan93412)


	Chinese Traditional, Hong Kong
- Huang Tao - [GitLab](https://gitlab.com/htve), [Crowdin](https://crowdin.com/profile/htve)


	Dutch
-  Emily Hendle - [GitLab](https://gitlab.com/pundachan), [Crowdin](https://crowdin.com/profile/pandachan)


	Esperanto


	French
- Davy Defaud - [GitLab](https://gitlab.com/DevDef), [Crowdin](https://crowdin.com/profile/DevDef)


	German


	Indonesian
- Ahmad Naufal Mukhtar - [GitLab](https://gitlab.com/anaufalm), [Crowdin](https://crowdin.com/profile/anaufalm)


	Italian
- Paolo Falomo - [GitLab](https://gitlab.com/paolofalomo), [Crowdin](https://crowdin.com/profile/paolo.falomo)


	Japanese
- Yamana Tokiuji - [GitLab](https://gitlab.com/tokiuji), [Crowdin](https://crowdin.com/profile/yamana)
- Hiroyuki Sato - [GitLab](https://gitlab.com/hiroponz), [Crowdin](https://crowdin.com/profile/hiroponz)


	Korean
- Chang-Ho Cha - [GitLab](https://gitlab.com/changho-cha), [Crowdin](https://crowdin.com/profile/zzazang)
- Huang Tao - [GitLab](https://gitlab.com/htve), [Crowdin](https://crowdin.com/profile/htve)


	Polish
- Filip Mech - [GitLab](https://gitlab.com/mehenz), [Crowdin](https://crowdin.com/profile/mehenz)


	Portuguese, Brazilian
- Paulo George Gomes Bezerra - [GitLab](https://gitlab.com/paulobezerra), [Crowdin](https://crowdin.com/profile/paulogomes.rep)
- André Gama - [GitLab](https://gitlab.com/andregamma), [Crowdin](https://crowdin.com/profile/ToeOficial)


	Russian
- Nikita Grylov - [GitLab](https://gitlab.com/nixel2007), [Crowdin](https://crowdin.com/profile/nixel2007)
- Alexy Lustin - [GitLab](https://gitlab.com/allustin), [Crowdin](https://crowdin.com/profile/lustin)


	Spanish


	Ukrainian
- Volodymyr Sobotovych - [GitLab](https://gitlab.com/wheleph), [Crowdin](https://crowdin.com/profile/wheleph)
- Andrew Vityuk - [GitLab](https://gitlab.com/3_1_3_u), [Crowdin](https://crowdin.com/profile/andruwa13)




## Become a proofreader

> Note: Before requesting Proofreader permissions in Crowdin please make
> sure that you have a history of contributing translations to the GitLab
> project.


	Contribute translations to GitLab. See instructions for
[translating GitLab](translation.md).


Translating GitLab is a community effort that requires team work and
attention to detail. Proofreaders play an important role helping new
contributors, and ensuring the consistency and quality of translations.
Your conduct and contributions as a translator should reflect this before
requesting to be a proofreader.









	Request proofreader permissions by opening a merge request to add yourself
to the list of proofreaders.


Open the [proofreader.md source file][proofreader-src] and click Edit.

Add your language in alphabetical order, and add yourself to the list
including:


	name


	link to your GitLab profile


	link to your CrowdIn profile




In the merge request description, please include links to any projects you
have previously translated.









	Your request to become a proofreader will be considered on the merits of
your previous translations.




[proofreader-src]: https://gitlab.com/gitlab-org/gitlab-ce/blob/master/doc/development/i18n/proofreader.md



            

          

      

      

    

  

    
      
          
            
  # Translating GitLab

For managing the translation process we use [Crowdin](https://crowdin.com).

## Using Crowdin

The first step is to get familiar with Crowdin.

### Sign In

To contribute translations at [translate.gitlab.com](https://translate.gitlab.com)
you must create a Crowdin account.
You may create a new account or use any of their supported sign in services.

### Language Selections

GitLab is being translated into many languages.

1. Select the language you would like to contribute translations to by clicking the flag
1. You will see a list of files and folders.


Click gitlab.pot to open the translation editor.




### Translation Editor

The online translation editor is the easiest way to contribute translations.

![Crowdin Editor](img/crowdin-editor.png)

1. Strings for translation are listed in the left panel
1. Translations are entered into the central panel.


Multiple translations will be required for strings that contains plurals.
The string to be translated is shown above with glossary terms highlighted.
If the string to be translated is not clear, you can ‘Request Context’




A glossary of common terms is available in the right panel by clicking Terms.
Comments can be added to discuss a translation with the community.

Remember to Save each translation.

## General Translation Guidelines

Be sure to check the following guidelines before you translate any strings.

### Namespaced strings

When an externalized string is prepended with a namespace, e.g.
s_(‘OpenedNDaysAgo|Opened’), the namespace should be removed from the final
translation.
For example in French OpenedNDaysAgo|Opened would be translated to
Ouvert•e, not OpenedNDaysAgo|Ouvert•e.

### Technical terms

Some technical terms should be treated like proper nouns and not be translated.

Technical terms that should always be in English are noted in the glossary when
using [translate.gitlab.com](https://translate.gitlab.com).

This helps maintain a logical connection and consistency between tools (e.g.
git client) and GitLab.

### Formality

The level of formality used in software varies by language.
For example, in French we translate you as the formal vous.

You can refer to other translated strings and notes in the glossary to assist
determining a suitable level of formality.

### Inclusive language

[Diversity] is one of GitLab’s values.
We ask you to avoid translations which exclude people based on their gender or
ethnicity.
In languages which distinguish between a male and female form, use both or
choose a neutral formulation.

For example in German, the word “user” can be translated into “Benutzer” (male) or “Benutzerin” (female).
Therefore “create a new user” would translate into “Benutzer(in) anlegen”.

[Diversity]: https://about.gitlab.com/handbook/values/#diversity

### Updating the glossary

To propose additions to the glossary please
[open an issue](https://gitlab.com/gitlab-org/gitlab-ce/issues).

## French Translation Guidelines

### Inclusive language in French

In French, we should follow the guidelines from [ecriture-inclusive.fr]. For
instance:


	Utilisateur•rice•s




[ecriture-inclusive.fr]: http://www.ecriture-inclusive.fr/



            

          

      

      

    

  

    
      
          
            
  # Dependencies

## Adding Dependencies.

GitLab uses yarn to manage dependencies. These dependencies are defined in
two groups within package.json, dependencies and devDependencies. For
our purposes, we consider anything that is required to compile our production
assets a “production” dependency. That is, anything required to run the
webpack script with NODE_ENV=production. Tools like eslint, karma, and
various plugins and tools used in development are considered devDependencies.
This distinction is used by omnibus to determine which dependencies it requires
when building GitLab.

Exceptions are made for some tools that we require in the
gitlab:assets:compile CI job such as webpack-bundle-analyzer to analyze our
production assets post-compile.

—

> TODO: Add Dependencies



            

          

      

      

    

  

    
      
          
            
  # Frontend Development Guidelines

This guide contains all the information to successfully contribute to GitLab’s frontend.
This is a living document, and we welcome contributions, feedback and suggestions.

## [Principles](principles.md)

Ensure that your frontend contribution starts off in the right direction.

## [Initiatives](initiatives.md)

High level overview of where we are going from a frontend perspective.

## [Development](development/index.md)

Guidance on topics related to development.

## [Dependencies](dependencies.md)

Learn about all the dependencies that make up our frontend, including some of our own custom built libraries.

## [Style guides](style/index.md)

Style guides to keep our code consistent.

## [Tips](tips.md)

Tips from our frontend team to develop more efficiently and effectively.



            

          

      

      

    

  

    
      
          
            
  # Initiatives

> TODO: Add Initiatives



            

          

      

      

    

  

    
      
          
            
  # Principles

These principles will ensure that your frontend contribution starts off in the right direction.

## Discuss architecture before implementation

Discuss your architecture design in an issue before writing code. This helps decrease the review time and also provides good practice for writing and thinking about system design.

## Be consistent

There are multiple ways of writing code to accomplish the same results. We should be as consistent as possible in how we write code across our codebases. This will make it more easier us to maintain our code across GitLab.

## Enhance progressively

Whenever you see with existing code that does not follow our current style guide, update it proactively. Refrain from changing everything but each merge request should progressively enhance our codebase and reduce technical debt.

## When to use Vue


	Use Vue for feature that make use of heavy DOM manipulation


	Use Vue for reusable components




## When to use jQuery


	Use jQuery to interact with Bootstrap JavaScript components


	Avoid jQuery when a better alternative exists. We are slowly moving away from it [#43559][jquery-future]




## Mixing Vue and jQuery


	Mixing Vue and jQuery is not recommended.


	If you need to use a specific jQuery plugin in Vue, [create a wrapper around it][select2].


	It is acceptable for Vue to listen to existing jQuery events using jQuery event listeners.


	It is not recommended to add new jQuery events for Vue to interact with jQuery.




[jquery-future]: https://gitlab.com/gitlab-org/gitlab-ce/issues/43559
[select2]: https://vuejs.org/v2/examples/select2.html



            

          

      

      

    

  

    
      
          
            
  # Tips

## Clearing production compiled assets

To clear production compiled assets created with yarn webpack-prod you can run:

`
yarn clean
`



            

          

      

      

    

  

    
      
          
            
  # Accessiblity
Using semantic HTML plays a key role when it comes to accessibility.

## Accessible Rich Internet Applications - ARIA
WAI-ARIA, the Accessible Rich Internet Applications specification, defines a way to make Web content and Web applications more accessible to people with disabilities.

> Note: It is [recommended][using-aria] to use semantic elements as the primary method to achieve accessibility rather than adding aria attributes. Adding aria attributes should be seen as a secondary method for creating accessible elements.

### Role
The role attribute describes the role the element plays in the context of the document.

Check the list of WAI-ARIA roles [here][roles]

## Icons
When using icons or images that aren’t absolutely needed to understand the context, we should use aria-hidden=”true”.

On the other hand, if an icon is crucial to understand the context we should do one of the following:
1. Use aria-label in the element with a meaningful description
1. Use aria-labelledby to point to an element that contains the explanation for that icon

## Form inputs
In forms we should use the for attribute in the label statement:
```
<div>

<label for=”name”>Fill in your name:</label>
<input type=”text” id=”name” name=”name”>

</div>
```

## Testing

1. On MacOS you can use [VoiceOver][voice-over] by pressing cmd+F5.
1. On Windows you can use [Narrator][narrator] by pressing Windows logo key + Ctrl + Enter.

## Online resources


	[Chrome Accessibility Developer Tools][dev-tools] for testing accessibility


	[Audit Rules Page][audit-rules] for best practices


	[Lighthouse Accessibility Score][lighthouse] for accessibility audits




[using-aria]: https://www.w3.org/TR/using-aria/#notes2
[dev-tools]: https://github.com/GoogleChrome/accessibility-developer-tools
[audit-rules]: https://github.com/GoogleChrome/accessibility-developer-tools/wiki/Audit-Rules
[aria-w3c]: https://www.w3.org/TR/wai-aria-1.1/
[roles]: https://www.w3.org/TR/wai-aria-1.1/#landmark_roles
[voice-over]: https://www.apple.com/accessibility/mac/vision/
[narrator]: https://www.microsoft.com/en-us/accessibility/windows
[lighthouse]: https://developers.google.com/web/tools/lighthouse/scoring#a11y



            

          

      

      

    

  

    
      
          
            
  # Components

## Graphs

We have a lot of graphing libraries in our codebase to render graphs. In an effort to improve maintainability, new graphs should use [D3.js](https://d3js.org/). If a new graph is fairly simple, consider implementing it in SVGs or HTML5 canvas.

We chose D3 as our library going forward because of the following features:


	[Tree shaking webpack capabilities.](https://github.com/d3/d3/blob/master/CHANGES.md#changes-in-d3-40)


	[Compatible with vue.js as well as vanilla javascript.](https://github.com/d3/d3/blob/master/CHANGES.md#changes-in-d3-40)




D3 is very popular across many projects outside of GitLab:


	[The New York Times](https://archive.nytimes.com/www.nytimes.com/interactive/2012/02/13/us/politics/2013-budget-proposal-graphic.html)


	[plot.ly](https://plot.ly/)


	[Droptask](https://www.droptask.com/)




Within GitLab, D3 has been used for the following notable features


	[Prometheus graphs](https://docs.gitlab.com/ee/user/project/integrations/prometheus.html)


	Contribution calendars






            

          

      

      

    

  

    
      
          
            
  # Design patterns

> TODO: Add content



            

          

      

      

    

  

    
      
          
            
  # Development

## [Design patterns](design_patterns.md)

Examples of proven design patterns used in our codebase.

## [Components](components.md)

Documentation on existing components and how to best create a new component.

## [Accessibility](accessibility.md)

Learn how to implement an accessible frontend.

## [Network requests](network_requests.md)

Learn how to handle network requests in our codebase.

## [Security](security.md)

Learn how to ensure that our frontend is secure.

## [Performance](performance.md)

Learn how to keep our frontend performant.

## [Testing](testing.md)

Learn how to keep our frontend tested.



            

          

      

      

    

  

    
      
          
            
  # Network requests

> TODO: Add content



            

          

      

      

    

  

    
      
          
            
  # Performance

## Monitoring

We have a performance dashboard available in one of our [grafana instances](https://performance.gprd.gitlab.com/dashboard/db/sitespeed-page-summary?orgId=1). This dashboard automatically aggregates metric data from [sitespeed.io](https://sitespeed.io) every 6 hours. These changes are displayed after a set number of pages are aggregated.

These pages can be found inside a text file in the gitlab-build-images [repository](https://gitlab.com/gitlab-org/gitlab-build-images) called [gitlab.txt](https://gitlab.com/gitlab-org/gitlab-build-images/blob/master/scripts/gitlab.txt)
Any frontend engineer can contribute to this dashboard. They can contribute by adding or removing urls of pages from this text file. Please have a [frontend monitoring expert](https://about.gitlab.com/team) review your changes before assigning to a maintainer of the gitlab-build-images project. The changes will go live on the next scheduled run after the changes are merged into master.

There are 3 recommended high impact metrics to review on each page


	[First visual change](https://developers.google.com/web/tools/lighthouse/audits/first-meaningful-paint)


	[Speed Index](https://sites.google.com/a/webpagetest.org/docs/using-webpagetest/metrics/speed-index)


	[Visual Complete 95%](https://sites.google.com/a/webpagetest.org/docs/using-webpagetest/metrics/speed-index)




For these metrics, lower numbers are better as it means that the website is more performant.



            

          

      

      

    

  

    
      
          
            
  # Security

## Avoid inline scripts and styles

Inline scripts and styles should be avoided in almost all cases. In an effort to protect users from [XSS vulnerabilities](https://en.wikipedia.org/wiki/Cross-site_scripting), we will be disabling inline scripts using Content Security Policy.

## Including external resources

External fonts, CSS, and JavaScript should never be used with the exception of Google Analytics and Piwik - and only when the instance has enabled it. Assets should always be hosted and served locally from the GitLab instance. Embedded resources via iframes should never be used except in certain circumstances such as with ReCaptcha, which cannot be used without an iframe.

## Resources for security testing


	[Mozilla’s HTTP Observatory CLI](https://github.com/mozilla/http-observatory-cli)


	[Qualys SSL Labs Server Test](https://www.ssllabs.com/ssltest/analyze.html)






            

          

      

      

    

  

    
      
          
            
  # Overview of Frontend Testing

## Types of tests in our codebase


	RSpec
* [Ruby unit tests](#ruby-unit-tests-spec-rb) for models, controllers, helpers, etc. (/spec/**/*.rb)
* [Full feature tests](#full-feature-tests-spec-features-rb) (/spec/features/**/*.rb)


	[Karma](#karma-tests-spec-javascripts-js) (/spec/javascripts/**/*.js)


	~~Spinach~~ — These have been removed from our codebase in May 2018. (/features/)




## RSpec: Ruby unit tests /spec/**/*.rb

These tests are meant to unit test the ruby models, controllers and helpers.

### When do we write/update these tests?

Whenever we create or modify any Ruby models, controllers or helpers we add/update corresponding tests.

—

## RSpec: Full feature tests /spec/features/**/*.rb

Full feature tests will load a full app environment and allow us to test things like rendering DOM, interacting with links and buttons, testing the outcome of those interactions through multiple pages if necessary. These are also called end-to-end tests but should not be confused with QA end-to-end tests (package-and-qa manual pipeline job).

### When do we write/update these tests?

When we add a new feature, we write at least two tests covering the success and the failure scenarios.

### Relevant notes

A :js flag is added to the test to make sure the full environment is loaded.

```
scenario ‘successfully’, :js do

sign_in(create(:admin))

end

The steps of each test are written using capybara methods ([documentation](http://www.rubydoc.info/gems/capybara/2.15.1)).

Bear in mind <abbr title=”XMLHttpRequest”>XHR</abbr> calls might require you to use wait_for_requests in between steps, like so:

```rspec
find(‘.form-control’).native.send_keys(:enter)

wait_for_requests

expect(page).not_to have_selector(‘.card’)
```

—

Karma tests /spec/javascripts/**/*.js

These are the more frontend-focused, at the moment. They’re faster than rspec and make for very quick testing of frontend components.

When do we write/update these tests?

When we add/update a method/action/mutation to Vue or Vuex, we write karma tests to ensure the logic we wrote doesn’t break. We should, however, refrain from writing tests that double-test Vue’s internal features.

Relevant notes

Karma tests are run against a virtual DOM.

To populate the DOM, we can use fixtures to fake the generation of HTML instead of having Rails do that.

Be sure to check the [best practices for karma tests](../../testing_guide/frontend_testing.html#best-practices).

Vue and Vuex

Test as much as possible without double-testing Vue’s internal features, as mentioned above.

Make sure to test computedProperties, mutations, actions. Run the action and test that the proper mutations are committed.

Also check these [notes on testing Vue components](../../fe_guide/vue.html#testing-vue-components).

Vuex Helper: testAction

We have a helper available to make testing actions easier, as per [official documentation](https://vuex.vuejs.org/en/testing.html):

```
testAction(


actions.actionName, // action
{ }, // params to be passed to action
state, // state
[


{ type: types.MUTATION},
{ type: types.MUTATION_1, payload: {}},




], // mutations committed
[


{ type: ‘actionName’, payload: {}},
{ type: ‘actionName1’, payload: {}},




] // actions dispatched
done,







);

Check an example in [spec/javascripts/ide/stores/actions_spec.jsspec/javascripts/ide/stores/actions_spec.js](https://gitlab.com/gitlab-org/gitlab-ce/blob/master/spec/javascripts/ide/stores/actions_spec.js).

#### Vue Helper: mountComponent

To make mounting a Vue component easier and more readable, we have a few helpers available in spec/helpers/vue_mount_component_helper.


	createComponentWithStore


	mountComponentWithStore




Examples of usage:

```
beforeEach(() => {

vm = createComponentWithStore(Component, store);

vm.$store.state.currentBranchId = ‘master’;

vm.$mount();

},

```
beforeEach(() => {



	vm = mountComponentWithStore(Component, {
	el: ‘#dummy-element’,
store,
props: { badge },





});







},

Don’t forget to clean up:

```
afterEach(() => {

vm.$destroy();

});

 # HTML style guide

Buttons

- [1.1](#button-type) Use button type Button tags requires a type attribute according to the [W3C HTML specification][button-type-spec].

```
// bad
<button></button>

// good
<button type=”button”></button>
```


- [1.2](#button-role) Use button role for non buttons If an HTML element has an onClick handler but is not a button, it should have role=”button”. This is more [accessible][button-role-accessible].

```
// bad
<div onClick=”doSomething”></div>

// good
<div role=”button” onClick=”doSomething”></div>
```

Links

- [2.1](#blank-links) Use rel for target blank Use rel=”noopener noreferrer” whenever your links open in a new window i.e. target=”_blank”. This prevents [the following][jitbit-target-blank] security vulnerability documented by JitBit

```
// bad
<a href=”url” target=”_blank”></a>

// good
<a href=”url” target=”_blank” rel=”noopener noreferrer”></a>
```


- [2.2](#fake-links) Do not use fake links Use a button tag if a link only invokes JavaScript click event handlers. This is more semantic.

```
// bad
<a class=”js-do-something” href=”#”></a>

// good
<button class=”js-do-something” type=”button”></button>
```

[button-type-spec]: https://www.w3.org/TR/2011/WD-html5-20110525/the-button-element.html#dom-button-type
[button-role-accessible]: https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA/ARIA_Techniques/Using_the_button_role
[jitbit-target-blank]: https://www.jitbit.com/alexblog/256-targetblank—the-most-underestimated-vulnerability-ever/ [https://www.jitbit.com/alexblog/256-targetblank---the-most-underestimated-vulnerability-ever/]

 # Style guides

[HTML style guide](html.md)

[SCSS style guide](scss.md)

[JavaScript style guide](javascript.md)

[Vue style guide](vue.md)

Tooling

[Prettier](prettier.md)

Our code is automatically formatted with [Prettier](https://prettier.io) to follow our guidelines.

 # JavaScript style guide

We use [Airbnb’s JavaScript Style Guide][airbnb-style-guide] and it’s accompanying linter to manage most of our JavaScript style guidelines.

In addition to the style guidelines set by Airbnb, we also have a few specific rules listed below.

> Tip:
You can run eslint locally by running yarn eslint

Arrays

- [1.1](#avoid-foreach) Avoid ForEach when mutating data Use map, reduce or filter instead of forEach when mutating data. This will minimize mutations in functions ([which is aligned with Airbnb’s style guide][airbnb-minimize-mutations])

```
// bad
users.forEach((user, index) => {


user.id = index;




});

// good
const usersWithId = users.map((user, index) => {


return Object.assign({}, user, { id: index });





});

## Functions

<a name=”limit-params”></a><a name=”2.1”></a>
- [2.1](#limit-params) Limit number of parameters If your function or method has more than 3 parameters, use an object as a parameter instead.

```
// bad
function a(p1, p2, p3) {

// …

};

// good
function a(p) {

// …

};

Classes & constructors

- [3.1](#avoid-constructor-side-effects) Avoid side effects in constructors Avoid making some operations in the constructor, such as asynchronous calls, API requests and DOM manipulations. Prefer moving them into separate functions. This will make tests easier to write and code easier to maintain.


```javascript
// bad
class myClass {



	constructor(config) {
	this.config = config;
axios.get(this.config.endpoint)





}




}

// good
class myClass {



	constructor(config) {
	this.config = config;





}


	makeRequest() {
	axios.get(this.config.endpoint)





}




}
const instance = new myClass();
instance.makeRequest();

```


- [3.2](#avoid-classes-to-handle-dom-events) Avoid classes to handle DOM events If the only purpose of the class is to bind a DOM event and handle the callback, prefer using a function.

```
// bad
class myClass {



	constructor(config) {
	this.config = config;





}


	init() {
	document.addEventListener(‘click’, () => {});





}




}

// good


	const myFunction = () => {
	
	document.addEventListener(‘click’, () => {
	// handle callback here





});








}

<a name=”element-container”></a><a name=”3.3”></a>
- [3.3](#element-container) Pass element container to constructor When your class manipulates the DOM, receive the element container as a parameter.
This is more maintainable and performant.

```
// bad
class a {

	constructor() {
	document.querySelector(‘.b’);

}

}

// good
class a {

	constructor(options) {
	options.container.querySelector(‘.b’);

}

}

Type Casting & Coercion

- [4.1](#use-parseint) Use ParseInt Use ParseInt when converting a numeric string into a number.

```
// bad
Number(‘10’)

// good
parseInt(‘10’, 10);
```

CSS Selectors

- [5.1](#use-js-prefix) Use js prefix If a CSS class is only being used in JavaScript as a reference to the element, prefix the class name with js-

```
// bad
<button class=”add-user”></button>

// good
<button class=”js-add-user”></button>
```

Modules

- [6.1](#use-absolute-paths) Use absolute paths for nearby modules Use absolute paths if the module you are importing is less than two levels up.

```
// bad
import GitLabStyleGuide from ‘~/guides/GitLabStyleGuide’;

// good
import GitLabStyleGuide from ‘../GitLabStyleGuide’;
```


- [6.2](#use-relative-paths) Use relative paths for distant modules If the module you are importing is two or more levels up, use a relative path instead of an absolute path.

```
// bad
import GitLabStyleGuide from ‘../../../guides/GitLabStyleGuide’;

// good
import GitLabStyleGuide from ‘~/GitLabStyleGuide’;
```


- [6.3](#global-namespace) Do not add to global namespace

- [6.4](#domcontentloaded) Do not use DOMContentLoaded in non-page modules Imported modules should act the same each time they are loaded. DOMContentLoaded events are only allowed on modules loaded in the /pages/* directory because those are loaded dynamically with webpack.

Security

- [7.1](#avoid-xss) Avoid XSS Do not use innerHTML, append() or html() to set content. It opens up too many vulnerabilities.

ESLint

- [8.1](#disable-eslint-file) Disabling ESLint in new files Do not disable ESLint when creating new files. Existing files may have existing rules disabled due to legacy compatibility reasons but they are in the process of being refactored.

- [8.2](#disable-eslint-rule) Disabling ESLint rule Do not disable specific ESLint rules. Due to technical debt, you may disable the following rules only if you are invoking/instantiating existing code modules

	[no-new][no-new]

	[class-method-use-this][class-method-use-this]

> Note: Disable these rules on a per line basis. This makes it easier to refactor in the future. E.g. use eslint-disable-next-line or eslint-disable-line

[airbnb-style-guide]: https://github.com/airbnb/javascript
[airbnb-minimize-mutations]: https://github.com/airbnb/javascript#testing–for-real [https://github.com/airbnb/javascript#testing--for-real]
[no-new]: http://eslint.org/docs/rules/no-new
[class-method-use-this]: http://eslint.org/docs/rules/class-methods-use-this

 # Formatting with Prettier

Our code is automatically formatted with [Prettier](https://prettier.io) to follow our style guides. Prettier is taking care of formatting .js, .vue, and .scss files based on the standard prettier rules. You can find all settings for Prettier in .prettierrc.

Editor

The easiest way to include prettier in your workflow is by setting up your preferred editor (all major editors are supported) accordingly. We suggest setting up prettier to run automatically when each file is saved. Find [here](https://prettier.io/docs/en/editors.html) the best way to set it up in your preferred editor.

Please take care that you only let Prettier format the same file types as the global Yarn script does (.js, .vue, and .scss). In VSCode by example you can easily exclude file formats in your settings file:


	```
	
	“prettier.disableLanguages”: [
	“json”,
“markdown”





],





```

Yarn Script

The following yarn scripts are available to do global formatting:

`
yarn prettier-staged-save
`

Updates all currently staged files (based on git diff) with Prettier and saves the needed changes.

`
yarn prettier-staged
`
Checks all currently staged files (based on git diff) with Prettier and log which files would need manual updating to the console.

`
yarn prettier-all
`

Checks all files with Prettier and logs which files need manual updating to the console.

`
yarn prettier-all-save
`

Formats all files in the repository with Prettier. (This should only be used to test global rule updates otherwise you would end up with huge MR’s).

The source of these Yarn scripts can be found in /scripts/frontend/prettier.js.

Scripts during Conversion period

`
node ./scripts/frontend/prettier.js check ./vendor/
`

This will go over all files in a specific folder check it.

`
node ./scripts/frontend/prettier.js save ./vendor/
`

This will go over all files in a specific folder and save it.

 # SCSS style guide

> TODO: Add content

 # Vue style guide

> TODO: Add content

 # Testing best practices

Test speed

GitLab has a massive test suite that, without [parallelization], can take hours
to run. It’s important that we make an effort to write tests that are accurate
and effective _as well as_ fast.

Here are some things to keep in mind regarding test performance:

	double and spy are faster than FactoryBot.build(…)

	FactoryBot.build(…) and .build_stubbed are faster than .create.

	Don’t create an object when build, build_stubbed, attributes_for,
spy, or double will do. Database persistence is slow!

	Don’t mark a feature as requiring JavaScript (through :js in RSpec) unless it’s _actually_ required for the test
to be valid. Headless browser testing is slow!

[parallelization]: ci.md#test-suite-parallelization-on-the-ci

RSpec

General guidelines

	Use a single, top-level describe ClassName block.

	Use .method to describe class methods and #method to describe instance
methods.

	Use context to test branching logic.

	Try to match the ordering of tests to the ordering within the class.

	Try to follow the [Four-Phase Test][four-phase-test] pattern, using newlines
to separate phases.

	Use Gitlab.config.gitlab.host rather than hard coding ‘localhost’

	Don’t assert against the absolute value of a sequence-generated attribute (see
[Gotchas](../gotchas.md#dont-assert-against-the-absolute-value-of-a-sequence-generated-attribute)).

	Don’t supply the :each argument to hooks since it’s the default.

	On before and after hooks, prefer it scoped to :context over :all

	When using evaluate_script(“$(‘.js-foo’).testSomething()”) (or execute_script) which acts on a given element,
use a Capyabara matcher beforehand (e.g. find(‘.js-foo’)) to ensure the element actually exists.

[four-phase-test]: https://robots.thoughtbot.com/four-phase-test

System / Feature tests

NOTE: Note: Before writing a new system test, [please consider not
writing one](testing_levels.md#consider-not-writing-a-system-test)!

	Feature specs should be named ROLE_ACTION_spec.rb, such as
user_changes_password_spec.rb.

	Use scenario titles that describe the success and failure paths.

	Avoid scenario titles that add no information, such as “successfully”.

	Avoid scenario titles that repeat the feature title.

	Create only the necessary records in the database

	Test a happy path and a less happy path but that’s it

	Every other possible path should be tested with Unit or Integration tests

	Test what’s displayed on the page, not the internals of ActiveRecord models.
For instance, if you want to verify that a record was created, add
expectations that its attributes are displayed on the page, not that
Model.count increased by one.

	It’s ok to look for DOM elements but don’t abuse it since it makes the tests
more brittle

Debugging Capybara

Sometimes you may need to debug Capybara tests by observing browser behavior.

Live debug

You can pause Capybara and view the website on the browser by using the
live_debug method in your spec. The current page will be automatically opened
in your default browser.
You may need to sign in first (the current user’s credentials are displayed in
the terminal).

To resume the test run, press any key.

For example:

```
$ bin/rspec spec/features/auto_deploy_spec.rb:34
Running via Spring preloader in process 8999
Run options: include {:locations=>{“./spec/features/auto_deploy_spec.rb”=>[34]}}

Current example is paused for live debugging
The current user credentials are: user2 / 12345678
Press any key to resume the execution of the example!
Back to the example!
.

Finished in 34.51 seconds (files took 0.76702 seconds to load)
1 example, 0 failures
```

Note: live_debug only works on javascript enabled specs.

Run :js spec in a visible browser

Run the spec with CHROME_HEADLESS=0, e.g.:

`
CHROME_HEADLESS=0 bundle exec rspec some_spec.rb
`

The test will go by quickly, but this will give you an idea of what’s happening.

You can also add byebug or binding.pry to pause execution and [step through](../pry_debugging.md#stepping)
the test.

Screenshots

We use the capybara-screenshot gem to automatically take a screenshot on
failure. In CI you can download these files as job artifacts.

Also, you can manually take screenshots at any point in a test by adding the
methods below. Be sure to remove them when they are no longer needed! See
https://github.com/mattheworiordan/capybara-screenshot#manual-screenshots for
more.

Add screenshot_and_save_page in a :js spec to screenshot what Capybara
“sees”, and save the page source.

Add screenshot_and_open_image in a :js spec to screenshot what Capybara
“sees”, and automatically open the image.

The HTML dumps created by this are missing CSS.
This results in them looking very different from the actual application.
There is a [small hack](https://gitlab.com/gitlab-org/gitlab-ce/snippets/1718469) to add CSS which makes debugging easier.

Fast unit tests

Some classes are well-isolated from Rails and you should be able to test them
without the overhead added by the Rails environment and Bundler’s :default
group’s gem loading. In these cases, you can require ‘fast_spec_helper’
instead of require ‘spec_helper’ in your test file, and your test should run
really fast since:

	Gems loading is skipped

	Rails app boot is skipped

	gitlab-shell and Gitaly setup are skipped

	Test repositories setup are skipped

fast_spec_helper also support autoloading classes that are located inside the
lib/ directory. It means that as long as your class / module is using only
code from the lib/ directory you will not need to explicitly load any
dependencies. fast_spec_helper also loads all ActiveSupport extensions,
including core extensions that are commonly used in the Rails environment.

Note that in some cases, you might still have to load some dependencies using
require_dependency when a code is using gems or a dependency is not located
in lib/.

For example, if you want to test your code that is calling the
Gitlab::UntrustedRegexp class, which under the hood uses re2 library, you
should either add require_dependency ‘re2’ to files in your library that
need re2 gem, to make this requirement explicit, or you can add it to the
spec itself, but the former is preferred.

It takes around one second to load tests that are using fast_spec_helper
instead of 30+ seconds in case of a regular spec_helper.

let variables

GitLab’s RSpec suite has made extensive use of let variables to reduce
duplication. However, this sometimes [comes at the cost of clarity][lets-not],
so we need to set some guidelines for their use going forward:

	let variables are preferable to instance variables. Local variables are
preferable to let variables.

	Use let to reduce duplication throughout an entire spec file.

	Don’t use let to define variables used by a single test; define them as
local variables inside the test’s it block.

	Don’t define a let variable inside the top-level describe block that’s
only used in a more deeply-nested context or describe block. Keep the
definition as close as possible to where it’s used.

	Try to avoid overriding the definition of one let variable with another.

	Don’t define a let variable that’s only used by the definition of another.
Use a helper method instead.

[lets-not]: https://robots.thoughtbot.com/lets-not

set variables

In some cases there is no need to recreate the same object for tests again for
each example. For example, a project is needed to test issues on the same
project, one project will do for the entire file. This can be achieved by using
set in the same way you would use let.

rspec-set only works on ActiveRecord objects, and before new examples it
reloads or recreates the model, _only_ if needed. That is, when you changed
properties or destroyed the object.

There is one gotcha; you can’t reference a model defined in a let block in a
set block.

Time-sensitive tests

[Timecop](https://github.com/travisjeffery/timecop) is available in our
Ruby-based tests for verifying things that are time-sensitive. Any test that
exercises or verifies something time-sensitive should make use of Timecop to
prevent transient test failures.

Example:

```ruby
it ‘is overdue’ do


issue = build(:issue, due_date: Date.tomorrow)


	Timecop.freeze(3.days.from_now) do
	expect(issue).to be_overdue





end





end

### Table-based / Parameterized tests

This style of testing is used to exercise one piece of code with a comprehensive
range of inputs. By specifying the test case once, alongside a table of inputs
and the expected output for each, your tests can be made easier to read and more
compact.

We use the [rspec-parameterized](https://github.com/tomykaira/rspec-parameterized)
gem. A short example, using the table syntax and checking Ruby equality for a
range of inputs, might look like this:

```ruby
describe “#==” do

using RSpec::Parameterized::TableSyntax

let(:project1) { create(:project) }
let(:project2) { create(:project) }
where(:a, :b, :result) do

1 | 1 | true
1 | 2 | false
true | true | true
true | false | false
project1 | project1 | true
project2 | project2 | true
project 1 | project2 | false

end

	with_them do
	it { expect(a == b).to eq(result) }

	it ‘is isomorphic’ do
	expect(b == a).to eq(result)

end

end

end

Prometheus tests

Prometheus metrics may be preserved from one test run to another. To ensure that metrics are
reset before each example, add the :prometheus tag to the Rspec test.

Matchers

Custom matchers should be created to clarify the intent and/or hide the
complexity of RSpec expectations.They should be placed under
spec/support/matchers/. Matchers can be placed in subfolder if they apply to
a certain type of specs only (e.g. features, requests etc.) but shouldn’t be if
they apply to multiple type of specs.

have_gitlab_http_status

Prefer have_gitlab_http_status over have_http_status because the former
could also show the response body whenever the status mismatched. This would
be very useful whenever some tests start breaking and we would love to know
why without editing the source and rerun the tests.

This is especially useful whenever it’s showing 500 internal server error.

Shared contexts

All shared contexts should be be placed under spec/support/shared_contexts/.
Shared contexts can be placed in subfolder if they apply to a certain type of
specs only (e.g. features, requests etc.) but shouldn’t be if they apply to
multiple type of specs.

Each file should include only one context and have a descriptive name, e.g.
spec/support/shared_contexts/controllers/githubish_import_controller_shared_context.rb.

Shared examples

All shared examples should be be placed under spec/support/shared_examples/.
Shared examples can be placed in subfolder if they apply to a certain type of
specs only (e.g. features, requests etc.) but shouldn’t be if they apply to
multiple type of specs.

Each file should include only one context and have a descriptive name, e.g.
spec/support/shared_examples/controllers/githubish_import_controller_shared_example.rb.

Helpers

Helpers are usually modules that provide some methods to hide the complexity of
specific RSpec examples. You can define helpers in RSpec files if they’re not
intended to be shared with other specs. Otherwise, they should be be placed
under spec/support/helpers/. Helpers can be placed in subfolder if they apply
to a certain type of specs only (e.g. features, requests etc.) but shouldn’t be
if they apply to multiple type of specs.

Helpers should follow the Rails naming / namespacing convention. For instance
spec/support/helpers/cycle_analytics_helpers.rb should define:

```ruby
module Spec



	module Support
	
	module Helpers
	
	module CycleAnalyticsHelpers
	
	def create_commit_referencing_issue(issue, branch_name: random_git_name)
	project.repository.add_branch(user, branch_name, ‘master’)
create_commit(“Commit for ##{issue.iid}”, issue.project, user, branch_name)





end





end





end





end







end

Helpers should not change the RSpec config. For instance, the helpers module
described above should not include:

```ruby
RSpec.configure do |config|

config.include Spec::Support::Helpers::CycleAnalyticsHelpers

end

Factories

GitLab uses [factory_bot] as a test fixture replacement.

	Factory definitions live in spec/factories/, named using the pluralization
of their corresponding model (User factories are defined in users.rb).

	There should be only one top-level factory definition per file.

	FactoryBot methods are mixed in to all RSpec groups. This means you can (and
should) call create(…) instead of FactoryBot.create(…).

	Make use of [traits] to clean up definitions and usages.

	When defining a factory, don’t define attributes that are not required for the
resulting record to pass validation.

	When instantiating from a factory, don’t supply attributes that aren’t
required by the test.

	Factories don’t have to be limited to ActiveRecord objects.
[See example](https://gitlab.com/gitlab-org/gitlab-ce/commit/0b8cefd3b2385a21cfed779bd659978c0402766d).

[factory_bot]: https://github.com/thoughtbot/factory_bot
[traits]: http://www.rubydoc.info/gems/factory_bot/file/GETTING_STARTED.md#Traits

Fixtures

All fixtures should be be placed under spec/fixtures/.

Config

RSpec config files are files that change the RSpec config (i.e.
RSpec.configure do |config| blocks). They should be placed under
spec/support/.

Each file should be related to a specific domain, e.g.
spec/support/capybara.rb, spec/support/carrierwave.rb, etc.

If a helpers module applies only to a certain kind of specs, it should add
modifiers to the config.include call. For instance if
spec/support/helpers/cycle_analytics_helpers.rb applies to :lib and
type: :model specs only, you would write the following:

```ruby
RSpec.configure do |config|


config.include Spec::Support::Helpers::CycleAnalyticsHelpers, :lib
config.include Spec::Support::Helpers::CycleAnalyticsHelpers, type: :model







end

If a config file only consists of config.include, you can add these
config.include directly in spec/spec_helper.rb.

For very generic helpers, consider including them in the spec/support/rspec.rb
file which is used by the spec/fast_spec_helper.rb file. See
[Fast unit tests](#fast-unit-tests) for more details about the
spec/fast_spec_helper.rb file.

—

[Return to Testing documentation](index.md)





            

          

      

      

    

  

    
      
          
            
  # GitLab tests in the Continuous Integration (CI) context

### Test suite parallelization on the CI

Our current CI parallelization setup is as follows:


	The knapsack job in the prepare stage that is supposed to ensure we have a





knapsack/${CI_PROJECT_NAME}/rspec_report-master.json file:
- The knapsack/${CI_PROJECT_NAME}/rspec_report-master.json file is fetched


from S3, if it’s not here we initialize the file with {}.








	Each rspec x y job are run with knapsack rspec and should have an evenly





distributed share of tests:
- It works because the jobs have access to the


knapsack/${CI_PROJECT_NAME}/rspec_report-master.json since the “artifacts
from all previous stages are passed by default”. [^1]





	the jobs set their own report path to
KNAPSACK_REPORT_PATH=knapsack/${CI_PROJECT_NAME}/${JOB_NAME[0]}_node_${CI_NODE_INDEX}_${CI_NODE_TOTAL}_report.json.


	if knapsack is doing its job, test files that are run should be listed under
Report specs, not under Leftover specs.








	The update-knapsack job takes all the





knapsack/${CI_PROJECT_NAME}/${JOB_NAME[0]}_node_${CI_NODE_INDEX}_${CI_NODE_TOTAL}_report.json
files from the rspec x y jobs and merge them all together into a single
knapsack/${CI_PROJECT_NAME}/rspec_report-master.json file that is then
uploaded to S3.




After that, the next pipeline will use the up-to-date
knapsack/${CI_PROJECT_NAME}/rspec_report-master.json file.

### Monitoring

The GitLab test suite is [monitored] for the master branch, and any branch
that includes rspec-profile in their name.

A [public dashboard] is available for everyone to see. Feel free to look at the
slowest test files and try to improve them.

[monitored]: ../performance.md#rspec-profiling
[public dashboard]: https://redash.gitlab.com/public/dashboards/l1WhHXaxrCWM5Ai9D7YDqHKehq6OU3bx5gssaiWe?org_slug=default

## CI setup


	On CE and EE, the test suite runs both PostgreSQL and MySQL.


	Rails logging to log/test.log is disabled by default in CI [for
performance reasons][logging]. To override this setting, provide the
RAILS_ENABLE_TEST_LOG environment variable.




[logging]: https://jtway.co/speed-up-your-rails-test-suite-by-6-in-1-line-13fedb869ec4

—

[Return to Testing documentation](index.md)



            

          

      

      

    

  

    
      
          
            
  # End-to-End Testing

## What is End-to-End testing?

End-to-End testing is a strategy used to check whether your application works
as expected across entire software stack and architecture, including
integration of all microservices and components that are supposed to work
together.

## How do we test GitLab?

We use [Omnibus GitLab][omnibus-gitlab] to build GitLab packages and then we
test these packages using [GitLab QA][gitlab-qa] project, which is entirely
black-box, click-driven testing framework.

### Testing nightly builds

We run scheduled pipeline each night to test nightly builds created by Omnibus.
You can find these nightly pipelines at [GitLab QA pipelines page][gitlab-qa-pipelines].

### Testing code in merge requests

It is possible to run end-to-end tests (eventually being run within a
[GitLab QA pipeline][gitlab-qa-pipelines]) for a merge request by triggering
the package-and-qa manual action, that should be present in a merge request
widget.

Manual action that starts end-to-end tests is also available in merge requests
in Omnibus GitLab project.

Below you can read more about how to use it and how does it work.

#### How does it work?

Currently, we are using _multi-project pipeline_-like approach to run QA
pipelines.

1. Developer triggers a manual action, that can be found in CE and EE merge
requests. This starts a chain of pipelines in multiple projects.

1. The script being executed triggers a pipeline in GitLab Omnibus and waits
for the resulting status. We call this a _status attribution_.

1. GitLab packages are being built in Omnibus pipeline. Packages are going to be
pushed to Container Registry.

1. When packages are ready, and available in the registry, a final step in the
pipeline, that is now running in Omnibus, triggers a new pipeline in the GitLab
QA project. It also waits for a resulting status.

1. GitLab QA pulls images from the registry, spins-up containers and runs tests
against a test environment that has been just orchestrated by the gitlab-qa
tool.

1. The result of the GitLab QA pipeline is being propagated upstream, through
Omnibus, back to CE / EE merge request.

#### How do I write tests?

In order to write new tests, you first need to learn more about GitLab QA
architecture. See the [documentation about it][gitlab-qa-architecture] in
GitLab QA project.

Once you decided where to put test environment orchestration scenarios and
instance specs, take a look at the [relevant documentation][instance-qa-readme]
and examples in [the qa/ directory][instance-qa-examples].

## Where can I ask for help?

You can ask question in the #quality channel on Slack (GitLab internal) or
you can find an issue you would like to work on in
[the issue tracker][gitlab-qa-issues] and start a new discussion there.

[omnibus-gitlab]: https://gitlab.com/gitlab-org/omnibus-gitlab
[gitlab-qa]: https://gitlab.com/gitlab-org/gitlab-qa
[gitlab-qa-pipelines]: https://gitlab.com/gitlab-org/gitlab-qa/pipelines
[gitlab-qa-architecture]: https://gitlab.com/gitlab-org/gitlab-qa/blob/master/docs/architecture.md
[gitlab-qa-issues]: https://gitlab.com/gitlab-org/gitlab-qa/issues
[instance-qa-readme]: https://gitlab.com/gitlab-org/gitlab-ce/tree/master/qa/README.md
[instance-qa-examples]: https://gitlab.com/gitlab-org/gitlab-ce/tree/master/qa/qa



            

          

      

      

    

  

    
      
          
            
  # Flaky tests

## What’s a flaky test?

It’s a test that sometimes fails, but if you retry it enough times, it passes,
eventually.

## Automatic retries and flaky tests detection

On our CI, we use [rspec-retry] to automatically retry a failing example a few
times (see [spec/spec_helper.rb] for the precise retries count).

We also use a home-made RspecFlaky::Listener listener which records flaky
examples in a JSON report file on master (retrieve-tests-metadata and update-tests-metadata jobs), and warns when a new flaky example
is detected in any other branch (flaky-examples-check job). In the future, the
flaky-examples-check job will not be allowed to fail.

This was originally implemented in: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/13021.

[rspec-retry]: https://github.com/NoRedInk/rspec-retry
[spec/spec_helper.rb]: https://gitlab.com/gitlab-org/gitlab-ce/blob/master/spec/spec_helper.rb

## Problems we had in the past at GitLab


	[rspec-retry is bitting us when some API specs fail](https://gitlab.com/gitlab-org/gitlab-ce/issues/29242): https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/9825


	[Sporadic RSpec failures due to PG::UniqueViolation](https://gitlab.com/gitlab-org/gitlab-ce/issues/28307#note_24958837): https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/9846
- Follow-up: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/10688
- [Capybara.reset_session! should be called before requests are blocked](https://gitlab.com/gitlab-org/gitlab-ce/issues/33779): https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/12224


	FFaker generates funky data that tests are not ready to handle (and tests should be predictable so that’s bad!):
- [Make spec/mailers/notify_spec.rb more robust](https://gitlab.com/gitlab-org/gitlab-ce/issues/20121): https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/10015
- [Transient failure in spec/requests/api/commits_spec.rb](https://gitlab.com/gitlab-org/gitlab-ce/issues/27988#note_25342521): https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/9944
- [Replace FFaker factory data with sequences](https://gitlab.com/gitlab-org/gitlab-ce/issues/29643): https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/10184
- [Transient failure in spec/finders/issues_finder_spec.rb](https://gitlab.com/gitlab-org/gitlab-ce/issues/30211#note_26707685): https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/10404




### Time-sensitive flaky tests


	https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/10046


	https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/10306




### Array order expectation


	https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/10148




### Feature tests


	[Be sure to create all the data the test need before starting exercize](https://gitlab.com/gitlab-org/gitlab-ce/issues/32622#note_31128195): https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/12059


	[Bis](https://gitlab.com/gitlab-org/gitlab-ce/issues/34609#note_34048715): https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/12604


	[Bis](https://gitlab.com/gitlab-org/gitlab-ce/issues/34698#note_34276286): https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/12664


	[Assert against the underlying database state instead of against a page’s content](https://gitlab.com/gitlab-org/gitlab-ce/issues/31437): https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/10934




#### Capybara viewport size related issues


	[Transient failure of spec/features/issues/filtered_search/filter_issues_spec.rb](https://gitlab.com/gitlab-org/gitlab-ce/issues/29241#note_26743936): https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/10411




#### Capybara JS driver related issues


	[Don’t wait for AJAX when no AJAX request is fired](https://gitlab.com/gitlab-org/gitlab-ce/issues/30461): https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/10454


	[Bis](https://gitlab.com/gitlab-org/gitlab-ce/issues/34647): https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/12626




#### PhantomJS / WebKit related issues


	Memory is through the roof! (TL;DR: Load images but block images requests!): https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/12003




## Resources


	[Flaky Tests: Are You Sure You Want to Rerun Them?](http://semaphoreci.com/blog/2017/04/20/flaky-tests.html)


	[How to Deal With and Eliminate Flaky Tests](https://semaphoreci.com/community/tutorials/how-to-deal-with-and-eliminate-flaky-tests)


	[Tips on Treating Flakiness in your Rails Test Suite](http://semaphoreci.com/blog/2017/08/03/tips-on-treating-flakiness-in-your-test-suite.html)


	[‘Flaky’ tests: a short story](https://www.ombulabs.com/blog/rspec/continuous-integration/how-to-track-down-a-flaky-test.html)


	[Using Insights to Discover Flaky, Slow, and Failed Tests](https://circleci.com/blog/using-insights-to-discover-flaky-slow-and-failed-tests/)




—

[Return to Testing documentation](index.md)



            

          

      

      

    

  

    
      
          
            
  # Frontend testing standards and style guidelines

There are two types of test suites you’ll encounter while developing frontend code
at GitLab. We use Karma and Jasmine for JavaScript unit and integration testing,
and RSpec feature tests with Capybara for e2e (end-to-end) integration testing.

Unit and feature tests need to be written for all new features.
Most of the time, you should use [RSpec] for your feature tests.

Regression tests should be written for bug fixes to prevent them from recurring
in the future.

See the [Testing Standards and Style Guidelines](index.md) page for more
information on general testing practices at GitLab.

## Karma test suite

GitLab uses the [Karma][karma] test runner with [Jasmine] as its test
framework for our JavaScript unit and integration tests. For integration tests,
we generate HTML files using RSpec (see spec/javascripts/fixtures/*.rb for examples).
Some fixtures are still HAML templates that are translated to HTML files using the same mechanism (see static_fixtures.rb).
Adding these static fixtures should be avoided as they are harder to keep up to date with real views.
The existing static fixtures will be migrated over time.
Please see [gitlab-org/gitlab-ce#24753](https://gitlab.com/gitlab-org/gitlab-ce/issues/24753) to track our progress.
Fixtures are served during testing by the [jasmine-jquery][jasmine-jquery] plugin.

JavaScript tests live in spec/javascripts/, matching the folder structure
of app/assets/javascripts/: app/assets/javascripts/behaviors/autosize.js
has a corresponding spec/javascripts/behaviors/autosize_spec.js file.

Keep in mind that in a CI environment, these tests are run in a headless
browser and you will not have access to certain APIs, such as
[Notification](https://developer.mozilla.org/en-US/docs/Web/API/notification),
which will have to be stubbed.

### Best practices

#### Naming unit tests

When writing describe test blocks to test specific functions/methods,
please use the method name as the describe block name.

```javascript
// Good
describe(‘methodName’, () => {

	it(‘passes’, () => {
	expect(true).toEqual(true);

});

});

// Bad
describe(‘#methodName’, () => {

	it(‘passes’, () => {
	expect(true).toEqual(true);

});

});

// Bad
describe(‘.methodName’, () => {

	it(‘passes’, () => {
	expect(true).toEqual(true);

});

});

Testing promises

When testing Promises you should always make sure that the test is asynchronous and rejections are handled.
Your Promise chain should therefore end with a call of the done callback and done.fail in case an error occurred.

```javascript
// Good
it(‘tests a promise’, done => {



	promise
	
	.then(data => {
	expect(data).toBe(asExpected);





})
.then(done)
.catch(done.fail);








});

// Good
it(‘tests a promise rejection’, done => {



	promise
	.then(done.fail)
.catch(error => {


expect(error).toBe(expectedError);




})
.then(done)
.catch(done.fail);








});

// Bad (missing done callback)
it(‘tests a promise’, () => {



	promise.then(data => {
	expect(data).toBe(asExpected);





});




});

// Bad (missing catch)
it(‘tests a promise’, done => {



	promise
	
	.then(data => {
	expect(data).toBe(asExpected);





})
.then(done);








});

// Bad (use done.fail in asynchronous tests)
it(‘tests a promise’, done => {



	promise
	
	.then(data => {
	expect(data).toBe(asExpected);





})
.then(done)
.catch(fail);








});

// Bad (missing catch)
it(‘tests a promise rejection’, done => {



	promise
	
	.catch(error => {
	expect(error).toBe(expectedError);





})
.then(done);











});

#### Stubbing and Mocking

Jasmine provides useful helpers spyOn, spyOnProperty, jasmine.createSpy,
and jasmine.createSpyObject to facilitate replacing methods with dummy
placeholders, and recalling when they are called and the arguments that are
passed to them. These tools should be used liberally, to test for expected
behavior, to mock responses, and to block unwanted side effects (such as a
method that would generate a network request or alter window.location). The
documentation for these methods can be found in the [jasmine introduction page](https://jasmine.github.io/2.0/introduction.html#section-Spies).

Sometimes you may need to spy on a method that is directly imported by another
module. GitLab has a custom spyOnDependency method which utilizes
[babel-plugin-rewire](https://github.com/speedskater/babel-plugin-rewire) to
achieve this. It can be used like so:

```javascript
// my_module.js
import { visitUrl } from ‘~/lib/utils/url_utility’;

	export default function doSomething() {
	visitUrl(‘/foo/bar’);

}

// my_module_spec.js
import doSomething from ‘~/my_module’;

	describe(‘my_module’, () => {
	
	it(‘does something’, () => {
	const visitUrl = spyOnDependency(doSomething, ‘visitUrl’);

doSomething();
expect(visitUrl).toHaveBeenCalledWith(‘/foo/bar’);

});

});

Unlike spyOn, spyOnDependency expects its first parameter to be the default
export of a module who’s import you want to stub, rather than an object which
contains a method you wish to stub (if the module does not have a default
export, one is be generated by the babel plugin). The second parameter is the
name of the import you wish to change. The result of the function is a Spy
object which can be treated like any other jasmine spy object.

Further documentation on the babel rewire pluign API can be found on
[its repository Readme doc](https://github.com/speedskater/babel-plugin-rewire#babel-plugin-rewire).

Waiting in tests

If you cannot avoid using [setTimeout](https://developer.mozilla.org/en-US/docs/Web/API/WindowOrWorkerGlobalScope/setTimeout) in tests, please use the [Jasmine mock clock](https://jasmine.github.io/api/2.9/Clock.html).

Vue.js unit tests

See this [section][vue-test].

Running frontend tests

rake karma runs the frontend-only (JavaScript) tests.
It consists of two subtasks:

	rake karma:fixtures (re-)generates fixtures

	rake karma:tests actually executes the tests

As long as the fixtures don’t change, rake karma:tests (or yarn karma)
is sufficient (and saves you some time).

Live testing and focused testing

While developing locally, it may be helpful to keep karma running so that you
can get instant feedback on as you write tests and modify code. To do this
you can start karma with yarn run karma-start. It will compile the javascript
assets and run a server at http://localhost:9876/ where it will automatically
run the tests on any browser which connects to it. You can enter that url on
multiple browsers at once to have it run the tests on each in parallel.

While karma is running, any changes you make will instantly trigger a recompile
and retest of the entire test suite, so you can see instantly if you’ve broken
a test with your changes. You can use [jasmine focused][jasmine-focus] or
excluded tests (with fdescribe or xdescribe) to get karma to run only the
tests you want while you’re working on a specific feature, but make sure to
remove these directives when you commit your code.

It is also possible to only run karma on specific folders or files by filtering
the run tests via the argument –filter-spec or short -f:

`bash
Run all files
yarn karma-start
Run specific spec files
yarn karma-start --filter-spec profile/account/components/update_username_spec.js
Run specific spec folder
yarn karma-start --filter-spec profile/account/components/
Run all specs which path contain vue_shared or vie
yarn karma-start -f vue_shared -f vue_mr_widget
`

You can also use glob syntax to match files. Remember to put quotes around the
glob otherwise your shell may split it into multiple arguments:

`bash
Run all specs named `file_spec` within the IDE subdirectory
yarn karma -f 'spec/javascripts/ide/**/file_spec.js'
`

RSpec feature integration tests

Information on setting up and running RSpec integration tests with
[Capybara] can be found in the [Testing Best Practices](best_practices.md).

Gotchas

Errors due to use of unsupported JavaScript features

Similar errors will be thrown if you’re using JavaScript features not yet
supported by the PhantomJS test runner which is used for both Karma and RSpec
tests. We polyfill some JavaScript objects for older browsers, but some
features are still unavailable:

	Array.from

	Array.first

	Async functions

	Generators

	Array destructuring

	For..Of

	Symbol/Symbol.iterator

	Spread

Until these are polyfilled appropriately, they should not be used. Please
update this list with additional unsupported features.

RSpec errors due to JavaScript

By default RSpec unit tests will not run JavaScript in the headless browser
and will simply rely on inspecting the HTML generated by rails.

If an integration test depends on JavaScript to run correctly, you need to make
sure the spec is configured to enable JavaScript when the tests are run. If you
don’t do this you’ll see vague error messages from the spec runner.

To enable a JavaScript driver in an rspec test, add :js to the
individual spec or the context block containing multiple specs that need
JavaScript enabled:

```ruby
# For one spec
it ‘presents information about abuse report’, :js do


# assertions…




end


	describe “Admin::AbuseReports”, :js do
	
	it ‘presents information about abuse report’ do
	# assertions…





end
it ‘shows buttons for adding to abuse report’ do


# assertions…




end








end

[jasmine-focus]: https://jasmine.github.io/2.5/focused_specs.html
[jasmine-jquery]: https://github.com/velesin/jasmine-jquery
[karma]: http://karma-runner.github.io/
[vue-test]: https://docs.gitlab.com/ce/development/fe_guide/vue.html#testing-vue-components
[rspec]: https://github.com/rspec/rspec-rails#feature-specs
[capybara]: https://github.com/teamcapybara/capybara
[karma]: http://karma-runner.github.io/
[jasmine]: https://jasmine.github.io/

—

[Return to Testing documentation](index.md)





            

          

      

      

    

  

    
      
          
            
  # Testing standards and style guidelines

This document describes various guidelines and best practices for automated
testing of the GitLab project.

It is meant to be an _extension_ of the [thoughtbot testing
styleguide](https://github.com/thoughtbot/guides/tree/master/style/testing). If
this guide defines a rule that contradicts the thoughtbot guide, this guide
takes precedence. Some guidelines may be repeated verbatim to stress their
importance.

## Overview

GitLab is built on top of [Ruby on Rails][rails], and we’re using [RSpec] for all
the backend tests, with [Capybara] for end-to-end integration testing.
On the frontend side, we’re using [Karma] and [Jasmine] for JavaScript unit and
integration testing.

Following are two great articles that everyone should read to understand what
automated testing means, and what are its principles:


	[Five Factor Testing](https://www.devmynd.com/blog/five-factor-testing): Why do we need tests?


	[Principles of Automated Testing](http://www.lihaoyi.com/post/PrinciplesofAutomatedTesting.html): Levels of testing. Prioritize tests. Cost of tests.




—

## [Testing levels](testing_levels.md)

Learn about the different testing levels, and how to decide at what level your
changes should be tested.

—

## [Testing best practices](best_practices.md)

Everything you should know about how to write good tests: RSpec, FactoryBot,
system tests, parameterized tests etc.

—

## [Frontend testing standards and style guidelines](frontend_testing.md)

Everything you should know about how to write good Frontend tests: Karma,
testing promises, stubbing etc.

—

## [Flaky tests](flaky_tests.md)

What are flaky tests, the different kind of flaky tests we encountered, and what
we do about them.

—

## [GitLab tests in the Continuous Integration (CI) context](ci.md)

How GitLab test suite is run in the CI context: setup, caches, artifacts,
parallelization, monitoring.

—

## [Testing Rake tasks](testing_rake_tasks.md)

Everything you should know about how to test Rake tasks.

—

## [End-to-end tests](end_to_end_tests.md)

Everything you should know about how to run end-to-end tests using
[GitLab QA][gitlab-qa] testing framework.

—

[Return to Development documentation](../README.md)

[^1]: /ci/yaml/README.html#dependencies

[rails]: http://rubyonrails.org/
[RSpec]: https://github.com/rspec/rspec-rails#feature-specs
[Capybara]: https://github.com/teamcapybara/capybara
[Karma]: http://karma-runner.github.io/
[Jasmine]: https://jasmine.github.io/
[gitlab-qa]: https://gitlab.com/gitlab-org/gitlab-qa



            

          

      

      

    

  

    
      
          
            
  # Testing levels

![Testing priority triangle](img/testing_triangle.png)

_This diagram demonstrates the relative priority of each test type we use. e2e stands for end-to-end._

## Unit tests

Formal definition: https://en.wikipedia.org/wiki/Unit_testing

These kind of tests ensure that a single unit of code (a method) works as
expected (given an input, it has a predictable output). These tests should be
isolated as much as possible. For example, model methods that don’t do anything
with the database shouldn’t need a DB record. Classes that don’t need database
records should use stubs/doubles as much as possible.


Code path | Tests path | Testing engine | Notes |

——— | ———- | ————– | —– |

app/finders/ | spec/finders/ | RSpec | |

app/helpers/ | spec/helpers/ | RSpec | |

app/db/{post_,}migrate/ | spec/migrations/ | RSpec | More details at [spec/migrations/README.md](https://gitlab.com/gitlab-org/gitlab-ce/blob/master/spec/migrations/README.md). |

app/policies/ | spec/policies/ | RSpec | |

app/presenters/ | spec/presenters/ | RSpec | |

app/routing/ | spec/routing/ | RSpec | |

app/serializers/ | spec/serializers/ | RSpec | |

app/services/ | spec/services/ | RSpec | |

app/tasks/ | spec/tasks/ | RSpec | |

app/uploaders/ | spec/uploaders/ | RSpec | |

app/views/ | spec/views/ | RSpec | |

app/workers/ | spec/workers/ | RSpec | |

app/assets/javascripts/ | spec/javascripts/ | Karma | More details in the [Frontend Testing guide](frontend_testing.md) section. |



## Integration tests

Formal definition: https://en.wikipedia.org/wiki/Integration_testing

These kind of tests ensure that individual parts of the application work well together, without the overhead of the actual app environment (i.e. the browser). These tests should assert at the request/response level: status code, headers, body. They’re useful to test permissions, redirections, what view is rendered etc.


Code path | Tests path | Testing engine | Notes |

——— | ———- | ————– | —– |

app/controllers/ | spec/controllers/ | RSpec | |

app/mailers/ | spec/mailers/ | RSpec | |

lib/api/ | spec/requests/api/ | RSpec | |

lib/ci/api/ | spec/requests/ci/api/ | RSpec | |

app/assets/javascripts/ | spec/javascripts/ | Karma | More details in the [JavaScript](#javascript) section. |



### About controller tests

In an ideal world, controllers should be thin. However, when this is not the
case, it’s acceptable to write a system/feature test without JavaScript instead
of a controller test. The reason is that testing a fat controller usually
involves a lot of stubbing, things like:

`ruby
controller.instance_variable_set(:@user, user)
`

and use methods which are deprecated in Rails 5 ([#23768]).

[#23768]: https://gitlab.com/gitlab-org/gitlab-ce/issues/23768

### About Karma

As you may have noticed, Karma is both in the Unit tests and the Integration
tests category. That’s because Karma is a tool that provides an environment to
run JavaScript tests, so you can either run unit tests (e.g. test a single
JavaScript method), or integration tests (e.g. test a component that is composed
of multiple components).

## System tests or feature tests

Formal definition: https://en.wikipedia.org/wiki/System_testing.

These kind of tests ensure the application works as expected from a user point
of view (aka black-box testing). These tests should test a happy path for a
given page or set of pages, and a test case should be added for any regression
that couldn’t have been caught at lower levels with better tests (i.e. if a
regression is found, regression tests should be added at the lowest-level
possible).


Tests path | Testing engine | Notes |

———- | ————– | —– |

spec/features/ | [Capybara] + [RSpec] | If your spec has the :js metadata, the browser driver will be [Poltergeist], otherwise it’s using [RackTest]. |



### Consider not writing a system test!

If we’re confident that the low-level components work well (and we should be if
we have enough Unit & Integration tests), we shouldn’t need to duplicate their
thorough testing at the System test level.

It’s very easy to add tests, but a lot harder to remove or improve tests, so one
should take care of not introducing too many (slow and duplicated) specs.

The reasons why we should follow these best practices are as follows:


	System tests are slow to run since they spin up the entire application stack
in a headless browser, and even slower when they integrate a JS driver


	When system tests run with a JavaScript driver, the tests are run in a
different thread than the application. This means it does not share a
database connection and your test will have to commit the transactions in
order for the running application to see the data (and vice-versa). In that
case we need to truncate the database after each spec instead of simply
rolling back a transaction (the faster strategy that’s in use for other kind
of tests). This is slower than transactions, however, so we want to use
truncation only when necessary.




[Poltergeist]: https://github.com/teamcapybara/capybara#poltergeist
[RackTest]: https://github.com/teamcapybara/capybara#racktest

## Black-box tests or end-to-end tests

GitLab consists of [multiple pieces] such as [GitLab Shell], [GitLab Workhorse],
[Gitaly], [GitLab Pages], [GitLab Runner], and GitLab Rails. All theses pieces
are configured and packaged by [GitLab Omnibus].

[GitLab QA] is a tool that allows to test that all these pieces integrate well
together by building a Docker image for a given version of GitLab Rails and
running feature tests (i.e. using Capybara) against it.

The actual test scenarios and steps are [part of GitLab Rails] so that they’re
always in-sync with the codebase.

Read a separate document about [end-to-end tests](end_to_end_tests.md) to
learn more.

[multiple pieces]: ../architecture.md#components
[GitLab Shell]: https://gitlab.com/gitlab-org/gitlab-shell
[GitLab Workhorse]: https://gitlab.com/gitlab-org/gitlab-workhorse
[Gitaly]: https://gitlab.com/gitlab-org/gitaly
[GitLab Pages]: https://gitlab.com/gitlab-org/gitlab-pages
[GitLab Runner]: https://gitlab.com/gitlab-org/gitlab-runner
[GitLab Omnibus]: https://gitlab.com/gitlab-org/omnibus-gitlab
[GitLab QA]: https://gitlab.com/gitlab-org/gitlab-qa
[part of GitLab Rails]: https://gitlab.com/gitlab-org/gitlab-ce/tree/master/qa

## EE-specific tests

EE-specific tests follows the same organization, but under the ee/spec folder.

## How to test at the correct level?

As many things in life, deciding what to test at each level of testing is a
trade-off:


	Unit tests are usually cheap, and you should consider them like the basement
of your house: you need them to be confident that your code is behaving
correctly. However if you run only unit tests without integration / system
tests, you might [miss] the [big] [picture]!


	Integration tests are a bit more expensive, but don’t abuse them. A system test
is often better than an integration test that is stubbing a lot of internals.


	System tests are expensive (compared to unit tests), even more if they require
a JavaScript driver. Make sure to follow the guidelines in the [Speed](#test-speed)
section.




Another way to see it is to think about the “cost of tests”, this is well
explained [in this article][tests-cost] and the basic idea is that the cost of a
test includes:


	The time it takes to write the test


	The time it takes to run the test every time the suite runs


	The time it takes to understand the test


	The time it takes to fix the test if it breaks and the underlying code is OK


	Maybe, the time it takes to change the code to make the code testable.




### Frontend-related tests

There are cases where the behaviour you are testing is not worth the time spent
running the full application, for example, if you are testing styling, animation,
edge cases or small actions that don’t involve the backend,
you should write an integration test using Jasmine.

[miss]: https://twitter.com/ThePracticalDev/status/850748070698651649
[big]: https://twitter.com/timbray/status/822470746773409794
[picture]: https://twitter.com/withzombies/status/829716565834752000
[tests-cost]: https://medium.com/table-xi/high-cost-tests-and-high-value-tests-a86e27a54df#.2ulyh3a4e

—

[Return to Testing documentation](index.md)



            

          

      

      

    

  

    
      
          
            
  # Testing Rake tasks

To make testing Rake tasks a little easier, there is a helper that can be included
in lieu of the standard Spec helper. Instead of require ‘spec_helper’, use
require ‘rake_helper’. The helper includes spec_helper for you, and configures
a few other things to make testing Rake tasks easier.

At a minimum, requiring the Rake helper will redirect stdout, include the
runtime task helpers, and include the RakeHelpers Spec support module.

The RakeHelpers module exposes a run_rake_task(<task>) method to make
executing tasks simple. See spec/support/helpers/rake_helpers.rb for all available
methods.

Example:

```ruby
require ‘rake_helper’

	describe ‘gitlab:shell rake tasks’ do
	

	before do
	Rake.application.rake_require ‘tasks/gitlab/shell’

stub_warn_user_is_not_gitlab

end

	describe ‘install task’ do
	

	it ‘invokes create_hooks task’ do
	expect(Rake::Task[‘gitlab:shell:create_hooks’]).to receive(:invoke)

run_rake_task(‘gitlab:shell:install’)

end

end

end

—

[Return to Testing documentation](index.md)

 # Animation

Motion is a tool to help convey important relationships, changes or transitions between elements. It should be used sparingly and intentionally, highlighting the right elements at the right moment.

Timings

The longer distance an object travel, the timing should be longer for the animation. However, when in doubt, we should avoid large, full screen animations.

Subtle animations, or objects leaving the screen should take 100-200 milliseconds. Objects entering the screen, or motion we want to use to direct user attention can take between 200-400 milliseconds. We should avoid animations of longer than 400 milliseconds as they will make the experience appear sluggish. If a specific animation feels like it will need more than 400 milliseconds, revisit the animation to see if there is a simpler, easier, shorter animation to implement.

Easing

Easing specifies the rate of change of a parameter over time (see easings.net). Adding an easing curve will make the motion feel more natural. Being consistent with the easing curves will make the whole experience feel more cohesive and connected.

	When an object is entering the screen, or transforming the scale, position, or shape, use the easeOutQuint curve (cubic-bezier(0.23, 1, 0.32, 1))

	When an object is leaving the screen, or transforming the opacity or color, no easing curve is needed. It shouldn’t _slow down_ as it is exiting the screen, as that draws attention on the leaving object, where we don’t want it. Adding easing to opacity and color transitions will make the motion appear less smooth. Therefore, for these cases, motion should just be linear.

Types of animations

Hover

Interactive elements (links, buttons, etc.) should have a hover state. A subtle animation for this transition adds a polished feel. We should target a 100ms - 150ms linear transition for a color hover effect.

View the [interactive example](http://codepen.io/awhildy/full/GNyEvM/) here.

![Hover animation](img/animation-hover.gif)

Dropdowns

The dropdown menu should feel like it is appearing from the triggering element. Combining a position shift 400ms cubic-bezier(0.23, 1, 0.32, 1) with an opacity animation 200ms linear on the second half of the motion achieves this affect.

View the [interactive example](http://codepen.io/awhildy/full/jVLJpb/) here.

![Dropdown animation](img/animation-dropdown.gif)

Quick update

When information is updating in place, a quick, subtle animation is needed. The previous content should cut out, and the new content should have a quick, 200ms linear fade in.

![Quick update animation](img/animation-quickupdate.gif)

Skeleton loading

Skeleton loading is explained in the [component section](components.html#skeleton-loading) of the UX guide. It includes a horizontally pulsating animation that shows motion as if it’s growing. It’s timing is a slower linear 1s.

![Skeleton loading animation](img/skeleton-loading.gif)

Moving transitions

When elements move on screen, there should be a quick animation so it is clear to users what moved where. The timing of this animation differs based on the amount of movement and change. Consider animations between 200ms and 400ms.

Shifting elements on reorder
An example of a moving transition is when elements have to move out of the way when you drag an element.

View the [interactive example](http://codepen.io/awhildy/full/ALyKPE/) here.

![Reorder animation](img/animation-reorder.gif)

Autoscroll the page

Another example of a moving transition is when you have to autoscroll the page to keep an active element visible.

View the [interactive example](http://codepen.io/awhildy/full/PbxgVo/) here.

![Autoscroll animation](img/animation-autoscroll.gif)

 # Basics

Contents
* [Responsive](#responsive)
* [Typography](#typography)
* [Icons](#icons)
* [Color](#color)
* [Cursors](#cursors)

—

Responsive
GitLab is a responsive experience that works well across all screen sizes, from mobile devices to large monitors. In order to provide a great user experience, the core functionality (browsing files, creating issues, writing comments, etc.) must be available at all resolutions. However, due to size limitations, some secondary functionality may be hidden on smaller screens. Please keep this functionality limited to rare actions that aren’t expected to be needed on small devices.

—

Typography
Primary typeface
GitLab’s main typeface used throughout the UI is Source Sans Pro. We support both the bold and regular weight.

![Source Sans Pro sample](img/sourcesanspro-sample.png)

Monospace typeface
This is the typeface used for code blocks and references to commits, branches, and tags (.commit-sha or .ref-name). GitLab uses the OS default font.
- Menlo (Mac)
- Consolas (Windows)
- Liberation Mono (Linux)

![Monospace font sample](img/monospacefont-sample.png)

—

Icons

GitLab has a strong, unique personality. When you look at any screen, you should know immediately that it is GitLab.
Iconography is a powerful visual cue to the user and is a great way for us to reflect our particular sense of style.

	Standard size: 16px * 16px

	Border thickness: 2px

	Border radius: 3px

![Icon sampler](img/icon-spec.png)

> TODO: List all icons, proper usage, hover, and active states.

—

Color

| State | Action |

:——: | :——- | :——- |

![Blue](img/color-blue.png) | Primary and active (such as the current tab) | Organizational, managing, and retry commands|

![Green](img/color-green.png) | Opened | Create new objects |

![Orange](img/color-orange.png) | Warning | Non destructive action |

![Red](img/color-red.png) | Closed | Delete and other destructive commands |

![Grey](img/color-grey.png) | Neutral | Neutral secondary commands |

Text colors

|||
| :—: | :— |
| ![Text primary](img/color-textprimary.png) | Used for primary body text, such as issue description and comment |
| ![Text secondary](img/color-textsecondary.png) | Used for secondary body text, such as username and date |

> TODO: Establish a perspective for color in terms of our personality and rationalize with Marketing usage.

—

Cursors
The mouse cursor is key in helping users understand how to interact with elements on the screen.

| |

:——: | :——- |

![Default cursor](img/cursors-default.png) | Default cursor |

![Pointer cursor](img/cursors-pointer.png) | Pointer cursor: used to indicate that you can click on an element to invoke a command or navigate, such as links and buttons |

![Move cursor](img/cursors-move.png) | Move cursor: used to indicate that you can move an element around on the screen |

![Pan opened cursor](img/cursors-panopened.png) | Pan cursor (opened): indicates that you can grab and move the entire canvas, affecting what is seen in the view port. |

![Pan closed cursor](img/cursors-panclosed.png) | Pan cursor (closed): indicates that you are actively panning the canvas. |

![I-beam cursor](img/cursors-ibeam.png) | I-beam cursor: indicates that this is either text that you can select and copy, or a text field that you can click into to enter text. |

 # Components

Contents
* [Tooltips](#tooltips)
* [Anchor links](#anchor-links)
* [Buttons](#buttons)
* [Dropdowns](#dropdowns)
* [Counts](#counts)
* [Lists](#lists)
* [Tables](#tables)
* [Blocks](#blocks)
* [Panels](#panels)
* [Modals](#modals)
* [Alerts](#alerts)
* [Forms](#forms)
* [Search box](#search-box)
* [File holders](#file-holders)
* [Data formats](#data-formats)

—

Tooltips
Tooltips identify elements or provide additional, useful information about the referring elements. Tooltips are different from ALT-attributes, which are intended primarily for static images. Tooltips are summoned by:

	Hovering over an element with a cursor

	Focusing on an element with a keyboard (usually the tab key)

	Upon touch

Usage
A tooltip should be used:
* When there isn’t enough space to show the information
* When it isn’t critical for the user to see the information
* For icons that don’t have a label

Tooltips shouldn’t repeat information that is shown near the referring element. However, they can show the same data in a different format (e.g. date or timestamps).

![Tooltip usage](img/tooltip-usage.png)

Placement
By default, tooltips should be placed below the referring element. However, if there isn’t enough space in the viewport, the tooltip should be moved to the side as needed.

![Tooltip placement location](img/tooltip-placement.png)

—

Popovers

Popovers provide additional, useful, unique information about the referring elements and can provide one or multiple actionable elements. They inform the user of additional information within the context of their original view, but without forcing the user to act upon it like a modal. Popovers are different from tooltips, which do not provide rich markup and actionable items. A popover can contain a header section with a different background color.

Popovers are summoned:

	Upon hover or touch on an element

Usage
A popover should be used:
* When you don’t want to let the user lose context, but still want to provide additional useful unique information about referring elements
* When it isn’t critical for the user to act upon the information
* When you want to give a user a summary of extended information and the option to switch context if they want to dive in deeper.

Styling

A popover can contain a header section with a different background color if that improves readability and separation of content within.

![Popover usage](img/popover-placement-below.png)

This example shows two sections, where each section includes an actionable element. The first section shows a summary of the content shown when clicking the “read more” link. With this information the user can decide to dive deeper or start their GitLab Enterprise Edition trial immediately.

Placement
By default, tooltips should be placed below the referring element. However, if there isn’t enough space in the viewport or it blocks related content, the tooltip should be moved to the side or above as needed.

![Tooltip placement location](img/popover-placement-above.png)

In this example we let the user know more about the setting they are deciding over, without loosing context. If they want to know even more they can do so, but with the expectation of opening that content in a new view.

—

Anchor links

Anchor links are used for navigational actions and lone, secondary commands (such as ‘Reset filters’ on the Issues List) when deemed appropriate by the UX team.

States

Rest

Primary links are blue in their rest state. Secondary links (such as the time stamp on comments) are a neutral gray color in rest. Details on the main GitLab navigation links can be found on the [features](features.md#navigation) page.

Hover

On hover, an underline should be added and the color should change. Both the primary and secondary link should become the darker blue color on hover.

Focus

The focus state should match the hover state.

![Anchor link states](img/components-anchorlinks.png)

—

Buttons

Buttons communicate the command that will occur when the user clicks on them.

Types

Primary
Primary buttons communicate the main call to action. There should only be one call to action in any given experience. Visually, primary buttons are conveyed with a full background fill

![Primary button example](img/button-primary.png)

Secondary
Secondary buttons are for alternative commands. They should be conveyed by a button with a stroke, and no background fill.

![Secondary button example](img/button-secondary.png)

Icon and text treatment
Text should be in sentence case, where only the first word is capitalized. “Create issue” is correct, not “Create Issue”. Buttons should only contain an icon or a text, not both.

> TODO: Rationalize this. Ensure that we still believe this.

Colors
The default color treatment is the white/grey button. Follow the guidance on the [basics](basics.md#color) page to add meaningful color to a button.

Secondary states

Primary buttons darken the color of their background and border for hover, focus and active states. An inner shadow is added to the active state to denote the button being pressed.

Values | Info | Success | Warning | Danger |

:—— | :——: | :——: | :——: | :——: |

Background: $color-light
 Border: $border-color-light | | | | |

Background: $color-normal
 Border: $border-color-normal | | | | |

Background: $color-dark
 Border: $border-color-dark | | | | |

Since secondary buttons only have a border on their resting state, their hover and focus states add a background color, which gets darkened on active.

Values | Success Secondary | Close | Spam |

:—— | :——: | :——: | :——: |

Font: $border-color-light
 Border: $border-color-light | | | |

Background: $color-light
 Border: $border-color-light | | | |

Background: $color-normal
 Border: $border-color-normal | | | |

Placement

When there are a group of buttons in a dialog or a form, we need to be consistent with the placement.

Dismissive actions on the left
The dismissive action returns the user to the previous state.

> Example: Cancel

Affirmative actions on the right
Affirmative actions continue to progress towards the user goal that triggered the dialog or form.

> Example: Submit, Ok, Delete

—

Dropdowns

Dropdowns are used to allow users to choose one (or many) options from a list of options. If this list of options is more 20, there should generally be a way to search through and filter the options (see the complex filter dropdowns below.)

> TODO: Will update this section when the new filters UI is implemented.

![Dropdown states](img/components-dropdown.png)

Max size

The max height for dropdowns should target 10-15 single line items, or 7-10 multi-line items. If the height of the dropdown is too large, the list becomes very hard to parse and it is easy to visually lose track of the item you are looking for. Usability also suffers as more mouse movement is required, and you have a larger area in which you hijack the scroll away from the page level. While it may initially seem counterintuitive to not show as many items as you can, it is actually quicker and easier to process the information when it is cropped at a reasonable height.

—

Counts

A count element is used in navigation contexts where it is helpful to indicate the count, or number of items, in a list. Always use the [number_with_delimiter][number_with_delimiter] helper to display counts in the UI.

![Counts example](img/components-counts.png)

[number_with_delimiter]: http://api.rubyonrails.org/classes/ActionView/Helpers/NumberHelper.html#method-i-number_with_delimiter

—

Lists

Lists are used where ever there is a single column of information to display. Ths [issues list](https://gitlab.com/gitlab-org/gitlab-ce/issues) is an example of an important list in the GitLab UI.

Types

Simple list using .content-list

![Simple list](img/components-simplelist.png)

List with avatar, title and description using .content-list

![List with avatar](img/components-listwithavatar.png)

List with hover effect .content-list

![List with hover effect](img/components-listwithhover.png)

List inside panel

![List inside panel](img/components-listinsidepanel.png)

—

Tables

When the information is too complex for a list, with multiple columns of information, a table can be used. For example, the [pipelines page](https://gitlab.com/gitlab-org/gitlab-ce/pipelines) uses a table.

![Table](img/components-table.png)

—

Blocks

Blocks are a way to group related information.

Types

Content blocks

Content blocks (.content-block) are the basic grouping of content. They are commonly used in [lists](#lists), and are separated by a button border.

![Content block](img/components-contentblock.png)

Row content blocks

A background color can be added to this blocks. For example, items in the [issue list](https://gitlab.com/gitlab-org/gitlab-ce/issues) have a green background if they were created recently. Below is an example of a gray content block with side padding using .row-content-block.

![Row content block](img/components-rowcontentblock.png)

Cover blocks
Cover blocks are generally used to create a heading element for a page, such as a new project, or a user profile page. Below is a cover block (.cover-block) for the profile page with an avatar, name and description.

![Cover block](img/components-coverblock.png)

—

Skeleton loading

Skeleton loading is a way to convey to the user what kind of content is currently being loaded. It’s a paradigm with which content can independently and asynchronously be loaded, while still adhering to the structure and look of the completely loaded view.

Requirements

	A skeleton should represent an organism in a recognisable way

	Atom elements within organisms (for reference see this article on [atomic design methodology](http://atomicdesign.bradfrost.com/chapter-2/)) may be represented in a maximum of 3 repetitions, if applicable.

	Skeletons should only be presented in grayscale using the HEX colors: #fafafa or #ffffff (except for shadows)

	Animate the grey atoms in a pulsating way to show motion, as if “loading”. The pulse animation transitions colors horizontally from left to right, starting with #f2f2f2 to #fafafa.

![Skeleton loading animation](img/skeleton-loading.gif)

Usage

Skeleton loading can replace any existing UI elements for the period in which they are loaded and should aim for maintaining a similar structure visually.

—

Modals

Modals are only used for having a conversation and confirmation with the user. The user is not able to access the features on the main page until closing the modal.

Usage

	When the action is irreversible, modals provide the details and confirm with the user before they take an advanced action.

	When the action will affect privacy or authorization, modals provide advanced information and confirm with the user.

Style

	Modals contain the header, body, and actions.
* Header(1): The header title is a question instead of a descriptive phrase.
* Body(2): The content in body should never be ambiguous and unclear. It provides specific information.
* Actions(3): Contains an affirmative action, a dismissive action, and an extra action. The order of actions from left to right: Dismissive action → Extra action → Affirmative action

	Confirmations regarding labels should keep labeling styling.

	References to commits, branches, and tags should be monospaced.

![layout-modal](img/modals-layout-for-modals.png)

Placement

	Modals should always be the center of the screen horizontally and be positioned 72px from the top.

Modal with 2 actions | Modal with 3 actions | Special confirmation |

——————— | ——————— | ——————– |

![two-actions](img/modals-general-confimation-dialog.png) | ![three-actions](img/modals-three-buttons.png) | ![special-confirmation](img/modals-special-confimation-dialog.png) |

> TODO: Special case for modal.

—

Panels

> TODO: Catalog how we are currently using panels and rationalize how they relate to alerts

![Panels](img/components-panels.png)

—

Alerts

> TODO: Catalog how we are currently using alerts

![Alerts](img/components-alerts.png)

—

Forms

There are two options shown below regarding the positioning of labels in forms. Both are options to consider based on context and available size. However, it is important to have a consistent treatment of labels in the same form.

Types

Labels stack vertically

Form (form) with label rendered above input.

![Vertical form](img/components-verticalform.png)

Labels side-by-side

Horizontal form (form.horizontal-form) with label rendered inline with input.

![Horizontal form](img/components-horizontalform.png)

—

Search box

Search boxes across GitLab have a consistent rest, active and text entered state. When text isn’t entered in the box, there should be a magnifying glass right aligned with the input field. When text is entered, the magnifying glass should become a x, allowing users to clear their text.

![Search box](img/components-searchbox.png)

If needed, we indicate the scope of the search in the search box.

![Scoped Search box](img/components-searchboxscoped.png)

—

File holders
A file holder (.file-holder) is used to show the contents of a file inline on a page of GitLab.

![File Holder component](img/components-fileholder.png)

—

Data formats

Dates

Exact

Format for exacts dates should be ‘Mon DD, YYYY’, such as the examples below.

![Exact date](img/components-dateexact.png)

Relative

This format relates how long since an action has occurred. The exact date can be shown as a tooltip on hover.

![Relative date](img/components-daterelative.png)

References

Referencing GitLab items depends on a symbol for each type of item. Typing that symbol will invoke a dropdown that allows you to search for and autocomplete the item you were looking for. References are shown as [links](#links) in context, and hovering on them shows the full title or name of the item.

![Hovering on a reference](img/components-referencehover.png)

% Milestones

![Milestone reference](img/components-referencemilestone.png)

Issues

![Issue reference](img/components-referenceissues.png)

! Merge Requests

![Merge request reference](img/components-referencemrs.png)

~ Labels

![Labels reference](img/components-referencelabels.png)

@ People

![People reference](img/components-referencepeople.png)

> TODO: Open issue: Some commit references use monospace fonts, but others don’t. Need to standardize this.

 # Copy

The copy for GitLab is clear and direct. We strike a clear balance between professional and friendly. We can empathesize with users (such as celebrating completing all Todos), and remain respectful of the importance of the work. We are that trusted, friendly coworker that is helpful and understanding.

The copy and messaging is a core part of the experience of GitLab and the conversation with our users. Follow the below conventions throughout GitLab.

Portions of this page are inspired by work found in the [Material Design guidelines][material design].

>**Note:**
We are currently inconsistent with this guidance. Images below are created to illustrate the point. As this guidance is refined, we will ensure that our experiences align.

Contents
* [Brevity](#brevity)
* [Capitalization and punctuation](#capitalization-and-punctuation)
* [Terminology](#terminology)

—

Brevity
Users will skim content, rather than read text carefully.
When familiar with a web app, users rely on muscle memory, and may read even less when moving quickly.
A good experience should quickly orient a user, regardless of their experience, to the purpose of the current screen. This should happen without the user having to consciously read long strings of text.
In general, text is burdensome and adds cognitive load. This is especially pronounced in a powerful productivity tool such as GitLab.
We should _not_ rely on words as a crutch to explain the purpose of a screen.
The current navigation and composition of the elements on the screen should get the user 95% there, with the remaining 5% being specific elements such as text.
This means that, as a rule, copy should be very short. A long message or label is a red flag hinting at design that needs improvement.

>**Example:**
Use Add instead of Add issue as a button label.
Preferably use context and placement of controls to make it obvious what clicking on them will do.

—

Capitalization and punctuation

Case
Use sentence case for titles, headings, labels, menu items, and buttons. Use title case when referring to [features][features] or [products][products]. Note that some features are also objects (e.g. “Merge Requests” and “merge requests”).

:white_check_mark: Do | :no_entry_sign: Don’t |

— | — |

Add issues to the Issue Board feature in GitLab Hosted | Add Issues To The Issue Board Feature In GitLab Hosted |

Avoid periods
Avoid using periods in solitary sentences in these elements:

	Labels

	Hover text

	Bulleted lists

	Modal body text

Periods should be used for:

	Lists or modals with multiple sentences

	Any sentence followed by a link

:white_check_mark: Do place periods after sentences followed by a link | :no_entry_sign: Don’t place periods after a link if it‘s not followed by a sentence |

— | — |

Mention someone to notify them. [Learn more](#) | Mention someone to notify them. [Learn more](#). |

:white_check_mark: Do skip periods after solo sentences of body text | :no_entry_sign: Don’t place periods after body text if there is only a single sentence |

— | — |

To see the available commands, enter /gitlab help | To see the available commands, enter /gitlab help. |

Use contractions
Don’t make a sentence harder to understand just to follow this rule. For example, “do not” can give more emphasis than “don’t” when needed.

:white_check_mark: Do | :no_entry_sign: Don’t |

— | — |

it’s, can’t, wouldn’t, you’re, you’ve, haven’t, don’t | it is, cannot, would not, it’ll, should’ve |

Use numerals for numbers
Use “1, 2, 3” instead of “one, two, three” for numbers. One exception is when mixing uses of numbers, such as “Enter two 3s.”

:white_check_mark: Do | :no_entry_sign: Don’t |

— | — |

3 new commits | Three new commits |

Punctuation
Omit punctuation after phrases and labels to create a cleaner and more readable interface. Use punctuation to add clarity or be grammatically correct.

Punctuation mark | Copy and paste | HTML entity | Unicode | Mac shortcut | Windows shortcut | Description |

|---|—|---|—|---|—|---|
| Period | . | | | | | Omit for single sentences in affordances like labels, hover text, bulleted lists, and modal body text.

Use in lists or modals with multiple sentences, and any sentence followed by a link or inline code.

Place inside quotation marks unless you’re telling the reader what to enter and it’s ambiguous whether to include the period. |
| Comma | , | | | | | Place inside quotation marks.

Use a [serial comma][serial comma] in lists of three or more terms. |
| Exclamation point | ! | | | | | Avoid exclamation points as they tend to come across as shouting. Some exceptions include greetings or congratulatory messages. |
| Colon | : | : | u003A | | | Omit from labels, for example, in the labels for fields in a form. |
| Apostrophe | ’ | ’ | u2019 | <kbd>⌥ Option</kbd>+<kbd>⇧ Shift</kbd>+<kbd>]</kbd> | <kbd>Alt</kbd>+<kbd>0 1 4 6</kbd> | Use for contractions (I’m, you’re, ’89) and to show possession.

To show possession, add an ’s to all singular common nouns and names, even if they already end in an s: “Look into this worker process’s log.” For singular proper names ending in s, use only an apostrophe: “James’ commits.” For plurals of a single letter, add an ’s: “Dot your i’s and cross your t’s.”

Omit for decades or acronyms: “the 1990s”, “MRs.” |
| Quotation marks | “**

”

‘

’** | “`

`”`

`‘`

`’ | u201C`

u201D`

`u2018`

`u2019` | <kbd>⌥ Option</kbd>+<kbd>[</kbd>

<kbd>⌥ Option</kbd>+<kbd>⇧ Shift</kbd>+<kbd>[</kbd>

<kbd>⌥ Option</kbd>+<kbd>]</kbd>

<kbd>⌥ Option</kbd>+<kbd>⇧ Shift</kbd>+<kbd>]</kbd> | <kbd>Alt</kbd>+<kbd>0 1 4 7</kbd>

<kbd>Alt</kbd>+<kbd>0 1 4 8</kbd>

<kbd>Alt</kbd>+<kbd>0 1 4 5</kbd>

<kbd>Alt</kbd>+<kbd>0 1 4 6</kbd> | Use proper quotation marks (also known as smart quotes, curly quotes, or typographer’s quotes) for quotes. Single quotation marks are used for quotes inside of quotes.

The right single quotation mark symbol is also used for apostrophes.

Don’t use primes, straight quotes, or free-standing accents for quotation marks. |
| Primes | ′**

″** | ′`

`″ | u2032`

u2033` | | <kbd>Alt</kbd>+<kbd>8 2 4 2</kbd>

<kbd>Alt</kbd>+<kbd>8 2 4 3</kbd> | Use prime (′) only in abbreviations for feet, arcminutes, and minutes: 3° 15′

Use double-prime (″) only in abbreviations for inches, arcseconds, and seconds: 3° 15′ 35″

Don’t use quotation marks, straight quotes, or free-standing accents for primes. |
| Straight quotes and accents | “**

’

`

**´ | "`

`'`

```

`´ | u0022`

u0027`

`u0060`

`u00B4` | | | Don’t use straight quotes or free-standing accents for primes or quotation marks.

Proper typography never uses straight quotes. They are left over from the age of typewriters and their only modern use is for code. |
| Ellipsis | … | … | | <kbd>⌥ Option</kbd>+<kbd>;</kbd> | <kbd>Alt</kbd>+<kbd>0 1 3 3</kbd> | Use to indicate an action in progress (“Downloading…”) or incomplete or truncated text. No space before the ellipsis.

Omit from menu items or buttons that open a modal or start some other process. |
| Chevrons | «**

»

‹

›

<

>** | «`

`»`

`‹`

`›`

`<`

`> | u00AB`

u00BB`

`u2039`

`u203A`

`u003C`

`u003E`

 | | | Omit from links or buttons that open another page or move to the next or previous step in a process. Also known as angle brackets, angular quote brackets, or guillemets. |
| Em dash | — | — | u2014 | <kbd>⌥ Option</kbd>+<kbd>⇧ Shift</kbd>+<kbd>-</kbd> | <kbd>Alt</kbd>+<kbd>0 1 5 1</kbd> | Avoid using dashes to separate text. If you must use dashes for this purpose — like this — use an em dash surrounded by spaces. |
| En dash | – | – | u2013 | <kbd>⌥ Option</kbd>+<kbd>-</kbd> | <kbd>Alt</kbd>+<kbd>0 1 5 0</kbd> | Use an en dash without spaces instead of a hyphen to indicate a range of values, such as numbers, times, and dates: “3–5 kg”, “8:00 AM–12:30 PM”, “10–17 Jan” |
| Hyphen | - | | | | | Use to represent negative numbers, or to avoid ambiguity in adjective-noun or noun-participle pairs. Example: “anti-inflammatory”; “5-mile walk.”

Omit in commonly understood terms and adverbs that end in ly: “frontend”, “greatly improved performance.”

Omit in the term “open source.” |
| Parentheses | () | | | | | Use only to define acronyms or jargon: “Secure web connections are based on a technology called SSL (the secure sockets layer).”

Avoid other uses and instead rewrite the text, or use dashes or commas to set off the information. If parentheses are required: If the parenthetical is a complete, independent sentence, place the period inside the parentheses; if not, the period goes outside. |

When using the <kbd>Alt</kbd> keystrokes in Windows, use the numeric keypad, not the row of numbers above the alphabet, and be sure Num Lock is turned on.

—

Terminology
Only use the terms below.

When using verbs or adjectives:
* If the context clearly refers to the object, use them alone. Example: Edit or Closed
* If the context isn’t clear enough, use them with the object. Example: Edit issue or Closed issues

Search

Term | Use |

—- | — |

Search | When using all metadata to add criteria that match/don’t match. Search can also affect ordering, by ranking best results. |

Filter | When taking a single criteria that removes items within a list that match/don’t match. Filters do not affect ordering. |

Sort | Orders a list based on a single or grouped criteria |

Projects and Groups

Term | Use | :no_entry_sign: Don’t |

—- | — | —– |

Members | When discussing the people who are a part of a project or a group. | Don’t use users. |

Issues

Adjectives (states)

Term | :no_entry_sign: Don’t |

—- | — |

Open | Don’t use Pending or Created |

Closed | Don’t use Archived |

Deleted | Don’t use Removed or Trashed |

Verbs (actions)

Term | Use | :no_entry_sign: Don’t |

—- | — | — |

New | Although it’s not a verb, New is a common standard and used for entering the creation mode of a non-existent issue | Don’t use Create, Open, or Add |

Create | Only to indicate when or who created an issue ||

Add | Associate an existing issue with an item or a list of items | Don’t use New or Create |

View | Open the detail page of an issue | Don’t use Open or See |

Edit | Enter the editing mode of an issue | Don’t use Change, Modify or Update |

Submit | Finalize the creation process of an issue | Don’t use Add, Create, New, Open, Save or Save changes |

Save | Finalize the editing process of an issue | Don’t use Edit, Modify, Update, Submit, or Save changes |

Cancel | Cancel the creation or editing process of an issue | Don’t use Back, Close, or Discard |

Close | Close an open issue | Don’t use Archive |

Re-open | Re-open a closed issue | Don’t use Open |

Delete | Permanently remove an issue from the system | Don’t use Remove |

Remove | Remove the association an issue with an item or a list of items | Don’t use Delete |

Merge requests

Adjectives (states)

Term |

—- |

Open |

Merged |

Verbs (actions)

Term | Use | :no_entry_sign: Don’t |

—- | — | — |

Add | Add a merge request | Do not use create or new |

View | View an open or merged merge request ||

Edit | Edit an open or merged merge request| Do not use update |

Approve | Approve an open merge request ||

Remove approval, unapproved | Remove approval of an open merge request | Do not use unapprove as that is not an English word|

Merge | Merge an open merge request ||

Comments & Discussions

Comment
A comment is a written piece of text that users of GitLab can create. Comments have the meta data of author and timestamp. Comments can be added in a variety of contexts, such as issues, merge requests, and discussions.

Discussion
A discussion is a group of 1 or more comments. A discussion can include subdiscussions. Some discussions have the special capability of being able to be resolved. Both the comments in the discussion and the discussion itself can be resolved.

Modals

	Destruction buttons should be clear and always say what they are destroying.
E.g., Delete page instead of just Delete.

	If the copy describes another action the user can take instead of the
destructive one, provide a way for them to do that as a secondary button.

	Avoid the word cancel or canceled in the descriptive copy. It can be
confusing when you then see the Cancel button.

see also: guidelines for [modal components](components.md#modals)

—

Portions of this page are modifications based on work created and shared by the [Android Open Source Project][android project] and used according to terms described in the [Creative Commons 2.5 Attribution License][creative commons].

[material design]: https://material.io/guidelines/
[features]: https://about.gitlab.com/features/ “GitLab features page”
[products]: https://about.gitlab.com/pricing/ “GitLab products page”
[serial comma]: https://en.wikipedia.org/wiki/Serial_comma ““Serial comma” in Wikipedia”
[android project]: http://source.android.com/
[creative commons]: http://creativecommons.org/licenses/by/2.5/

 # Features

Contents
* [Navigation](#navigation)
* [Filtering](#filtering)
* [Search results](#search-results)
* [Conversations](#conversations)
* [Empty states](#empty-states)

—

Navigation

Global navigation

The global navigation is accessible via the menu button on the top left of the screen, and can be pinned to keep it open. It contains a consistent list of pages that allow you to view content that is across GitLab. For example, you can view your todos, issues and merge requests across projects and groups.

![Global nav](img/features-globalnav.png)

Contextual navigation

The navigation in the header is contextual to each page. These options change depending on if you are looking at a project, group, or settings page. There should be no more than 10 items on a level in the contextual navigation, allowing it to comfortably fit on a typical laptop screen. There can be up to too levels of navigation. Each sub nav group should be a self-contained group of functionality. For example, everything related to the issue tracker should be under the ‘Issue’ tab, while everything relating to the wiki will be grouped under the ‘Wiki’ tab. The names used for each section should be short and easy to remember, ideally 1-2 words in length.

![Contextual nav](img/features-contextualnav.png)

Information architecture

The [GitLab Product Map](https://gitlab.com/gitlab-org/gitlab-design/raw/master/production/resources/gitlab-map.png) shows a visual representation of the information architecture for GitLab.

—

Filtering

Today, lists are filtered by a series of dropdowns. Some of these dropdowns allow multiselect (labels), while others allow you to filter to one option (milestones). However, we are currently implementing a [new model](https://gitlab.com/gitlab-org/gitlab-ce/issues/21747) for this, and will update the guide when it is ready.

![Filters](img/features-filters.png)

—

Search results

Global search

[Global search](https://gitlab.com/search?group_id=&project_id=13083&repository_ref=&scope=issues&search=mobile) allows you to search across items in a project, or even across multiple projects. You can switch tabs to filter on type of object, or filter by group.

List search

There are several core lists in the GitLab experience, such as the Issue list and the Merge Request list. You are also able to [filter and search these lists](https://gitlab.com/gitlab-org/gitlab-ce/issues?utf8=%E2%9C%93&search=mobile). This UI will be updated with the [new filtering model](https://gitlab.com/gitlab-org/gitlab-ce/issues/21747).

—

Empty states

Empty states need to be considered in the design of features. They are vital to helping onboard new users, making the experience feel more approachable and understandable. Empty states should feel inviting and provide just enough information to get people started. There should be a single call to action and a clear explanation of what to use the feature for.

![Empty states](img/features-emptystates.png)

 # Illustrations

The illustrations should always align with topics and goals in specific context.

Principles

Be simple.
- For clarity, we use simple and specific elements to create our illustrations.

Be optimistic.
- We are an open-minded, optimistic, and friendly team. We should reflect those values in our illustrations to connect with our brand experience.

Be gentle.
- Our illustrations assist users in understanding context and guide users in the right direction. Illustrations are supportive, so they should be obvious but not aggressive.

Style

Shapes
- All illustrations are geometric rather than organic.
- The illustrations are made by circles, rectangles, squares, and triangles.

Stroke
- Standard border thickness: 4px
- Depending on the situation, border thickness can be changed to 3px. For example, when the illustration size is small, an illustration with 4px border thickness would look tight. In this case, the border thickness can be changed to 3px.
- We use rounded caps and rounded corner.

Do | Don’t |

——– | ——– |

 | |

Radius
- Standard corner radius: 10px
- Depending on the situation, corner radius can be changed to 5px. For example, when the illustration size is small, an illustration with 10px corner radius would be over-rounded. In this case, the corner radius can be changed to 5px.

Size
Depends on the situation, the illustration size can be the 3 types below:

Large
* Use case: Empty states, error pages(e.g. 404, 403)
* For vertical layout, the illustration should not larger than 430*300 px.
* For horizontal layout, the illustration should not larger than 430*380 px.

Vertical layout | Horizontal layout |

————— | —————– |

 |

Medium
* Use case: Banner
* The illustration should not larger than 240*160 px
* The illustration should keep simple and clear. We recommend not including too many elements in the medium size illustration.

Small
* Use case: Graphics for explanatory text, graphics for status.
* The illustration should not larger than 160*90 px.
* The illustration should keep simple and clear. We recommend not including too many elements in the small size illustration.

Illustration on mobile
- Keep the proportions in original ratio.

Colors palette

For consistency, we recommend choosing colors from our color palette.

Orange | Purple | Grey |

——– | ——– | ——– |

 | | |

#FC6D26 | #6B4FBB | #EEEEEE |

Don’t
- Don’t include the typography in the illustration.
- Don’t include tanuki in the illustration. If necessary, we recommend having tanuki monochromatic.

—

Orange | Purple |

——– | ——– |

 | |

 > We are in the process of transferring UX documentation to the [design.gitlab.com](https://gitlab.com/gitlab-org/design.gitlab.com) project. Any updates to these docs should be made in that project. If documentation does not yet exist within [design.gitlab.com](https://gitlab.com/gitlab-org/design.gitlab.com), [create an issue](https://gitlab.com/gitlab-org/design.gitlab.com/issues) and merge request to add your new changes.

GitLab UX Guide

The goal of this guide is to provide standards, principles and in-depth information to design beautiful and effective GitLab features. This will be a living document, and we welcome contributions, feedback and suggestions.

Design

—

[Principles](principles.md)
These guiding principles set a solid foundation for our design system, and should remain relatively stable over multiple releases. They should be referenced as new design patterns are created.

—

[Basics](basics.md)
The basic ingredients of our experience establish our personality and feel. This section includes details about typography, iconography, and color.

—

[Animation](animation.md)
Guidance on the timing, curving and motion for GitLab.

—

[Illustrations](illustrations.md)
Guidelines for principals and styles related to illustrations for GitLab.

—

[Copy](copy.md)
Conventions on text and messaging within labels, buttons, and other components.

—

[Components](components.md)
Components are the controls that make up the GitLab experience, including guidance around buttons, links, dropdowns, etc.

—

[Surfaces](surfaces.md)
The GitLab experience is broken apart into several surfaces. Each of these surfaces is designated for a specific scope or type of content. Examples include the header, global menu, side pane, etc.

—

[Features](features.md)
The previous building blocks are combined into complete features in the GitLab UX. Examples include our navigation, filters, search results, and empty states.

—

Research

—

[Users](users.md)
How we think about the variety of users of GitLab, from small to large teams, comparing opensource usage to enterprise, etc.

—

Other

—

[Tips for designers](tips.md)
Tips for exporting assets, and other guidance.

—

[Resources](resources.md)
Resources for GitLab UX

 # Principles

These are the guiding principles that we should strive for to establish a solid foundation for the GitLab experience.

Professional and productive
GitLab is a tool to support what people do, day in, day out. We need to respect the importance of their work, and avoid gimicky details.

Minimal and efficient
While work can get complicated, GitLab is about bringing a sharp focus, helping our customers know what matters now.

Immediately recognizable
When you look at any screen, you should know immediately that it is GitLab. Our personality is strong and consistent across product and marketing experiences.

Human and quirky
We need to build empathy with our users, understanding their state of mind, and connect with them at a human level. Quirkiness is part of our DNA, and we should embrace it in the right moments and contexts.

> TODO: Ensure these principles align well with the goals of the Marketing team

 # Resources

GitLab UI development kit

We created a page inside GitLab where you can check commonly used html and css elements.

When you run GitLab instance locally - just visit http://localhost:3000/help/ui page to see UI examples
you can use during GitLab development.

Design repository

All design files are stored in the [gitlab-design](https://gitlab.com/gitlab-org/gitlab-design)
repository and maintained by GitLab UX designers.

[brand.ai](https://brand.ai/git-lab/primary-brand)

We are in the process of capturing our UI paradigms on brand.ai, see https://brand.ai/git-lab/primary-brand

 # Surfaces

Contents
* [Header](#header)
* [Global menu](#global-menu)
* [Side pane](#side-pane)
* [Content area](#content-area)

—

![Surfaces UX](img/surfaces-ux.png)

Global menu

This menu is to navigate to pages that contain content global to GitLab.

—

Header

The header contains 3 main elements: Project switching and searching, user account avatar and settings, and a contextual menu that changes based on the current page.

![Surfaces Header](img/surfaces-header.png)

—

Side pane

The side pane holds supporting information and meta data for the information in the content area.

—

Content area

The main content of the page. The content area can include other surfaces.

Item title bar

The item title bar contains the top level information to identify the item, such as the name, id and status.

![Item title](img/surfaces-contentitemtitle.png)

Item system information

The system information block contains relevant system controlled information.

![Item system information](img/surfaces-systeminformationblock.png)

 # Tips

Contents
* [SVGs](#svgs)

—

SVGs

When exporting SVGs, be sure to follow the following guidelines:

	Convert all strokes to outlines.

	Use pathfinder tools to combine overlapping paths and create compound paths.

	SVGs that are limited to one color should be exported without a fill color so the color can be set using CSS.

	Ensure that exported SVGs have been run through an [SVG cleaner](https://github.com/RazrFalcon/SVGCleaner) to remove unused elements and attributes.

You can open your svg in a text editor to ensure that it is clean.
Incorrect files will look like this:

```xml
<?xml version=”1.0” encoding=”UTF-8” standalone=”no”?>
<svg width=”16px” height=”17px” viewBox=”0 0 16 17” version=”1.1” xmlns=”http://www.w3.org/2000/svg” xmlns:xlink=”http://www.w3.org/1999/xlink”>


<!– Generator: Sketch 3.7.2 (28276) - http://www.bohemiancoding.com/sketch –>
<title>Group</title>
<desc>Created with Sketch.</desc>
<defs></defs>
<g id=”Page-1” stroke=”none” stroke-width=”1” fill=”none” fill-rule=”evenodd”>



	<g id=”Group” fill=”#7E7C7C”>
	<path d=”M15.1111,1 L0.8891,1 C0.3981,1 0.0001,1.446 0.0001,1.996 L0.0001,15.945 C0.0001,16.495 0.3981,16.941 0.8891,16.941 L15.1111,16.941 C15.6021,16.941 16.0001,16.495 16.0001,15.945 L16.0001,1.996 C16.0001,1.446 15.6021,1 15.1111,1 L15.1111,1 L15.1111,1 Z M14.0001,6.0002 L14.0001,14.949 L2.0001,14.949 L2.0001,6.0002 L14.0001,6.0002 Z M14.0001,4.0002 L14.0001,2.993 L2.0001,2.993 L2.0001,4.0002 L14.0001,4.0002 Z” id=”Combined-Shape”></path>
<polygon id=”Fill-11” points=”3 2.0002 5 2.0002 5 0.0002 3 0.0002”></polygon>
<polygon id=”Fill-16” points=”11 2.0002 13 2.0002 13 0.0002 11 0.0002”></polygon>
<path d=”M5.37709616,11.5511984 L6.92309616,12.7821984 C7.35112915,13.123019 7.97359761,13.0565604 8.32002627,12.6330535 L10.7740263,9.63305349 C11.1237073,9.20557058 11.0606364,8.57555475 10.6331535,8.22587373 C10.2056706,7.87619272 9.57565475,7.93926361 9.22597373,8.36674651 L6.77197373,11.3667465 L8.16890384,11.2176016 L6.62290384,9.98660159 C6.19085236,9.6425813 5.56172188,9.71394467 5.21770159,10.1459962 C4.8736813,10.5780476 4.94504467,11.2071781 5.37709616,11.5511984 L5.37709616,11.5511984 Z” id=”Stroke-21”></path>





</g>




</g>




</svg>
```

Correct file will look like this:

`xml
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 16 17" enable-background="new 0 0 16 17"><path d="m15.1 1h-2.1v-1h-2v1h-6v-1h-2v1h-2.1c-.5 0-.9.5-.9 1v14c0 .6.4 1 .9 1h14.2c.5 0 .9-.4.9-1v-14c0-.5-.4-1-.9-1m-1.1 14h-12v-9h12v9m0-11h-12v-1h12v1"/><path d="m5.4 11.6l1.5 1.2c.4.3 1.1.3 1.4-.1l2.5-3c.3-.4.3-1.1-.1-1.4-.5-.4-1.1-.3-1.5.1l-1.8 2.2-.8-.6c-.4-.3-1.1-.3-1.4.2-.3.4-.3 1 .2 1.4"/></svg>
`

> TODO: Checkout https://github.com/svg/svgo

 # UX Personas

	
	[Nazim Ramesh](#nazim-ramesh)
	
	Small to medium size organizations using GitLab CE

	
	[Matthieu Poirier](#matthieu-poirier)
	
	Responsible for managing and maintaining GitLab installation

	Any size organization

	Using CE or EE

	
	[James Mackey](#james-mackey)
	
	Medium to large size organizations using CE or EE

	Small organizations using EE

	
	[Karolina Plaskaty](#karolina-plaskaty)
	
	Using GitLab.com for personal/hobby projects

	Would like to use GitLab at work

	Working within a medium to large size organization

—

Nazim Ramesh
- Small to medium size organizations using GitLab CE

![nazim-ramesh](img/nazim-ramesh.png)

Demographics

Age

32 years old

Location

Germany

Education

Bachelor of Science in Computer Science

Occupation

Full-stack web developer

Programming experience

Over 10 years

Frequently used programming languages

JavaScript, SQL, PHP

Hobbies / interests

Functional programming, open source, gaming, web development, and web security.

Motivations
Nazim works for a software development company which currently hires around 80 people. When Nazim first joined the company, the engineering team were using Subversion (SVN) as their primary form of source control. However, Nazim felt SVN was not flexible enough to work with many feature branches and noticed that developers with less experience of source control struggled with the central-repository nature of SVN. Armed with a wish list of features, Nazim began comparing source control tools. A search for “self-hosted Git server repository management” returned GitLab. In his own words, Nazim explains why he wanted the engineering team to start using GitLab:

>”I wanted them to switch away from SVN. I needed a server application to manage repositories. The common tools that were around just didn’t meet the requirements. Most of them were too simple or plain…GitLab provided all the required features. Also, costs had to be low since we don’t have a big budget for those things…the Community Edition was perfect in this regard.”

In his role as a full-stack web developer, Nazim could recommend products that he would like the engineering team to use, but final approval lay with his line manager, Mike, VP of Engineering. Nazim recalls that he was met with reluctance from his colleagues when he raised moving to Git and using GitLab.

>”The biggest challenge…why should we change anything at all from the status quo? We needed to switch from SVN to Git. They knew they needed to learn Git and a Git workflow…using Git was scary to my colleagues…they thought it was more complex than SVN to use.”

Undeterred, Nazim decided to migrate a couple of projects across to GitLab.

>”Old SVN users couldn’t see the benefits of Git at first. It took a month or two to convince them.”

Slowly, by showing his colleagues how easy it was to use Git, the majority of the team’s projects were migrated to GitLab.

The engineering team have been using GitLab CE for around 2 years now. Nazim credits himself as being entirely responsible for his company’s decision to move to GitLab.

Frustrations
Adoption to GitLab has been slow
Not only has the engineering team had to get to grips with Git, they’ve also had to adapt to using GitLab. Due to lack of training and existing skills in other tools, the full feature set of GitLab CE is not being utilized. Nazim sold GitLab to his manager as an ‘all in one’ tool which would replace multiple tools used within the company, thus saving costs. Nazim hasn’t had the time to integrate the legacy tools to GitLab and he’s struggling to convince his peers to change their habits.

Missing Features
Nazim’s company want GitLab to be able to do everything. There isn’t a large budget for software, so they’re selective about what tools are implemented. It needs to add real value to the company. In order for GitLab to be widely adopted and to meet the requirements of different roles within the company, it needs a host of features. When an individual within Nazim’s company wants to know if GitLab has a specific feature or does a particular thing, Nazim is the person to ask. He becomes the point of contact to investigate, build or sometimes just raise the feature request. Nazim gets frustrated when GitLab isn’t able to do what he or his colleagues need it to do.

Regressions and bugs
Nazim often has to calm down his colleagues, when a release contains regressions or new bugs. As he puts it “every new version adds something awesome, but breaks something”. He feels that “old issues for minor annoyances get quickly buried in the mass of open issues and linger for a very long time. More generally, I have the feeling that GitLab focus on adding new functionalities, but overlook a bunch of annoying minor regressions or introduced bugs.” Due to limited resource and expertise within the team, not only is it difficult to remain up-to-date with the frequent release cycle, it’s also counterproductive to fix workflows every month.

Uses too much RAM and CPU
>”Memory usages mean that if we host it from a cloud-based host like AWS, we spend almost as much on the instance as what we would pay GitHub”

UI/UX
GitLab’s interface initially attracted Nazim when he was comparing version control software. He thought it would help his less technical colleagues to adapt to using Git and perhaps, GitLab could be rolled out to other areas of the business, beyond engineering. However, using GitLab’s interface daily has left him frustrated at the lack of personalization/control over his user experience. He’s also regularly lost in a maze of navigation. Whilst he acknowledges that GitLab listens to its users and that the interface is improving, he becomes annoyed when the changes are too progressive. “Too frequent UI changes. Most of them tend to turn out great after a few cycles of fixes, but the frequency is still far too high for me to feel comfortable to always stay on the current release.”

Goals
* To convince his colleagues to fully adopt GitLab CE, thus improving workflow and collaboration.
* To use a feature-rich version control platform that covers all stages of the development lifecycle, in order to reduce dependencies on other tools.
* To use an intuitive and stable product, so he can spend more time on his core job responsibilities and less time bug-fixing, guiding colleagues, etc.

—
Matthieu Poirier
- Responsible for managing and maintaining GitLab installation
- Any size organization
- Using CE or EE

![matthieu-poirier](img/matthieu-poirier.png)

Demographics

Age

42 years old

Location

France

Education

Masters Degree in Computer Science

Occupation

DevOps Engineer

Programming experience

Over 10 years

Frequently used programming languages

JavaScript, SQL, PHP and Node.js

Hobbies / interests

Functional programming, data analysis, building apps, and tools.

Motivations
Matthieu works in DevOps for a web services company which currently hires 90 staff. When Matthieu first joined the company, he was responsible for managing a custom built in-house bug tracking tool and release management system. Over time, as the company grew, his colleagues requested more features and tools to help them in their day-to-day work. To meet their needs, Matthieu was forced to “hack together” a solution. In his own words, Matthieu explains that it became:

>”…a huge pain managing access to all the individual pieces. In addition, they didn’t have any integration with each other, nobody ended up using them and we couldn’t do any workflows with merge requests and the like. I was sick of managing all those separate parts and wanted to move to a single platform that would handle it all.”

He further explains that he wanted to introduce “better, easier, more formal code reviews” and to start using continuous integration and deployment.

Matthieu tried to find a platform which would consolidate the company’s existing toolset, and centralize code, documentation, and issues. He discovered GitHub, but the price was an issue:

>”We needed to host our code on-site and wanted GitHub Enterprise functionality without the GitHub Enterprise costs.”

Not only was GitLab cheaper than GitHub, it was also more cost-effective than maintaining multiple tools. Subsequently, Matthieu found it easy to sell the merits of GitLab to his manager.

Matthieu describes GitLab as:

>”the only tool that offers the real feeling of having everything you need in one place.”

He credits himself as being entirely responsible for moving his company to GitLab.

Frustrations
Updating to the latest release
Matthieu introduced his company to GitLab. He is responsible for maintaining and managing the company’s installation in addition to his day job. He feels updates are too frequent and he doesn’t always have sufficient time to update GitLab. As a result, he’s not up to date with releases.

Matthieu tried to set up automatic updates, however, as he isn’t a Systems Administrator, he wasn’t confident in his set-up. He feels he should be able to “upgrade without users even noticing” but hasn’t figured out how to do this yet. Matthieu would like the “update process to be triggered from the Admin Panel, perhaps accompanied with a changelog and the option to skip updates.”

Matthieu is looking for confirmation that his update procedure is “secure and efficient” so more tutorials related to this topic would be useful to him.

Configuration
Matthieu dislikes using the combination of gitlab.rb and the UI for changing settings. He explains that it “would be nice to be able to configure more from the Admin UI rather than just the config files.”

Creating a backup
Matthieu explains that the “backup solution is not well integrated into the UI”, for example, he “cannot see if backups succeeded” or whether they have been rolled back to via the UI.

Onboarding
It’s Matthieu’s responsibility to get teams across his organization up and running with GitLab. He explains that whilst many teams might be leveraging GitLab, they are:

>”..not aware of GitLab’s powerful CI or our omnibus install of Mattermost…It would be nice to have a tutorial type walkthrough available when a new user logs in on how to get started with all these features. AutoDevOps may solve some of this, but GitLab has many powerful features wrapped up into it and some [teams] may just think that it is only a Git repo similar to GitHub.”

He states that there has been: “a sluggishness of others to adapt” and it’s “a low-effort adaptation at that.”

Goals
* To save time. One of the reasons Matthieu moved his company to GitLab was to reduce the effort it took him to manage and configure multiple tools, thus saving him time. He has to balance his day job in addition to managing the company’s GitLab installation and onboarding new teams to GitLab.
* To use a platform which is easy to manage. Matthieu isn’t a Systems Administrator, and when updating GitLab, creating backups, etc. He would prefer to work within GitLab’s UI. Explanations / guided instructions when configuring settings in GitLab’s interface would really help Matthieu. He needs reassurance that what he is about to change is

	the right setting

	will provide him with the desired result he wants.

	Matthieu needs to educate his colleagues about GitLab. Matthieu’s colleagues won’t adopt GitLab as they’re unaware of its capabilities and the positive impact it could have on their work. Matthieu needs support in getting this message across to them.

—

James Mackey
- Medium to large size organizations using CE or EE
- Small organizations using EE

![james-mackey.png](img/james-mackey.png)

Demographics

Age

36 years old

Location

US

Education

Masters degree in Computer Science

Occupation

Full-stack web developer

Programming experience

Over 10 years

Frequently used programming languages

JavaScript, SQL, Node.js, Java, PHP, Python

Hobbies / interests

DevOps, open source, web development, science, automation, and electronics.

Motivations
James works for a research company which currently hires around 800 staff. He began using GitLab.com back in 2013 for his own open source, hobby projects and loved “the simplicity of installation, administration and use”. After using GitLab for over a year, he began to wonder about using it at work. James explains:

>”We first installed the CE edition…on a staging server for a PoC and asked a beta team to use it, specifically for the Merge Request features. Soon other teams began asking us to be beta users too because the team that was already using GitLab was really enjoying it.”

James and his colleagues also reviewed competitor products including GitHub Enterprise, but they found it “less innovative and with considerable costs…GitLab had the features we wanted at a much lower cost per head than GitHub”.

The company James works for provides employees with a discretionary budget to spend how they want on software, so James and his team decided to upgrade to EE.

James feels partially responsible for his organization’s decision to start using GitLab.

>”It’s still up to the teams themselves [to decide] which tools to use. We just had a great experience moving our daily development to GitLab, so other teams have followed the path or are thinking about switching.”

Frustrations
Third Party Integration
Some of GitLab EE’s features are too basic, in particular, issues boards which do not have the level of reporting that James and his team need. Subsequently, they still need to use GitLab EE in conjunction with other tools, such as JIRA. Whilst James feels it isn’t essential for GitLab to meet all his needs (his company are happy for him to use, and pay for, multiple tools), he sometimes isn’t sure what is/isn’t possible with plugins and what level of custom development he and his team will need to do.

UX/UI
James and his team use CI quite heavily for several projects. Whilst they’ve welcomed improvements to the builds and pipelines interface, they still have some difficulty following build process on the different tabs under Pipelines. Some confusion has arisen from not knowing where to find different pieces of information or how to get to the next stages logs from the current stage’s log output screen. They feel more intuitive linking and flow may alleviate the problem. Generally, they feel GitLab’s navigation needs to reviewed and optimized.

Permissions
>”There is no granular control over user or group permissions. The permissions for a project are too tightly coupled to the permissions for Gitlab CI/build pipelines.”

Goals
* To be able to integrate third-party tools easily with GitLab EE and to create custom integrations and patches where needed.
* To use GitLab EE primarily for code hosting, merge requests, continuous integration and issue management. James and his team want to be able to understand and use these particular features easily.
* To able to share one instance of GitLab EE with multiple teams across the business. Advanced user management, the ability to separate permissions on different parts of the source code, etc are important to James.

—

Karolina Plaskaty
- Using GitLab.com for personal/hobby projects
- Would like to use GitLab at work
- Working within a medium to large size organization

![karolina-plaskaty.png](img/karolina-plaskaty.png)

Demographics

Age

26 years old

Location

UK

Education

Self taught

Occupation

Junior web-developer

Programming experience

6 years

Frequently used programming languages

JavaScript and SQL

Hobbies / interests

Web development, mobile development, UX, open source, gaming, and travel.

Motivations
Karolina has been using GitLab.com for around a year. She roughly spends 8 hours every week programming, of that, 2 hours is spent contributing to open source projects. Karolina contributes to open source projects to gain programming experience and to give back to the community. She likes GitLab.com for its free private repositories and range of features which provide her with everything she needs for her personal projects. Karolina is also a massive fan of GitLab’s values and the fact that it isn’t a “behemoth of a company”. She explains that “displaying every single thing (doc, culture, assumptions, development…) in the open gives me greater confidence to choose Gitlab personally and to recommend it at work.” She’s also an avid reader of GitLab’s blog.

Karolina works for a software development company which currently hires around 500 people. Karolina would love to use GitLab at work but the company has used GitHub Enterprise for a number of years. She describes management at her company as “old fashioned” and explains that it’s “less of a technical issue and more of a cultural issue” to convince upper management to move to GitLab. Karolina is also relatively new to the company so she’s apprehensive about pushing too hard to change version control platforms.

Frustrations
Unable to use GitLab at work
Karolina wants to use GitLab at work but isn’t sure how to approach the subject with management. In her current role, she doesn’t feel that she has the authority to request GitLab.

Performance
GitLab.com is frequently slow and unavailable. Karolina has also heard that GitLab is a “memory hog” which has deterred her from running GitLab on her own machine for just hobby / personal projects.

UX/UI
Karolina has an interest in UX and therefore has strong opinions about how GitLab should look and feel. She feels the interface is cluttered, “it has too many links/buttons” and the navigation “feels a bit weird sometimes. I get lost if I don’t pay attention.” As Karolina also enjoys contributing to open-source projects, it’s important to her that GitLab is well designed for public repositories, she doesn’t feel that GitLab currently achieves this.

Goals
* To develop her programming experience and to learn from other developers.
* To contribute to both her own and other open source projects.
* To use a fast and intuitive version control platform.

 # Downgrading from EE to CE

If you ever decide to downgrade your Enterprise Edition back to the Community
Edition, there are a few steps you need take before installing the CE package
on top of the current EE package, or, if you are in an installation from source,
before you change remotes and fetch the latest CE code.

Disable Enterprise-only features

First thing to do is to disable the following features.

Authentication mechanisms

Kerberos and Atlassian Crowd are only available on the Enterprise Edition, so
you should disable these mechanisms before downgrading and you should provide
alternative authentication methods to your users.

Remove Service Integration entries from the database

The JenkinsService and GithubService classes are only available in the Enterprise Edition codebase,
so if you downgrade to the Community Edition, you’ll come across the following
error:

```
Completed 500 Internal Server Error in 497ms (ActiveRecord: 32.2ms)

ActionView::Template::Error (The single-table inheritance mechanism failed to locate the subclass: ‘JenkinsService’. This
error is raised because the column ‘type’ is reserved for storing the class in case of inheritance. Please rename this
column if you didn’t intend it to be used for storing the inheritance class or overwrite Service.inheritance_column to
use another column for that information.)
```

or

```
Completed 500 Internal Server Error in 497ms (ActiveRecord: 32.2ms)

ActionView::Template::Error (The single-table inheritance mechanism failed to locate the subclass: ‘GithubService’. This
error is raised because the column ‘type’ is reserved for storing the class in case of inheritance. Please rename this
column if you didn’t intend it to be used for storing the inheritance class or overwrite Service.inheritance_column to
use another column for that information.)
```

All services are created automatically for every project you have, so in order
to avoid getting this error, you need to remove all instances of the
JenkinsService and GithubService from your database:

Omnibus Installation

`
$ sudo gitlab-rails runner "Service.where(type: ['JenkinsService', 'JenkinsDeprecatedService', 'GithubService']).delete_all"
`

Source Installation

`
$ bundle exec rails runner "Service.where(type: ['JenkinsService', 'JenkinsDeprecatedService', 'GithubService']).delete_all" production
`

Variables environment scopes

If you’re using this feature and there are variables sharing the same
key, but they have different scopes in a project, then you might want to
revisit the environment scope setting for those variables.

In CE, environment scopes are completely ignored, therefore you could
accidentally get a variable which you’re not expecting for a particular
environment. Make sure that you have the right variables in this case.

Data is completely preserved, so you could always upgrade back to EE and
restore the behavior if you leave it alone.

Downgrade to CE

After performing the above mentioned steps, you are now ready to downgrade your
GitLab installation to the Community Edition.

Omnibus Installation

To downgrade an Omnibus installation, it is sufficient to install the Community
Edition package on top of the currently installed one. You can do this manually,
by directly [downloading the package](https://packages.gitlab.com/gitlab/gitlab-ce)
you need, or by adding our CE package repository and following the
[CE installation instructions](https://about.gitlab.com/installation/?version=ce).

Source Installation

To downgrade a source installation, you need to replace the current remote of
your GitLab installation with the Community Edition’s remote, fetch the latest
changes, and checkout the latest stable branch:

`
$ git remote set-url origin git@gitlab.com:gitlab-org/gitlab-ce.git
$ git fetch --all
$ git checkout 8-x-stable
`

Remember to follow the correct [update guides](../update/README.md) to make
sure all dependencies are up to date.

 —
comments: false
—

GitLab basics

Step-by-step guides on the basics of working with Git and GitLab.

	[Command line basics](command-line-commands.md)

	[Start using Git on the command line](start-using-git.md)

	[Create and add your SSH Keys](create-your-ssh-keys.md)

	[Create a project](create-project.md)

	[Create a group](../user/group/index.md#create-a-new-group)

	[Create a branch](create-branch.md)

	[Fork a project](fork-project.md)

	[Add a file](add-file.md)

	[Add an image](add-image.md)

	[Create an issue](../user/project/issues/create_new_issue.md)

	[Create a merge request](add-merge-request.md)

 # How to add a file

You can create a file in your [terminal](command-line-commands.md) and push
to GitLab or you can use the
[web interface](../user/project/repository/web_editor.md#create-a-file).

 # How to add an image

Using your standard tool for copying files (e.g. Finder in Mac OS, or Explorer
in Windows, or…), put the image file into the GitLab project. You can find the
project as a regular folder in your files.

Go to your [shell](command-line-commands.md), and move into the folder of your
Gitlab project. This usually means running the following command until you get
to the desired destination:

`
cd NAME-OF-FOLDER-YOU'D-LIKE-TO-OPEN
`

Check if your image is actually present in the directory (if you are in Windows,
use dir instead):

ls

You should see the name of the image in the list shown.

Check the status:

`
git status
`

Your image’s name should appear in red, so git took notice of it! Now add it
to the repository:

`
git add NAME-OF-YOUR-IMAGE
`

Check the status again, your image’s name should have turned green:

`
git status
`

Commit:

`
git commit -m "DESCRIBE COMMIT IN A FEW WORDS"
`

Now you can push (send) your changes (in the branch NAME-OF-BRANCH) to GitLab
(the git remote named ‘origin’):

`
git push origin NAME-OF-BRANCH
`

Your image will be added to your branch in your repository in GitLab.

 # How to create a merge request

Merge requests are useful to integrate separate changes that you’ve made to a
project, on different branches. This is a brief guide on how to create a merge
request. For more information, check the
[merge requests documentation](../user/project/merge_requests/index.md).

—

	Before you start, you should have already [created a branch](create-branch.md)
and [pushed your changes](basic-git-commands.md) to GitLab.

	Go to the project where you’d like to merge your changes and click on the
Merge requests tab.

1. Click on New merge request on the right side of the screen.
1. From there on, you have the option to select the source branch and the target

branch you’d like to compare to. The default target project is the upstream
repository, but you can choose to compare across any of its forks.

![Select a branch](img/merge_request_select_branch.png)

1. When ready, click on the Compare branches and continue button.
1. At a minimum, add a title and a description to your merge request. Optionally,

select a user to review your merge request and to accept or close it. You may
also select a milestone and labels.

![New merge request page](img/merge_request_page.png)

	When ready, click on the Submit merge request button.

Your merge request will be ready to be approved and merged.

 # Basic Git commands

This section is now merged into [Start using Git](start-using-git.md).

 # Command Line basic commands

Start working on your project

In Git, when you copy a project you say you “clone” it. To work on a git project locally (from your own computer), you will need to clone it. To do this, sign in to GitLab.

When you are on your Dashboard, click on the project that you’d like to clone.
To work in the project, you can copy a link to the Git repository through a SSH
or a HTTPS protocol. SSH is easier to use after it’s been
[set up](create-your-ssh-keys.md). While you are at the Project tab, select
HTTPS or SSH from the dropdown menu and copy the link using the _Copy URL to clipboard_
button (you’ll have to paste it on your shell in the next step).

![Copy the HTTPS or SSH](img/project_clone_url.png)

On the command line

This section has examples of some basic shell commands that you might find useful. For more information, search the web for _bash commands_.

Clone your project

Go to your computer’s shell and type the following command with your SSH or HTTPS URL:

`
git clone PASTE HTTPS OR SSH HERE
`

A clone of the project will be created in your computer.

>**Note:** If you clone your project via a URL that contains special characters, make sure that characters are URL-encoded.

Go into a project directory to work in it

`
cd NAME-OF-PROJECT
`

Go back one directory

`
cd ..
`

List what’s in the current directory

ls

List what’s in the current directory that starts with a

`
ls a*
`

List what’s in the current directory that ends with .md

`
ls *.md
`

Create a new directory

`
mkdir NAME-OF-YOUR-DIRECTORY
`

Create a README.md file in the current directory

`
touch README.md
nano README.md
ADD YOUR INFORMATION
Press: control + X
Type: Y
Press: enter
`

Show the contents of the README.md file

`
cat README.md
`

Remove a file

`
rm NAME-OF-FILE
`

Remove a directory and all of its contents

`
rm -r NAME-OF-DIRECTORY
`

View command history

`
history
`

Execute command 123 from history

`
!123
`

Carry out commands for which the account you are using lacks authority

You will be asked for an administrator’s password.

`
sudo
`

Show which directory I am in

pwd

Clear the shell window

`
clear
`

 # How to create a branch

A branch is an independent line of development.

New commits are recorded in the history for the current branch, which results
in taking the source from someone’s repository (the place where the history of
your work is stored) at certain point in time, and apply your own changes to it
in the history of the project.

To add changes to your GitLab project, you should create a branch. You can do
it in your [terminal](basic-git-commands.md) or by
[using the web interface](../user/project/repository/web_editor.md#create-a-new-branch).

 This document was moved to [another location](../user/group/index.md#create-a-new-group).

 This document was moved to [another location](../user/project/issues/index.md#new-issue).

 # How to create a project in GitLab

>**Notes:**
- For a list of words that are not allowed to be used as project names see the

[reserved names][reserved].

	In your dashboard, click the green New project button or use the plus
icon in the upper right corner of the navigation bar.

![Create a project](img/create_new_project_button.png)

	This opens the New project page.

![Project information](img/create_new_project_info.png)

	Choose if you want start a blank project, or with one of the predefined
[Project Templates](https://gitlab.com/gitlab-org/project-templates):
this will kickstart your repository code and CI automatically.
Otherwise, if you have a project in a different repository, you can [import it] by
clicking on the Import project tab, provided this is enabled in
your GitLab instance. Ask your administrator if not.

	
	Provide the following information:
	
	Enter the name of your project in the Project name field. You can’t use
special characters, but you can use spaces, hyphens, underscores or even
emoji.

	The Project description (optional) field enables you to enter a
description for your project’s dashboard, which will help others
understand what your project is about. Though it’s not required, it’s a good
idea to fill this in.

	Changing the Visibility Level modifies the project’s
[viewing and access rights](../public_access/public_access.md) for users.

	Selecting the Initialize repository with a README option creates a
README so that the Git repository is initialized, has a default branch and
can be cloned.

	Click Create project.

Push to create a new project

> [Introduced](https://gitlab.com/gitlab-org/gitlab-ce/issues/26388) in GitLab 10.5.

When you create a new repo locally, instead of going to GitLab to manually
create a new project and then push the repo, you can directly push it to
GitLab to create the new project, all without leaving your terminal. If you have access to that
namespace, we will automatically create a new project under that GitLab namespace with its
visibility set to Private by default (you can later change it in the [project’s settings](../public_access/public_access.md#how-to-change-project-visibility)).

This can be done by using either SSH or HTTP:

```
## Git push using SSH
git push –set-upstream git@gitlab.example.com:namespace/nonexistent-project.git master

## Git push using HTTP
git push –set-upstream https://gitlab.example.com/namespace/nonexistent-project.git master
```

Once the push finishes successfully, a remote message will indicate
the command to set the remote and the URL to the new project:

`
remote:
remote: The private project namespace/nonexistent-project was created.
remote:
remote: To configure the remote, run:
remote: git remote add origin https://gitlab.example.com/namespace/nonexistent-project.git
remote:
remote: To view the project, visit:
remote: https://gitlab.example.com/namespace/nonexistent-project
remote:
`

[import it]: ../workflow/importing/README.md
[reserved]: ../user/reserved_names.md

 # How to create your SSH Keys

	The first thing you need to do is go to your [command line](start-using-git.md)
and follow the [instructions](../ssh/README.md) to generate your SSH key pair.

1. Once you do that, login to GitLab with your credentials.
1. On the upper right corner, click on your avatar and go to your Profile settings.

![Profile settings dropdown](img/profile_settings.png)

	Navigate to the SSH keys tab.

![SSH Keys](img/profile_settings_ssh_keys.png)

	Paste your public key that you generated in the first step in the ‘Key’
box.

![Paste SSH public key](img/profile_settings_ssh_keys_paste_pub.png)

	Optionally, give it a descriptive title so that you can recognize it in the
event you add multiple keys.

![SSH key title](img/profile_settings_ssh_keys_title.png)

	Finally, click on Add key to add it to GitLab. You will be able to see
its fingerprint, its title and creation date.

![SSH key single page](img/profile_settings_ssh_keys_single_key.png)

>**Note:**
Once you add a key, you cannot edit it, only remove it. In case the paste
didn’t work, you will have to remove the offending key and re-add it.

—

Congratulations! You are now ready to use Git over SSH, instead of Git over HTTP!

 # How to fork a project

A fork is a copy of an original repository that you can put in another namespace
where you can experiment and apply changes that you can later decide if
publishing or not, without affecting your original project.

It takes just a few steps to fork a project in GitLab.

	Go to a project’s dashboard under the Project tab and click on the
Fork button.

![Click on Fork button](img/fork_new.png)

	You will be asked where to fork the repository. Click on the user or group
to where you’d like to add the forked project.

![Choose namespace](img/fork_choose_namespace.png)

	After a few moments, depending on the repository’s size, the forking will
complete.

 # Start using Git on the command line

If you want to start using Git and GitLab, make sure that you have created and/or signed into an account on GitLab.

Open a shell

Depending on your operating system, you will need to use a shell of your preference. Here are some suggestions:

	[Terminal](http://blog.teamtreehouse.com/introduction-to-the-mac-os-x-command-line) on Mac OSX

	[GitBash](https://msysgit.github.io) on Windows

	[Linux Terminal](http://www.howtogeek.com/140679/beginner-geek-how-to-start-using-the-linux-terminal/) on Linux

Check if Git has already been installed

Git is usually preinstalled on Mac and Linux.

Type the following command and then press enter:

`bash
git --version
`

You should receive a message that tells you which Git version you have on your computer. If you don’t receive a “Git version” message, it means that you need to [download Git](https://git-scm.com/book/en/v2/Getting-Started-Installing-Git).

If Git doesn’t automatically download, there’s an option on the website to [download manually](https://git-scm.com/downloads). Then follow the steps on the installation window.

After you are finished installing Git, open a new shell and type git –version again to verify that it was correctly installed.

Add your Git username and set your email

It is important to configure your Git username and email address, since every Git commit will use this information to identify you as the author.

On your shell, type the following command to add your username:

`bash
git config --global user.name "YOUR_USERNAME"
`

Then verify that you have the correct username:

`bash
git config --global user.name
`

To set your email address, type the following command:

`bash
git config --global user.email "your_email_address@example.com"
`

To verify that you entered your email correctly, type:

`bash
git config --global user.email
`

You’ll need to do this only once, since you are using the –global option. It tells Git to always use this information for anything you do on that system. If you want to override this with a different username or email address for specific projects, you can run the command without the –global option when you’re in that project.

Check your information

To view the information that you entered, along with other global options, type:

`bash
git config --global --list
`

Basic Git commands

Go to the master branch to pull the latest changes from there

`bash
git checkout master
`

Download the latest changes in the project

This is for you to work on an up-to-date copy (it is important to do this every time you start working on a project), while you set up tracking branches. You pull from remote repositories to get all the changes made by users since the last time you cloned or pulled the project. Later, you can push your local commits to the remote repositories.

`bash
git pull REMOTE NAME-OF-BRANCH
`

When you first clone a repository, REMOTE is typically “origin”. This is where the repository came from, and it indicates the SSH or HTTPS URL of the repository on the remote server. NAME-OF-BRANCH is usually “master”, but it may be any existing branch.

View your remote repositories

To view your remote repositories, type:

`bash
git remote -v
`

Create a branch

To create a branch, type the following (spaces won’t be recognized in the branch name, so you will need to use a hyphen or underscore):

`bash
git checkout -b NAME-OF-BRANCH
`

Work on an existing branch

To switch to an existing branch, so you can work on it:

`bash
git checkout NAME-OF-BRANCH
`

View the changes you’ve made

It’s important to be aware of what’s happening and the status of your changes. When you add, change, or delete files/folders, Git knows about it. To check the status of your changes:

`bash
git status
`

View differences

To view the differences between your local, unstaged changes and the repository versions that you cloned or pulled, type:

`bash
git diff
`

Add and commit local changes

You’ll see your local changes in red when you type git status. These changes may be new, modified, or deleted files/folders. Use git add to stage a local file/folder for committing. Then use git commit to commit the staged files:

`bash
git add FILE OR FOLDER
git commit -m "COMMENT TO DESCRIBE THE INTENTION OF THE COMMIT"
`

Add all changes to commit

To add and commit all local changes in one command:

`bash
git add .
git commit -m "COMMENT TO DESCRIBE THE INTENTION OF THE COMMIT"
`

NOTE: Note:
The . character typically means _all_ in Git.

Send changes to gitlab.com

To push all local commits to the remote repository:

`bash
git push REMOTE NAME-OF-BRANCH
`

For example, to push your local commits to the _master_ branch of the _origin_ remote:

`bash
git push origin master
`

Delete all changes in the Git repository

To delete all local changes in the repository that have not been added to the staging area, and leave unstaged files/folders, type:

`bash
git checkout .
`

Delete all untracked changes in the Git repository

`bash
git clean -f
`

Unstage all changes that have been added to the staging area

To undo the most recent add, but not committed, files/folders:

`bash
git reset .
`

Undo most recent commit

To undo the most recent commit, type:

`bash
git reset HEAD~1
`

This leaves the files and folders unstaged in your local repository.

CAUTION: Warning:
A Git commit is mostly irreversible, particularly if you already pushed it to the remote repository. Although you can undo a commit, the best option is to avoid the situation altogether.

Merge created branch with master branch

You need to be in the created branch.

`bash
git checkout NAME-OF-BRANCH
git merge master
`

Merge master branch with created branch

You need to be in the master branch.

`bash
git checkout master
git merge NAME-OF-BRANCH
`

 # Custom Git Hooks

This document was moved to [administration/custom_hooks.md](../administration/custom_hooks.md).

 This document was moved to [administration/reply_by_email](../administration/reply_by_email.md).

 This document was moved to [administration/reply_by_email_postfix_setup](../administration/reply_by_email_postfix_setup.md).

 —
comments: false
description: Read through the GitLab installation methods.
—

Installation

GitLab can be installed via various ways. Check the [installation methods][methods]
for an overview.

Requirements

Before installing GitLab, make sure to check the [requirements documentation](requirements.md)
which includes useful information on the supported Operating Systems as well as
the hardware requirements.

Installation methods

	[Installation using the Omnibus packages](https://about.gitlab.com/downloads/) -
Install GitLab using our official deb/rpm repositories. This is the
recommended way.

	[Installation from source](installation.md) - Install GitLab from source.
Useful for unsupported systems like *BSD. For an overview of the directory
structure, read the [structure documentation](structure.md).

	[Docker](docker.md) - Install GitLab using Docker.

Install GitLab on cloud providers

	[Installing in Kubernetes](kubernetes/index.md): Install GitLab into a Kubernetes
Cluster using our official Helm Chart Repository.

	[Install GitLab on OpenShift](openshift_and_gitlab/index.md)

	[Install GitLab on DC/OS](https://mesosphere.com/blog/gitlab-dcos/) via [GitLab-Mesosphere integration](https://about.gitlab.com/2016/09/16/announcing-gitlab-and-mesosphere/)

	[Install GitLab on Azure](azure/index.md)

	[Install GitLab on Google Cloud Platform](google_cloud_platform/index.md)

	[Install GitLab on Google Kubernetes Engine (GKE)](https://about.gitlab.com/2017/01/23/video-tutorial-idea-to-production-on-google-container-engine-gke/): video tutorial on

the full process of installing GitLab on Google Kubernetes Engine (GKE), pushing an application to GitLab, building the app with GitLab CI/CD, and deploying to production.
- [Install on AWS](https://about.gitlab.com/aws/)
- _Testing only!_ [DigitalOcean and Docker Machine](digitaloceandocker.md) -

Quickly test any version of GitLab on DigitalOcean using Docker Machine.

	[Getting started with GitLab and DigitalOcean](https://about.gitlab.com/2016/04/27/getting-started-with-gitlab-and-digitalocean/): requirements, installation process, updates.

	[Demo: Cloud Native Development with GitLab](https://about.gitlab.com/2017/04/18/cloud-native-demo/): video demonstration on how to install GitLab on Kubernetes, build a project, create Review Apps, store Docker images in Container Registry, deploy to production on Kubernetes, and monitor with Prometheus.

Database

While the recommended database is PostgreSQL, we provide information to install
GitLab using MySQL. Check the [MySQL documentation](database_mysql.md) for more
information.

[methods]: https://about.gitlab.com/installation/

 # Database MySQL

>**Note:**
- We do not recommend using MySQL due to various issues. For example, case
[(in)sensitivity](https://dev.mysql.com/doc/refman/5.0/en/case-sensitivity.html)
and [problems](https://bugs.mysql.com/bug.php?id=65830) that
[suggested](https://bugs.mysql.com/bug.php?id=50909)
[fixes](https://bugs.mysql.com/bug.php?id=65830) [have](https://bugs.mysql.com/bug.php?id=63164).

Initial database setup

```
# Install the database packages
sudo apt-get install -y mysql-server mysql-client libmysqlclient-dev

# Ensure you have MySQL version 5.6 or later
mysql –version

# Pick a MySQL root password (can be anything), type it and press enter
# Retype the MySQL root password and press enter

# Secure your installation
sudo mysql_secure_installation

# Login to MySQL
mysql -u root -p

# Type the MySQL root password

# Create a user for GitLab
# do not type the ‘mysql>’, this is part of the prompt
# change $password in the command below to a real password you pick
mysql> CREATE USER ‘git’@’localhost’ IDENTIFIED BY ‘$password’;

# Ensure you can use the InnoDB engine which is necessary to support long indexes
# If this fails, check your MySQL config files (e.g. /etc/mysql/*.cnf, /etc/mysql/conf.d/*) for the setting “innodb = off”
mysql> SET storage_engine=INNODB;

# If you have MySQL < 5.7.7 and want to enable utf8mb4 character set support with your GitLab install, you must set the following NOW:
mysql> SET GLOBAL innodb_file_per_table=1, innodb_file_format=Barracuda, innodb_large_prefix=1;

# If you use MySQL with replication, or just have MySQL configured with binary logging, you need to run the following to allow the use of TRIGGER:
mysql> SET GLOBAL log_bin_trust_function_creators = 1;

# Create the GitLab production database
mysql> CREATE DATABASE IF NOT EXISTS gitlabhq_production DEFAULT CHARACTER SET utf8 COLLATE utf8_general_ci;

# Grant the GitLab user necessary permissions on the database
mysql> GRANT SELECT, INSERT, UPDATE, DELETE, CREATE, CREATE TEMPORARY TABLES, DROP, INDEX, ALTER, LOCK TABLES, REFERENCES, TRIGGER ON gitlabhq_production.* TO ‘git’@’localhost’;

# Quit the database session
mysql> q

# Try connecting to the new database with the new user
sudo -u git -H mysql -u git -p -D gitlabhq_production

# Type the password you replaced $password with earlier

# You should now see a ‘mysql>’ prompt

# Quit the database session
mysql> q
```

You are done installing the database for now and can go back to the rest of the installation.
Please proceed to the rest of the installation before running through the steps below.

log_bin_trust_function_creators

If you use MySQL with replication, or just have MySQL configured with binary logging, all of your MySQL servers will need to have log_bin_trust_function_creators enabled to allow the use of TRIGGER in migrations. You have already set this global variable in the steps above, but to make it persistent, add the following to your my.cnf file:

`
log_bin_trust_function_creators=1
`

MySQL utf8mb4 support

After installation or upgrade, remember to [convert any new tables](#tables-and-data-conversion-to-utf8mb4) to utf8mb4/utf8mb4_general_ci.

—

GitLab 8.14 has introduced [a feature](https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/7420) requiring utf8mb4 encoding to be supported in your GitLab MySQL Database, which is not the case if you have setup your database before GitLab 8.16.

Follow the below instructions to ensure you use the most up to date requirements for your GitLab MySQL Database.

We are about to do the following:
- Ensure you can enable utf8mb4 encoding and utf8mb4_general_ci collation for your GitLab DB, tables and data.
- Convert your GitLab tables and data from utf8/utf8_general_ci to utf8mb4/utf8mb4_general_ci

Check for utf8mb4 support

Check for InnoDB File-Per-Table Tablespaces

We need to check, enable and maybe convert your existing GitLab DB tables to the [InnoDB File-Per-Table Tablespaces](http://dev.mysql.com/doc/refman/5.7/en/innodb-multiple-tablespaces.html) as a prerequisite for supporting utfb8mb4 with long indexes required by recent GitLab databases.

Login to MySQL
mysql -u root -p

Type the MySQL root password
mysql > use gitlabhq_production;

Check your MySQL version is >= 5.5.3 (GitLab requires 5.5.14+)
mysql > SHOW VARIABLES LIKE ‘version’;
+—————+—————–+
| Variable_name | Value |
+—————+—————–+
| version | 5.5.53-0+deb8u1 |
+—————+—————–+

Note where is your MySQL data dir for later:
mysql > select @@datadir;
+—————-+
| @@datadir |
+—————-+
| /var/lib/mysql |
+—————-+

Note whether your MySQL server runs with innodb_file_per_table ON or OFF:
mysql> SELECT @@innodb_file_per_table;
+————————-+
| @@innodb_file_per_table |
+————————-+
| 1 |
+————————-+

You can now quit the database session
mysql> q

> You need MySQL 5.5.3 or later to perform this update.

Whatever the results of your checks above, we now need to check if your GitLab database has been created using [InnoDB File-Per-Table Tablespaces](http://dev.mysql.com/doc/refman/5.7/en/innodb-multiple-tablespaces.html) (i.e. innodb_file_per_table was set to 1 at initial setup time).

> Note: This setting is [enabled by default](http://dev.mysql.com/doc/refman/5.7/en/innodb-parameters.html#sysvar_innodb_file_per_table) since MySQL 5.6.6.

Run this command with root privileges, replace the data dir if different:
sudo ls -lh /var/lib/mysql/gitlabhq_production/*.ibd | wc -l

Run this command with root privileges, replace the data dir if different:
sudo ls -lh /var/lib/mysql/gitlabhq_production/*.frm | wc -l

	Case 1: a result > 0 for both commands

Congrats, your GitLab database uses the right InnoDB tablespace format.

However, you must still ensure that any future tables created by GitLab will still use the right format:

	If SELECT @@innodb_file_per_table returned 1 previously, your server is running correctly.

> It’s however a requirement to check now that this setting is indeed persisted in your [my.cnf](https://dev.mysql.com/doc/refman/5.7/en/tablespace-enabling.html) file!

	If SELECT @@innodb_file_per_table returned 0 previously, your server is not running correctly.

> [Enable innodb_file_per_table](https://dev.mysql.com/doc/refman/5.7/en/tablespace-enabling.html) by running in a MySQL session as root the command SET GLOBAL innodb_file_per_table=1, innodb_file_format=Barracuda; and persist the two settings in your [my.cnf](https://dev.mysql.com/doc/refman/5.7/en/tablespace-enabling.html) file

Now, if you have a different result returned by the 2 commands above, it means you have a mix of tables format uses in your GitLab database. This can happen if your MySQL server had different values for innodb_file_per_table in its life and you updated GitLab at different moments with those inconsistent values. So keep reading.

	Case 2: a result equals to “0” OR not the same result for both commands

Unfortunately, none or only some of your GitLab database tables use the GitLab requirement of [InnoDB File-Per-Table Tablespaces](http://dev.mysql.com/doc/refman/5.7/en/innodb-multiple-tablespaces.html).

Let’s enable what we need on the running server:

Login to MySQL
mysql -u root -p

Type the MySQL root password

Enable innodb_file_per_table and set innodb_file_format on the running server:
mysql > SET GLOBAL innodb_file_per_table=1, innodb_file_format=Barracuda;

You can now quit the database session
mysql> q

> Now, persist [innodb_file_per_table](https://dev.mysql.com/doc/refman/5.6/en/tablespace-enabling.html) and [innodb_file_format](https://dev.mysql.com/doc/refman/5.6/en/innodb-file-format-enabling.html) in your my.cnf file.

Ensure at this stage that your GitLab instance is indeed stopped.

Now, let’s convert all the GitLab database tables to the new tablespace format:

Login to MySQL
mysql -u root -p

Type the MySQL root password
mysql > use gitlabhq_production;

Safety check: you should still have those values set as follow:
mysql> SELECT @@innodb_file_per_table, @@innodb_file_format;
+————————-+———————-+
| @@innodb_file_per_table | @@innodb_file_format |
+————————-+———————-+
| 1 | Barracuda |
+————————-+———————-+

mysql > SELECT CONCAT(‘ALTER TABLE ‘, TABLE_NAME,’ ENGINE=InnoDB;’) AS ‘Copy & run these SQL statements:’ FROM INFORMATION_SCHEMA.TABLES WHERE TABLE_SCHEMA=”gitlabhq_production” AND TABLE_TYPE=”BASE TABLE”;

If previous query returned results, copy & run all shown SQL statements

You can now quit the database session
mysql> q

—

Check for proper InnoDB File Format, Row Format, Large Prefix and tables conversion

We need to check, enable and probably convert your existing GitLab DB tables to use the [Barracuda InnoDB file format](https://dev.mysql.com/doc/refman/5.6/en/innodb-file-format.html), the [DYNAMIC row format](https://dev.mysql.com/doc/refman/5.6/en/glossary.html#glos_dynamic_row_format) and [innodb_large_prefix](http://dev.mysql.com/doc/refman/5.7/en/innodb-parameters.html#sysvar_innodb_large_prefix) as a second prerequisite for supporting utfb8mb4 with long indexes used by recent GitLab databases.

Login to MySQL
mysql -u root -p

Type the MySQL root password
mysql > use gitlabhq_production;

Set innodb_file_format and innodb_large_prefix on the running server:
Note: These are the default settings only for MySQL 5.7.7 and later.

mysql > SET GLOBAL innodb_file_format=Barracuda, innodb_large_prefix=1;

Your DB must be (still) using utf8/utf8_general_ci as default encoding and collation.
We will NOT change the default encoding and collation on the DB in order to support future GitLab migrations creating tables
that require “long indexes support” on installations using MySQL <= 5.7.9.
However, when such migrations occur, you will have to follow this guide again to convert the newly created tables to the proper encoding/collation.

This should return the following:
mysql> SELECT @@character_set_database, @@collation_database;
+————————–+———————-+
| @@character_set_database | @@collation_database |
+————————–+———————-+
| utf8 | utf8_general_ci |
+————————–+———————-+

> Now, ensure that [innodb_file_format](https://dev.mysql.com/doc/refman/5.6/en/tablespace-enabling.html) and [innodb_large_prefix](http://dev.mysql.com/doc/refman/5.7/en/innodb-parameters.html#sysvar_innodb_large_prefix) are persisted in your my.cnf file.

Tables and data conversion to utf8mb4

Now that you have a persistent MySQL setup, you can safely upgrade tables after setup or upgrade time:

Convert tables not using ROW_FORMAT DYNAMIC:

mysql> SELECT CONCAT(‘ALTER TABLE ‘, TABLE_NAME,’ ROW_FORMAT=DYNAMIC;’) AS ‘Copy & run these SQL statements:’ FROM INFORMATION_SCHEMA.TABLES WHERE TABLE_SCHEMA=”gitlabhq_production” AND TABLE_TYPE=”BASE TABLE” AND ROW_FORMAT!=”Dynamic”;

!! If previous query returned results, copy & run all shown SQL statements

Convert tables/columns not using utf8mb4/utf8mb4_general_ci as encoding/collation:

mysql > SET foreign_key_checks = 0;

mysql > SELECT CONCAT(‘ALTER TABLE ‘, TABLE_NAME,’ CONVERT TO CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci;’) AS ‘Copy & run these SQL statements:’ FROM INFORMATION_SCHEMA.TABLES WHERE TABLE_SCHEMA=”gitlabhq_production” AND TABLE_COLLATION != “utf8mb4_general_ci” AND TABLE_TYPE=”BASE TABLE”;

!! If previous query returned results, copy & run all shown SQL statements

Turn foreign key checks back on
mysql > SET foreign_key_checks = 1;

You can now quit the database session
mysql> q

Ensure your GitLab database configuration file uses a proper connection encoding and collation:

`sudo -u git -H editor config/database.yml`

	production:
	adapter: mysql2
encoding: utf8mb4
collation: utf8mb4_general_ci

[Restart your GitLab instance](../administration/restart_gitlab.md).

MySQL strings limits

After installation or upgrade, remember to run the add_limits_mysql Rake task:

Omnibus GitLab installations
`
sudo gitlab-rake add_limits_mysql
`

Installations from source

`
bundle exec rake add_limits_mysql RAILS_ENV=production
`

The text type in MySQL has a different size limit than the text type in
PostgreSQL. In MySQL text columns are limited to ~65kB, whereas in PostgreSQL
text columns are limited up to ~1GB!

The add_limits_mysql Rake task converts some important text columns in the
GitLab database to longtext columns, which can persist values of up to 4GB
(sometimes less if the value contains multibyte characters).

Details can be found in the [PostgreSQL][postgres-text-type] and
[MySQL][mysql-text-types] manuals.

[postgres-text-type]: http://www.postgresql.org/docs/9.2/static/datatype-character.html
[mysql-text-types]: http://dev.mysql.com/doc/refman/5.7/en/string-type-overview.html
[ce-38152]: https://gitlab.com/gitlab-org/gitlab-ce/issues/38152

 # Digital Ocean and Docker Machine test environment

Warning. This guide is for quickly testing different versions of GitLab and
not recommended for ease of future upgrades or keeping the data you create.

Initial setup

In this guide you’ll configure a Digital Ocean droplet and set up Docker
locally on either macOS or Linux.

On macOS

Install Docker Toolbox

	https://www.docker.com/products/docker-toolbox

On Linux

Install Docker Engine

	https://docs.docker.com/engine/installation/linux

Install Docker Machine

	https://docs.docker.com/machine/install-machine

The rest of the steps are identical for macOS and Linux

Create new docker host

1. Login to Digital Ocean
1. Generate a new API token at https://cloud.digitalocean.com/settings/api/tokens

This command will create a new DO droplet called gitlab-test-env-do that will act as a docker host.

Note: 4GB is the minimum requirement for a Docker host that will run more then one GitLab instance

	RAM: 4GB

	Name: gitlab-test-env-do

	Driver: digitalocean

Set the DO token - Replace the string below with your generated token

`
export DOTOKEN=cf3dfd0662933203005c4a73396214b7879d70aabc6352573fe178d340a80248
`

Create the machine

```
docker-machine create 


–driver digitalocean –digitalocean-access-token=$DOTOKEN –digitalocean-size “4gb” 


gitlab-test-env-do







```


	Resource: https://docs.docker.com/machine/drivers/digital-ocean/

Creating GitLab test instance

Connect your shell to the new machine

In this example we’ll create a GitLab EE 8.10.8 instance.

First connect the docker client to the docker host you created previously.

`
eval "$(docker-machine env gitlab-test-env-do)"
`

You can add this to your ~/.bash_profile file to ensure the docker client uses the gitlab-test-env-do docker host

Create new GitLab container

	HTTP port: 8888

	
	SSH port: 2222
	
	Set gitlab_shell_ssh_port using `–env GITLAB_OMNIBUS_CONFIG `

	Hostname: IP of docker host

	Container name: gitlab-test-8.10

	GitLab version: EE 8.10.8-ee.0

Setup container settings

`
export SSH_PORT=2222
export HTTP_PORT=8888
export VERSION=8.10.8-ee.0
export NAME=gitlab-test-8.10
`

Create container
`
docker run --detach \
--env GITLAB_OMNIBUS_CONFIG="external_url 'http://$(docker-machine ip gitlab-test-env-do):$HTTP_PORT'; gitlab_rails['gitlab_shell_ssh_port'] = $SSH_PORT;" \
--hostname $(docker-machine ip gitlab-test-env-do) \
-p $HTTP_PORT:$HTTP_PORT -p $SSH_PORT:22 \
--name $NAME \
gitlab/gitlab-ee:$VERSION
`

Connect to the GitLab container

Retrieve the docker host IP

`
docker-machine ip gitlab-test-env-do
example output: 192.168.151.134
`

	Browse to: http://192.168.151.134:8888/

Execute interactive shell/edit configuration

`
docker exec -it $NAME /bin/bash
`

`
example commands
root@192:/# vi /etc/gitlab/gitlab.rb
root@192:/# gitlab-ctl reconfigure
`

Resources

	https://docs.gitlab.com/omnibus/docker/

	https://docs.docker.com/machine/get-started/

	https://docs.docker.com/machine/reference/ip/+

 # Install GitLab with Docker

[Docker](https://www.docker.com) and container technology have been revolutionizing the software world for the past few years. They combine the performance and efficiency of native execution with the abstraction, security, and immutability of virtualization.

GitLab provides official Docker images to allowing you to easily take advantage of the benefits of containerization while operating your GitLab instance.

Omnibus GitLab based images

GitLab maintains a set of [official Docker images](https://hub.docker.com/r/gitlab) based on our [Omnibus GitLab package](https://docs.gitlab.com/omnibus/README.html). These images include:
* [GitLab Community Edition](https://hub.docker.com/r/gitlab/gitlab-ce/)
* [GitLab Enterprise Edition](https://hub.docker.com/r/gitlab/gitlab-ee/)
* [GitLab Runner](https://hub.docker.com/r/gitlab/gitlab-runner/)

A [complete usage guide](https://docs.gitlab.com/omnibus/docker/) to these images is available, as well as the [Dockerfile used for building the images](https://gitlab.com/gitlab-org/omnibus-gitlab/tree/master/docker).

Cloud native images

GitLab is also working towards a [cloud native set of containers](https://gitlab.com/charts/helm.gitlab.io#docker-container-images), with a single image for each component service. We intend for these images to eventually replace the [Omnibus GitLab based images](#omnibus-gitlab-based-images).

 # Installing a locally compiled google-protobuf gem

First we must find the exact version of google-protobuf that your
GitLab installation requires.

cd /home/git/gitlab

Only one of the following two commands will print something. It
will look like: * google-protobuf (3.2.0)
bundle list | grep google-protobuf
bundle check | grep google-protobuf

Below we use 3.2.0 as an example. Replace it with the version number
you found above.

cd /home/git/gitlab
sudo -u git -H gem install google-protobuf –version 3.2.0 –platform ruby

Finally, you can test whether google-protobuf loads correctly. The
following should print ‘OK’.

sudo -u git -H bundle exec ruby -rgoogle/protobuf -e ‘puts :OK’

If the gem install command fails you may need to install developer
tools. On Debian: apt-get install build-essential libgmp-dev, on
Centos/RedHat yum groupinstall ‘Development Tools’.

 # Installation from source

Consider the Omnibus package installation

Since an installation from source is a lot of work and error prone we strongly recommend the fast and reliable [Omnibus package installation](https://about.gitlab.com/downloads/) (deb/rpm).

One reason the Omnibus package is more reliable is its use of Runit to restart any of the GitLab processes in case one crashes.
On heavily used GitLab instances the memory usage of the Sidekiq background worker will grow over time.
Omnibus packages solve this by [letting the Sidekiq terminate gracefully](http://docs.gitlab.com/ce/operations/sidekiq_memory_killer.html) if it uses too much memory.
After this termination Runit will detect Sidekiq is not running and will start it.
Since installations from source don’t have Runit, Sidekiq can’t be terminated and its memory usage will grow over time.

Select Version to Install

Make sure you view [this installation guide](https://gitlab.com/gitlab-org/gitlab-ce/blob/master/doc/install/installation.md) from the branch (version) of GitLab you would like to install (e.g., 11-2-stable).
You can select the branch in the version dropdown in the top left corner of GitLab (below the menu bar).

If the highest number stable branch is unclear please check the [GitLab Blog](https://about.gitlab.com/blog/) for installation guide links by version.

Important Notes

This guide is long because it covers many cases and includes all commands you need, this is [one of the few installation scripts that actually works out of the box](https://twitter.com/robinvdvleuten/status/424163226532986880).

This installation guide was created for and tested on Debian/Ubuntu operating systems. Please read requirements.md for hardware and operating system requirements. If you want to install on RHEL/CentOS we recommend using the [Omnibus packages](https://about.gitlab.com/downloads/).

This is the official installation guide to set up a production server. To set up a development installation or for many other installation options please see [the installation section of the readme](https://gitlab.com/gitlab-org/gitlab-ce/blob/master/README.md#installation).

The following steps have been known to work. Please use caution when you deviate from this guide. Make sure you don’t violate any assumptions GitLab makes about its environment. For example many people run into permission problems because they changed the location of directories or run services as the wrong user.

If you find a bug/error in this guide please submit a merge request
following the
[contributing guide](https://gitlab.com/gitlab-org/gitlab-ce/blob/master/CONTRIBUTING.md).

Overview

The GitLab installation consists of setting up the following components:

1. Packages / Dependencies
1. Ruby
1. Go
1. Node
1. System Users
1. Database
1. Redis
1. GitLab
1. Nginx

1. Packages / Dependencies

sudo is not installed on Debian by default. Make sure your system is
up-to-date and install it.

run as root!
apt-get update -y
apt-get upgrade -y
apt-get install sudo -y

Note: During this installation some files will need to be edited manually. If you are familiar with vim set it as default editor with the commands below. If you are not familiar with vim please skip this and keep using the default editor.

Install vim and set as default editor
sudo apt-get install -y vim
sudo update-alternatives –set editor /usr/bin/vim.basic

Install the required packages (needed to compile Ruby and native extensions to Ruby gems):

sudo apt-get install -y build-essential zlib1g-dev libyaml-dev libssl-dev libgdbm-dev libre2-dev libreadline-dev libncurses5-dev libffi-dev curl openssh-server checkinstall libxml2-dev libxslt-dev libcurl4-openssl-dev libicu-dev logrotate rsync python-docutils pkg-config cmake

Ubuntu 14.04 (Trusty Tahr) doesn’t have the libre2-dev package available, but
you can [install re2 manually](https://github.com/google/re2/wiki/Install).

If you want to use Kerberos for user authentication, then install libkrb5-dev:

sudo apt-get install libkrb5-dev

Note: If you don’t know what Kerberos is, you can assume you don’t need it.

Make sure you have the right version of Git installed

Install Git
sudo apt-get install -y git-core

Make sure Git is version 2.9.5 or higher
git –version

Is the system packaged Git too old? Remove it and compile from source.

Remove packaged Git
sudo apt-get remove git-core

Install dependencies
sudo apt-get install -y libcurl4-openssl-dev libexpat1-dev gettext libz-dev libssl-dev build-essential

Download and compile from source
cd /tmp
curl –remote-name –progress https://www.kernel.org/pub/software/scm/git/git-2.18.0.tar.gz
echo ‘94faf2c0b02a7920b0b46f4961d8e9cad08e81418614102898a55f980fa3e7e4 git-2.18.0.tar.gz’ | shasum -a256 -c - && tar -xzf git-2.18.0.tar.gz
cd git-2.18.0/
./configure
make prefix=/usr/local all

Install into /usr/local/bin
sudo make prefix=/usr/local install

When editing config/gitlab.yml (Step 5), change the git -> bin_path to /usr/local/bin/git

Note: In order to receive mail notifications, make sure to install a mail server. By default, Debian is shipped with exim4 but this [has problems](https://github.com/gitlabhq/gitlabhq/issues/4866#issuecomment-32726573) while Ubuntu does not ship with one. The recommended mail server is postfix and you can install it with:

sudo apt-get install -y postfix

Then select ‘Internet Site’ and press enter to confirm the hostname.

2. Ruby

The Ruby interpreter is required to run GitLab.

Note: The current supported Ruby (MRI) version is 2.3.x. GitLab 9.0 dropped
support for Ruby 2.1.x.

The use of Ruby version managers such as [RVM], [rbenv] or [chruby] with GitLab
in production, frequently leads to hard to diagnose problems. For example,
GitLab Shell is called from OpenSSH, and having a version manager can prevent
pushing and pulling over SSH. Version managers are not supported and we strongly
advise everyone to follow the instructions below to use a system Ruby.

Linux distributions generally have older versions of Ruby available, so these
instructions are designed to install Ruby from the official source code.

Remove the old Ruby 1.8 if present:

sudo apt-get remove ruby1.8

Download Ruby and compile it:

mkdir /tmp/ruby && cd /tmp/ruby
curl –remote-name –progress https://cache.ruby-lang.org/pub/ruby/2.4/ruby-2.4.4.tar.gz
echo ‘ec82b0d53bd0adad9b19e6b45e44d54e9ec3f10c ruby-2.4.4.tar.gz’ | shasum -c - && tar xzf ruby-2.4.4.tar.gz
cd ruby-2.4.4

./configure –disable-install-rdoc
make
sudo make install

Then install the Bundler Gem:

sudo gem install bundler –no-ri –no-rdoc

3. Go

Since GitLab 8.0, GitLab has several daemons written in Go. To install
GitLab we need a Go compiler. The instructions below assume you use 64-bit
Linux. You can find downloads for other platforms at the [Go download
page](https://golang.org/dl).

Remove former Go installation folder
sudo rm -rf /usr/local/go

curl –remote-name –progress https://dl.google.com/go/go1.10.3.linux-amd64.tar.gz
echo ‘fa1b0e45d3b647c252f51f5e1204aba049cde4af177ef9f2181f43004f901035 go1.10.3.linux-amd64.tar.gz’ | shasum -a256 -c - &&

sudo tar -C /usr/local -xzf go1.10.3.linux-amd64.tar.gz

sudo ln -sf /usr/local/go/bin/{go,godoc,gofmt} /usr/local/bin/
rm go1.10.3.linux-amd64.tar.gz

4. Node

Since GitLab 8.17, GitLab requires the use of Node to compile javascript
assets, and Yarn to manage javascript dependencies. The current minimum
requirements for these are node >= v6.0.0 and yarn >= v1.2.0. In many distros
the versions provided by the official package repositories are out of date, so
we’ll need to install through the following commands:

install node v8.x
curl –location https://deb.nodesource.com/setup_8.x | sudo bash -
sudo apt-get install -y nodejs

curl –silent –show-error https://dl.yarnpkg.com/debian/pubkey.gpg | sudo apt-key add -
echo “deb https://dl.yarnpkg.com/debian/ stable main” | sudo tee /etc/apt/sources.list.d/yarn.list
sudo apt-get update
sudo apt-get install yarn

Visit the official websites for [node](https://nodejs.org/en/download/package-manager/) and [yarn](https://yarnpkg.com/en/docs/install/) if you have any trouble with these steps.

5. System Users

Create a git user for GitLab:

sudo adduser –disabled-login –gecos ‘GitLab’ git

6. Database

We recommend using a PostgreSQL database. For MySQL check the
[MySQL setup guide](database_mysql.md).

> Note: because we need to make use of extensions and concurrent index removal,
you need at least PostgreSQL 9.2.

	Install the database packages:

`bash
sudo apt-get install -y postgresql postgresql-client libpq-dev postgresql-contrib
`

	Create a database user for GitLab:

`bash
sudo -u postgres psql -d template1 -c "CREATE USER git CREATEDB;"
`

	Create the pg_trgm extension (required for GitLab 8.6+):

`bash
sudo -u postgres psql -d template1 -c "CREATE EXTENSION IF NOT EXISTS pg_trgm;"
`

	Create the GitLab production database and grant all privileges on database:

`bash
sudo -u postgres psql -d template1 -c "CREATE DATABASE gitlabhq_production OWNER git;"
`

	Try connecting to the new database with the new user:

`bash
sudo -u git -H psql -d gitlabhq_production
`

	Check if the pg_trgm extension is enabled:

`bash
SELECT true AS enabled
FROM pg_available_extensions
WHERE name = 'pg_trgm'
AND installed_version IS NOT NULL;
`

If the extension is enabled this will produce the following output:

```
enabled
———


t




(1 row)
```


	Quit the database session:

`bash
gitlabhq_production> \q
`

7. Redis

GitLab requires at least Redis 2.8.

If you are using Debian 8 or Ubuntu 14.04 and up, then you can simply install
Redis 2.8 with:

`sh
sudo apt-get install redis-server
`

If you are using Debian 7 or Ubuntu 12.04, follow the special documentation
on [an alternate Redis installation](redis.md). Once done, follow the rest of
the guide here.

```
# Configure redis to use sockets
sudo cp /etc/redis/redis.conf /etc/redis/redis.conf.orig

# Disable Redis listening on TCP by setting ‘port’ to 0
sed ‘s/^port .*/port 0/’ /etc/redis/redis.conf.orig | sudo tee /etc/redis/redis.conf

# Enable Redis socket for default Debian / Ubuntu path
echo ‘unixsocket /var/run/redis/redis.sock’ | sudo tee -a /etc/redis/redis.conf

# Grant permission to the socket to all members of the redis group
echo ‘unixsocketperm 770’ | sudo tee -a /etc/redis/redis.conf

# Create the directory which contains the socket
mkdir /var/run/redis
chown redis:redis /var/run/redis
chmod 755 /var/run/redis

# Persist the directory which contains the socket, if applicable
if [ -d /etc/tmpfiles.d ]; then


echo ‘d  /var/run/redis  0755  redis  redis  10d  -‘ | sudo tee -a /etc/tmpfiles.d/redis.conf




fi

# Activate the changes to redis.conf
sudo service redis-server restart

# Add git to the redis group
sudo usermod -aG redis git
```

8. GitLab

We’ll install GitLab into home directory of the user “git”
cd /home/git

Clone the Source

Clone GitLab repository
sudo -u git -H git clone https://gitlab.com/gitlab-org/gitlab-ce.git -b 11-2-stable gitlab

Note: You can change 11-2-stable to master if you want the bleeding edge version, but never install master on a production server!

Configure It

Go to GitLab installation folder
cd /home/git/gitlab

Copy the example GitLab config
sudo -u git -H cp config/gitlab.yml.example config/gitlab.yml

Update GitLab config file, follow the directions at top of file
sudo -u git -H editor config/gitlab.yml

Copy the example secrets file
sudo -u git -H cp config/secrets.yml.example config/secrets.yml
sudo -u git -H chmod 0600 config/secrets.yml

Make sure GitLab can write to the log/ and tmp/ directories
sudo chown -R git log/
sudo chown -R git tmp/
sudo chmod -R u+rwX,go-w log/
sudo chmod -R u+rwX tmp/

Make sure GitLab can write to the tmp/pids/ and tmp/sockets/ directories
sudo chmod -R u+rwX tmp/pids/
sudo chmod -R u+rwX tmp/sockets/

Create the public/uploads/ directory
sudo -u git -H mkdir public/uploads/

Make sure only the GitLab user has access to the public/uploads/ directory
now that files in public/uploads are served by gitlab-workhorse
sudo chmod 0700 public/uploads

Change the permissions of the directory where CI job traces are stored
sudo chmod -R u+rwX builds/

Change the permissions of the directory where CI artifacts are stored
sudo chmod -R u+rwX shared/artifacts/

Change the permissions of the directory where GitLab Pages are stored
sudo chmod -R ug+rwX shared/pages/

Copy the example Unicorn config
sudo -u git -H cp config/unicorn.rb.example config/unicorn.rb

Find number of cores
nproc

Enable cluster mode if you expect to have a high load instance
Set the number of workers to at least the number of cores
Ex. change amount of workers to 3 for 2GB RAM server
sudo -u git -H editor config/unicorn.rb

Copy the example Rack attack config
sudo -u git -H cp config/initializers/rack_attack.rb.example config/initializers/rack_attack.rb

Configure Git global settings for git user
‘autocrlf’ is needed for the web editor
sudo -u git -H git config –global core.autocrlf input

Disable ‘git gc –auto’ because GitLab already runs ‘git gc’ when needed
sudo -u git -H git config –global gc.auto 0

Enable packfile bitmaps
sudo -u git -H git config –global repack.writeBitmaps true

Enable push options
sudo -u git -H git config –global receive.advertisePushOptions true

Configure Redis connection settings
sudo -u git -H cp config/resque.yml.example config/resque.yml

Change the Redis socket path if you are not using the default Debian / Ubuntu configuration
sudo -u git -H editor config/resque.yml

Important Note: Make sure to edit both gitlab.yml and unicorn.rb to match your setup.

Note: If you want to use HTTPS, see [Using HTTPS](#using-https) for the additional steps.

Configure GitLab DB Settings

PostgreSQL only:
sudo -u git cp config/database.yml.postgresql config/database.yml

MySQL only:
sudo -u git cp config/database.yml.mysql config/database.yml

MySQL and remote PostgreSQL only:
Update username/password in config/database.yml.
You only need to adapt the production settings (first part).
If you followed the database guide then please do as follows:
Change ‘secure password’ with the value you have given to $password
You can keep the double quotes around the password
sudo -u git -H editor config/database.yml

PostgreSQL and MySQL:
Make config/database.yml readable to git only
sudo -u git -H chmod o-rwx config/database.yml

Install Gems

Note: As of bundler 1.5.2, you can invoke bundle install -jN (where N the number of your processor cores) and enjoy the parallel gems installation with measurable difference in completion time (~60% faster). Check the number of your cores with nproc. For more information check this [post](https://robots.thoughtbot.com/parallel-gem-installing-using-bundler). First make sure you have bundler >= 1.5.2 (run bundle -v) as it addresses some [issues](https://devcenter.heroku.com/changelog-items/411) that were [fixed](https://github.com/bundler/bundler/pull/2817) in 1.5.2.

For PostgreSQL (note, the option says “without … mysql”)
sudo -u git -H bundle install –deployment –without development test mysql aws kerberos

Or if you use MySQL (note, the option says “without … postgres”)
sudo -u git -H bundle install –deployment –without development test postgres aws kerberos

Note: If you want to use Kerberos for user authentication, then omit kerberos in the –without option above.

Install GitLab Shell

GitLab Shell is an SSH access and repository management software developed specially for GitLab.

Run the installation task for gitlab-shell (replace REDIS_URL if needed):
sudo -u git -H bundle exec rake gitlab:shell:install REDIS_URL=unix:/var/run/redis/redis.sock RAILS_ENV=production SKIP_STORAGE_VALIDATION=true

By default, the gitlab-shell config is generated from your main GitLab config.
You can review (and modify) the gitlab-shell config as follows:
sudo -u git -H editor /home/git/gitlab-shell/config.yml

Note: If you want to use HTTPS, see [Using HTTPS](#using-https) for the additional steps.

Note: Make sure your hostname can be resolved on the machine itself by either a proper DNS record or an additional line in /etc/hosts (“127.0.0.1 hostname”). This might be necessary for example if you set up GitLab behind a reverse proxy. If the hostname cannot be resolved, the final installation check will fail with “Check GitLab API access: FAILED. code: 401” and pushing commits will be rejected with “[remote rejected] master -> master (hook declined)”.

Note: GitLab Shell application startup time can be greatly reduced by disabling RubyGems. This can be done in several manners:

	Export RUBYOPT=–disable-gems environment variable for the processes

	Compile Ruby with configure –disable-rubygems to disable RubyGems by default. Not recommended for system-wide Ruby.

	Omnibus GitLab [replaces the shebang line of the gitlab-shell/bin/* scripts](https://gitlab.com/gitlab-org/omnibus-gitlab/merge_requests/1707)

Install gitlab-workhorse

GitLab-Workhorse uses [GNU Make](https://www.gnu.org/software/make/). The
following command-line will install GitLab-Workhorse in /home/git/gitlab-workhorse
which is the recommended location.

sudo -u git -H bundle exec rake “gitlab:workhorse:install[/home/git/gitlab-workhorse]” RAILS_ENV=production

You can specify a different Git repository by providing it as an extra parameter:

sudo -u git -H bundle exec rake “gitlab:workhorse:install[/home/git/gitlab-workhorse,https://example.com/gitlab-workhorse.git]” RAILS_ENV=production

Install gitlab-pages

GitLab-Pages uses [GNU Make](https://www.gnu.org/software/make/). This step is optional and only needed if you wish to host static sites from within GitLab. The following commands will install GitLab-Pages in /home/git/gitlab-pages. For additional setup steps, please consult the [administration guide](https://gitlab.com/gitlab-org/gitlab-ce/blob/master/doc/administration/pages/source.md) for your version of GitLab as the GitLab Pages daemon can be ran several different ways.

cd /home/git
sudo -u git -H git clone https://gitlab.com/gitlab-org/gitlab-pages.git
cd gitlab-pages
sudo -u git -H git checkout v$(</home/git/gitlab/GITLAB_PAGES_VERSION)
sudo -u git -H make

Initialize Database and Activate Advanced Features

sudo -u git -H bundle exec rake gitlab:setup RAILS_ENV=production

Type ‘yes’ to create the database tables.

When done you see ‘Administrator account created:’

Note: You can set the Administrator/root password and e-mail by supplying them in environmental variables, GITLAB_ROOT_PASSWORD and GITLAB_ROOT_EMAIL respectively, as seen below. If you don’t set the password (and it is set to the default one) please wait with exposing GitLab to the public internet until the installation is done and you’ve logged into the server the first time. During the first login you’ll be forced to change the default password.

sudo -u git -H bundle exec rake gitlab:setup RAILS_ENV=production GITLAB_ROOT_PASSWORD=yourpassword GITLAB_ROOT_EMAIL=youremail

Secure secrets.yml

The secrets.yml file stores encryption keys for sessions and secure variables.
Backup secrets.yml someplace safe, but don’t store it in the same place as your database backups.
Otherwise your secrets are exposed if one of your backups is compromised.

Install Init Script

Download the init script (will be /etc/init.d/gitlab):

sudo cp lib/support/init.d/gitlab /etc/init.d/gitlab

And if you are installing with a non-default folder or user copy and edit the defaults file:

sudo cp lib/support/init.d/gitlab.default.example /etc/default/gitlab

If you installed GitLab in another directory or as a user other than the default you should change these settings in /etc/default/gitlab. Do not edit /etc/init.d/gitlab as it will be changed on upgrade.

Make GitLab start on boot:

sudo update-rc.d gitlab defaults 21

Install Gitaly

Fetch Gitaly source with Git and compile with Go
sudo -u git -H bundle exec rake “gitlab:gitaly:install[/home/git/gitaly]” RAILS_ENV=production

You can specify a different Git repository by providing it as an extra parameter:

sudo -u git -H bundle exec rake “gitlab:gitaly:install[/home/git/gitaly,https://example.com/gitaly.git]” RAILS_ENV=production

Next, make sure gitaly configured:

Restrict Gitaly socket access
sudo chmod 0700 /home/git/gitlab/tmp/sockets/private
sudo chown git /home/git/gitlab/tmp/sockets/private

If you are using non-default settings you need to update config.toml
cd /home/git/gitaly
sudo -u git -H editor config.toml

For more information about configuring Gitaly see
[doc/administration/gitaly](../administration/gitaly).

Setup Logrotate

sudo cp lib/support/logrotate/gitlab /etc/logrotate.d/gitlab

Check Application Status

Check if GitLab and its environment are configured correctly:

sudo -u git -H bundle exec rake gitlab:env:info RAILS_ENV=production

Compile GetText PO files

sudo -u git -H bundle exec rake gettext:compile RAILS_ENV=production

Compile Assets

sudo -u git -H yarn install –production –pure-lockfile
sudo -u git -H bundle exec rake gitlab:assets:compile RAILS_ENV=production NODE_ENV=production

Start Your GitLab Instance

sudo service gitlab start
or
sudo /etc/init.d/gitlab restart

9. Nginx

Note: Nginx is the officially supported web server for GitLab. If you cannot or do not want to use Nginx as your web server, have a look at the [GitLab recipes](https://gitlab.com/gitlab-org/gitlab-recipes/).

Installation

sudo apt-get install -y nginx

Site Configuration

Copy the example site config:

sudo cp lib/support/nginx/gitlab /etc/nginx/sites-available/gitlab
sudo ln -s /etc/nginx/sites-available/gitlab /etc/nginx/sites-enabled/gitlab

Make sure to edit the config file to match your setup. Also, ensure that you match your paths to GitLab, especially if installing for a user other than the ‘git’ user:

Change YOUR_SERVER_FQDN to the fully-qualified
domain name of your host serving GitLab.
#
Remember to match your paths to GitLab, especially
if installing for a user other than ‘git’.
#
If using Ubuntu default nginx install:
either remove the default_server from the listen line
or else sudo rm -f /etc/nginx/sites-enabled/default
sudo editor /etc/nginx/sites-available/gitlab

If you intend to enable GitLab pages, there is a separate Nginx config you need
to use. Read all about the needed configuration at the
[GitLab Pages administration guide](../administration/pages/index.md).

Note: If you want to use HTTPS, replace the gitlab Nginx config with gitlab-ssl. See [Using HTTPS](#using-https) for HTTPS configuration details.

Test Configuration

Validate your gitlab or gitlab-ssl Nginx config file with the following command:

sudo nginx -t

You should receive syntax is okay and test is successful messages. If you receive errors check your gitlab or gitlab-ssl Nginx config file for typos, etc. as indicated in the error message given.

Restart

sudo service nginx restart

Done!

Double-check Application Status

To make sure you didn’t miss anything run a more thorough check with:

sudo -u git -H bundle exec rake gitlab:check RAILS_ENV=production

If all items are green, then congratulations on successfully installing GitLab!

NOTE: Supply SANITIZE=true environment variable to gitlab:check to omit project names from the output of the check command.

Initial Login

Visit YOUR_SERVER in your web browser for your first GitLab login.

If you didn’t [provide a root password during setup](#initialize-database-and-activate-advanced-features),
you’ll be redirected to a password reset screen to provide the password for the
initial administrator account. Enter your desired password and you’ll be
redirected back to the login screen.

The default account’s username is root. Provide the password you created
earlier and login. After login you can change the username if you wish.

Enjoy!

You can use sudo service gitlab start and sudo service gitlab stop to start and stop GitLab.

Advanced Setup Tips

Relative URL support

See the [Relative URL documentation](relative_url.md) for more information on
how to configure GitLab with a relative URL.

Using HTTPS

To use GitLab with HTTPS:

	
	In gitlab.yml:
	1. Set the port option in section 1 to 443.
1. Set the https option in section 1 to true.

	
	In the config.yml of gitlab-shell:
	1. Set gitlab_url option to the HTTPS endpoint of GitLab (e.g. https://git.example.com).
1. Set the certificates using either the ca_file or ca_path option.

	
	Use the gitlab-ssl Nginx example config instead of the gitlab config.
	1. Update YOUR_SERVER_FQDN.
1. Update ssl_certificate and ssl_certificate_key.
1. Review the configuration file and consider applying other security and performance enhancing features.

Using a self-signed certificate is discouraged but if you must use it follow the normal directions then:

	Generate a self-signed SSL certificate:

`
mkdir -p /etc/nginx/ssl/
cd /etc/nginx/ssl/
sudo openssl req -newkey rsa:2048 -x509 -nodes -days 3560 -out gitlab.crt -keyout gitlab.key
sudo chmod o-r gitlab.key
`

	In the config.yml of gitlab-shell set self_signed_cert to true.

Enable Reply by email

See the [“Reply by email” documentation](../administration/reply_by_email.md) for more information on how to set this up.

LDAP Authentication

You can configure LDAP authentication in config/gitlab.yml. Please restart GitLab after editing this file.

Using Custom Omniauth Providers

See the [omniauth integration document](../integration/omniauth.md)

Build your projects

GitLab can build your projects. To enable that feature you need GitLab Runners to do that for you.
Checkout the [GitLab Runner section](https://about.gitlab.com/gitlab-ci/#gitlab-runner) to install it

Adding your Trusted Proxies

If you are using a reverse proxy on a separate machine, you may want to add the
proxy to the trusted proxies list. Otherwise users will appear signed in from the
proxy’s IP address.

You can add trusted proxies in config/gitlab.yml by customizing the trusted_proxies
option in section 1. Save the file and [reconfigure GitLab](../administration/restart_gitlab.md)
for the changes to take effect.

Custom Redis Connection

If you’d like to connect to a Redis server on a non-standard port or on a different host, you can configure its connection string via the config/resque.yml file.

example
production:

url: redis://redis.example.tld:6379

If you want to connect the Redis server via socket, then use the “unix:” URL scheme and the path to the Redis socket file in the config/resque.yml file.

example
production:

url: unix:/path/to/redis/socket

Also you can use environment variables in the config/resque.yml file:

example
production:

url: <%= ENV.fetch(‘GITLAB_REDIS_URL’) %>

Custom SSH Connection

If you are running SSH on a non-standard port, you must change the GitLab user’s SSH config.

Add to /home/git/.ssh/config
host localhost # Give your setup a name (here: override localhost)

user git # Your remote git user
port 2222 # Your port number
hostname 127.0.0.1; # Your server name or IP

You also need to change the corresponding options (e.g. ssh_user, ssh_host, admin_uri) in the configgitlab.yml file.

Additional Markup Styles

Apart from the always supported markdown style there are other rich text files that GitLab can display. But you might have to install a dependency to do so. Please see the [github-markup gem readme](https://github.com/gitlabhq/markup#markups) for more information.

Troubleshooting

“You appear to have cloned an empty repository.”

If you see this message when attempting to clone a repository hosted by GitLab,
this is likely due to an outdated Nginx or Apache configuration, or a missing or
misconfigured gitlab-workhorse instance. Double-check that you’ve
[installed Go](#3-go), [installed gitlab-workhorse](#install-gitlab-workhorse),
and correctly [configured Nginx](#site-configuration).

google-protobuf “LoadError: /lib/x86_64-linux-gnu/libc.so.6: version `GLIBC_2.14’ not found”

This can happen on some platforms for some versions of the
google-protobuf gem. The workaround is to [install a source-only
version of this gem](google-protobuf.md).

[RVM]: https://rvm.io/ “RVM Homepage”
[rbenv]: https://github.com/sstephenson/rbenv “rbenv on GitHub”
[chruby]: https://github.com/postmodern/chruby “chruby on GitHub”

 # Install Redis on old distributions

GitLab requires at least Redis 2.8. The following guide is for Debian 7 and
Ubuntu 12.04. If you are using Debian 8 or Ubuntu 14.04 and up, follow the
[installation guide](installation.md).

Install Redis 2.8 in Debian 7

Redis 2.8 is included in the Debian Wheezy [backports] repository.

	Edit /etc/apt/sources.list and add the following line:

`
deb http://http.debian.net/debian wheezy-backports main
`

	Update the repositories:

`
sudo apt-get update
`

	Install redis-server:

`
sudo apt-get -t wheezy-backports install redis-server
`

	Follow the rest of the [installation guide](installation.md).

Install Redis 2.8 in Ubuntu 12.04

We will [use a PPA](https://launchpad.net/~chris-lea/+archive/ubuntu/redis-server)
to install a recent version of Redis.

	Install the PPA repository:

`
sudo add-apt-repository ppa:chris-lea/redis-server
`

Your system will now fetch the PPA’s key. This enables your Ubuntu system to
verify that the packages in the PPA have not been interfered with since they
were built.

	Update the repositories:

`
sudo apt-get update
`

	Install redis-server:

`
sudo apt-get install redis-server
`

	Follow the rest of the [installation guide](installation.md).

[backports]: http://backports.debian.org/Instructions/ “Debian backports website”

 # Install GitLab under a relative URL

NOTE: Note:
This document describes how to run GitLab under a relative URL for installations
from source. If you are using an Omnibus package,
[the steps are different][omnibus-rel]. Use this guide along with the
[installation guide](installation.md) if you are installing GitLab for the
first time.

—

While it is recommended to install GitLab on its own (sub)domain, sometimes
this is not possible due to a variety of reasons. In that case, GitLab can also
be installed under a relative URL, for example https://example.com/gitlab.

There is no limit to how deeply nested the relative URL can be. For example you
could serve GitLab under /foo/bar/gitlab/git without any issues.

Note that by changing the URL on an existing GitLab installation, all remote
URLs will change, so you’ll have to manually edit them in any local repository
that points to your GitLab instance.

—

The TL;DR list of configuration files that you need to change in order to
serve GitLab under a relative URL is:

	/home/git/gitlab/config/initializers/relative_url.rb

	/home/git/gitlab/config/gitlab.yml

	/home/git/gitlab/config/unicorn.rb

	/home/git/gitlab-shell/config.yml

	/etc/default/gitlab

After all the changes you need to recompile the assets and [restart GitLab].

Relative URL requirements

If you configure GitLab with a relative URL, the assets (JavaScript, CSS, fonts,
images, etc.) will need to be recompiled, which is a task which consumes a lot
of CPU and memory resources. To avoid out-of-memory errors, you should have at
least 2GB of RAM available on your system, while we recommend 4GB RAM, and 4 or
8 CPU cores.

See the [requirements](requirements.md) document for more information.

Enable relative URL in GitLab

NOTE: Note:
Do not make any changes to your web server configuration file regarding
relative URL. The relative URL support is implemented by GitLab Workhorse.

—

Before following the steps below to enable relative URL in GitLab, some
assumptions are made:

	GitLab is served under /gitlab

	The directory under which GitLab is installed is /home/git/

Make sure to follow all steps below:

	(Optional) If you run short on resources, you can temporarily free up some
memory by shutting down the GitLab service with the following command:

`shell
sudo service gitlab stop
`

	Create /home/git/gitlab/config/initializers/relative_url.rb

```shell
cp /home/git/gitlab/config/initializers/relative_url.rb.sample 


/home/git/gitlab/config/initializers/relative_url.rb




```

and change the following line:

`ruby
config.relative_url_root = "/gitlab"
`

	Edit /home/git/gitlab/config/gitlab.yml and uncomment/change the
following line:

`yaml
relative_url_root: /gitlab
`

	Edit /home/git/gitlab/config/unicorn.rb and uncomment/change the
following line:

`ruby
ENV['RAILS_RELATIVE_URL_ROOT'] = "/gitlab"
`

	Edit /home/git/gitlab-shell/config.yml and append the relative path to
the following line:

`yaml
gitlab_url: http://127.0.0.1/gitlab
`

	Make sure you have copied the supplied init script and the defaults file
as stated in the [installation guide](installation.md#install-init-script).
Then, edit /etc/default/gitlab and set in gitlab_workhorse_options the
-authBackend setting to read like:

`shell
-authBackend http://127.0.0.1:8080/gitlab
`

Note:
If you are using a custom init script, make sure to edit the above
gitlab-workhorse setting as needed.

	[Restart GitLab][] for the changes to take effect.

Disable relative URL in GitLab

To disable the relative URL:

	Remove /home/git/gitlab/config/initializers/relative_url.rb

	Follow the same as above starting from 2. and set up the
GitLab URL to one that doesn’t contain a relative path.

[omnibus-rel]: http://docs.gitlab.com/omnibus/settings/configuration.html#configuring-a-relative-url-for-gitlab “How to setup relative URL in Omnibus GitLab”
[restart gitlab]: ../administration/restart_gitlab.md#installations-from-source “How to restart GitLab”

 # Requirements

Operating Systems

Supported Unix distributions

	Ubuntu

	Debian

	CentOS

	openSUSE

	Red Hat Enterprise Linux (please use the CentOS packages and instructions)

	Scientific Linux (please use the CentOS packages and instructions)

	Oracle Linux (please use the CentOS packages and instructions)

For the installations options please see [the installation page on the GitLab website](https://about.gitlab.com/installation/).

Unsupported Unix distributions

	Arch Linux

	Fedora

	FreeBSD

	Gentoo

	macOS

On the above unsupported distributions is still possible to install GitLab yourself.
Please see the [installation from source guide](installation.md) and the [installation guides](https://about.gitlab.com/installation/) for more information.

Non-Unix operating systems such as Windows

GitLab is developed for Unix operating systems.
It does not run on Windows, and we have no plans to support it in the near future. For the latest development status view this [issue](https://gitlab.com/gitlab-org/gitlab-ce/issues/46567).
Please consider using a virtual machine to run GitLab.

Ruby versions

GitLab requires Ruby (MRI) 2.3. Support for Ruby versions below 2.3 (2.1, 2.2) will stop with GitLab 8.13.

You will have to use the standard MRI implementation of Ruby.
We love [JRuby](http://jruby.org/) and [Rubinius](http://rubini.us/) but GitLab
needs several Gems that have native extensions.

Hardware requirements

Storage

The necessary hard drive space largely depends on the size of the repos you want to store in GitLab but as a rule of thumb you should have at least as much free space as all your repos combined take up.

If you want to be flexible about growing your hard drive space in the future consider mounting it using LVM so you can add more hard drives when you need them.

Apart from a local hard drive you can also mount a volume that supports the network file system (NFS) protocol. This volume might be located on a file server, a network attached storage (NAS) device, a storage area network (SAN) or on an Amazon Web Services (AWS) Elastic Block Store (EBS) volume.

If you have enough RAM memory and a recent CPU the speed of GitLab is mainly limited by hard drive seek times. Having a fast drive (7200 RPM and up) or a solid state drive (SSD) will improve the responsiveness of GitLab.

CPU

	1 core supports up to 100 users but the application can be a bit slower due to having all workers and background jobs running on the same core

	2 cores is the recommended number of cores and supports up to 500 users

	4 cores supports up to 2,000 users

	8 cores supports up to 5,000 users

	16 cores supports up to 10,000 users

	32 cores supports up to 20,000 users

	64 cores supports up to 40,000 users

	More users? Run it on [multiple application servers](https://about.gitlab.com/high-availability/)

Memory

You need at least 8GB of addressable memory (RAM + swap) to install and use GitLab!
The operating system and any other running applications will also be using memory
so keep in mind that you need at least 4GB available before running GitLab. With
less memory GitLab will give strange errors during the reconfigure run and 500
errors during usage.

	4GB RAM + 4GB swap supports up to 100 users but it will be very slow

	8GB RAM is the recommended memory size for all installations and supports up to 100 users

	16GB RAM supports up to 2,000 users

	32GB RAM supports up to 4,000 users

	64GB RAM supports up to 8,000 users

	128GB RAM supports up to 16,000 users

	256GB RAM supports up to 32,000 users

	More users? Run it on [multiple application servers](https://about.gitlab.com/high-availability/)

We recommend having at least [2GB of swap on your server](https://askubuntu.com/a/505344/310789), even if you currently have
enough available RAM. Having swap will help reduce the chance of errors occurring
if your available memory changes. We also recommend [configuring the kernel’s swappiness setting](https://askubuntu.com/a/103916)
to a low value like 10 to make the most of your RAM while still having the swap
available when needed.

Notice: The 25 workers of Sidekiq will show up as separate processes in your process overview (such as top or htop) but they share the same RAM allocation since Sidekiq is a multithreaded application. Please see the section below about Unicorn workers for information about how many you need of those.

Database

The server running the database should have _at least_ 5-10 GB of storage
available, though the exact requirements depend on the size of the GitLab
installation (e.g. the number of users, projects, etc).

We currently support the following databases:

	PostgreSQL (highly recommended)

	MySQL/MariaDB (strongly discouraged, not all GitLab features are supported, no support for [MySQL/MariaDB GTID](https://mariadb.com/kb/en/mariadb/gtid/))

We highly recommend the use of PostgreSQL instead of MySQL/MariaDB as not all
features of GitLab work with MySQL/MariaDB:

	MySQL support for subgroups was [dropped with GitLab 9.3][post].
See [issue #30472][30472] for more information.

1. GitLab Geo does [not support MySQL](https://docs.gitlab.com/ee/gitlab-geo/database.html#mysql-replication).
1. [Zero downtime migrations][zero] do not work with MySQL
1. GitLab [optimizes the loading of dashboard events](https://gitlab.com/gitlab-org/gitlab-ce/issues/31806) using [PostgreSQL LATERAL JOINs](https://blog.heapanalytics.com/postgresqls-powerful-new-join-type-lateral/).
1. In general, SQL optimized for PostgreSQL may run much slower in MySQL due to

differences in query planners. For example, subqueries that work well in PostgreSQL
may not be [performant in MySQL](https://dev.mysql.com/doc/refman/5.7/en/optimizing-subqueries.html)

	We expect this list to grow over time.

Existing users using GitLab with MySQL/MariaDB are advised to
[migrate to PostgreSQL](../update/mysql_to_postgresql.md) instead.

[30472]: https://gitlab.com/gitlab-org/gitlab-ce/issues/30472
[zero]: ../update/README.md#upgrading-without-downtime
[post]: https://about.gitlab.com/2017/06/22/gitlab-9-3-released/#dropping-support-for-subgroups-in-mysql

PostgreSQL Requirements

As of GitLab 10.0, PostgreSQL 9.6 or newer is required, and earlier versions are
not supported. We highly recommend users to use PostgreSQL 9.6 as this
is the PostgreSQL version used for development and testing.

Users using PostgreSQL must ensure the pg_trgm extension is loaded into every
GitLab database. This extension can be enabled (using a PostgreSQL super user)
by running the following query for every database:

`
CREATE EXTENSION pg_trgm;
`

On some systems you may need to install an additional package (e.g.
postgresql-contrib) for this extension to become available.

Additional requirements for GitLab Geo

If you are using [GitLab Geo](https://docs.gitlab.com/ee/development/geo.html), the [tracking database](https://docs.gitlab.com/ee/development/geo.html#geo-tracking-database) also requires the postgres_fdw extension.

`
CREATE EXTENSION postgres_fdw;
`

Unicorn Workers

It’s possible to increase the amount of unicorn workers and this will usually help to reduce the response time of the applications and increase the ability to handle parallel requests.

For most instances we recommend using: CPU cores + 1 = unicorn workers.
So for a machine with 2 cores, 3 unicorn workers is ideal.

For all machines that have 2GB and up we recommend a minimum of three unicorn workers.
If you have a 1GB machine we recommend to configure only two Unicorn workers to prevent excessive swapping.

To change the Unicorn workers when you have the Omnibus package (which defaults to the recommendation above) please see [the Unicorn settings in the Omnibus GitLab documentation](https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/doc/settings/unicorn.md#unicorn-settings).

Redis and Sidekiq

Redis stores all user sessions and the background task queue.
The storage requirements for Redis are minimal, about 25kB per user.
Sidekiq processes the background jobs with a multithreaded process.
This process starts with the entire Rails stack (200MB+) but it can grow over time due to memory leaks.
On a very active server (10,000 active users) the Sidekiq process can use 1GB+ of memory.

Prometheus and its exporters

As of Omnibus GitLab 9.0, [Prometheus](https://prometheus.io) and its related
exporters are enabled by default, to enable easy and in depth monitoring of
GitLab. Approximately 200MB of memory will be consumed by these processes, with
default settings.

If you would like to disable Prometheus and it’s exporters or read more information
about it, check the [Prometheus documentation](../administration/monitoring/prometheus/index.md).

GitLab Runner

We strongly advise against installing GitLab Runner on the same machine you plan
to install GitLab on. Depending on how you decide to configure GitLab Runner and
what tools you use to exercise your application in the CI environment, GitLab
Runner can consume significant amount of available memory.

Memory consumption calculations, that are available above, will not be valid if
you decide to run GitLab Runner and the GitLab Rails application on the same
machine.

It is also not safe to install everything on a single machine, because of the
[security reasons] - especially when you plan to use shell executor with GitLab
Runner.

We recommend using a separate machine for each GitLab Runner, if you plan to
use the CI features.

[security reasons]: https://gitlab.com/gitlab-org/gitlab-runner/blob/master/docs/security/index.md

Supported web browsers

We support the current and the previous major release of Firefox, Chrome/Chromium, Safari and Microsoft browsers (Microsoft Edge and Internet Explorer 11).

Each time a new browser version is released, we begin supporting that version and stop supporting the third most recent version.

Note: We do not support running GitLab with JavaScript disabled in the browser and have no plans of supporting that
in the future because we have features such as Issue Boards which require JavaScript extensively.

 # GitLab directory structure

This is the directory structure you will end up with following the instructions in the Installation Guide.

|– home
| |– git
| |– .ssh
| |– gitlab
| |– gitlab-shell
| |– repositories

	/home/git/.ssh - contains openssh settings. Specifically the authorized_keys file managed by gitlab-shell.

	/home/git/gitlab - GitLab core software.

	/home/git/gitlab-shell - Core add-on component of GitLab. Maintains SSH cloning and other functionality.

	/home/git/repositories - bare repositories for all projects organized by namespace. This is where the git repositories which are pushed/pulled are maintained for all projects. This area is critical data for projects. [Keep a backup](../raketasks/backup_restore.md)

Note: the default locations for repositories can be configured in `config/gitlab.yml` of GitLab and `config.yml` of gitlab-shell.

To see a more in-depth overview see the [GitLab architecture doc](../development/architecture.md).

 —
description: ‘Learn how to spin up a
pre-configured GitLab VM on Microsoft Azure and have your very own private GitLab instance up and running in around 30 minutes.’
—

Install GitLab on Microsoft Azure

> _This article was originally written by Dave Wentzel and [published on the GitLab Blog][Original-Blog-Post]._
>
> _Ported to the GitLab documentation and updated on 2017-08-24 by [Ian Scorer](https://gitlab.com/iscorer)._

Azure is Microsoft’s business cloud and GitLab is a pre-configured offering on the Azure Marketplace.
Hopefully, you aren’t surprised to hear that Microsoft and Azure have embraced open source software
like Ubuntu, Red Hat Enterprise Linux, and of course - GitLab! This means that you can spin up a
pre-configured GitLab VM and have your very own private GitLab up and running in around 30 minutes.
Let’s get started.

Getting started

First, you’ll need an account on Azure. There are three ways to do this:

	If your company (or you) already has an account, then you are ready to go!

	You can also open your own Azure account for free. _At time of writing_, you get $200

of credit to spend on Azure services for 30 days. You can use this credit to try out paid Azure
services, exploring Microsoft’s cloud for free. Even after the first 30 days, you never have to pay
anything unless you decide to transition to paid services with a Pay-As-You-Go Azure subscription.
This is a great way to try out Azure and cloud computing, and you can
[read more in their comprehensive FAQ][Azure-Free-Account-FAQ].
- If you have an MSDN subscription, you can activate your Azure subscriber benefits. Your MSDN
subscription gives you recurring Azure credits every month, so why not put those credits to use and
try out GitLab right now?

Working with Azure

Once you have an Azure account, you can get started. Login to Azure using
portal.azure.com and the first thing you will see is the Dashboard:

![Azure Dashboard](img/azure-dashboard.png)

The Dashboard gives you a quick overview of Azure resources, and from here you you can build VMs,
create SQL Databases, author websites, and perform lots of other cloud tasks.

Create New VM

The [Azure Marketplace][Azure-Marketplace] is an online store for pre-configured applications and
services which have been optimized for the cloud by software vendors like GitLab,
available on the Azure Marketplace as pre-configured solutions. In this tutorial
we will install GitLab Community Edition, but for GitLab Enterprise Edition you
can follow the same process.

To begin creating a new GitLab VM, click on the + New icon, type “GitLab” into the search
box, and then click the “GitLab Community Edition” search result:

![Azure - New - Search for ‘GitLab’](img/azure-new-search-gitlab.png)

A new “blade” window will pop-out, where you can read more about the “GitLab Community Edition”
offering which is freely available under the MIT Expat License:

![Azure - New - Select ‘GitLab Community Edition’](img/azure-new-gitlab-ce.png)

Click “Create” and you will be presented with the “Create virtual machine” blade:

![Azure - Create Virtual Machine - Basics](img/azure-create-virtual-machine-basics.png)

Basics

The first items we need to configure are the basic settings of the underlying virtual machine:

1. Enter a Name for the VM - e.g. “GitLab-CE”
1. Select a VM disk type - either HDD _(slower, lower cost)_ or SSD _(faster, higher cost)_
1. Enter a User name - e.g. “gitlab-admin”
1. Select an Authentication type, either SSH public key or Password:

>**Note:** if you’re unsure which authentication type to use, select Password

1. If you chose SSH public key - enter your SSH public key into the field provided
_(read the [SSH documentation][GitLab-Docs-SSH] to learn more about how to setup SSH
public keys)_
1. If you chose Password - enter the password you wish to use _(this is the password that you
will use later in this tutorial to [SSH] into the VM, so make sure it’s a strong password/passphrase)_

1. Choose the appropriate Subscription tier for your Azure account
1. Choose an existing Resource Group or create a new one - e.g. “GitLab-CE-Azure”
>**Note:** a “Resource group” is a way to group related resources together for easier administration.
We chose “GitLab-CE-Azure”, but your resource group can have the same name as your VM.
1. Choose a Location - if you’re unsure, select the default location

Here are the settings we’ve used:

![Azure - Create Virtual Machine - Basics Completed](img/azure-create-virtual-machine-basics-password.png)

Check the settings you have entered, and then click “OK” when you’re ready to proceed.

Size

Next, you need to choose the size of your VM - selecting features such as the number of CPU cores,
the amount of RAM, the size of storage (and its speed), etc.

>**Note:** in common with other cloud vendors, Azure operates a resource/usage pricing model, i.e.
the more resources your VM consumes the more it will cost you to run, so make your selection
carefully. You’ll see that Azure provides an _estimated_ monthly cost beneath each VM Size to help
guide your selection.

The default size - the lowest cost “DS1_V2 Standard” VM - meets the minimum system requirements
to run a small GitLab environment for testing and evaluation purposes, and so we’re going to go
ahead and select this one, but please choose the size which best meets your own requirements:

![Azure - Create Virtual Machine - Size](img/azure-create-virtual-machine-size.png)

>**Note:** be aware that whilst your VM is active (known as “allocated”), it will incur
“compute charges” which, ultimately, you will be billed for. So, even if you’re using the
free trial credits, you’ll likely want to learn
[how to properly shutdown an Azure VM to save money][Azure-Properly-Shutdown-VM].

Go ahead and click your chosen size, then click “Select” when you’re ready to proceed to the
next step.

Settings

On the next blade, you’re asked to configure the Storage, Network and Extension settings.
We’ve gone with the default settings as they’re sufficient for test-driving GitLab, but please
choose the settings which best meet your own requirements:

![Azure - Create Virtual Machine - Settings](img/azure-create-virtual-machine-settings.png)

Review the settings and then click “OK” when you’re ready to proceed to the last step.

Purchase

The Purchase page is the last step and here you will be presented with the price per hour for your
new VM. You’ll be billed only for the VM itself (e.g. “Standard DS1 v2”) because the
“GitLab Community Edition” marketplace solution is free to use at 0 USD/hr:

![Azure - Create Virtual Machine - Purchase](img/azure-create-virtual-machine-purchase.png)

>**Note:** at this stage, you can review and modify the any of the settings you have made during all
previous steps, just click on any of the four steps to re-open them.

When you have read and agreed to the terms of use and are ready to proceed, click “Purchase”.

Deployment

At this point, Azure will begin deploying your new VM. The deployment process will take a few
minutes to complete, with progress displayed on the “Deployment” blade:

![Azure - Create Virtual Machine - Deployment](img/azure-create-virtual-machine-deployment.png)

Once the deployment process is complete, the new VM and its associated resources will be displayed
on the Azure Dashboard (you may need to refresh the page):

![Azure - Dashboard - All resources](img/azure-dashboard-running-resources.png)

The new VM can also be accessed by clicking the All resources or Virtual machines icons in the
Azure Portal sidebar navigation menu.

Setup a domain name

The VM will have a public IP address (static by default), but Azure allows us to assign a friendly
DNS name to the VM, so let’s go ahead and do that.

From the Dashboard, click on the “GitLab-CE” tile to open the management blade for the new VM.
The public IP address that the VM uses is shown in the ‘Essentials’ section:

![Azure - VM - Management - Public IP Address](img/azure-vm-management-public-ip.png)

Click on the public IP address - which should open the “Public IP address - Configuration” blade,
then click on “Configuration” (under “Settings”). Now enter a friendly DNS name for your instance
in the DNS name label field:

![Azure - VM - Domain Name](img/azure-vm-domain-name.png)

In the screenshot above, you’ll see that we’ve set the DNS name label to “gitlab-ce-test”.
This will make our VM accessible at gitlab-ce-test.centralus.cloudapp.azure.com
(the full domain name of your own VM will be different, of course).

Click “Save” for the changes to take effect.

>**Note:** if you want to use your own domain name, you will need to add a DNS A record at your
domain registrar which points to the public IP address of your Azure VM. If you do this, you’ll need
to make sure your VM is configured to use a _static_ public IP address (i.e. not a _dynamic_ one)
or you will have to reconfigure the DNS A record each time Azure reassigns your VM a new public IP
address. Read [IP address types and allocation methods in Azure][Azure-IP-Address-Types] to learn more.

Let’s open some ports!

At this stage you should have a running and fully operational VM. However, none of the services on
your VM (e.g. GitLab) will be publicly accessible via the internet until you have opened up the
necessary ports to enable access to those services.

Ports are opened by adding _security rules_ to the “Network security group” (NSG) which our VM
has been assigned to. If you followed the process above, then Azure will have automatically created
an NSG named GitLab-CE-nsg and assigned the GitLab-CE VM to it.

>**Note:** if you gave your VM a different name then the NSG automatically created by Azure will
also have a different name - the name you have your VM, with -nsg appended to it.

You can navigate to the NSG settings via many different routes in the Azure Portal, but one of the
simplest ways is to go to the Azure Dashboard, and then click on the Network Security Group listed
in the “All resources” tile:

![Azure - Dashboard - All resources - Network security group](img/azure-dashboard-highlight-nsg.png)

With the “Network security group” blade open, click on “Inbound security rules” under
“Settings”:

![Azure - Network security group - Inbound security rules](img/azure-nsg-inbound-sec-rules-highlight.png)

Next, click “Add”:

![Azure - Network security group - Inbound security rules - Add](img/azure-nsg-inbound-sec-rules-add-highlight.png)

Which ports to open?

Like all servers, our VM will be running many services. However, we want to open up the correct
ports to enable public internet access to two services in particular:

1. HTTP (port 80) - opening port 80 will enable our VM to respond to HTTP requests, allowing
public access to the instance of GitLab running on our VM.
1. SSH (port 22) - opening port 22 will enable our VM to respond to SSH connection requests,
allowing public access (with authentication) to remote terminal sessions
(you’ll see why we need [SSH] access to our VM [later on in this tutorial](#maintaining-your-gitlab-instance))

Open HTTP on Port 80

In the “Add inbound security rule” blade, let’s open port 80 so that our VM will accept HTTP
connections:

![Azure - Add inbound security rules - HTTP](img/azure-add-inbound-sec-rule-http.png)

1. Enter “HTTP” in the Name field
1. Select HTTP from the options in the Service drop-down
1. Make sure the Action is set to Allow
1. Click “OK”

Open SSH on Port 22

Repeat the above process, adding a second Inbound security rule to open port 22, enabling our VM to
accept [SSH] connections:

![Azure - Add inbound security rules - SSH](img/azure-add-inbound-sec-rule-ssh.png)

1. Enter “SSH” in the Name field
1. Select SSH from the options in the Service drop-down
1. Make sure the Action is set to Allow
1. Click “OK”

It will take a moment for Azure to add each new Inbound Security Rule (and you may need to click on
“Inbound security rules” to refresh the list), but once completed, you should see the two new
rules in the list:

![Azure - Inbound security rules - List](img/azure-inbound-sec-rules-list.png)

Connecting to GitLab
Use the domain name you set up earlier (or the public IP address) to visit your new GitLab instance
in your browser. If everything has gone according to plan you should be presented with the
following page, asking you to set a _new_ password for the administrator account automatically
created by GitLab:

![GitLab - Change Password](img/gitlab-change-password.png)

Enter your _new_ password into both form fields, and then click “Change your password”.

Once you have changed the password you will be redirected to the GitLab login page. Use root as
the username, enter the new password you set in the previous step, and then click “Sign in”:

![GitLab - Login](img/gitlab-login.png)

Success?

After signing in successfully, you should see the GitLab Projects page displaying a
“Welcome to GitLab!” message:

![GitLab - Projects Page](img/gitlab-home.png)

If so, you now have a working GitLab instance on your own private Azure VM. Congratulations!

Creating your first GitLab project

You can skip this section if you are familiar with Git and GitLab. Otherwise, let’s create our first
project. From the Welcome page, click “New Project”.

Let’s give our project a name and a description, and then accept the default values for everything
else:

1. Enter “demo” into the Project path project name field
1. Enter a description, e.g. “My awesome demo project!”
1. Click “Create project”

![GitLab - New Project](img/gitlab-new-project.png)

Once the new project has been created (which should only take a moment), you’ll be redirected to
homepage for the project:

![GitLab - Empty Project](img/gitlab-project-home-empty.png)

If you scroll further down the project’s home page, you’ll see some basic instructions on how to
setup a local clone of your new repository and push and pull from it:

![GitLab - Empty Project - Basic Instructions](img/gitlab-project-home-instructions.png)

That’s it! You now have your own private GitLab environment installed and running in the cloud!

Maintaining your GitLab instance

It’s important to keep your GitLab environment up-to-date. The GitLab team is constantly making
enhancements and occasionally you may need to update for security reasons. So let’s review how to
update GitLab.

Checking our current version

To check which version of GitLab we’re currently running, click on the “Admin Area” link - it’s the
the wrench icon displayed in the top-right, next to the search box.

In the following screenshot you can see an “update asap” notification message in the top-right.
This particular message indicates that there is a newer version of GitLab available which contains
one or more security fixes:

![GitLab - update asap](img/gitlab-admin-area.png)

Under the “Components” section, we can see that our VM is currently running version 8.6.5 of
GitLab. This is the version of GitLab which was contained in the Azure Marketplace
“GitLab Community Edition” offering we used to build the VM when we wrote this tutorial.

>**Note:** The version of GitLab in your own VM instance may well be different, but the update
process will still be the same.

Connect via SSH

To perform an update, we need to connect directly to our Azure VM instance and run some commands
from the terminal. Our Azure VM is actually a server running Linux (Ubuntu), so we’ll need to
connect to it using SSH ([Secure Shell][SSH]).

If you’re running Windows, you’ll need to connect using [PuTTY] or an equivalent Windows SSH client.
If you’re running Linux or macOS, then you already have an SSH client installed.

>**Note:**
- Remember that you will need to login with the username and password you specified
[when you created](#basics) your Azure VM
- If you need to reset your VM password, read
[how to reset SSH credentials for a user on an Azure VM][Azure-Troubleshoot-SSH-Connection].

SSH from the command-line

If you’re running [SSH] from the command-line (terminal), then type in the following command to
connect to your VM, substituting username and your-azure-domain-name.com for the correct values.

Again, remember that your Azure VM domain name will be the one you
[setup previously in the tutorial](#set-up-a-domain-name). If you didn’t setup a domain name for
your VM, you can use the IP address in its place in the following command:

`bash
ssh username@your-azure-domain-name.com
`
Provide your password at the prompt to authenticate.

SSH from Windows (PuTTY)

If you’re using [PuTTY] in Windows as your [SSH] client, then you might want to take a quick
read on [using PuTTY in Windows][Using-SSH-In-Putty].

Updating GitLab

Once you’ve logged in via SSH, enter the following command to update GitLab to the latest
version:

`bash
sudo apt-get update && sudo apt-get install gitlab-ce
`

This command will update GitLab and its associated components to the latest versions, so it will
take a little time to complete. You’ll see various update tasks being completed in your SSH
terminal window:

![GitLab updating](img/gitlab-ssh-update-in-progress.png)

Once the update process has completed, you’ll see a message like this:

```
Upgrade complete! If your GitLab server is misbehaving try running


sudo gitlab-ctl restart




before anything else.
```

Check out your updated GitLab

Refresh your GitLab instance in the browser and navigate to the Admin Area. You should now have an
up-to-date GitLab instance.

When we wrote this tutorial our Azure VM GitLab instance was updated to the latest version at time
of writing (9.4.0). You can see that the message which was previously displaying “update asap”
is now showing “up-to-date”:

![GitLab up to date](img/gitlab-admin-area-9.4.0.png)

Conclusion

Naturally, we believe that GitLab is a great git repository tool. However, GitLab is a whole lot
more than that too. GitLab unifies issues, code review, CI and CD into a single UI, helping you to
move faster from idea to production, and in this tutorial we showed you how quick and easy it is to
setup and run your own instance of GitLab on Azure, Microsoft’s cloud service.

Azure is a great way to experiment with GitLab, and if you decide (as we hope) that GitLab is for
you, you can continue to use Azure as your secure, scalable cloud provider or of course run GitLab
on any cloud service you choose.

Where to next?

Check out our other [Technical Articles][GitLab-Technical-Articles] or browse the [GitLab Documentation][GitLab-Docs] to learn more about GitLab.

Useful links

	[GitLab Community Edition][CE]

	[GitLab Enterprise Edition][EE]

	
	[Microsoft Azure][Azure]
	
	[Azure - Free Account FAQ][Azure-Free-Account-FAQ]

	[Azure - Marketplace][Azure-Marketplace]

	[Azure Portal][Azure-Portal]

	[Azure - Pricing Calculator][Azure-Pricing-Calculator]

	[Azure - Troubleshoot SSH Connections to an Azure Linux VM][Azure-Troubleshoot-SSH-Connection]

	[Azure - Properly Shutdown an Azure VM][Azure-Properly-Shutdown-VM]

	[SSH], [PuTTY] and [Using SSH in PuTTY][Using-SSH-In-Putty]

[Original-Blog-Post]: https://about.gitlab.com/2016/07/13/how-to-setup-a-gitlab-instance-on-microsoft-azure/ “How to Setup a GitLab Instance on Microsoft Azure”
[GitLab-Docs]: https://docs.gitlab.com/ce/README.html “GitLab Documentation”
[GitLab-Technical-Articles]: https://docs.gitlab.com/ce/articles/index.html “GitLab Technical Articles”
[GitLab-Docs-SSH]: https://docs.gitlab.com/ce/ssh/README.html “GitLab Documentation: SSH”
[CE]: https://about.gitlab.com/features/
[EE]: https://about.gitlab.com/features/#ee-starter

[Azure-Troubleshoot-Linux-VM]: https://docs.microsoft.com/en-us/azure/virtual-machines/linux/troubleshoot-app-connection “Troubleshoot application connectivity issues on a Linux virtual machine in Azure”
[Azure-IP-Address-Types]: https://docs.microsoft.com/en-us/azure/virtual-network/virtual-network-ip-addresses-overview-arm “IP address types and allocation methods in Azure”
[Azure-How-To-Open-Ports]: https://docs.microsoft.com/en-us/azure/virtual-machines/windows/nsg-quickstart-portal “How to open ports to a virtual machine with the Azure portal”
[Azure-Troubleshoot-SSH-Connection]: https://docs.microsoft.com/en-us/azure/virtual-machines/linux/troubleshoot-ssh-connection “Troubleshoot SSH connections to an Azure Linux VM”
[Azure]: https://azure.microsoft.com/en-us/
[Azure-Free-Account-FAQ]: https://azure.microsoft.com/en-us/free/free-account-faq/
[Azure-Marketplace]: https://azure.microsoft.com/en-us/marketplace/
[Azure-Portal]: https://portal.azure.com
[Azure-Pricing-Calculator]: https://azure.microsoft.com/en-us/pricing/calculator/
[Azure-Properly-Shutdown-VM]: https://buildazure.com/2017/03/16/properly-shutdown-azure-vm-to-save-money/ “Properly Shutdown an Azure VM to Save Money”

[SSH]: https://en.wikipedia.org/wiki/Secure_Shell
[PuTTY]: http://www.putty.org/
[Using-SSH-In-Putty]: https://mediatemple.net/community/products/dv/204404604/using-ssh-in-putty-

 —
description: ‘Learn how to install a GitLab instance on Google Cloud Platform.’
—

Installing GitLab on Google Cloud Platform

![GCP landing page](img/gcp_landing.png)

Getting started with GitLab on a [Google Cloud Platform (GCP)][gcp] instance is quick and easy.

Prerequisites

There are only two prerequisites in order to install GitLab on GCP:

1. You need to have a Google account.
1. You need to sign up for the GCP program. If this is your first time, Google

gives you [$300 credit for free][freetrial] to consume over a 60-day period.

Once you have performed those two steps, you can [create a VM](#creating-the-vm).

Creating the VM

To deploy GitLab on GCP you need to follow five simple steps:

	Go to https://console.cloud.google.com/compute/instances and login with your Google credentials.

	Click on Create

![Search for GitLab](img/launch_vm.png)

	On the next page, you can select the type of VM as well as the

estimated costs. Provide the name of the instance, desired datacenter, and machine type. Note that GitLab recommends at least 2 vCPU’s and 4GB of RAM.

![Launch on Compute Engine](img/vm_details.png)

	Click Change under Boot disk to select the size, type, and desired operating system. GitLab supports a [variety of linux operating systems][req], including Ubuntu and Debian. Click Select when finished.

![Deploy in progress](img/boot_disk.png)

	As a last step allow HTTP and HTTPS traffic, then click Create. The process will finish in a few seconds.

Installing GitLab

After a few seconds, the instance will be created and available to log in. The next step is to install GitLab onto the instance.

![Deploy settings](img/vm_created.png)

1. Make a note of the IP address of the instance, as you will need that in a later step.
1. Click on the SSH button to connect to the instance.
1. A new window will appear, with you logged into the instance.

![GitLab first sign in](img/ssh_terminal.png)

	Next, follow the instructions for installing GitLab for the operating system you choose, at https://about.gitlab.com/installation/. You can use the IP address from the step above, as the hostname.

	Congratulations! GitLab is now installed and you can access it via your browser. To finish installation, open the URL in your browser and provide the initial administrator password. The username for this account is root.

![GitLab first sign in](img/first_signin.png)

Next steps

These are the most important next steps to take after you installed GitLab for
the first time.

Assigning a static IP

By default, Google assigns an ephemeral IP to your instance. It is strongly
recommended to assign a static IP if you are going to use GitLab in production
and use a domain name as we’ll see below.

Read Google’s documentation on how to [promote an ephemeral IP address][ip].

Using a domain name

Assuming you have a domain name in your possession and you have correctly
set up DNS to point to the static IP you configured in the previous step,
here’s how you configure GitLab to be aware of the change:

	SSH into the VM. You can easily use the SSH button in the Google console
and a new window will pop up.

![SSH button](img/vm_created.png)

In the future you might want to set up [connecting with an SSH key][ssh]
instead.

	Edit the config file of Omnibus GitLab using your favorite text editor:

`
sudo vim /etc/gitlab/gitlab.rb
`

	Set the external_url value to the domain name you wish GitLab to have
without https:

`
external_url 'http://gitlab.example.com'
`

We will set up HTTPS in the next step, no need to do this now.

	Reconfigure GitLab for the changes to take effect:

`
sudo gitlab-ctl reconfigure
`

	You can now visit GitLab using the domain name.

Configuring HTTPS with the domain name

Although not needed, it’s strongly recommended to secure GitLab with a TLS
certificate. Follow the steps in the [Omnibus documentation][omni-ssl].

Configuring the email SMTP settings

You need to configure the email SMTP settings correctly otherwise GitLab will
not be able to send notification emails, like comments, and password changes.
Check the [Omnibus documentation][omni-smtp] how to do so.

Further reading

GitLab can be configured to authenticate with other OAuth providers, LDAP, SAML,
Kerberos, etc. Here are some documents you might be interested in reading:

	[Omnibus GitLab documentation](https://docs.gitlab.com/omnibus/)

	[Integration documentation](https://docs.gitlab.com/ce/integration/)

	[GitLab Pages configuration](https://docs.gitlab.com/ce/administration/pages/index.html)

	[GitLab Container Registry configuration](https://docs.gitlab.com/ce/administration/container_registry.html)

[freetrial]: https://console.cloud.google.com/freetrial “GCP free trial”
[ip]: https://cloud.google.com/compute/docs/configure-instance-ip-addresses#promote_ephemeral_ip “Configuring an Instance’s IP Addresses”
[gcp]: https://cloud.google.com/ “Google Cloud Platform”
[launcher]: https://cloud.google.com/launcher/ “Google Cloud Launcher home page”
[req]: ../requirements.md “GitLab hardware and software requirements”
[ssh]: https://cloud.google.com/compute/docs/instances/connecting-to-instance “Connecting to Linux Instances”
[omni-smtp]: https://docs.gitlab.com/omnibus/settings/smtp.html#smtp-settings “Omnibus GitLab SMTP settings”
[omni-ssl]: https://docs.gitlab.com/omnibus/settings/nginx.html#enable-https “Omnibus GitLab enable HTTPS”

 # GitLab Helm Chart
> Note: The chart is currently beta, if you encounter any problems please [open an issue](https://gitlab.com/charts/gitlab/issues/new).

For more information on available GitLab Helm Charts, please see our [overview](index.md#chart-overview).

Introduction

The gitlab chart is the best way to operate GitLab on Kubernetes. This chart contains all the required components to get started, and can scale to large deployments.

The default deployment includes:

	Core GitLab components: Unicorn, Shell, Workhorse, Registry, Sidekiq, and Gitaly

	Optional dependencies: Postgres, Redis, Minio

	An auto-scaling, unprivileged [GitLab Runner](https://docs.gitlab.com/runner/) using the Kubernetes executor

	Automatically provisioned SSL via [Let’s Encrypt](https://letsencrypt.org/).

Limitations

Some features and functions are not currently available in the beta release.
For details, see [known issues and limitations](https://gitlab.com/charts/gitlab/blob/master/doc/architecture/beta.md#known-issues-and-limitations) in the charts repository.

Prerequisites

In order to deploy GitLab on Kubernetes, a few prerequisites are required.

1. helm and kubectl [installed on your computer](preparation/tools_installation.md).
1. A Kubernetes cluster, version 1.8 or higher. 6vCPU and 16GB of RAM is recommended.

	[Google GKE](https://cloud.google.com/kubernetes-engine/docs/how-to/creating-a-container-cluster)

	[Amazon EKS](https://docs.aws.amazon.com/eks/latest/userguide/getting-started.html)

	[Microsoft AKS](https://docs.microsoft.com/en-us/azure/aks/kubernetes-walkthrough-portal)

1. A [wildcard DNS entry and external IP address](preparation/networking.md)
1. [Authenticate and connect](preparation/connect.md) to the cluster
1. Configure and initialize [Helm Tiller](preparation/tiller.md).

Configuring and Installing GitLab

> Note: For deployments to Amazon EKS, there are [additional configuration requirements](preparation/eks.md).

For simple deployments, running all services within Kubernetes, only three parameters are required:
- global.hosts.domain: the [base domain](preparation/networking.md) of the wildcard host entry. For example, mycompany.io if the wild card entry is *.mycompany.io.
- global.hosts.externalIP: the [external IP](preparation/networking.md) which the wildcard DNS resolves to.
- certmanager-issuer.email: Email address to use when requesting new SSL certificates from Let’s Encrypt.

For enterprise deployments, or to utilize advanced settings, please use the instructions in the [gitlab chart project](https://gitlab.com/charts/gitlab) for the most up to date directions.
- [External Postgres, Redis, and other dependencies](https://gitlab.com/charts/gitlab/tree/master/doc/advanced)
- [Persistence settings](https://gitlab.com/charts/gitlab/blob/master/doc/installation/storage.md)
- [Manual TLS certificates](https://gitlab.com/charts/gitlab/blob/master/doc/installation/tls.md)
- [Manual secret creation](https://gitlab.com/charts/gitlab/blob/master/doc/installation/secrets.md)

For additional configuration options, consult the [full list of settings](https://gitlab.com/charts/gitlab/blob/master/doc/installation/command-line-options.md).

Installing GitLab using the Helm Chart

Once you have all of your configuration options collected, we can get any dependencies and
run helm. In this example, we’ve named our helm release “gitlab”.

```
helm repo add gitlab https://charts.gitlab.io/
helm update
helm upgrade –install gitlab gitlab/gitlab 


–timeout 600 –set global.hosts.domain=example.local –set global.hosts.externalIP=10.10.10.10 –set certmanager-issuer.email=me@example.local




```

Monitoring the Deployment

This will output the list of resources installed once the deployment finishes which may take 5-10 minutes.

The status of the deployment can be checked by running helm status gitlab which can also be done while
the deployment is taking place if you run the command in another terminal.

Initial login

You can access the GitLab instance by visiting the domain name beginning with gitlab. followed by the domain specified during installation. From the example above, the URL would be https://gitlab.example.local.

If you manually created the secret for initial root password, you
can use that to sign in as root user. If not, Gitlab automatically
created a random password for root user. This can be extracted by the
following command (replace <name> by name of the release - which is gitlab
if you used the command above).

`
kubectl get secret <name>-gitlab-initial-root-password -ojsonpath={.data.password} | base64 --decode
`

Outgoing email

By default outgoing email is disabled. To enable it, provide details for your SMTP server
using the global.smtp and global.email settings. You can find details for these settings in the
[command line options](https://gitlab.com/charts/gitlab/blob/master/doc/installation/command-line-options.md#email-configuration).

If your SMTP server requires authentication make sure to read the section on providing
your password in the [secrets documentation](https://gitlab.com/charts/gitlab/blob/master/doc/installation/secrets.md#smtp-password).
You can disable authentication settings with –set global.smtp.authentication=””.

If your Kubernetes cluster is on GKE, be aware that smtp [ports 25, 465, and 587
are blocked](https://cloud.google.com/compute/docs/tutorials/sending-mail/#using_standard_email_ports).

Deploying the Community Edition

To deploy the Community Edition, include these options in your helm install command:

`shell
--set gitlab.migrations.image.repository=registry.gitlab.com/gitlab-org/build/cng/gitlab-rails-ce
--set gitlab.sidekiq.image.repository=registry.gitlab.com/gitlab-org/build/cng/gitlab-sidekiq-ce
--set gitlab.unicorn.image.repository=registry.gitlab.com/gitlab-org/build/cng/gitlab-unicorn-ce
`

Updating GitLab using the Helm Chart

Once your GitLab Chart is installed, configuration changes and chart updates
should be done using helm upgrade:

`bash
helm upgrade -f values.yaml gitlab gitlab/gitlab
`

Uninstalling GitLab using the Helm Chart

To uninstall the GitLab Chart, run the following:

`bash
helm delete gitlab
`

[kube-srv]: https://kubernetes.io/docs/concepts/services-networking/service/#publishing-services—service-types [https://kubernetes.io/docs/concepts/services-networking/service/#publishing-services---service-types]
[storageclass]: https://kubernetes.io/docs/concepts/storage/persistent-volumes/#storageclasses

 # GitLab-Omnibus Helm Chart
> Note:.
* This chart has been tested on Google Kubernetes Engine and Azure Container Service.

[This chart is beta](#limitations), and is the best way to install GitLab on Kubernetes today. A new [cloud native GitLab chart](index.md#cloud-native-gitlab-chart) is in development with increased scalability and resilience, among other benefits. Once available, the cloud native chart will be the recommended installation method for Kubernetes, and this chart will be deprecated.

For more information on available GitLab Helm Charts, please see our [overview](index.md#chart-overview).

This work is based partially on: https://github.com/lwolf/kubernetes-gitlab/. GitLab would like to thank Sergey Nuzhdin for his work.

Introduction

This chart provides an easy way to get started with GitLab, provisioning an installation with nearly all functionality enabled. SSL is automatically provisioned via [Let’s Encrypt](https://letsencrypt.org/).

This Helm chart is in beta, and is suited for small to medium deployments. It will be deprecated by the [cloud native GitLab chart](https://gitlab.com/charts/helm.gitlab.io/blob/master/README.md) once available. Due to the significant architectural changes, migrating will require backing up data out of this instance and importing it into the new deployment.

The deployment includes:

	A [GitLab Omnibus](https://docs.gitlab.com/omnibus/) Pod, including Mattermost, Container Registry, and Prometheus

	An auto-scaling [GitLab Runner](https://docs.gitlab.com/runner/) using the Kubernetes executor

	[Redis](https://github.com/kubernetes/charts/tree/master/stable/redis)

	[PostgreSQL](https://github.com/kubernetes/charts/tree/master/stable/postgresql)

	[NGINX Ingress](https://github.com/kubernetes/charts/tree/master/stable/nginx-ingress)

	Persistent Volume Claims for Data, Registry, Postgres, and Redis

Limitations

	This chart is in beta, and suited for small to medium size deployments. [High Availability](https://docs.gitlab.com/ee/administration/high_availability/) and [Geo](https://docs.gitlab.com/ee/gitlab-geo/README.html) are not supported.

	A new generation [cloud native GitLab chart](index.md#cloud-native-gitlab-chart) is in development, and will deprecate this chart. Due to the difficulty in supporting upgrades to the new architecture, migrating will require exporting data out of this instance and importing it into the new deployment. We plan to release the new chart in beta by the end of 2017.

For more information on available GitLab Helm Charts, please see our [overview](index.md#chart-overview).

Prerequisites

	At least 4 GB of RAM available on your cluster. 41GB of storage and 2 CPU are also required.

	Kubernetes 1.4+ with Beta APIs enabled

	[Persistent Volume](https://kubernetes.io/docs/concepts/storage/persistent-volumes/) provisioner support in the underlying infrastructure

	A [wildcard DNS entry](#networking-prerequisites), which resolves to the external IP address

	The kubectl CLI installed locally and authenticated for the cluster

	The [Helm client](https://github.com/kubernetes/helm/blob/master/docs/quickstart.md) installed locally on your machine

Networking Prerequisites

This chart configures a GitLab server and Kubernetes cluster which can support dynamic [Review Apps](https://docs.gitlab.com/ee/ci/review_apps/index.html), as well as services like the integrated [Container Registry](https://docs.gitlab.com/ee/user/project/container_registry.html) and [Mattermost](https://docs.gitlab.com/omnibus/gitlab-mattermost/).

To support the GitLab services and dynamic environments, a wildcard DNS entry is required which resolves to the [Load Balancer](#load-balancer-ip) or [External IP](#external-ip). Configuration of the DNS entry will depend upon the DNS service being used.

External IP (Recommended)

To provision an external IP on GCP and Azure, simply request a new address from the Networking section. Ensure that the region matches the region your container cluster is created in. Note, it is important that the IP is not assigned at this point in time. It will be automatically assigned once the Helm chart is installed, and assigned to the Load Balancer.

Now that an external IP address has been allocated, ensure that the wildcard DNS entry you would like to use resolves to this IP. Please consult the documentation for your DNS service for more information on creating DNS records.

Finally, set the baseIP setting to this IP address when [deploying GitLab](#configuring-and-installing-gitlab).

Load Balancer IP

If you do not specify a baseIP, an IP will be assigned to the Load Balancer or Ingress. You can retrieve this IP by running the following command after deploying GitLab:

kubectl get svc -w –namespace nginx-ingress nginx

The IP address will be displayed in the EXTERNAL-IP field, and should be used to configure the Wildcard DNS entry. For more information on creating a wildcard DNS entry, consult the documentation for the DNS server you are using.

For production deployments of GitLab, we strongly recommend using an [External IP](#external-ip).

Configuring and Installing GitLab

For most installations, only two parameters are required:
- baseDomain: the [base domain](#networking-prerequisites) of the wildcard host entry. For example, mycompany.io if the wild card entry is *.mycompany.io.
- legoEmail: Email address to use when requesting new SSL certificates from Let’s Encrypt.

Other common configuration options:
- baseIP: the desired [external IP address](#external-ip-recommended)
- gitlab: Choose the [desired edition](https://about.gitlab.com/pricing), either ee or ce. ce is the default.
- gitlabEELicense: For Enterprise Edition, the [license](https://docs.gitlab.com/ee/user/admin_area/license.html) can be installed directly via the Chart
- provider: Optimizes the deployment for a cloud provider. The default is gke for [Google Kubernetes Engine](https://cloud.google.com/kubernetes-engine/), with acs also supported for the [Azure Container Service](https://azure.microsoft.com/en-us/services/container-service/).

For additional configuration options, consult the [values.yaml](https://gitlab.com/charts/charts.gitlab.io/blob/master/charts/gitlab-omnibus/values.yaml).

Choosing a different GitLab release version

The version of GitLab installed is based on the gitlab setting (see [section](#choosing-gitlab-edition) above), and
the value of the corresponding helm setting: gitlabCEImage or gitabEEImage.

`yaml
gitlab: CE
gitlabCEImage: gitlab/gitlab-ce:9.5.2-ce.0
gitlabEEImage: gitlab/gitlab-ee:9.5.2-ee.0
`

The different images can be found in the [gitlab-ce](https://hub.docker.com/r/gitlab/gitlab-ce/tags/) and [gitlab-ee](https://hub.docker.com/r/gitlab/gitlab-ee/tags/)
repositories on Docker Hub.

Persistent storage
> Note:
If you are using a machine type with support for less than 4 attached disks, like an Azure trial, you should disable dedicated storage for Postgres and Redis.

By default, persistent storage is enabled for GitLab and the charts it depends
on (Redis and PostgreSQL).

Components can have their claim size set from your values.yaml, along with whether to provision separate storage for Postgres and Redis.

Basic configuration:

`yaml
redisImage: redis:3.2.10
redisDedicatedStorage: true
redisStorageSize: 5Gi
postgresImage: postgres:9.6.3
If you disable postgresDedicatedStorage, you should consider bumping up gitlabRailsStorageSize
postgresDedicatedStorage: true
postgresStorageSize: 30Gi
gitlabRailsStorageSize: 30Gi
gitlabRegistryStorageSize: 30Gi
gitlabConfigStorageSize: 1Gi
`

Routing and SSL

Ingress routing and SSL are automatically configured within this Chart. An NGINX ingress is provisioned and configured, and will route traffic to any service. SSL certificates are automatically created and configured by [kube-lego](https://github.com/kubernetes/charts/tree/master/stable/kube-lego).

> Note:
Let’s Encrypt limits a single TLD to five certificate requests within a single week. This means that common DNS wildcard services like nip.io and nip.io are unlikely to work.

Installing GitLab using the Helm Chart
> Note:
You may see a temporary error message SchedulerPredicates failed due to PersistentVolumeClaim is not bound while storage provisions. Once the storage provisions, the pods will automatically start. This may take a couple minutes depending on your cloud provider. If the error persists, please review the [prerequisites](#prerequisites) to ensure you have enough RAM, CPU, and storage.

Add the GitLab Helm repository and initialize Helm:

`bash
helm init
helm repo add gitlab https://charts.gitlab.io
`

Once you have reviewed the [configuration settings](#configuring-and-installing-gitlab) you can install the chart. We recommending saving your configuration options in a values.yaml file for easier upgrades in the future.

For example:

`bash
helm install --name gitlab -f values.yaml gitlab/gitlab-omnibus
`

or passing them on the command line:

`bash
helm install --name gitlab --set baseDomain=gitlab.io,baseIP=192.0.2.1,gitlab=ee,gitlabEELicense=$LICENSE,legoEmail=email@gitlab.com gitlab/gitlab-omnibus
`

Updating GitLab using the Helm Chart

>**Note**: If you are upgrading from a previous version to 0.1.35 or above, you will need to change the access mode values for GitLab’s storage. To do this, set the following in values.yaml or on the CLI:
`
gitlabDataAccessMode=ReadWriteMany
gitlabRegistryAccessMode=ReadWriteMany
gitlabConfigAccessMode=ReadWriteMany
`

Once your GitLab Chart is installed, configuration changes and chart updates
should be done using helm upgrade:

`bash
helm upgrade -f values.yaml gitlab gitlab/gitlab-omnibus
`

Upgrading from CE to EE using the Helm Chart

If you have installed the Community Edition using this chart, upgrading to Enterprise Edition is easy.

If you are using a values.yaml file to specify the configuration options, edit the file and set gitlab=ee. If you would like to run a specific version of GitLab EE, set gitlabEEImage to be the desired GitLab [docker image](https://hub.docker.com/r/gitlab/gitlab-ee/tags/). Then you can use helm upgrade to update your GitLab instance to EE:

`bash
helm upgrade -f values.yaml gitlab gitlab/gitlab-omnibus
`

You can also upgrade and specify these options via the command line:

`bash
helm upgrade gitlab --set gitlab=ee,gitlabEEImage=gitlab/gitlab-ee:9.5.5-ee.0 gitlab/gitlab-omnibus
`

Uninstalling GitLab using the Helm Chart

To uninstall the GitLab Chart, run the following:

`bash
helm delete gitlab
`

Troubleshooting

Storage errors when updating gitlab-omnibus versions prior to 0.1.35

Users upgrading gitlab-omnibus from a version prior to 0.1.35, may see an error like: Error: UPGRADE FAILED: PersistentVolumeClaim “gitlab-gitlab-config-storage” is invalid: spec: Forbidden: field is immutable after creation.

This is due to a change in the access mode for GitLab storage in version 0.1.35. To successfully upgrade, the access mode flags must be set to ReadWriteMany as detailed in the [update section](#updating-gitlab-using-the-helm-chart).

[kube-srv]: https://kubernetes.io/docs/concepts/services-networking/service/#publishing-services—service-types [https://kubernetes.io/docs/concepts/services-networking/service/#publishing-services---service-types]
[storageclass]: https://kubernetes.io/docs/concepts/storage/persistent-volumes/#storageclasses

 # GitLab Runner Helm Chart
> Note:
These charts have been tested on Google Kubernetes Engine and Azure Container Service. Other Kubernetes installations may work as well, if not please [open an issue](https://gitlab.com/charts/gitlab-runner/issues).

The gitlab-runner Helm chart deploys a GitLab Runner instance into your
Kubernetes cluster.

This chart configures the Runner to:

	Run using the GitLab Runner [Kubernetes executor](https://docs.gitlab.com/runner/install/kubernetes.html)

	For each new job it receives from [GitLab CI](https://about.gitlab.com/features/gitlab-ci-cd/), it will provision a
new pod within the specified namespace to run it.

For more information on available GitLab Helm Charts, please see our [overview](index.md#chart-overview).

Prerequisites

	Your GitLab Server’s API is reachable from the cluster

	Kubernetes 1.4+ with Beta APIs enabled

	The kubectl CLI installed locally and authenticated for the cluster

	The [Helm client](https://github.com/kubernetes/helm/blob/master/docs/quickstart.md) installed locally on your machine

Configuring GitLab Runner using the Helm Chart

Create a values.yaml file for your GitLab Runner configuration. See [Helm docs](https://github.com/kubernetes/helm/blob/master/docs/chart_template_guide/values_files.md)
for information on how your values file will override the defaults.

The default configuration can always be found in the [values.yaml](https://gitlab.com/charts/gitlab-runner/blob/master/values.yaml) in the chart repository.

Required configuration

In order for GitLab Runner to function, your config file must specify the following:

	gitlabUrl - the GitLab Server URL (with protocol) to register the runner against

	
	runnerRegistrationToken - The Registration Token for adding new Runners to the GitLab Server. This must be
	retrieved from your GitLab Instance. See the [GitLab Runner Documentation](../../ci/runners/README.md#creating-and-registering-a-runner) for more information.

Unless you need to specify additional configuration, you are [ready to install](#installing-gitlab-runner-using-the-helm-chart).

Other configuration

The rest of the configuration is [documented in the values.yaml](https://gitlab.com/charts/gitlab-runner/blob/master/values.yaml) in the chart repository.

Here is a snippet of the important settings:

```yaml
## The GitLab Server URL (with protocol) that want to register the runner against
## ref: https://docs.gitlab.com/runner/commands/README.html#gitlab-runner-register
##
gitlabUrl: http://gitlab.your-domain.com/

## The Registration Token for adding new Runners to the GitLab Server. This must
## be retrieved from your GitLab Instance.
## ref: https://docs.gitlab.com/ce/ci/runners/README.html#creating-and-registering-a-runner
##
runnerRegistrationToken: “”

## Set the certsSecretName in order to pass custom certificates for GitLab Runner to use
## Provide resource name for a Kubernetes Secret Object in the same namespace,
## this is used to populate the /etc/gitlab-runner/certs directory
## ref: https://docs.gitlab.com/runner/configuration/tls-self-signed.html#supported-options-for-self-signed-certificates
##
#certsSecretName:

## Configure the maximum number of concurrent jobs
## ref: https://docs.gitlab.com/runner/configuration/advanced-configuration.html#the-global-section
##
concurrent: 10

## Defines in seconds how often to check GitLab for a new builds
## ref: https://docs.gitlab.com/runner/configuration/advanced-configuration.html#the-global-section
##
checkInterval: 30

## For RBAC support:
rbac:


create: false

## Run the gitlab-bastion container with the ability to deploy/manage containers of jobs
## cluster-wide or only within namespace
clusterWideAccess: false

## Use the following Kubernetes Service Account name if RBAC is disabled in this Helm chart (see rbac.create)
##
# serviceAccountName: default




## Configuration for the Pods that that the runner launches for each new job
##
runners:


## Default container image to use for builds when none is specified
##
image: ubuntu:16.04

## Run all containers with the privileged flag enabled
## This will allow the docker:stable-dind image to run if you need to run Docker
## commands. Please read the docs before turning this on:
## ref: https://docs.gitlab.com/runner/executors/kubernetes.html#using-docker-dind
##
privileged: false

## Namespace to run Kubernetes jobs in (defaults to ‘default’)
##
# namespace:

## Build Container specific configuration
##
builds:


# cpuLimit: 200m
# memoryLimit: 256Mi
cpuRequests: 100m
memoryRequests: 128Mi




## Service Container specific configuration
##
services:


# cpuLimit: 200m
# memoryLimit: 256Mi
cpuRequests: 100m
memoryRequests: 128Mi




## Helper Container specific configuration
##
helpers:


# cpuLimit: 200m
# memoryLimit: 256Mi
cpuRequests: 100m
memoryRequests: 128Mi







```

Enabling RBAC support

If your cluster has RBAC enabled, you can choose to either have the chart create its own service account or provide one.

To have the chart create the service account for you, set rbac.create to true.

Controlling maximum Runner concurrency

A single GitLab Runner deployed on Kubernetes is able to execute multiple jobs in parallel by automatically starting additional Runner pods. The [concurrent setting](https://docs.gitlab.com/runner/configuration/advanced-configuration.html#the-global-section) controls the maximum number of pods allowed at a single time, and defaults to 10.

`yaml
Configure the maximum number of concurrent jobs
ref: https://docs.gitlab.com/runner/configuration/advanced-configuration.html#the-global-section
##
concurrent: 10
`

Running Docker-in-Docker containers with GitLab Runners

See [Running Privileged Containers for the Runners](#running-privileged-containers-for-the-runners) for how to enable it,
and the [GitLab CI Runner documentation](https://docs.gitlab.com/runner/executors/kubernetes.html#using-docker-in-your-builds) on running dind.

Running privileged containers for the Runners

You can tell the GitLab Runner to run using privileged containers. You may need
this enabled if you need to use the Docker executable within your GitLab CI jobs.

This comes with several risks that you can read about in the
[GitLab CI Runner documentation](https://docs.gitlab.com/runner/executors/kubernetes.html#using-docker-in-your-builds).

If you are okay with the risks, and your GitLab CI Runner instance is registered
against a specific project in GitLab that you trust the CI jobs of, you can
enable privileged mode in values.yaml:

```yaml
runners:


## Run all containers with the privileged flag enabled
## This will allow the docker:stable-dind image to run if you need to run Docker
## commands. Please read the docs before turning this on:
## ref: https://docs.gitlab.com/runner/executors/kubernetes.html#using-docker-dind
##
privileged: true




```

Providing a custom certificate for accessing GitLab

You can provide a [Kubernetes Secret](https://kubernetes.io/docs/concepts/configuration/secret/)
to the GitLab Runner Helm Chart, which will be used to populate the container’s
/etc/gitlab-runner/certs directory.

Each key name in the Secret will be used as a filename in the directory, with the
file content being the value associated with the key.

More information on how GitLab Runner uses these certificates can be found in the
[Runner Documentation](https://docs.gitlab.com/runner/configuration/tls-self-signed.html#supported-options-for-self-signed-certificates).

	The key/file name used should be in the format <gitlab-hostname>.crt. For example: gitlab.your-domain.com.crt.

	Any intermediate certificates need to be concatenated to your server certificate in the same file.

	The hostname used should be the one the certificate is registered for.

The GitLab Runner Helm Chart does not create a secret for you. In order to create
the secret, you can prepare your certificate on you local machine, and then run
the kubectl create secret command from the directory with the certificate

```bash
kubectl


–namespace <NAMESPACE>
create secret generic <SECRET_NAME>
–from-file=<CERTFICATE_FILENAME>




```


	<NAMESPACE> is the Kubernetes namespace where you want to install the GitLab Runner.

	<SECRET_NAME> is the Kubernetes Secret resource name. For example: gitlab-domain-cert

	<CERTFICATE_FILENAME> is the filename for the certificate in your current directory that will be imported into the secret

You then need to provide the secret’s name to the GitLab Runner chart.

Add the following to your values.yaml

`yaml
Set the certsSecretName in order to pass custom certificates for GitLab Runner to use
Provide resource name for a Kubernetes Secret Object in the same namespace,
this is used to populate the /etc/gitlab-runner/certs directory
ref: https://docs.gitlab.com/runner/configuration/tls-self-signed.html#supported-options-for-self-signed-certificates
##
certsSecretName: <SECRET NAME>
`

	<SECRET_NAME> is the Kubernetes Secret resource name. For example: gitlab-domain-cert

Installing GitLab Runner using the Helm Chart

Add the GitLab Helm repository and initialize Helm:

`bash
helm repo add gitlab https://charts.gitlab.io
helm init
`

Once you [have configured](#configuration) GitLab Runner in your values.yml file,
run the following:

`bash
helm install --namespace <NAMESPACE> --name gitlab-runner -f <CONFIG_VALUES_FILE> gitlab/gitlab-runner
`

	<NAMESPACE> is the Kubernetes namespace where you want to install the GitLab Runner.

	<CONFIG_VALUES_FILE> is the path to values file containing your custom configuration. See the
[Configuration](#configuration) section to create it.

Updating GitLab Runner using the Helm Chart

Once your GitLab Runner Chart is installed, configuration changes and chart updates should we done using helm upgrade

`bash
helm upgrade --namespace <NAMESPACE> -f <CONFIG_VALUES_FILE> <RELEASE-NAME> gitlab/gitlab-runner
`

Where:
- <NAMESPACE> is the Kubernetes namespace where GitLab Runner is installed
- <CONFIG_VALUES_FILE> is the path to values file containing your custom configuration. See the

[Configuration](#configuration) section to create it.

	<RELEASE-NAME> is the name you gave the chart when installing it.
In the [Install section](#installing) we called it gitlab-runner.

Uninstalling GitLab Runner using the Helm Chart

To uninstall the GitLab Runner Chart, run the following:

`bash
helm delete --namespace <NAMESPACE> <RELEASE-NAME>
`

where:

	<NAMESPACE> is the Kubernetes namespace where GitLab Runner is installed

	<RELEASE-NAME> is the name you gave the chart when installing it.
In the [Install section](#installing) we called it gitlab-runner.

 —
description: ‘Read through the different methods to deploy GitLab on Kubernetes.’
—

Installing GitLab on Kubernetes

> Note: These charts have been tested on Google Kubernetes Engine. Other Kubernetes installations may work as well, if not please [open an issue](https://gitlab.com/charts/issues).

The easiest method to deploy GitLab on [Kubernetes](https://kubernetes.io/) is
to take advantage of GitLab’s Helm charts. [Helm] is a package
management tool for Kubernetes, allowing apps to be easily managed via their
Charts. A [Chart] is a detailed description of the application including how it
should be deployed, upgraded, and configured.

Chart Overview

	[GitLab Chart](gitlab_chart.html): The recommended GitLab chart, currently in beta. Supports large deployments with horizontal scaling of individual GitLab components, and does not require NFS.

	[GitLab Runner Chart](gitlab_runner_chart.md): For deploying just the GitLab Runner.

	Other Charts
* [GitLab-Omnibus](gitlab_omnibus.md): Chart based on the Omnibus GitLab linux package, only suitable for small deployments. The chart will be deprecated by the [GitLab chart](#gitlab-chart) when it is GA.
* [Community Contributed Charts](#community-contributed-charts): Community contributed charts, deprecated by the official GitLab chart.

GitLab Chart

> Note: This chart is beta, while we work on the [remaining items for GA](https://gitlab.com/groups/charts/-/epics/15).

The best way to operate GitLab on Kubernetes. This chart contains all the required components to get started, and can scale to large deployments.

This chart offers a number of benefits:
* Horizontal scaling of individual components
* No requirement for shared storage to scale
* Containers do not need root permissions
* Automatic SSL with Let’s Encrypt
* and plenty more.

Learn more about the [GitLab chart here](gitlab_chart.md) and [here [Video]](https://youtu.be/Z6jWR8Z8dv8).

GitLab Runner Chart

If you already have a GitLab instance running, inside or outside of Kubernetes, and you’d like to leverage the Runner’s [Kubernetes capabilities](https://docs.gitlab.com/runner/executors/kubernetes.html), it can be deployed with the GitLab Runner chart.

Learn more about [gitlab-runner chart](gitlab_runner_chart.md).

Other Charts

GitLab-Omnibus Chart

> Note: This chart is beta, and will be deprecated when the [gitlab](#gitlab-chart) chart is GA.

It deploys and configures nearly all features of GitLab, including: a [Runner](https://docs.gitlab.com/runner/), [Container Registry](../../user/project/container_registry.html#gitlab-container-registry), [Mattermost](https://docs.gitlab.com/omnibus/gitlab-mattermost/), [automatic SSL](https://github.com/kubernetes/charts/tree/master/stable/kube-lego), and a [load balancer](https://github.com/kubernetes/ingress/tree/master/controllers/nginx). It is based on our [GitLab Omnibus Docker Images](https://docs.gitlab.com/omnibus/docker/README.html).

Once the [GitLab chart](#gitlab-chart) is GA, this chart will be deprecated. Migrating to the gitlab chart will require exporting data out of this instance and importing it into a new deployment.

Learn more about the [gitlab-omnibus chart](gitlab_omnibus.md).

Community Contributed Charts

The community has also contributed GitLab [CE](https://github.com/kubernetes/charts/tree/master/stable/gitlab-ce) and [EE](https://github.com/kubernetes/charts/tree/master/stable/gitlab-ee) charts to the [Helm Stable Repository](https://github.com/kubernetes/charts#repository-structure). These charts should be considered [deprecated](https://github.com/kubernetes/charts/issues/1138) in favor of the [official Charts](gitlab_omnibus.md).

[chart]: https://github.com/kubernetes/charts
[helm]: https://github.com/kubernetes/helm/blob/master/README.md

 # Connecting your computer to a cluster

In order to deploy software and settings to a cluster, you must connect and authenticate to it.

	[GKE cluster](#connect-to-gke-cluster)

	[EKS cluster](#connect-to-eks-cluster)

	[Local minikube cluster](#connect-to-local-minikube-cluster)

Connect to GKE cluster

The command for connection to the cluster can be obtained from the [Google Cloud Platform Console](https://console.cloud.google.com/kubernetes/list) by the individual cluster.

Look for the Connect button in the clusters list page.

Or

Use the command below, filling in your cluster’s informtion:

`
gcloud container clusters get-credentials <cluster-name> --zone <zone> --project <project-id>
`

Connect to EKS cluster

For the most up to date instructions, follow the Amazon EKS documentation on [connecting to a cluster](https://docs.aws.amazon.com/eks/latest/userguide/getting-started.html#eks-configure-kubectl).

Connect to local minikube cluster

If you are doing local development, you can use minikube as your
local cluster. If kubectl cluster-info is not showing minikube as the current
cluster, use kubectl config set-cluster minikube to set the active cluster.

 # Running GitLab on EKS

There are a few nuances to Amazon EKS which are important to be aware of, when deploying GitLab.

Persistent volume management

There are two methods to manage volume claims on Kubernetes:
1. Manually creating each persistent volume (recommended on EKS)
1. Utilizing dynamic provisioning to automatically create the persistent volumes

Manual provisioning of volumes (Recommended)

Manually creating the volumes allows you to control the zone of each volume, as well as all other details supported by the underlying storage.

Follow our documentation on [manually creating persistent volumes](https://gitlab.com/charts/gitlab/blob/master/doc/installation/storage.md#manually-creating-static-volumes).

Dynamic provisioning of volumes

Dynamic provisioning utilizes a Kubernetes provisioner, like aws-ebs, to automatically create persistent volumes to fulfill each claim.

With EKS, there are a few important details to keep in mind:

1. Clusters are required to span multiple AZ’s
1. Kubernetes volume provisioners create volumes across zones without regard to which pod they belong to. This leads to scenarios where a pod with multiple volumes being unable to start due to the volumes being in different zones.
1. There is no default Storage Class.

The easiest way to solve this and still utilize dynamic provisioning is to utilize, or create, a Storage Class that is locked to a specific zone.

> Note: Restricting volumes to specific zone will cause GitLab and any other application using this Storage Class to only reside in that zone. For multiple zone support, utilize [manually provisioned volumes](#manual-provisioning-of-volumes).

To create the storage class, download and edit Amazon EKS’s [sample Storage Class](https://docs.aws.amazon.com/eks/latest/userguide/storage-classes.html) and add the following parameter:

```yaml
parameters:


zone: <desired-zone>




```

Then [specify the Storage Class](https://gitlab.com/charts/gitlab/blob/master/doc/installation/storage.md#using-a-custom-storage-class) name when deploying GitLab.

External access to GitLab

By default, GitLab will an deploy an ingress which will create an associated Elastic Load Balancer. Since the DNS names of ELB’s cannot be known ahead of time, it is difficult to utilize Let’s Encrypt to automatically provision HTTPS certificates.

We recommend [using your own certificates](https://gitlab.com/charts/gitlab/blob/master/doc/installation/tls.md#option-2-use-your-own-wildcard-certificate), and then mapping your desired DNS name to the created ELB using a CNAME record.

 # Networking Prerequisites

> Note: Amazon EKS utilizes Elastic Load Balancers, which are addressed by DNS name and cannot be known ahead of time. Skip this section.

The gitlab chart configures a GitLab server and Kubernetes cluster which can support dynamic [Review Apps](https://docs.gitlab.com/ee/ci/review_apps/index.html), as well as services like the integrated [Container Registry](https://docs.gitlab.com/ee/user/project/container_registry.html).

To support the GitLab services and dynamic environments, a wildcard DNS entry is required which resolves to the external IP.

External IP

To provision an external IP on GCP and Azure, simply request a new address from the Networking section. Ensure that the region matches the region your container cluster is created in. Note, it is important that the IP is not assigned at this point in time. It will be automatically assigned once the Helm chart is installed, to the Load Balancer.

Set global.hosts.externalIP to this IP address when [deploying GitLab](../gitlab_chart.md#configuring-and-installing-gitlab).

Then, create a [wildcard DNS record](#wildcard-dns-entry) which resolves to this IP address.

Creating an external IP on GCP

When creating the external IP, it is critical to create it in the same region as your cluster. Otherwise, the IP address will fail to bind to the Load Balancer.

1. Open the [web console](https://console.cloud.google.com)
1. In the sidebar, browse to VPC Network > External IP addresses
1. Click Reserve static address
1. Choose Regional and select the region of your cluster
1. Leave Attached to blank, as it will be automatically assigned during deployment

Wildcard DNS entry

Now that an external IP address has been allocated, ensure that the wildcard DNS entry you would like to use resolves to this IP. Typically this would be an A record for *, resolving to the external IP above.

Please consult the documentation for your DNS service for more information on creating DNS records:

	[Google Domains](https://support.google.com/domains/answer/3290350?hl=en)

	[GoDaddy](https://www.godaddy.com/help/add-an-a-record-19238)

Set global.hosts.domain to this DNS name when [deploying GitLab](../gitlab_chart.md#configuring-and-installing-gitlab).

 # Role Based Access Control

Until Kubernetes 1.7, there were no permissions within a cluster. With the launch of 1.7, there is now a role based access control system ([RBAC](https://kubernetes.io/docs/admin/authorization/rbac/)) which determines what services can perform actions within a cluster.

RBAC affects a few different aspects of GitLab:
* [Installation of GitLab using Helm](tiller.md#preparing-for-helm-with-rbac)
* Prometheus monitoring
* GitLab Runner

Checking that RBAC is enabled

Try listing the current cluster roles, if it fails then RBAC is disabled

This command will output false if RBAC is disabled and true otherwise

kubectl get clusterroles > /dev/null 2>&1 && echo true || echo false

 # Configuring and initializing Helm Tiller

To make use of Helm, you must have a [Kubernetes][k8s-io] cluster. Ensure you can access your cluster using kubectl.

Helm consists of two parts, the helm client and a tiller server inside Kubernetes.

> Note: If you are not able to run Tiller in your cluster, for example on OpenShift, it is possible to use [Tiller locally](https://gitlab.com/charts/gitlab/tree/master/doc/helm#local-tiller) and avoid deploying it into the cluster. This should only be used when Tiller cannot be normally deployed.

Initialize Helm and Tiller

Tiller is deployed into the cluster and interacts with the Kubernetes API to deploy your applications. If role based access control (RBAC) is enabled, Tiller will need to be [granted permissions](#preparing-for-helm-with-rbac) to allow it to talk to the Kubernetes API.

If RBAC is not enabled, skip to [initalizing Helm](#initialize-helm).

If you are not sure whether RBAC is enabled in your cluster, or to learn more, read through our [RBAC documentation](rbac.md).

Preparing for Helm with RBAC

Helm’s Tiller will need to be granted permissions to perform operations. These instructions grant cluster wide permissions, however for more advanced deployments [permissions can be restricted to a single namespace](https://docs.helm.sh/using_helm/#example-deploy-tiller-in-a-namespace-restricted-to-deploying-resources-only-in-that-namespace). To grant access to the cluster, we will create a new tiller service account and bind it to the cluster-admin role.

Create a file rbac-config.yaml with the following contents:

```yaml
apiVersion: v1
kind: ServiceAccount
metadata:


name: tiller
namespace: kube-system




—
apiVersion: rbac.authorization.k8s.io/v1beta1
kind: ClusterRoleBinding
metadata:


name: tiller





	roleRef:
	apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: cluster-admin



	subjects:
	
	kind: ServiceAccount
name: tiller
namespace: kube-system








```

Next we need to connect to the cluster and upload the RBAC config.

Upload the RBAC config

Some clusters require authentication to use kubectl to create the Tiller roles.

Upload the RBAC config as an admin user (GKE)

For GKE, you need to grab the admin credentials:

`
gcloud container clusters describe <cluster-name> --zone <zone> --project <project-id> --format='value(masterAuth.password)'
`

This command will output the admin password. We need the password to authenticate with kubectl and create the role.

`
kubectl --username=admin --password=xxxxxxxxxxxxxx create -f rbac-config.yaml
`

Upload the RBAC config (Other clusters)

For other clusters like Amazon EKS, you can directly upload the RBAC configuration.

`
kubectl create -f rbac-config.yaml
`

Initialize Helm

Deploy Helm Tiller with a service account:

`
helm init --service-account tiller
`

If your cluster previously had Helm/Tiller installed,
run the following to ensure that the deployed version of Tiller matches the local Helm version:

`
helm init --upgrade --service-account tiller
`

Patching Helm Tiller for Amazon EKS

Helm Tiller requires a flag to be enabled to work properly on Amazon EKS:

`
kubectl -n kube-system patch deployment tiller-deploy -p '{"spec": {"template": {"spec": {"automountServiceAccountToken": true}}}}'
`

[helm]: https://helm.sh
[helm-using]: https://docs.helm.sh/using_helm
[k8s-io]: https://kubernetes.io/
[gcp-k8s]: https://console.cloud.google.com/kubernetes/list

 # Installing kubectl and Helm on your computer

In order to work with the GitLab Helm charts, kubectl and helm must be installed and configured on your computer.

Installing kubectl

kubectl is the Kubernetes command line tool, which can be used to deploy settings to the cluster.

Follow the [official documentation](https://kubernetes.io/docs/tasks/tools/install-kubectl/) for the most up to date instructions.

Installing helm

Helm is a package management tool for Kubernetes, and is used to deploy charts.

You can get Helm from the project’s [releases page](https://github.com/kubernetes/helm/releases), or follow other options under the official documentation of [Installing Helm](https://docs.helm.sh/using_helm/#installing-helm).

Next steps

Once installed, proceed to the next [installation step](../gitlab_chart.md#prerequisites).

 —
author: Achilleas Pipinellis
author_gitlab: axil
level: intermediary
article_type: tutorial
date: 2016-06-28
—

How to install GitLab on OpenShift Origin 3

Introduction

[OpenShift Origin][openshift] is an open source container application
platform created by [RedHat], based on [kubernetes] and [Docker]. That means
you can host your own PaaS for free and almost with no hassle.

In this tutorial, we will see how to deploy GitLab in OpenShift using GitLab’s
official Docker image while getting familiar with the web interface and CLI
tools that will help us achieve our goal.

For a video demonstration on installing GitLab on Openshift, check the article [In 13 minutes from Kubernetes to a complete application development tool](https://about.gitlab.com/2016/11/14/idea-to-production/).

—

Prerequisites

OpenShift 3 is not yet deployed on RedHat’s offered Online platform ([openshift.com]),
so in order to test it, we will use an [all-in-one Virtualbox image][vm] that is
offered by the OpenShift developers and managed by Vagrant. If you haven’t done
already, go ahead and install the following components as they are essential to
test OpenShift easily:

	[VirtualBox]

	[Vagrant]

	[OpenShift Client][oc] (oc for short)

It is also important to mention that for the purposes of this tutorial, the
latest Origin release is used:

	oc v1.3.0 (must be [installed][oc-gh] locally on your computer)

	openshift v1.3.0 (is pre-installed in the [VM image][vm-new])

	kubernetes v1.3.0 (is pre-installed in the [VM image][vm-new])

>**Note:**
If you intend to deploy GitLab on a production OpenShift cluster, there are some
limitations to bare in mind. Read on the [limitations](#current-limitations)
section for more information and follow the linked links for the relevant
discussions.

Now that you have all batteries, let’s see how easy it is to test OpenShift
on your computer.

Getting familiar with OpenShift Origin

The environment we are about to use is based on CentOS 7 which comes with all
the tools needed pre-installed: Docker, kubernetes, OpenShift, etcd.

Test OpenShift using Vagrant

As of this writing, the all-in-one VM is at version 1.3, and that’s
what we will use in this tutorial.

In short:

	Open a terminal and in a new directory run:
`sh
vagrant init openshift/origin-all-in-one
`

1. This will generate a Vagrantfile based on the all-in-one VM image
1. In the same directory where you generated the Vagrantfile

enter:

`sh
vagrant up
`

This will download the VirtualBox image and fire up the VM with some preconfigured
values as you can see in the Vagrantfile. As you may have noticed, you need
plenty of RAM (5GB in our example), so make sure you have enough.

Now that OpenShift is setup, let’s see how the web console looks like.

Explore the OpenShift web console

Once Vagrant finishes its thing with the VM, you will be presented with a
message which has some important information. One of them is the IP address
of the deployed OpenShift platform and in particular <https://10.2.2.2:8443/console/>.
Open this link with your browser and accept the self-signed certificate in
order to proceed.

Let’s login as admin with username/password admin/admin. This is what the
landing page looks like:

![openshift web console](img/web-console.png)

You can see that a number of [projects] are already created for testing purposes.

If you head over the openshift-infra project, a number of services with their
respective pods are there to explore.

![openshift web console](img/openshift-infra-project.png)

We are not going to explore the whole interface, but if you want to learn about
the key concepts of OpenShift, read the [core concepts reference][core] in the
official documentation.

Explore the OpenShift CLI

OpenShift Client (oc), is a powerful CLI tool that talks to the OpenShift API
and performs pretty much everything you can do from the web UI and much more.

Assuming you have [installed][oc] it, let’s explore some of its main
functionalities.

Let’s first see the version of oc:

```sh
$ oc version

oc v1.3.0
kubernetes v1.3.0+52492b4
```

With oc help you can see the top level arguments you can run with oc and
interact with your cluster, kubernetes, run applications, create projects and
much more.

Let’s login to the all-in-one VM and see how to achieve the same results like
when we visited the web console earlier. The username/password for the
administrator user is admin/admin. There is also a test user with username/
password user/user, with limited access. Let’s login as admin for the moment:

```sh
$ oc login https://10.2.2.2:8443

Authentication required for https://10.2.2.2:8443 (openshift)
Username: admin
Password:
Login successful.

You have access to the following projects and can switch between them with ‘oc project <projectname>’:



	cockpit


	default (current)


	delete


	openshift


	openshift-infra


	sample







Using project “default”.
```

Switch to the openshift-infra project with:

`sh
oc project openshift-infra
`

And finally, see its status:

`sh
oc status
`

The last command should spit a bunch of information about the statuses of the
pods and the services, which if you look closely is what we encountered in the
second image when we explored the web console.

You can always read more about oc in the [OpenShift CLI documentation][oc].

Troubleshooting the all-in-one VM

Using the all-in-one VM gives you the ability to test OpenShift whenever you
want. That means you get to play with it, shutdown the VM, and pick up where
you left off.

Sometimes though, you may encounter some issues, like OpenShift not running
when booting up the VM. The web UI may not responding or you may see issues
when trying to login with oc, like:

`
The connection to the server 10.2.2.2:8443 was refused - did you specify the right host or port?
`

In that case, the OpenShift service might not be running, so in order to fix it:

	SSH into the VM by going to the directory where the Vagrantfile is and then
run:

`sh
vagrant ssh
`

	Run systemctl and verify by the output that the openshift service is not
running (it will be in red color). If that’s the case start the service with:

`sh
sudo systemctl start openshift
`

	Verify the service is up with:

`sh
systemctl status openshift -l
`

Now you will be able to login using oc (like we did before) and visit the web
console.

Deploy GitLab

Now that you got a taste of what OpenShift looks like, let’s deploy GitLab!

Create a new project

First, we will create a new project to host our application. You can do this
either by running the CLI client:

`bash
$ oc new-project gitlab
`

or by using the web interface:

![Create a new project from the UI](img/create-project-ui.png)

If you used the command line, oc automatically uses the new project and you
can see its status with:

```sh
$ oc status

In project gitlab on server https://10.2.2.2:8443

You have no services, deployment configs, or build configs.
Run ‘oc new-app’ to create an application.
```

If you visit the web console, you can now see gitlab listed in the projects list.

The next step is to import the OpenShift template for GitLab.

Import the template

The [template][templates] is basically a JSON file which describes a set of
related object definitions to be created together, as well as a set of
parameters for those objects.

The template for GitLab resides in the Omnibus GitLab repository under the
docker directory. Let’s download it locally with wget:

`bash
wget https://gitlab.com/gitlab-org/omnibus-gitlab/raw/master/docker/openshift-template.json
`

And then let’s import it in OpenShift:

`bash
oc create -f openshift-template.json -n openshift
`

>**Note:**
The -n openshift namespace flag is a trick to make the template available to all
projects. If you recall from when we created the gitlab project, oc switched
to it automatically, and that can be verified by the oc status command. If
you omit the namespace flag, the application will be available only to the
current project, in our case gitlab. The openshift namespace is a global
one that the administrators should use if they want the application to be
available to all users.

We are now ready to finally deploy GitLab!

Create a new application

The next step is to use the template we previously imported. Head over to the
gitlab project and hit the Add to Project button.

![Add to project](img/add-to-project.png)

This will bring you to the catalog where you can find all the pre-defined
applications ready to deploy with the click of a button. Search for gitlab
and you will see the previously imported template:

![Add GitLab to project](img/add-gitlab-to-project.png)

Select it, and in the following screen you will be presented with the predefined
values used with the GitLab template:

![GitLab settings](img/gitlab-settings.png)

Notice at the top that there are three resources to be created with this
template:

	gitlab-ce

	gitlab-ce-redis

	gitlab-ce-postgresql

While PostgreSQL and Redis are bundled in Omnibus GitLab, the template is using
separate images as you can see from [this line][line] in the template.

The predefined values have been calculated for the purposes of testing out
GitLab in the all-in-one VM. You don’t need to change anything here, hit
Create to start the deployment.

If you are deploying to production you will want to change the GitLab instance
hostname and use greater values for the volume sizes. If you don’t provide a
password for PostgreSQL, it will be created automatically.

>**Note:**
The gitlab.apps.10.2.2.2.nip.io hostname that is used by default will
resolve to the host with IP 10.2.2.2 which is the IP our VM uses. It is a
trick to have distinct FQDNs pointing to services that are on our local network.
Read more on how this works in <http://nip.io>.

Now that we configured this, let’s see how to manage and scale GitLab.

Manage and scale GitLab

Setting up GitLab for the first time might take a while depending on your
internet connection and the resources you have attached to the all-in-one VM.
GitLab’s docker image is quite big (~500MB), so you’ll have to wait until
it’s downloaded and configured before you use it.

Watch while GitLab gets deployed

Navigate to the gitlab project at Overview. You can notice that the
deployment is in progress by the orange color. The Docker images are being
downloaded and soon they will be up and running.

![GitLab overview](img/gitlab-overview.png)

Switch to the Browse > Pods and you will eventually see all 3 pods in a
running status. Remember the 3 resources that were to be created when we first
created the GitLab app? This is where you can see them in action.

![Running pods](img/running-pods.png)

You can see GitLab being reconfigured by taking look at the logs in realtime.
Click on gitlab-ce-2-j7ioe (your ID will be different) and go to the Logs
tab.

![GitLab logs](img/gitlab-logs.png)

At a point you should see a _**gitlab Reconfigured!**_ message in the logs.
Navigate back to the Overview and hopefully all pods will be up and running.

![GitLab running](img/gitlab-running.png)

Congratulations! You can now navigate to your new shinny GitLab instance by
visiting <http://gitlab.apps.10.2.2.2.nip.io> where you will be asked to
change the root user password. Login using root as username and providing the
password you just set, and start using GitLab!

Scale GitLab with the push of a button

If you reach to a point where your GitLab instance could benefit from a boost
of resources, you’d be happy to know that you can scale up with the push of a
button.

In the Overview page just click the up arrow button in the pod where
GitLab is. The change is instant and you can see the number of [replicas] now
running scaled to 2.

![GitLab scale](img/gitlab-scale.png)

Upping the GitLab pods is actually like adding new application servers to your
cluster. You can see how that would work if you didn’t use GitLab with
OpenShift by following the [HA documentation][ha] for the application servers.

Bare in mind that you may need more resources (CPU, RAM, disk space) when you
scale up. If a pod is in pending state for too long, you can navigate to
Browse > Events and see the reason and message of the state.

![No resources](img/no-resources.png)

Scale GitLab using the oc CLI

Using oc is super easy to scale up the replicas of a pod. You may want to
skim through the [basic CLI operations][basic-cli] to get a taste how the CLI
commands are used. Pay extra attention to the object types as we will use some
of them and their abbreviated versions below.

In order to scale up, we need to find out the name of the replication controller.
Let’s see how to do that using the following steps.

	Make sure you are in the gitlab project:

`sh
oc project gitlab
`

	See what services are used for this project:

`sh
oc get svc
`

The output will be similar to:

`
NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE
gitlab-ce 172.30.243.177 <none> 22/TCP,80/TCP 5d
gitlab-ce-postgresql 172.30.116.75 <none> 5432/TCP 5d
gitlab-ce-redis 172.30.105.88 <none> 6379/TCP 5d
`

	We need to see the replication controllers of the gitlab-ce service.
Get a detailed view of the current ones:

`sh
oc describe rc gitlab-ce
`

This will return a large detailed list of the current replication controllers.
Search for the name of the GitLab controller, usually gitlab-ce-1 or if
that failed at some point and you spawned another one, it will be named
gitlab-ce-2.

	Scale GitLab using the previous information:

`sh
oc scale --replicas=2 replicationcontrollers gitlab-ce-2
`

	Get the new replicas number to make sure scaling worked:

`sh
oc get rc gitlab-ce-2
`

which will return something like:

`
NAME DESIRED CURRENT AGE
gitlab-ce-2 2 2 5d
`

And that’s it! We successfully scaled the replicas to 2 using the CLI.

As always, you can find the name of the controller using the web console. Just
click on the service you are interested in and you will see the details in the
right sidebar.

![Replication controller name](img/rc-name.png)

Autoscaling GitLab

In case you were wondering whether there is an option to autoscale a pod based
on the resources of your server, the answer is yes, of course there is.

We will not expand on this matter, but feel free to read the documentation on
OpenShift’s website about [autoscaling].

Current limitations

As stated in the [all-in-one VM][vm] page:

> By default, OpenShift will not allow a container to run as root or even a
non-random container assigned userid. Most Docker images in the Dockerhub do not
follow this best practice and instead run as root.

The all-in-one VM we are using has this security turned off so it will not
bother us. In any case, it is something to keep in mind when deploying GitLab
on a production cluster.

In order to deploy GitLab on a production cluster, you will need to assign the
GitLab service account to the anyuid [Security Context Constraints][scc].

For OpenShift v3.0, you will need to do this manually:

	Edit the Security Context:
`sh
oc edit scc anyuid
`

	Add system:serviceaccount:<project>:gitlab-ce-user to the users section.
If you changed the Application Name from the default the user will

will be <app-name>-user instead of gitlab-ce-user

	Save and exit the editor

For OpenShift v3.1 and above, you can do:

`sh
oc adm policy add-scc-to-user anyuid system:serviceaccount:gitlab:gitlab-ce-user
`

Conclusion

By now, you should have an understanding of the basic OpenShift Origin concepts
and a sense of how things work using the web console or the CLI.

GitLab was hard to install in previous versions of OpenShift,
but now that belongs to the past. Upload a template, create a project, add an
application and you are done. You are ready to login to your new GitLab instance.

And remember that in this tutorial we just scratched the surface of what Origin
is capable of. As always, you can refer to the detailed
[documentation][openshift-docs] to learn more about deploying your own OpenShift
PaaS and managing your applications with the ease of containers.

[RedHat]: https://www.redhat.com/en “RedHat website”
[openshift]: https://www.openshift.org “OpenShift Origin website”
[vm]: https://www.openshift.org/vm/ “OpenShift All-in-one VM”
[vm-new]: https://atlas.hashicorp.com/openshift/boxes/origin-all-in-one “Official OpenShift Vagrant box on Atlas”
[template]: https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/docker/openshift-template.json “OpenShift template for GitLab”
[openshift.com]: https://openshift.com “OpenShift Online”
[kubernetes]: http://kubernetes.io/ “Kubernetes website”
[Docker]: https://www.docker.com “Docker website”
[oc]: https://docs.openshift.org/latest/cli_reference/get_started_cli.html “Documentation - oc CLI documentation”
[VirtualBox]: https://www.virtualbox.org/wiki/Downloads “VirtualBox downloads”
[Vagrant]: https://www.vagrantup.com/downloads.html “Vagrant downloads”
[projects]: https://docs.openshift.org/latest/dev_guide/projects.html “Documentation - Projects overview”
[core]: https://docs.openshift.org/latest/architecture/core_concepts/index.html “Documentation - Core concepts of OpenShift Origin”
[templates]: https://docs.openshift.org/latest/architecture/core_concepts/templates.html “Documentation - OpenShift templates”
[old-post]: https://blog.openshift.com/deploy-gitlab-openshift/ “Old post - Deploy GitLab on OpenShift”
[line]: https://gitlab.com/gitlab-org/omnibus-gitlab/blob/658c065c8d022ce858dd63eaeeadb0b2ddc8deea/docker/openshift-template.json#L239 “GitLab - OpenShift template”
[oc-gh]: https://github.com/openshift/origin/releases/tag/v1.3.0 “Openshift 1.3.0 release on GitHub”
[ha]: ../../administration/high_availability/gitlab.html “Documentation - GitLab High Availability”
[replicas]: https://docs.openshift.org/latest/architecture/core_concepts/deployments.html#replication-controllers “Documentation - Replication controller”
[autoscaling]: https://docs.openshift.org/latest/dev_guide/pod_autoscaling.html “Documentation - Autoscale”
[basic-cli]: https://docs.openshift.org/latest/cli_reference/basic_cli_operations.html “Documentation - Basic CLI operations”
[openshift-docs]: https://docs.openshift.org “OpenShift documentation”
[scc]: https://docs.openshift.org/latest/admin_guide/manage_scc.html “Documentation - Managing Security Context Constraints”

 —
comments: false
—

GitLab Integration

GitLab integrates with multiple third-party services to allow external issue
trackers and external authentication.

See the documentation below for details on how to configure these services.

	[Akismet](akismet.md) Configure Akismet to stop spam

	[Auth0 OmniAuth](auth0.md) Enable the Auth0 OmniAuth provider

	[Bitbucket](bitbucket.md) Import projects from Bitbucket.org and login to your GitLab instance with your

Bitbucket.org account
- [CAS](cas.md) Configure GitLab to sign in using CAS
- [External issue tracker](external-issue-tracker.md) Redmine, JIRA, etc.
- [Gmail actions buttons](gmail_action_buttons_for_gitlab.md) Adds GitLab actions to messages
- [JIRA](../user/project/integrations/jira.md) Integrate with the JIRA issue tracker
- [LDAP](ldap.md) Set up sign in via LDAP
- [OAuth2 provider](oauth_provider.md) OAuth2 application creation
- [OmniAuth](omniauth.md) Sign in via Twitter, GitHub, GitLab.com, Google, Bitbucket, Facebook, Shibboleth, SAML, Crowd, Azure and Authentiq ID
- [OpenID Connect](openid_connect_provider.md) Use GitLab as an identity provider
- [PlantUML](../administration/integration/plantuml.md) Configure PlantUML to use diagrams in AsciiDoc documents.
- [reCAPTCHA](recaptcha.md) Configure GitLab to use Google reCAPTCHA for new users
- [SAML](saml.md) Configure GitLab as a SAML 2.0 Service Provider
- [Trello](trello_power_up.md) Integrate Trello with GitLab

> GitLab Enterprise Edition contains [advanced Jenkins support][jenkins].

Project services

Integration with services such as Campfire, Flowdock, Gemnasium, HipChat,
Pivotal Tracker, and Slack are available in the form of a [Project Service][].

[Project Service]: ../user/project/integrations/project_services.md

SSL certificate errors

When trying to integrate GitLab with services that are using self-signed certificates,
it is very likely that SSL certificate errors will occur on different parts of the
application, most likely Sidekiq. There are 2 approaches you can take to solve this:

1. Add the root certificate to the trusted chain of the OS.
1. If using Omnibus, you can add the certificate to GitLab’s trusted certificates.

OS main trusted chain

This [resource](http://kb.kerio.com/product/kerio-connect/server-configuration/ssl-certificates/adding-trusted-root-certificates-to-the-server-1605.html)
has all the information you need to add a certificate to the main trusted chain.

This [answer](http://superuser.com/questions/437330/how-do-you-add-a-certificate-authority-ca-to-ubuntu)
at Super User also has relevant information.

Omnibus Trusted Chain

[Install the self signed certificate or custom certificate authorities](http://docs.gitlab.com/omnibus/common_installation_problems/README.html#using-self-signed-certificate-or-custom-certificate-authorities)
in to GitLab Omnibus.

It is enough to concatenate the certificate to the main trusted certificate
however it may be overwritten during upgrades:

`bash
cat jira.pem >> /opt/gitlab/embedded/ssl/certs/cacert.pem
`

After that restart GitLab with:

`bash
sudo gitlab-ctl restart
`

[jenkins]: http://docs.gitlab.com/ee/integration/jenkins.html

 # Akismet

> Note: Before 8.11 only issues submitted via the API and for non-project
members were submitted to Akismet.

GitLab leverages [Akismet](http://akismet.com) to protect against spam. Currently
GitLab uses Akismet to prevent the creation of spam issues on public projects. Issues
created via the WebUI or the API can be submitted to Akismet for review.

Detected spam will be rejected, and an entry in the “Spam Log” section in the
Admin page will be created.

Privacy note: GitLab submits the user’s IP and user agent to Akismet. Note that
adding a user to a project will disable the Akismet check and prevent this
from happening.

Configuration

To use Akismet:

	Go to the URL: https://akismet.com/account/

	Sign-in or create a new account.

	Click on Show to reveal the API key.

	Go to Applications Settings on Admin Area (admin/application_settings)

	Check the Enable Akismet checkbox

	Fill in the API key from step 3.

	Save the configuration.

![Screenshot of Akismet settings](img/akismet_settings.png)

Training

> Note: Training the Akismet filter is only available in 8.11 and above.

As a way to better recognize between spam and ham, you can train the Akismet
filter whenever there is a false positive or false negative.

When an entry is recognized as spam, it is rejected and added to the Spam Logs.
From here you can review if they are really spam. If one of them is not really
spam, you can use the Submit as ham button to tell Akismet that it falsely
recognized an entry as spam.

![Screenshot of Spam Logs](img/spam_log.png)

If an entry that is actually spam was not recognized as such, you will be able
to also submit this to Akismet. The Submit as spam button will only appear
to admin users.

![Screenshot of Issue](img/submit_issue.png)

Training Akismet will help it to recognize spam more accurately in the future.

 # Auth0 OmniAuth Provider

To enable the Auth0 OmniAuth provider, you must create an Auth0 account, and an
application.

1. Sign in to the [Auth0 Console](https://manage.auth0.com). If you need to
create an account, you can do so at the same link.

	Select “New App/API”.

	Provide the Application Name (‘GitLab’ works fine).

1. Once created, you should see the Quick Start options. Disregard them and
select ‘Settings’ above the Quick Start options.

1. At the top of the Settings screen, you should see your Domain, Client ID and
Client Secret. Take note of these as you’ll need to put them in the
configuration file. For example:

	Domain: test1234.auth0.com

	Client ID: t6X8L2465bNePWLOvt9yi41i

	Client Secret: KbveM3nqfjwCbrhaUy_gDu2dss8TIlHIdzlyf33pB7dEK5u_NyQdp65O_o02hXs2

	
	Fill in the Allowed Callback URLs:
	
	http://YOUR_GITLAB_URL/users/auth/auth0/callback (or)

	https://YOUR_GITLAB_URL/users/auth/auth0/callback

	
	Fill in the Allowed Origins (CORS):
	
	http://YOUR_GITLAB_URL (or)

	https://YOUR_GITLAB_URL

	On your GitLab server, open the configuration file.

For omnibus package:


	```sh
	sudo editor /etc/gitlab/gitlab.rb





```

For installations from source:


	```sh
	cd /home/git/gitlab
sudo -u git -H editor config/gitlab.yml





```


1. See [Initial OmniAuth Configuration](omniauth.md#initial-omniauth-configuration)
for initial settings.

	Add the provider configuration:

For omnibus package:


	```ruby
	
	gitlab_rails[‘omniauth_providers’] = [
	
	{
	“name” => “auth0”,
“args” => { client_id: ‘YOUR_AUTH0_CLIENT_ID’,



client_secret: ‘YOUR_AUTH0_CLIENT_SECRET’,
domain: ‘YOUR_AUTH0_DOMAIN’,
scope: ‘openid profile email’




}








}





]





```

For installations from source:


	```yaml
	
	
	{ name: ‘auth0’,
	
	args: {
	client_id: ‘YOUR_AUTH0_CLIENT_ID’,
client_secret: ‘YOUR_AUTH0_CLIENT_SECRET’,
domain: ‘YOUR_AUTH0_DOMAIN’,
scope: ‘openid profile email’ }









}









```


1. Change YOUR_AUTH0_CLIENT_ID to the client ID from the Auth0 Console page
from step 5.

1. Change YOUR_AUTH0_CLIENT_SECRET to the client secret from the Auth0 Console
page from step 5.

	[Reconfigure][] or [restart GitLab][] for the changes to take effect if you
installed GitLab via Omnibus or from source respectively.

On the sign in page there should now be an Auth0 icon below the regular sign in
form. Click the icon to begin the authentication process. Auth0 will ask the
user to sign in and authorize the GitLab application. If everything goes well
the user will be returned to GitLab and will be signed in.

[reconfigure]: ../administration/restart_gitlab.md#omnibus-gitlab-reconfigure
[restart GitLab]: ../administration/restart_gitlab.md#installations-from-source

 # Microsoft Azure OAuth2 OmniAuth Provider

To enable the Microsoft Azure OAuth2 OmniAuth provider you must register your application with Azure. Azure will generate a client ID and secret key for you to use.

	Sign in to the [Azure Management Portal](https://manage.windowsazure.com>).

	Select “Active Directory” on the left and choose the directory you want to use to register GitLab.

	Select “Applications” at the top bar and click the “Add” button the bottom.

	Select “Add an application my organization is developing”.

	Provide the project information and click the “Next” button.
- Name: ‘GitLab’ works just fine here.
- Type: ‘WEB APPLICATION AND/OR WEB API’

	On the “App properties” page enter the needed URI’s and click the “Complete” button.
- SIGN-IN URL: Enter the URL of your GitLab installation (e.g ‘https://gitlab.mycompany.com/’)
- APP ID URI: Enter the endpoint URL for Microsoft to use, just has to be unique (e.g ‘https://mycompany.onmicrosoft.com/gitlab’)

	Select “Configure” in the top menu.

	Add a “Reply URL” pointing to the Azure OAuth callback of your GitLab installation (e.g. https://gitlab.mycompany.com/users/auth/azure_oauth2/callback).

	Create a “Client secret” by selecting a duration, the secret will be generated as soon as you click the “Save” button in the bottom menu..

	Note the “CLIENT ID” and the “CLIENT SECRET”.

	Select “View endpoints” from the bottom menu.

	You will see lots of endpoint URLs in the form ‘https://login.microsoftonline.com/TENANT ID/…’, note down the TENANT ID part of one of those endpoints.

	On your GitLab server, open the configuration file.

For omnibus package:


	```sh
	sudo editor /etc/gitlab/gitlab.rb





```

For installations from source:


	```sh
	cd /home/git/gitlab

sudo -u git -H editor config/gitlab.yml





```


	See [Initial OmniAuth Configuration](omniauth.md#initial-omniauth-configuration) for initial settings.

	Add the provider configuration:

For omnibus package:


	```ruby
	
	gitlab_rails[‘omniauth_providers’] = [
	
	{
	“name” => “azure_oauth2”,
“args” => {


“client_id” => “CLIENT ID”,
“client_secret” => “CLIENT SECRET”,
“tenant_id” => “TENANT ID”,




}





}





]





```

For installations from source:


	```
	
	{ name: ‘azure_oauth2’,
args: { client_id: “CLIENT ID”,
client_secret: “CLIENT SECRET”,
tenant_id: “TENANT ID” } }








```

The base_azure_url is optional and can be added for different locales;
e.g. base_azure_url: “https://login.microsoftonline.de”.

	Replace ‘CLIENT ID’, ‘CLIENT SECRET’ and ‘TENANT ID’ with the values you got above.

	Save the configuration file.

	[Reconfigure][] or [restart GitLab][] for the changes to take effect if you
installed GitLab via Omnibus or from source respectively.

On the sign in page there should now be a Microsoft icon below the regular sign in form. Click the icon to begin the authentication process. Microsoft will ask the user to sign in and authorize the GitLab application. If everything goes well the user will be returned to GitLab and will be signed in.

[reconfigure]: ../administration/restart_gitlab.md#omnibus-gitlab-reconfigure
[restart GitLab]: ../administration/restart_gitlab.md#installations-from-source

 # Integrate your GitLab server with Bitbucket Cloud

NOTE: Note:
You need to [enable OmniAuth](omniauth.md) in order to use this.

Import projects from Bitbucket.org and login to your GitLab instance with your
Bitbucket.org account.

Overview

You can set up Bitbucket.org as an OAuth2 provider so that you can use your
credentials to authenticate into GitLab or import your projects from
Bitbucket.org.

	To use Bitbucket.org as an OmniAuth provider, follow the [Bitbucket OmniAuth
provider](#bitbucket-omniauth-provider) section.

	To import projects from Bitbucket, follow both the
[Bitbucket OmniAuth provider](#bitbucket-omniauth-provider) and
[Bitbucket project import](#bitbucket-project-import) sections.

Bitbucket OmniAuth provider

> Note:
GitLab 8.15 significantly simplified the way to integrate Bitbucket.org with
GitLab. You are encouraged to upgrade your GitLab instance if you haven’t done so
already. If you’re using GitLab 8.14 or below, [use the previous integration
docs][bb-old].

To enable the Bitbucket OmniAuth provider you must register your application
with Bitbucket.org. Bitbucket will generate an application ID and secret key for
you to use.

1. Sign in to [Bitbucket.org](https://bitbucket.org).
1. Navigate to your individual user settings (Bitbucket settings) or a team’s

settings (Manage team), depending on how you want the application registered.
It does not matter if the application is registered as an individual or a
team, that is entirely up to you.

1. Select OAuth in the left menu under “Access Management”.
1. Select Add consumer.
1. Provide the required details:

Item | Description |

:— | :———- |

Name | This can be anything. Consider something like <Organization>’s GitLab or <Your Name>’s GitLab or something else descriptive. |

Application description | Fill this in if you wish. |

Callback URL | The URL to your GitLab installation, e.g., https://gitlab.example.com. |

URL | The URL to your GitLab installation, e.g., https://gitlab.example.com. |

NOTE: Starting in GitLab 8.15, you MUST specify a callback URL, or you will
see an “Invalid redirect_uri” message. For more details, see [the
Bitbucket documentation](https://confluence.atlassian.com/bitbucket/oauth-faq-338365710.html).

And grant at least the following permissions:

`
Account: Email, Read
Repositories: Read
Pull Requests: Read
Issues: Read
Wiki: Read and Write
`

![Bitbucket OAuth settings page](img/bitbucket_oauth_settings_page.png)

1. Select Save.
1. Select your newly created OAuth consumer and you should now see a Key and

Secret in the list of OAuth consumers. Keep this page open as you continue
the configuration.

![Bitbucket OAuth key](img/bitbucket_oauth_keys.png)

	On your GitLab server, open the configuration file:

```
# For Omnibus packages
sudo editor /etc/gitlab/gitlab.rb

# For installations from source
sudo -u git -H editor /home/git/gitlab/config/gitlab.yml
```


	Add the Bitbucket provider configuration:

For Omnibus packages:

```ruby
gitlab_rails[‘omniauth_enabled’] = true


	gitlab_rails[‘omniauth_providers’] = [
	
	{
	“name” => “bitbucket”,
“app_id” => “BITBUCKET_APP_KEY”,
“app_secret” => “BITBUCKET_APP_SECRET”,
“url” => “https://bitbucket.org/”





}





For installations from source:

```yaml
omniauth:

enabled: true
providers:

	
	{ name: ‘bitbucket’,
	app_id: ‘BITBUCKET_APP_KEY’,
app_secret: ‘BITBUCKET_APP_SECRET’,
url: ‘https://bitbucket.org/’ }


```

—

Where BITBUCKET_APP_KEY is the Key and BITBUCKET_APP_SECRET the Secret
from the Bitbucket application page.





1.  Save the configuration file.
1.  For the changes to take effect, [reconfigure GitLab][] if you installed via


Omnibus, or [restart][] if installed from source.




On the sign in page there should now be a Bitbucket icon below the regular sign
in form. Click the icon to begin the authentication process. Bitbucket will ask
the user to sign in and authorize the GitLab application. If everything goes
well, the user will be returned to GitLab and will be signed in.

## Bitbucket project import

Once the above configuration is set up, you can use Bitbucket to sign into
GitLab and [start importing your projects][bb-import].

If you want to import projects from Bitbucket, but don’t want to enable signing in,
you can [disable Sign-Ins in the admin panel](omniauth.md#enable-or-disable-sign-in-with-an-omniauth-provider-without-disabling-import-sources).

[init-oauth]: omniauth.md#initial-omniauth-configuration
[bb-import]: ../workflow/importing/import_projects_from_bitbucket.md
[bb-old]: https://gitlab.com/gitlab-org/gitlab-ce/blob/8-14-stable/doc/integration/bitbucket.md
[bitbucket-docs]: https://confluence.atlassian.com/bitbucket/use-the-ssh-protocol-with-bitbucket-cloud-221449711.html#UsetheSSHprotocolwithBitbucketCloud-KnownhostorBitbucket%27spublickeyfingerprints
[reconfigure GitLab]: ../administration/restart_gitlab.md#omnibus-gitlab-reconfigure
[restart]: ../administration/restart_gitlab.md#installations-from-source



            

          

      

      

    

  

    
      
          
            
  # CAS OmniAuth Provider

To enable the CAS OmniAuth provider you must register your application with your CAS instance. This requires the service URL GitLab will supply to CAS. It should be something like: https://gitlab.example.com:443/users/auth/cas3/callback?url. By default handling for SLO is enabled, you only need to configure CAS for backchannel logout.


	On your GitLab server, open the configuration file.

For omnibus package:


	```sh
	sudo editor /etc/gitlab/gitlab.rb


```

For installations from source:


	```sh
	cd /home/git/gitlab

sudo -u git -H editor config/gitlab.yml


```






	See [Initial OmniAuth Configuration](omniauth.md#initial-omniauth-configuration) for initial settings.





	Add the provider configuration:

For omnibus package:


	```ruby
	
	gitlab_rails[‘omniauth_providers’] = [
	
	{
	“name”=> “cas3”,
“label”=> “cas”,
“args”=> {

“url”=> ‘CAS_SERVER’,
“login_url”=> ‘/CAS_PATH/login’,
“service_validate_url”=> ‘/CAS_PATH/p3/serviceValidate’,
“logout_url”=> ‘/CAS_PATH/logout’

}

}

]


```

For installations from source:


	```
	
	
	{ name: ‘cas3’,
	label: ‘cas’,
args: {

url: ‘CAS_SERVER’,
login_url: ‘/CAS_PATH/login’,
service_validate_url: ‘/CAS_PATH/p3/serviceValidate’,
logout_url: ‘/CAS_PATH/logout’} }


```






	Change ‘CAS_PATH’ to the root of your CAS instance (ie. cas).





	If your CAS instance does not use default TGC lifetimes, update the cas3.session_duration to at least the current TGC maximum lifetime. To explicitly disable SLO, regardless of CAS settings, set this to 0.





	Save the configuration file.





	[Reconfigure][] or [restart GitLab][] for the changes to take effect if you
installed GitLab via Omnibus or from source respectively.




On the sign in page there should now be a CAS tab in the sign in form.

[reconfigure]: ../administration/restart_gitlab.md#omnibus-gitlab-reconfigure
[restart GitLab]: ../administration/restart_gitlab.md#installations-from-source



            

          

      

      

    

  

    
      
          
            
  This document was moved to [integration/slash_commands.md](slash_commands.md).



            

          

      

      

    

  

    
      
          
            
  This document was moved to [administration/auth/crowd](../administration/auth/crowd.md).



            

          

      

      

    

  

    
      
          
            
  # External issue tracker

GitLab has a great issue tracker but you can also use an external one such as
Jira, Redmine, or Bugzilla. Issue trackers are configurable per GitLab project and allow
you to do the following:


	you can reference these external issues inside GitLab interface
(merge requests, commits, comments) and they will be automatically converted
into links




You can have enabled both external and internal GitLab issue trackers in parallel. The Issues link always opens the internal issue tracker and in case the internal issue tracker is disabled the link is not visible in the menu.

## Configuration

The configuration is done via a project’s Services.

### Project Service

To enable an external issue tracker you must configure the appropriate Service.
Visit the links below for details:


	[Redmine](../user/project/integrations/redmine.md)


	[Jira](../user/project/integrations/jira.md)


	[Bugzilla](../user/project/integrations/bugzilla.md)


	[Custom Issue Tracker](../user/project/integrations/custom_issue_tracker.md)




### Service Template

To save you the hassle from configuring each project’s service individually,
GitLab provides the ability to set Service Templates which can then be
overridden in each project’s settings.

Read more on [Services Templates](../user/project/integrations/services_templates.md).



            

          

      

      

    

  

    
      
          
            
  # Facebook OAuth2 OmniAuth Provider

To enable the Facebook OmniAuth provider you must register your application with Facebook. Facebook will generate an app ID and secret key for you to use.


	Sign in to the [Facebook Developer Platform](https://developers.facebook.com/).





	Choose “My Apps” &gt; “Add a New App”





	Select the type “Website”




1. Enter a name for your app. This can be anything. Consider something like “&lt;Organization&gt;’s GitLab” or “&lt;Your Name&gt;’s GitLab” or
something else descriptive.


	Choose “Create New Facebook App ID”





	Select a Category, for example “Productivity”





	Choose “Create App ID”





	Enter the address of your GitLab installation at the bottom of the package


![Facebook Website URL](img/facebook_website_url.png)









	Choose “Next”





	Choose “Skip Quick Start” in the upper right corner





	Choose “Settings” in the menu on the left





	Fill in a contact email for your app


![Facebook App Settings](img/facebook_app_settings.png)









	Choose “Save Changes”





	Choose “Status & Review” in the menu on the left





	Change the switch on the right from No to Yes





	Choose “Confirm” when prompted to make the app public





	Choose “Dashboard” in the menu on the left





	Choose “Show” next to the hidden “App Secret”





	You should now see an app key and app secret (see screenshot). Keep this page open as you continue configuration.


![Facebook API Keys](img/facebook_api_keys.png)









	On your GitLab server, open the configuration file.

For omnibus package:

`sh
sudo editor /etc/gitlab/gitlab.rb
`

For installations from source:

```sh
cd /home/git/gitlab

sudo -u git -H editor config/gitlab.yml
```






	See [Initial OmniAuth Configuration](omniauth.md#initial-omniauth-configuration) for initial settings.





	Add the provider configuration:

For omnibus package:

```ruby
gitlab_rails[‘omniauth_providers’] = [

	{
	“name” => “facebook”,
“app_id” => “YOUR_APP_ID”,
“app_secret” => “YOUR_APP_SECRET”

}

For installations from source:

```
- { name: ‘facebook’, app_id: ‘YOUR_APP_ID’,


app_secret: ‘YOUR_APP_SECRET’ }




```


	Change ‘YOUR_APP_ID’ to the API key from Facebook page in step 10.

	Change ‘YOUR_APP_SECRET’ to the API secret from the Facebook page in step 10.

	Save the configuration file.

	[Reconfigure][] or [restart GitLab][] for the changes to take effect if you
installed GitLab via Omnibus or from source respectively.

On the sign in page there should now be a Facebook icon below the regular sign in form. Click the icon to begin the authentication process. Facebook will ask the user to sign in and authorize the GitLab application. If everything goes well the user will be returned to GitLab and will be signed in.

[reconfigure]: ../administration/restart_gitlab.md#omnibus-gitlab-reconfigure
[restart GitLab]: ../administration/restart_gitlab.md#installations-from-source

 # Integrate your server with GitHub

Import projects from GitHub and login to your GitLab instance with your GitHub account.

To enable the GitHub OmniAuth provider you must register your application with GitHub.
GitHub will generate an application ID and secret key for you to use.

	Sign in to GitHub.

	Navigate to your individual user settings or an organization’s settings, depending on how you want the application registered. It does not matter if the application is registered as an individual or an organization - that is entirely up to you.

	Select “OAuth applications” in the left menu.

	If you already have applications listed, switch to the “Developer applications” tab.

	Select “Register new application”.

	Provide the required details.
- Application name: This can be anything. Consider something like <Organization>’s GitLab or <Your Name>’s GitLab or something else descriptive.
- Homepage URL: The URL to your GitLab installation. ‘https://gitlab.company.com’
- Application description: Fill this in if you wish.
- Authorization callback URL is ‘http(s)://${YOUR_DOMAIN}’. Please make sure the port is included if your Gitlab instance is not configured on default port.

	Select “Register application”.

	You should now see a Client ID and Client Secret near the top right of the page (see screenshot).
Keep this page open as you continue configuration.
![GitHub app](img/github_app.png)

	On your GitLab server, open the configuration file.

For omnibus package:


	```sh
	sudo editor /etc/gitlab/gitlab.rb





```

For installations from source:


	```sh
	cd /home/git/gitlab

sudo -u git -H editor config/gitlab.yml





```


	See [Initial OmniAuth Configuration](omniauth.md#initial-omniauth-configuration) for initial settings.

	Add the provider configuration:

For omnibus package:

For GitHub.com:


	```ruby
	
	gitlab_rails[‘omniauth_providers’] = [
	
	{
	“name” => “github”,
“app_id” => “YOUR_APP_ID”,
“app_secret” => “YOUR_APP_SECRET”,
“args” => { “scope” => “user:email” }





}





]





```

For GitHub Enterprise:


	```ruby
	
	gitlab_rails[‘omniauth_providers’] = [
	
	{
	“name” => “github”,
“app_id” => “YOUR_APP_ID”,
“app_secret” => “YOUR_APP_SECRET”,
“url” => “https://github.example.com/”,
“args” => { “scope” => “user:email” }





}





]





```

For installation from source:

For GitHub.com:


	```
	
	{ name: ‘github’, app_id: ‘YOUR_APP_ID’,
app_secret: ‘YOUR_APP_SECRET’,
args: { scope: ‘user:email’ } }








```

For GitHub Enterprise:


	```
	
	{ name: ‘github’, app_id: ‘YOUR_APP_ID’,
app_secret: ‘YOUR_APP_SECRET’,
url: “https://github.example.com/”,
args: { scope: ‘user:email’ } }








```

__Replace https://github.example.com/ with your GitHub URL.__

	Change ‘YOUR_APP_ID’ to the client ID from the GitHub application page from step 7.

	Change ‘YOUR_APP_SECRET’ to the client secret from the GitHub application page from step 7.

	Save the configuration file.

	[Reconfigure GitLab][] or [restart GitLab][] for the changes to take effect if you
installed GitLab via Omnibus or from source respectively.

On the sign in page there should now be a GitHub icon below the regular sign in form.
Click the icon to begin the authentication process. GitHub will ask the user to sign in and authorize the GitLab application.
If everything goes well the user will be returned to GitLab and will be signed in.

GitHub Enterprise with self-signed Certificate

If you are attempting to import projects from GitHub Enterprise with a self-signed
certificate and the imports are failing, you will need to disable SSL verification.
It should be disabled by adding verify_ssl to false in the provider configuration
and changing the global Git sslVerify option to false in the GitLab server.

For omnibus package:


	```ruby
	
	gitlab_rails[‘omniauth_providers’] = [
	
	{
	“name” => “github”,
“app_id” => “YOUR_APP_ID”,
“app_secret” => “YOUR_APP_SECRET”,
“url” => “https://github.example.com/”,
“verify_ssl” => false,
“args” => { “scope” => “user:email” }





}





]





```

You will also need to disable Git SSL verification on the server hosting GitLab.

`ruby
omnibus_gitconfig['system'] = { "http" => ["sslVerify = false"] }
`

For installation from source:


	```
	
	{ name: ‘github’, app_id: ‘YOUR_APP_ID’,
app_secret: ‘YOUR_APP_SECRET’,
url: “https://github.example.com/”,
verify_ssl: false,
args: { scope: ‘user:email’ } }








```

You will also need to disable Git SSL verification on the server hosting GitLab.

`
$ git config --global http.sslVerify false
`

For the changes to take effect, [reconfigure Gitlab] if you installed
via Omnibus, or [restart GitLab] if you installed from source.

[reconfigure GitLab]: ../administration/restart_gitlab.md#omnibus-gitlab-reconfigure
[restart GitLab]: ../administration/restart_gitlab.md#installations-from-source

 # Integrate your server with GitLab.com

Import projects from GitLab.com and login to your GitLab instance with your GitLab.com account.

To enable the GitLab.com OmniAuth provider you must register your application with GitLab.com.
GitLab.com will generate an application ID and secret key for you to use.

	Sign in to GitLab.com

	On the upper right corner, click on your avatar and go to your Settings.

	Select Applications in the left menu.

	Provide the required details for Add new application.
- Name: This can be anything. Consider something like <Organization>’s GitLab or <Your Name>’s GitLab or something else descriptive.
- Redirect URI:

`
http://your-gitlab.example.com/import/gitlab/callback
http://your-gitlab.example.com/users/auth/gitlab/callback
`

The first link is required for the importer and second for the authorization.

	Select Save application.

	You should now see a Application Id and Secret near the top right of the page (see screenshot).
Keep this page open as you continue configuration.
![GitLab app](img/gitlab_app.png)

	On your GitLab server, open the configuration file.

For omnibus package:


	```sh
	sudo editor /etc/gitlab/gitlab.rb





```

For installations from source:


	```sh
	cd /home/git/gitlab

sudo -u git -H editor config/gitlab.yml





```


	See [Initial OmniAuth Configuration](omniauth.md#initial-omniauth-configuration) for initial settings.

	Add the provider configuration:

For omnibus package:


	```ruby
	
	gitlab_rails[‘omniauth_providers’] = [
	
	{
	“name” => “gitlab”,
“app_id” => “YOUR_APP_ID”,
“app_secret” => “YOUR_APP_SECRET”,
“args” => { “scope” => “api” }





}





]





```

For installations from source:


	```
	
	{ name: ‘gitlab’, app_id: ‘YOUR_APP_ID’,
app_secret: ‘YOUR_APP_SECRET’,
args: { scope: ‘api’ } }








```


	Change ‘YOUR_APP_ID’ to the Application ID from the GitLab.com application page.

	Change ‘YOUR_APP_SECRET’ to the secret from the GitLab.com application page.

	Save the configuration file.

	[Reconfigure][] or [restart GitLab][] for the changes to take effect if you
installed GitLab via Omnibus or from source respectively.

On the sign in page there should now be a GitLab.com icon below the regular sign in form.
Click the icon to begin the authentication process. GitLab.com will ask the user to sign in and authorize the GitLab application.
If everything goes well the user will be returned to your GitLab instance and will be signed in.

[reconfigure]: ../administration/restart_gitlab.md#omnibus-gitlab-reconfigure
[restart GitLab]: ../administration/restart_gitlab.md#installations-from-source

 # Gmail actions buttons for GitLab

GitLab supports [Google actions in email](https://developers.google.com/gmail/markup/actions/actions-overview).

If correctly setup, emails that require an action will be marked in Gmail.

![gmail_actions_button.png](img/gmail_action_buttons_for_gitlab.png)

To get this functioning, you need to be registered with Google.
[See how to register with Google in this document.](https://developers.google.com/gmail/markup/registering-with-google)

This process has a lot of steps so make sure that you fulfill all requirements set by Google.
Your application will be rejected by Google if you fail to do so.

Pay close attention to:

	Email account used by GitLab to send notification emails needs to have “Consistent history of sending a high volume of mail from your domain (order of hundred emails a day minimum to Gmail) for a few weeks at least”.

	“A very very low rate of spam complaints from users.”

	Emails must be authenticated via DKIM or SPF

	Before sending the final form(“Gmail Schema Whitelist Request”), you must send a real email from your production server. This means that you will have to find a way to send this email from the email address you are registering. You can do this by, for example, forwarding the real email from the email address you are registering or going into the rails console on the GitLab server and triggering the email sending from there.

You can check how it looks going through all the steps laid out in the “Registering with Google” doc in [this GitLab.com issue](https://gitlab.com/gitlab-org/gitlab-ce/issues/1517).

 # Google OAuth2 OmniAuth Provider

To enable the Google OAuth2 OmniAuth provider you must register your application
with Google. Google will generate a client ID and secret key for you to use.

Enabling Google OAuth

In Google’s side:

1. Navigate to the [cloud resource manager](https://console.cloud.google.com/cloud-resource-manager) page
1. Select Create Project
1. Provide the project information:

	Project name - “GitLab” works just fine here.

	Project ID - Must be unique to all Google Developer registered applications.
Google provides a randomly generated Project ID by default. You can use
the randomly generated ID or choose a new one.

1. Refresh the page and you should see your new project in the list
1. Go to the [Google API Console](https://console.developers.google.com/apis/dashboard)
1. Select the previously created project form the upper left corner
1. Select Credentials from the sidebar
1. Select OAuth consent screen and fill the form with the required information
1. In the Credentials tab, select Create credentials > OAuth client ID
1. Fill in the required information

	Application type - Choose “Web Application”

	Name - Use the default one or provide your own

	Authorized JavaScript origins -This isn’t really used by GitLab but go
ahead and put https://gitlab.example.com

	Authorized redirect URIs - Enter your domain name followed by the
callback URIs one at a time:

`
https://gitlab.example.com/users/auth/google_oauth2/callback
https://gitlab.example.com/-/google_api/auth/callback
`

	You should now be able to see a Client ID and Client secret. Note them down
or keep this page open as you will need them later.

1. From the Dashboard select ENABLE APIS AND SERVICES > Compute > Google+ API > Enable
1. To enable projects to access [Google Kubernetes Engine](../user/project/clusters/index.md), you must also

enable these APIs:
- Google Kubernetes Engine API
- Cloud Resource Manager API
- Cloud Billing API

On your GitLab server:

	Open the configuration file.

For Omnibus GitLab:

`sh
sudo editor /etc/gitlab/gitlab.rb
`

For installations from source:

`sh
cd /home/git/gitlab
sudo -u git -H editor config/gitlab.yml
`

1. See [Initial OmniAuth Configuration](omniauth.md#initial-omniauth-configuration) for initial settings.
1. Add the provider configuration:

For Omnibus GitLab:

```ruby
gitlab_rails[‘omniauth_providers’] = [



	{
	“name” => “google_oauth2”,
“app_id” => “YOUR_APP_ID”,
“app_secret” => “YOUR_APP_SECRET”,
“args” => { “access_type” => “offline”, “approval_prompt” => ‘’ }





}




For installations from source:

```yaml
- { name: ‘google_oauth2’, app_id: ‘YOUR_APP_ID’,

app_secret: ‘YOUR_APP_SECRET’,
args: { access_type: ‘offline’, approval_prompt: ‘’ } }


```




1. Change YOUR_APP_ID to the client ID from the Google Developer page
1. Similarly, change YOUR_APP_SECRET to the client secret
1. Make sure that you configure GitLab to use an FQDN as Google will not accept


raw IP addresses.


For Omnibus packages:

`ruby
external_url 'https://gitlab.example.com'
`

For installations from source:

```yaml
gitlab:

host: https://gitlab.example.com


```







1.  Save the configuration file.
1.  [Reconfigure][] or [restart GitLab][] for the changes to take effect if you


installed GitLab via Omnibus or from source respectively.




On the sign in page there should now be a Google icon below the regular sign in
form. Click the icon to begin the authentication process. Google will ask the
user to sign in and authorize the GitLab application. If everything goes well
the user will be returned to GitLab and will be signed in.

[reconfigure]: ../administration/restart_gitlab.md#omnibus-gitlab-reconfigure
[restart GitLab]: ../administration/restart_gitlab.md#installations-from-source



            

          

      

      

    

  

    
      
          
            
  This document was moved to [integrations/jira](../user/project/integrations/jira.md).



            

          

      

      

    

  

    
      
          
            
  This document was moved to [administration/auth/ldap](../administration/auth/ldap.md).



            

          

      

      

    

  

    
      
          
            
  # Sign into GitLab with (almost) any OAuth2 provider

The omniauth-oauth2-generic gem allows Single Sign On between GitLab and your own OAuth2 provider
(or any OAuth2 provider compatible with this gem)

This strategy is designed to allow configuration of the simple OmniAuth SSO process outlined below:

1. Strategy directs client to your authorization URL (configurable), with specified ID and key
1. OAuth provider handles authentication of request, user, and (optionally) authorization to access user’s profile
1. OAuth provider directs client back to GitLab where Strategy handles retrieval of access token
1. Strategy requests user information from a configurable “user profile” URL (using the access token)
1. Strategy parses user information from the response, using a configurable format
1. GitLab finds or creates the returned user and logs them in

### Limitations of this Strategy:


	It can only be used for Single Sign on, and will not provide any other access granted by any OAuth provider
(importing projects or users, etc)


	It only supports the Authorization Grant flow (most common for client-server applications, like GitLab)


	It is not able to fetch user information from more than one URL


	It has not been tested with user information formats other than JSON




### Config Instructions


	Register your application in the OAuth2 provider you wish to authenticate with.

The redirect URI you provide when registering the application should be:

`
http://your-gitlab.host.com/users/auth/oauth2_generic/callback
`






	You should now be able to get a Client ID and Client Secret.
Where this shows up will differ for each provider.
This may also be called Application ID and Secret





	On your GitLab server, open the configuration file.

For Omnibus package:

`sh
sudo editor /etc/gitlab/gitlab.rb
`

For installations from source:

`sh
cd /home/git/gitlab
sudo -u git -H editor config/gitlab.yml
`






	See [Initial OmniAuth Configuration](omniauth.md#initial-omniauth-configuration) for initial settings





	Add the provider-specific configuration for your provider, as [described in the gem’s README][1]





	Save the configuration file





	Restart GitLab for the changes to take effect




On the sign in page there should now be a new button below the regular sign in form.
Click the button to begin your provider’s authentication process. This will direct
the browser to your OAuth2 Provider’s authentication page. If everything goes well
the user will be returned to your GitLab instance and will be signed in.

[1]: https://gitlab.com/satorix/omniauth-oauth2-generic#gitlab-config-example



            

          

      

      

    

  

    
      
          
            
  # GitLab as OAuth2 authentication service provider

This document is about using GitLab as an OAuth authentication service provider
to sign in to other services.

If you want to use other OAuth authentication service providers to sign in to
GitLab, please see the [OAuth2 client documentation](../api/oauth2.md).

## Introduction to OAuth

[OAuth] provides to client applications a ‘secure delegated access’ to server
resources on behalf of a resource owner. In fact, OAuth allows an authorization
server to issue access tokens to third-party clients with the approval of the
resource owner, or the end-user.

OAuth is mostly used as a Single Sign-On service (SSO), but you can find a
lot of different uses for this functionality. For example, you can allow users
to sign in to your application with their GitLab.com account, or GitLab.com
can be used for authentication to your GitLab instance
(see [GitLab OmniAuth](gitlab.md)).

The ‘GitLab Importer’ feature is also using the OAuth protocol to give access
to repositories without sharing user credentials to your GitLab.com account.

—

GitLab supports two ways of adding a new OAuth2 application to an instance. You
can either add an application as a regular user or add it in the admin area.
What this means is that GitLab can actually have instance-wide and a user-wide
applications. There is no difference between them except for the different
permission levels they are set (user/admin). The default callback URL is
http://your-gitlab.example.com/users/auth/gitlab/callback

## Adding an application through the profile

In order to add a new application via your profile, navigate to
Profile Settings > Applications and select New Application.

![New OAuth application](img/oauth_provider_user_wide_applications.png)

—

In the application form, enter a Name (arbitrary), and make sure to set up
correctly the Redirect URI which is the URL where users will be sent after
they authorize with GitLab.

![New OAuth application form](img/oauth_provider_application_form.png)

—

When you hit Submit you will be provided with the application ID and
the application secret which you can then use with your application that
connects to GitLab.

![OAuth application ID and secret](img/oauth_provider_application_id_secret.png)

—

## OAuth applications in the admin area

To create an application that does not belong to a certain user, you can create
it from the admin area.

![OAuth admin_applications](img/oauth_provider_admin_application.png)

You’re also able to mark an application as _trusted_ when creating it through the admin area. By doing that,
the user authorization step is automatically skipped for this application.

—

## Authorized applications

Every application you authorized to use your GitLab credentials will be shown
in the Authorized applications section under Profile Settings > Applications.

![Authorized_applications](img/oauth_provider_authorized_application.png)

—

GitLab’s OAuth applications support scopes, which allow various actions that any given
application can perform. Although there are only two scopes available at the
moment – read_user and api – the groundwork has been laid to add more scopes easily.

At any time you can revoke any access by just clicking Revoke.

[oauth]: http://oauth.net/2/ “OAuth website”



            

          

      

      

    

  

    
      
          
            
  # OmniAuth

GitLab leverages OmniAuth to allow users to sign in using Twitter, GitHub, and
other popular services.

Configuring OmniAuth does not prevent standard GitLab authentication or LDAP
(if configured) from continuing to work. Users can choose to sign in using any
of the configured mechanisms.


	[Initial OmniAuth Configuration](#initial-omniauth-configuration)


	[Supported Providers](#supported-providers)


	[Enable OmniAuth for an Existing User](#enable-omniauth-for-an-existing-user)


	[OmniAuth configuration sample when using Omnibus GitLab](https://gitlab.com/gitlab-org/omnibus-gitlab/tree/master#omniauth-google-twitter-github-login)


	[Enable or disable Sign In with an OmniAuth provider without disabling import sources](#enable-or-disable-sign-in-with-an-omniauth-provider-without-disabling-import-sources)




## Supported Providers

This is a list of the current supported OmniAuth providers. Before proceeding
on each provider’s documentation, make sure to first read this document as it
contains some settings that are common for all providers.


	[GitHub](github.md)


	[Bitbucket](bitbucket.md)


	[GitLab.com](gitlab.md)


	[Google](google.md)


	[Facebook](facebook.md)


	[Twitter](twitter.md)


	[Shibboleth](shibboleth.md)


	[SAML](saml.md)


	[Crowd](../administration/auth/crowd.md)


	[Azure](azure.md)


	[Auth0](auth0.md)


	[Authentiq](../administration/auth/authentiq.md)


	[OAuth2Generic](oauth2_generic.md)


	[JWT](../administration/auth/jwt.md)




## Initial OmniAuth Configuration

Before configuring individual OmniAuth providers there are a few global settings
that are in common for all providers that we need to consider.


	Omniauth needs to be enabled, see details below for example.


	allow_single_sign_on allows you to specify the providers you want to allow to
automatically create an account. It defaults to false. If false users must
be created manually or they will not be able to sign in via OmniAuth.


	auto_link_ldap_user can be used if you have [LDAP / ActiveDirectory](ldap.md)
integration enabled. It defaults to false. When enabled, users automatically
created through OmniAuth will be linked to their LDAP entry as well.


	block_auto_created_users defaults to true. If true auto created users will
be blocked by default and will have to be unblocked by an administrator before
they are able to sign in.




>**Note:**
If you set block_auto_created_users to false, make sure to only
define providers under allow_single_sign_on that you are able to control, like
SAML, Shibboleth, Crowd or Google, or set it to false otherwise any user on
the Internet will be able to successfully sign in to your GitLab without
administrative approval.

>**Note:**
auto_link_ldap_user requires the uid of the user to be the same in both LDAP
and the OmniAuth provider.

To change these settings:


	For omnibus package


Open the configuration file:

`sh
sudo editor /etc/gitlab/gitlab.rb
`

and change:

```ruby
gitlab_rails[‘omniauth_enabled’] = true

CAUTION!
This allows users to login without having a user account first. Define the allowed providers
using an array, e.g. [“saml”, “twitter”], or as true/false to allow all providers or none.
User accounts will be created automatically when authentication was successful.
gitlab_rails[‘omniauth_allow_single_sign_on’] = [‘saml’, ‘twitter’]
gitlab_rails[‘omniauth_auto_link_ldap_user’] = true
gitlab_rails[‘omniauth_block_auto_created_users’] = true
```






	For installations from source


Open the configuration file:

```sh
cd /home/git/gitlab

sudo -u git -H editor config/gitlab.yml
```

and change the following section:


	```yaml
	
	## OmniAuth settings
	
	omniauth:
	# Allow login via Twitter, Google, etc. using OmniAuth providers
enabled: true

CAUTION!
This allows users to login without having a user account first. Define the allowed providers
using an array, e.g. [“saml”, “twitter”], or as true/false to allow all providers or none.
User accounts will be created automatically when authentication was successful.
allow_single_sign_on: [“saml”, “twitter”]

auto_link_ldap_user: true

Locks down those users until they have been cleared by the admin (default: true).
block_auto_created_users: true


```








Now we can choose one or more of the [Supported Providers](#supported-providers)
listed above to continue the configuration process.

## Enable OmniAuth for an Existing User

Existing users can enable OmniAuth for specific providers after the account is
created. For example, if the user originally signed in with LDAP, an OmniAuth
provider such as Twitter can be enabled. Follow the steps below to enable an
OmniAuth provider for an existing user.

1. Sign in normally - whether standard sign in, LDAP, or another OmniAuth provider.
1. Go to profile settings (the silhouette icon in the top right corner).
1. Select the “Account” tab.
1. Under “Connected Accounts” select the desired OmniAuth provider, such as Twitter.
1. The user will be redirected to the provider. Once the user authorized GitLab


they will be redirected back to GitLab.




The chosen OmniAuth provider is now active and can be used to sign in to GitLab from then on.

## Configure OmniAuth Providers as External

>**Note:**
This setting was introduced with version 8.7 of GitLab

You can define which OmniAuth providers you want to be external so that all users
creating accounts, or logging in via these providers will not be able to have
access to internal projects. You will need to use the full name of the provider,
like google_oauth2 for Google. Refer to the examples for the full names of the
supported providers.

>**Note:**
If you decide to remove an OmniAuth provider from the external providers list
you will need to manually update the users that use this method to login, if you
want their accounts to be upgraded to full internal accounts.

For Omnibus installations


	```ruby
	gitlab_rails[‘omniauth_external_providers’] = [‘twitter’, ‘google_oauth2’]


```

For installations from source


	```yaml
	
	omniauth:
	external_providers: [‘twitter’, ‘google_oauth2’]


```

## Using Custom Omniauth Providers

>**Note:**
The following information only applies for installations from source.

GitLab uses [Omniauth](https://github.com/omniauth/omniauth) for authentication and already ships
with a few providers pre-installed (e.g. LDAP, GitHub, Twitter). But sometimes that
is not enough and you need to integrate with other authentication solutions. For
these cases you can use the Omniauth provider.

### Steps

These steps are fairly general and you will need to figure out the exact details
from the Omniauth provider’s documentation.


	Stop GitLab:


sudo service gitlab stop






	Add the gem to your [Gemfile](https://gitlab.com/gitlab-org/gitlab-ce/blob/master/Gemfile):


gem “omniauth-your-auth-provider”






	If you’re using MySQL, install the new Omniauth provider gem by running the following command:


sudo -u git -H bundle install –without development test postgres –path vendor/bundle –no-deployment






	If you’re using PostgreSQL, install the new Omniauth provider gem by running the following command:


sudo -u git -H bundle install –without development test mysql –path vendor/bundle –no-deployment




> These are the same commands you used in the [Install Gems section](#install-gems) with –path vendor/bundle –no-deployment instead of –deployment.



	Start GitLab:


sudo service gitlab start








### Examples

If you have successfully set up a provider that is not shipped with GitLab itself,
please let us know.

You can help others by reporting successful configurations and probably share a
few insights or provide warnings for common errors or pitfalls by sharing your
experience [in the public Wiki](https://github.com/gitlabhq/gitlab-public-wiki/wiki/Custom-omniauth-provider-configurations).

While we can’t officially support every possible authentication mechanism out there,
we’d like to at least help those with specific needs.

## Enable or disable Sign In with an OmniAuth provider without disabling import sources

>**Note:**
This setting was introduced with version 8.8 of GitLab.

Administrators are able to enable or disable Sign In via some OmniAuth providers.

>**Note:**
By default Sign In is enabled via all the OAuth Providers that have been configured in config/gitlab.yml.

In order to enable/disable an OmniAuth provider, go to Admin Area -> Settings -> Sign-in Restrictions section -> Enabled OAuth Sign-In sources and select the providers you want to enable or disable.

![Enabled OAuth Sign-In sources](img/enabled-oauth-sign-in-sources.png)

## Keep OmniAuth user profiles up to date

You can enable profile syncing from selected OmniAuth providers and for all or for specific user information.

When authenticating using LDAP, the user’s email is always synced.



	```ruby
	gitlab_rails[‘sync_profile_from_provider’] = [‘twitter’, ‘google_oauth2’]
gitlab_rails[‘sync_profile_attributes’] = [‘name’, ‘email’, ‘location’]


```

For installations from source


	```yaml
	
	omniauth:
	sync_profile_from_provider: [‘twitter’, ‘google_oauth2’]
sync_profile_attributes: [‘email’, ‘location’]


```






            

          

      

      

    

  

    
      
          
            
  # GitLab as OpenID Connect identity provider

This document is about using GitLab as an OpenID Connect identity provider
to sign in to other services.

## Introduction to OpenID Connect

[OpenID Connect] (OIDC) is a simple identity layer on top of the
OAuth 2.0 protocol. It allows clients to verify the identity of the end-user
based on the authentication performed by GitLab, as well as to obtain
basic profile information about the end-user in an interoperable and
REST-like manner. OIDC performs many of the same tasks as OpenID 2.0,
but does so in a way that is API-friendly, and usable by native and
mobile applications.

On the client side, you can use [omniauth-openid-connect] for Rails
applications, or any of the other available [client implementations].

GitLab’s implementation uses the [doorkeeper-openid_connect] gem, refer
to its README for more details about which parts of the specifications
are supported.

## Enabling OpenID Connect for OAuth applications

Refer to the [OAuth guide] for basic information on how to set up OAuth
applications in GitLab. To enable OIDC for an application, all you have to do
is select the openid scope in the application settings.

## Shared information

Currently the following user information is shared with clients:


Claim            | Type      | Description |



|:-----------------|:———-|:------------|
| sub            | string  | The ID of the user
| sub_legacy     | string  | An opaque token that uniquely identifies the user<br><br>**Deprecation notice:** this token isn’t stable because it’s tied to the Rails secret key base, and is provided only for migration to the new stable sub value available from GitLab 11.1
| auth_time      | integer | The timestamp for the user’s last authentication
| name           | string  | The user’s full name
| nickname       | string  | The user’s GitLab username
| email          | string  | The user’s public email address
| email_verified | boolean | Whether the user’s public email address was verified
| website        | string  | URL for the user’s website
| profile        | string  | URL for the user’s GitLab profile
| picture        | string  | URL for the user’s GitLab avatar
| groups         | array   | Names of the groups the user is a member of

Only the sub and sub_legacy claims are included in the ID token, all other claims are available from the /oauth/userinfo endpoint used by OIDC clients.

[OpenID Connect]: http://openid.net/connect/ “OpenID Connect website”
[doorkeeper-openid_connect]: https://github.com/doorkeeper-gem/doorkeeper-openid_connect “Doorkeeper::OpenidConnect website”
[OAuth guide]: oauth_provider.md “GitLab as OAuth2 authentication service provider”
[omniauth-openid-connect]: https://github.com/jjbohn/omniauth-openid-connect/ “OmniAuth::OpenIDConnect website”
[client implementations]: http://openid.net/developers/libraries#connect “List of available client implementations”



            

          

      

      

    

  

    
      
          
            
  # reCAPTCHA

GitLab leverages [Google’s reCAPTCHA](https://www.google.com/recaptcha/intro/index.html)
to protect against spam and abuse. GitLab displays the CAPTCHA form on the sign-up page
to confirm that a real user, not a bot, is attempting to create an account.

## Configuration

To use reCAPTCHA, first you must create a site and private key.


	Go to the URL: https://www.google.com/recaptcha/admin


	Fill out the form necessary to obtain reCAPTCHA keys.


	Login to your GitLab server, with administrator credentials.


	Go to Applications Settings on Admin Area (admin/application_settings)


	Fill all recaptcha fields with keys from previous steps


	Check the Enable reCAPTCHA checkbox


	Save the configuration.




## Enabling reCAPTCHA for user logins via passwords

By default, reCAPTCHA is only enabled for user registrations. To enable it for
user logins via passwords, the X-GitLab-Show-Login-Captcha HTTP header must
be set. For example, in NGINX, this can be done via the proxy_set_header
configuration variable:

`
proxy_set_header X-GitLab-Show-Login-Captcha 1;
`

In GitLab Omnibus, this can be configured via /etc/gitlab/gitlab.rb:

`ruby
nginx['proxy_set_headers'] = { 'X-GitLab-Show-Login-Captcha' => 1 }
`



            

          

      

      

    

  

    
      
          
            
  # SAML OmniAuth Provider

NOTE: Note:
You need to [enable OmniAuth](omniauth.md) in order to use this.

GitLab can be configured to act as a SAML 2.0 Service Provider (SP). This allows
GitLab to consume assertions from a SAML 2.0 Identity Provider (IdP) such as
Microsoft ADFS to authenticate users.

First configure SAML 2.0 support in GitLab, then register the GitLab application
in your SAML IdP:


	Make sure GitLab is configured with HTTPS.
See [Using HTTPS](../install/installation.md#using-https) for instructions.





	On your GitLab server, open the configuration file.

For omnibus package:

`sh
sudo editor /etc/gitlab/gitlab.rb
`

For installations from source:

```sh
cd /home/git/gitlab

sudo -u git -H editor config/gitlab.yml
```






	To allow your users to use SAML to sign up without having to manually create
an account first, don’t forget to add the following values to your configuration:

For omnibus package:

`ruby
gitlab_rails['omniauth_enabled'] = true
gitlab_rails['omniauth_allow_single_sign_on'] = ['saml']
gitlab_rails['omniauth_block_auto_created_users'] = false
`

For installations from source:

```yaml
omniauth:

enabled: true
allow_single_sign_on: [“saml”]
block_auto_created_users: false


```






	You can also automatically link SAML users with existing GitLab users if their
email addresses match by adding the following setting:

For omnibus package:

`ruby
gitlab_rails['omniauth_auto_link_saml_user'] = true
`

For installations from source:

`yaml
auto_link_saml_user: true
`






	Add the provider configuration:

For omnibus package:

```ruby
gitlab_rails[‘omniauth_providers’] = [

	{
	name: ‘saml’,
args: {

assertion_consumer_service_url: ‘https://gitlab.example.com/users/auth/saml/callback’,
idp_cert_fingerprint: ‘43:51:43:a1:b5:fc:8b:b7:0a:3a:a9:b1:0f:66:73:a8’,
idp_sso_target_url: ‘https://login.example.com/idp’,
issuer: ‘https://gitlab.example.com’,
name_identifier_format: ‘urn:oasis:names:tc:SAML:2.0:nameid-format:persistent’

},

label: ‘Company Login’ # optional label for SAML login button, defaults to “Saml”

}

For installations from source:

```yaml
omniauth:



	providers:
	
	
	{
	name: ‘saml’,
args: {



assertion_consumer_service_url: ‘https://gitlab.example.com/users/auth/saml/callback’,
idp_cert_fingerprint: ‘43:51:43:a1:b5:fc:8b:b7:0a:3a:a9:b1:0f:66:73:a8’,
idp_sso_target_url: ‘https://login.example.com/idp’,
issuer: ‘https://gitlab.example.com’,
name_identifier_format: ‘urn:oasis:names:tc:SAML:2.0:nameid-format:persistent’




},




label: ‘Company Login’ # optional label for SAML login button, defaults to “Saml”





}












```


	Change the value for assertion_consumer_service_url to match the HTTPS endpoint
of GitLab (append users/auth/saml/callback to the HTTPS URL of your GitLab
installation to generate the correct value).

	Change the values of idp_cert_fingerprint, idp_sso_target_url,
name_identifier_format to match your IdP. If a fingerprint is used it must
be a SHA1 fingerprint; check
[the omniauth-saml documentation](https://github.com/omniauth/omniauth-saml)
for more details on these options.

	Change the value of issuer to a unique name, which will identify the application
to the IdP.

	For the changes to take effect, you must [reconfigure][] GitLab if you installed via Omnibus or [restart GitLab][] if you installed from source.

	Register the GitLab SP in your SAML 2.0 IdP, using the application name specified
in issuer.

To ease configuration, most IdP accept a metadata URL for the application to provide
configuration information to the IdP. To build the metadata URL for GitLab, append
users/auth/saml/metadata to the HTTPS URL of your GitLab installation, for instance:

`
https://gitlab.example.com/users/auth/saml/metadata
`

At a minimum the IdP must provide a claim containing the user’s email address, using
claim name email or mail. The email will be used to automatically generate the GitLab
username. GitLab will also use claims with name name, first_name, last_name
(see [the omniauth-saml gem](https://github.com/omniauth/omniauth-saml/blob/master/lib/omniauth/strategies/saml.rb)
for supported claims).

On the sign in page there should now be a SAML button below the regular sign in form.
Click the icon to begin the authentication process. If everything goes well the user
will be returned to GitLab and will be signed in.

Marking Users as External based on SAML Groups

>**Note:**
This setting is only available on GitLab 8.7 and above.

SAML login includes support for automatically identifying whether a user should
be considered an [external](../user/permissions.md) user based on the user’s group
membership in the SAML identity provider. This feature does not allow you to
automatically add users to GitLab [Groups](../user/group/index.md), it simply
allows you to mark users as External if they are members of certain groups in the
Identity Provider.

Requirements

First you need to tell GitLab where to look for group information. For this you
need to make sure that your IdP server sends a specific AttributeStament along
with the regular SAML response. Here is an example:

```xml
<saml:AttributeStatement>



	<saml:Attribute Name=”Groups”>
	<saml:AttributeValue xsi:type=”xs:string”>SecurityGroup</saml:AttributeValue>
<saml:AttributeValue xsi:type=”xs:string”>Developers</saml:AttributeValue>
<saml:AttributeValue xsi:type=”xs:string”>Designers</saml:AttributeValue>





</saml:Attribute>




</saml:AttributeStatement>
```

The name of the attribute can be anything you like, but it must contain the groups
to which a user belongs. In order to tell GitLab where to find these groups, you need
to add a groups_attribute: element to your SAML settings. You will also need to
tell GitLab which groups are external via the external_groups: element:

```yaml
{ name: ‘saml’,


label: ‘Our SAML Provider’,
groups_attribute: ‘Groups’,
external_groups: [‘Freelancers’, ‘Interns’],
args: {



assertion_consumer_service_url: ‘https://gitlab.example.com/users/auth/saml/callback’,
idp_cert_fingerprint: ‘43:51:43:a1:b5:fc:8b:b7:0a:3a:a9:b1:0f:66:73:a8’,
idp_sso_target_url: ‘https://login.example.com/idp’,
issuer: ‘https://gitlab.example.com’,
name_identifier_format: ‘urn:oasis:names:tc:SAML:2.0:nameid-format:persistent’




} }







```

Bypass two factor authentication

If you want some SAML authentication methods to count as 2FA on a per session basis, you can register them in the
upstream_two_factor_authn_contexts list:

For Omnibus installations:

	Edit /etc/gitlab/gitlab.rb:


```ruby
gitlab_rails[‘omniauth_providers’] = [



	{
	name: ‘saml’,
args: {



assertion_consumer_service_url: ‘https://gitlab.example.com/users/auth/saml/callback’,
idp_cert_fingerprint: ‘43:51:43:a1:b5:fc:8b:b7:0a:3a:a9:b1:0f:66:73:a8’,
idp_sso_target_url: ‘https://login.example.com/idp’,
issuer: ‘https://gitlab.example.com’,
name_identifier_format: ‘urn:oasis:names:tc:SAML:2.0:nameid-format:persistent’,
upstream_two_factor_authn_contexts:



	%w(
	urn:oasis:names:tc:SAML:2.0:ac:classes:CertificateProtectedTransport
urn:oasis:names:tc:SAML:2.0:ac:classes:SecondFactorOTPSMS
urn:oasis:names:tc:SAML:2.0:ac:classes:SecondFactorIGTOKEN





)







},




label: ‘Company Login’ # optional label for SAML login button, defaults to “Saml”





}












	Save the file and [reconfigure][] GitLab for the changes to take effect.




—

For installations from source:


	Edit config/gitlab.yml:


```yaml
omniauth:

	providers:
	
	
	{
	name: ‘saml’,
args: {

assertion_consumer_service_url: ‘https://gitlab.example.com/users/auth/saml/callback’,
idp_cert_fingerprint: ‘43:51:43:a1:b5:fc:8b:b7:0a:3a:a9:b1:0f:66:73:a8’,
idp_sso_target_url: ‘https://login.example.com/idp’,
issuer: ‘https://gitlab.example.com’,
name_identifier_format: ‘urn:oasis:names:tc:SAML:2.0:nameid-format:persistent’,
upstream_two_factor_authn_contexts:

	[
	‘urn:oasis:names:tc:SAML:2.0:ac:classes:CertificateProtectedTransport’,
‘urn:oasis:names:tc:SAML:2.0:ac:classes:SecondFactorOTPSMS’,
‘urn:oasis:names:tc:SAML:2.0:ac:classes:SecondFactorIGTOKEN’

]

},

label: ‘Company Login’ # optional label for SAML login button, defaults to “Saml”

}


```









	Save the file and [restart GitLab][] for the changes ot take effect




In addition to the changes in GitLab, make sure that your Idp is returning the
AuthnContext. For example:

```xml
<saml:AuthnStatement>

	<saml:AuthnContext>
	<saml:AuthnContextClassRef>urn:oasis:names:tc:SAML:2.0:ac:classes:MediumStrongCertificateProtectedTransport</saml:AuthnContextClassRef>

</saml:AuthnContext>

</saml:AuthnStatement>
```

## Customization

### auto_sign_in_with_provider

You can add this setting to your GitLab configuration to automatically redirect you
to your SAML server for authentication, thus removing the need to click a button
before actually signing in.

For omnibus package:

`ruby
gitlab_rails['omniauth_auto_sign_in_with_provider'] = 'saml'
`

For installations from source:

```yaml
omniauth:

auto_sign_in_with_provider: saml


```

Please keep in mind that every sign in attempt will be redirected to the SAML server,
so you will not be able to sign in using local credentials. Make sure that at least one
of the SAML users has admin permissions.

You may also bypass the auto signin feature by browsing to
https://gitlab.example.com/users/sign_in?auto_sign_in=false.

### attribute_statements

>**Note:**
This setting is only available on GitLab 8.6 and above.
This setting should only be used to map attributes that are part of the
OmniAuth info hash schema.

attribute_statements is used to map Attribute Names in a SAMLResponse to entries
in the OmniAuth [info hash](https://github.com/intridea/omniauth/wiki/Auth-Hash-Schema#schema-10-and-later).

For example, if your SAMLResponse contains an Attribute called ‘EmailAddress’,
specify { email: [‘EmailAddress’] } to map the Attribute to the
corresponding key in the info hash.  URI-named Attributes are also supported, e.g.
{ email: [‘http://schemas.xmlsoap.org/ws/2005/05/identity/claims/emailaddress’] }.

This setting allows you tell GitLab where to look for certain attributes required
to create an account. Like mentioned above, if your IdP sends the user’s email
address as EmailAddress instead of email, let GitLab know by setting it on
your configuration:

```yaml
args: {

assertion_consumer_service_url: ‘https://gitlab.example.com/users/auth/saml/callback’,
idp_cert_fingerprint: ‘43:51:43:a1:b5:fc:8b:b7:0a:3a:a9:b1:0f:66:73:a8’,
idp_sso_target_url: ‘https://login.example.com/idp’,
issuer: ‘https://gitlab.example.com’,
name_identifier_format: ‘urn:oasis:names:tc:SAML:2.0:nameid-format:persistent’,
attribute_statements: { email: [‘EmailAddress’] }

}

allowed_clock_drift

The clock of the Identity Provider may drift slightly ahead of your system clocks.
To allow for a small amount of clock drift you can use allowed_clock_drift within
your settings. Its value must be given in a number (and/or fraction) of seconds.
The value given is added to the current time at which the response is validated.

```yaml
args: {


assertion_consumer_service_url: ‘https://gitlab.example.com/users/auth/saml/callback’,
idp_cert_fingerprint: ‘43:51:43:a1:b5:fc:8b:b7:0a:3a:a9:b1:0f:66:73:a8’,
idp_sso_target_url: ‘https://login.example.com/idp’,
issuer: ‘https://gitlab.example.com’,
name_identifier_format: ‘urn:oasis:names:tc:SAML:2.0:nameid-format:persistent’,
attribute_statements: { email: [‘EmailAddress’] },
allowed_clock_drift: 1 # for one second clock drift







}

## Troubleshooting

### 500 error after login

If you see a “500 error” in GitLab when you are redirected back from the SAML sign in page,
this likely indicates that GitLab could not get the email address for the SAML user.

Make sure the IdP provides a claim containing the user’s email address, using claim name
email or mail.

### Redirect back to login screen with no evident error

If after signing in into your SAML server you are redirected back to the sign in page and
no error is displayed, check your production.log file. It will most likely contain the
message Can’t verify CSRF token authenticity. This means that there is an error during
the SAML request, but this error never reaches GitLab due to the CSRF check.

To bypass this you can add skip_before_action :verify_authenticity_token to the
omniauth_callbacks_controller.rb file immediately after the class line and
comment out the protect_from_forgery line using a # then restart Unicorn. This
will allow the error to hit GitLab, where it can then be seen in the usual logs,
or as a flash message on the login screen.

That file is located in /opt/gitlab/embedded/service/gitlab-rails/app/controllers
for Omnibus installations and by default in /home/git/gitlab/app/controllers for
installations from source. Restart Unicorn using the sudo gitlab-ctl restart unicorn
command on Omnibus installations and sudo service gitlab restart on installations
from source.

You may also find the [SSO Tracer](https://addons.mozilla.org/en-US/firefox/addon/sso-tracer)
(Firefox) and [SAML Chrome Panel](https://chrome.google.com/webstore/detail/saml-chrome-panel/paijfdbeoenhembfhkhllainmocckace)
(Chrome) browser extensions useful in your debugging.

### Invalid audience

This error means that the IdP doesn’t recognize GitLab as a valid sender and
receiver of SAML requests. Make sure to add the GitLab callback URL to the approved
audiences of the IdP server.

### Missing claims

The IdP server needs to pass certain information in order for GitLab to either
create an account, or match the login information to an existing account. email
is the minimum amount of information that needs to be passed. If the IdP server
is not providing this information, all SAML requests will fail.

Make sure this information is provided.

### Key validation error, Digest mismatch or Fingerprint mismatch

These errors all come from a similar place, the SAML certificate. SAML requests
need to be validated using a fingerprint, a certificate or a validator.

For this you need take the following into account:


	If a fingerprint is used, it must be the SHA1 fingerprint


	If no certificate is provided in the settings, a fingerprint or fingerprint
validator needs to be provided and the response from the server must contain
a certificate (<ds:KeyInfo><ds:X509Data><ds:X509Certificate>)


	If a certificate is provided in the settings, it is no longer necessary for
the request to contain one. In this case the fingerprint or fingerprint
validators are optional




Make sure that one of the above described scenarios is valid, or the requests will
fail with one of the mentioned errors.

[reconfigure]: ../administration/restart_gitlab.md#omnibus-gitlab-reconfigure
[restart GitLab]: ../administration/restart_gitlab.md#installations-from-source





            

          

      

      

    

  

    
      
          
            
  # Shibboleth OmniAuth Provider

This documentation is for enabling shibboleth with omnibus-gitlab package.

In order to enable Shibboleth support in gitlab we need to use Apache instead of Nginx (It may be possible to use Nginx, however this is difficult to configure using the bundled Nginx provided in the omnibus-gitlab package). Apache uses mod_shib2 module for shibboleth authentication and can pass attributes as headers to omniauth-shibboleth provider.

To enable the Shibboleth OmniAuth provider you must:

1. Configure Apache shibboleth module. Installation and configuration of module it self is out of scope of this document.
Check https://wiki.shibboleth.net/ for more info.


	You can find Apache config in gitlab-recipes (https://gitlab.com/gitlab-org/gitlab-recipes/tree/master/web-server/apache)




Following changes are needed to enable shibboleth:

protect omniauth-shibboleth callback URL:
```


	<Location /users/auth/shibboleth/callback>
	AuthType shibboleth
ShibRequestSetting requireSession 1
ShibUseHeaders On
require valid-user

</Location>

Alias /shibboleth-sp /usr/share/shibboleth
<Location /shibboleth-sp>

Satisfy any

</Location>

	<Location /Shibboleth.sso>
	SetHandler shib

</Location>

`
exclude shibboleth URLs from rewriting, add "RewriteCond %{REQUEST_URI} !/Shibboleth.sso" and "RewriteCond %{REQUEST_URI} !/shibboleth-sp", config should look like this:
`

Apache equivalent of Nginx try files
RewriteEngine on
RewriteCond %{DOCUMENT_ROOT}/%{REQUEST_FILENAME} !-f
RewriteCond %{REQUEST_URI} !/Shibboleth.sso
RewriteCond %{REQUEST_URI} !/shibboleth-sp
RewriteRule .* http://127.0.0.1:8080%{REQUEST_URI} [P,QSA]
RequestHeader set X_FORWARDED_PROTO ‘https’


```

1. Edit /etc/gitlab/gitlab.rb configuration file to enable OmniAuth and add
Shibboleth as an OmniAuth provider. User attributes will be sent from the
Apache reverse proxy to GitLab as headers with the names from the Shibboleth
attribute mapping. Therefore the values of the args hash
should be in the form of “HTTP_ATTRIBUTE”. The keys in the hash are arguments
to the [OmniAuth::Strategies::Shibboleth class](https://github.com/toyokazu/omniauth-shibboleth/blob/master/lib/omniauth/strategies/shibboleth.rb)
and are documented by the [omniauth-shibboleth gem](https://github.com/toyokazu/omniauth-shibboleth)
(take care to note the version of the gem packaged with GitLab). If some of
your users appear to be authenticated by Shibboleth and Apache, but GitLab
rejects their account with a URI that contains “e-mail is invalid” then your
Shibboleth Identity Provider or Attribute Authority may be asserting multiple
e-mail addresses. In this instance, you might consider setting the
multi_values argument to first.

File should look like this:
```
external_url ‘https://gitlab.example.com’
gitlab_rails[‘internal_api_url’] = ‘https://gitlab.example.com’

disable Nginx
nginx[‘enable’] = false

gitlab_rails[‘omniauth_allow_single_sign_on’] = true
gitlab_rails[‘omniauth_block_auto_created_users’] = false
gitlab_rails[‘omniauth_enabled’] = true
gitlab_rails[‘omniauth_providers’] = [

	{
	“name” => “‘shibboleth”’,
“label” => “Text for Login Button”,
“args” => {

“shib_session_id_field” => “HTTP_SHIB_SESSION_ID”,
“shib_application_id_field” => “HTTP_SHIB_APPLICATION_ID”,
“uid_field” => ‘HTTP_EPPN’,
“name_field” => ‘HTTP_CN’,
“info_fields” => { “email” => ‘HTTP_MAIL’}

}

}

]

```


	[Reconfigure][] or [restart GitLab][] for the changes to take effect if you
installed GitLab via Omnibus or from source respectively.




On the sign in page there should now be a “Sign in with: Shibboleth” icon below the regular sign in form. Click the icon to begin the authentication process. You will be redirected to IdP server (Depends on your Shibboleth module configuration). If everything goes well the user will be returned to GitLab and will be signed in.

## Apache 2.4 / GitLab 8.6 update
The order of the first 2 Location directives is important. If they are reversed,
you will not get a shibboleth session!


	```
	
	<Location />
	Require all granted
ProxyPassReverse http://127.0.0.1:8181
ProxyPassReverse http://YOUR_SERVER_FQDN/

</Location>

	<Location /users/auth/shibboleth/callback>
	AuthType shibboleth
ShibRequestSetting requireSession 1
ShibUseHeaders On
Require shib-session

</Location>

Alias /shibboleth-sp /usr/share/shibboleth

	<Location /shibboleth-sp>
	Require all granted

</Location>

	<Location /Shibboleth.sso>
	SetHandler shib

</Location>

RewriteEngine on

#Don’t escape encoded characters in api requests
RewriteCond %{REQUEST_URI} ^/api/v4/.*
RewriteCond %{REQUEST_URI} !/Shibboleth.sso
RewriteCond %{REQUEST_URI} !/shibboleth-sp
RewriteRule .* http://127.0.0.1:8181%{REQUEST_URI} [P,QSA,NE]

#Forward all requests to gitlab-workhorse except existing files
RewriteCond %{DOCUMENT_ROOT}/%{REQUEST_FILENAME} !-f [OR]
RewriteCond %{REQUEST_URI} ^/uploads/.*
RewriteCond %{REQUEST_URI} !/Shibboleth.sso
RewriteCond %{REQUEST_URI} !/shibboleth-sp
RewriteRule .* http://127.0.0.1:8181%{REQUEST_URI} [P,QSA]

RequestHeader set X_FORWARDED_PROTO ‘https’
RequestHeader set X-Forwarded-Ssl on


```

[reconfigure]: ../administration/restart_gitlab.md#omnibus-gitlab-reconfigure
[restart GitLab]: ../administration/restart_gitlab.md#installations-from-source



            

          

      

      

    

  

    
      
          
            
  This document was moved to [project_services/slack.md](../project_services/slack.md).



            

          

      

      

    

  

    
      
          
            
  # Slash Commands

Slash commands in Mattermost and Slack allow you to control GitLab and view GitLab content right inside your chat client, without having to leave it. For Slack, this requires a [project service configuration](../user/project/integrations/slack_slash_commands.md). Simply type the command as a message in your chat client to activate it.

Commands are scoped to a project, with a trigger term that is specified during configuration.

We suggest you use the project name as the trigger term for simplicity and clarity.

Taking the trigger term as project-name, the commands are:


Command | Effect |

——- | —— |

/project-name help | Shows all available slash commands |

/project-name issue new <title> <shift+return> <description> | Creates a new issue with title <title> and description <description> |

/project-name issue show <id> | Shows the issue with id <id> |

/project-name issue search <query> | Shows up to 5 issues matching <query> |

/project-name issue move <id> to <project> | Moves issue ID <id> to <project> |

/project-name deploy <from> to <to> | Deploy from the <from> environment to the <to> environment |



Note that if you are using the [GitLab Slack application](https://docs.gitlab.com/ee/user/project/integrations/gitlab_slack_application.html) for
your GitLab.com projects, you need to [add the gitlab keyword at the beginning of the command](https://docs.gitlab.com/ee/user/project/integrations/gitlab_slack_application.html#usage).

## Issue commands

It is possible to create new issue, display issue details and search up to 5 issues.

## Deploy command

In order to deploy to an environment, GitLab will try to find a deployment
manual action in the pipeline.

If there is only one action for a given environment, it is going to be triggered.
If there is more than one action defined, GitLab will try to find an action
which name equals the environment name we want to deploy to.

Command will return an error when no matching action has been found.



            

          

      

      

    

  

    
      
          
            
  # Trello Power-Up

GitLab’s Trello Power-Up enables you to seamlessly attach
GitLab merge requests to Trello cards.

![GitLab Trello PowerUp - Trello card](img/trello_card_with_gitlab_powerup.png)

## Configuring the Power-Up

In order to get started, you will need to configure your Power-Up.

In Trello:

1. Go to your Trello board
1. Select Power-Ups to see a listing of all the available Power-Ups
1. Look for a row that says GitLab and select the Enable button
1. Select the Settings (gear) icon
1. In the popup menu, select Authorize Account

In this popup, fill in your API URL and Personal Access Token. After that, you will be able to attach any merge request to any Trello card on your selected Trello board.

## What is my API URL?

Your API URL should be your GitLab instance URL with /api/v4 appended in the end of the URL.
For example, if your GitLab instance URL is https://gitlab.com, your API URL would be https://gitlab.com/api/v4.
If your instance’s URL is https://example.com, your API URL will be https://example.com/api/v4.

![configure GitLab Trello PowerUp in Trello](img/enable_trello_powerup.png)

## What is my Personal Access Token?

Your GitLab’s personal access token will enable your GitLab account to be accessed
from Trello.

> Find it in GitLab by clicking on your avatar (upright corner), from which you access
your user Settings > Access Tokens.

Learn more about generating a personal access token in the
[Personal Access Token Documentation][personal-access-token-documentation].
Don’t forget to check the API scope checkbox!

[personal-access-token-documentation]: ../user/profile/personal_access_tokens.md



            

          

      

      

    

  

    
      
          
            
  # Twitter OAuth2 OmniAuth Provider

To enable the Twitter OmniAuth provider you must register your application with Twitter. Twitter will generate a client ID and secret key for you to use.


	Sign in to [Twitter Application Management](https://apps.twitter.com/).





	Select “Create new app”





	Fill in the application details.
- Name: This can be anything. Consider something like <Organization>’s GitLab or <Your Name>’s GitLab or
something else descriptive.
- Description: Create a description.
- Website: The URL to your GitLab installation. ‘https://gitlab.example.com’
- Callback URL: ‘https://gitlab.example.com/users/auth/twitter/callback’
- Agree to the “Developer Agreement”.

![Twitter App Details](img/twitter_app_details.png)






	Select “Create your Twitter application.”





	Select the “Settings” tab.





	Underneath the Callback URL check the box next to “Allow this application to be used to Sign in with Twitter.”





	Select “Update settings” at the bottom to save changes.





	Select the “Keys and Access Tokens” tab.





	You should now see an API key and API secret (see screenshot). Keep this page open as you continue configuration.

![Twitter app](img/twitter_app_api_keys.png)






	On your GitLab server, open the configuration file.

For omnibus package:


	```sh
	sudo editor /etc/gitlab/gitlab.rb


```

For installations from source:


	```sh
	cd /home/git/gitlab

sudo -u git -H editor config/gitlab.yml


```






	See [Initial OmniAuth Configuration](omniauth.md#initial-omniauth-configuration) for initial settings.





	Add the provider configuration:

For omnibus package:


	```ruby
	
	gitlab_rails[‘omniauth_providers’] = [
	
	{
	“name” => “twitter”,
“app_id” => “YOUR_APP_ID”,
“app_secret” => “YOUR_APP_SECRET”

}

]


```

For installations from source:


	```
	
	{ name: ‘twitter’, app_id: ‘YOUR_APP_ID’,
app_secret: ‘YOUR_APP_SECRET’ }


```






	Change ‘YOUR_APP_ID’ to the API key from Twitter page in step 11.





	Change ‘YOUR_APP_SECRET’ to the API secret from the Twitter page in step 11.





	Save the configuration file.





	[Reconfigure][] or [restart GitLab][] for the changes to take effect if you
installed GitLab via Omnibus or from source respectively.




On the sign in page there should now be a Twitter icon below the regular sign in form. Click the icon to begin the authentication process. Twitter will ask the user to sign in and authorize the GitLab application. If everything goes well the user will be returned to GitLab and will be signed in.

[reconfigure]: ../administration/restart_gitlab.md#omnibus-gitlab-reconfigure
[restart GitLab]: ../administration/restart_gitlab.md#installations-from-source



            

          

      

      

    

  

    
      
          
            
  —
comments: false
—

# Get started with GitLab

## Organize

Create projects and groups.


	[Create a new project](../gitlab-basics/create-project.md)


	[Create a new group](../gitlab-basics/create-group.md)




## Prioritize

Create issues, labels, milestones, cast your vote, and review issues.


	[Create a new issue](../user/project/issues/index.md#new-issue)


	[Assign labels to issues](../user/project/labels.md)


	[Use milestones as an overview of your project’s tracker](../user/project/milestones/index.md)


	[Use voting to express your like/dislike to issues and merge requests](../workflow/award_emoji.md)




## Collaborate

Create merge requests and review code.


	[Fork a project and contribute to it](../workflow/forking_workflow.md)


	[Create a new merge request](../gitlab-basics/add-merge-request.md)


	[Automatically close issues from merge requests](../user/project/issues/automatic_issue_closing.md)


	[Automatically merge when pipeline succeeds](../user/project/merge_requests/merge_when_pipeline_succeeds.md)


	[Revert any commit](../user/project/merge_requests/revert_changes.md)


	[Cherry-pick any commit](../user/project/merge_requests/cherry_pick_changes.md)




## Test and Deploy

Use the built-in continuous integration in GitLab.


	[Get started with GitLab CI](../ci/quick_start/README.md)




## Install and Update

Install and update your GitLab installation.


	[Install GitLab](https://about.gitlab.com/installation/)


	[Update GitLab](https://about.gitlab.com/update/)


	[Explore Omnibus GitLab configuration options](http://docs.gitlab.com/omnibus/settings/configuration.html)






            

          

      

      

    

  

    
      
          
            
  —
comments: false
—

# Legal

Please read through the [GitLab License Agreement](https://gitlab.com/gitlab-org/gitlab-ce/blob/master/CONTRIBUTING.md).



            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘README.md’
—



            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘README.md’
—



            

          

      

      

    

  

    
      
          
            
  This document was moved to [administration/logs.md](../administration/logs.md).



            

          

      

      

    

  

    
      
          
            
  This document was moved to [user/markdown.md](../user/markdown.md).



            

          

      

      

    

  

    
      
          
            
  # Migrate GitLab CI to GitLab CE or EE

Beginning with version 8.0 of GitLab Community Edition (CE) and Enterprise
Edition (EE), GitLab CI is no longer its own application, but is instead built
into the CE and EE applications.

This guide will detail the process of migrating your CI installation and data
into your GitLab CE or EE installation. You can only migrate CI data from
GitLab CI 8.0 to GitLab 8.0; migrating between other versions (e.g.7.14 to 8.1)
is not possible.

We recommend that you read through the entire migration process in this
document before beginning.

## Overview

In this document we assume you have a GitLab server and a GitLab CI server. It
does not matter if these are the same machine.

The migration consists of three parts: updating GitLab and GitLab CI, moving
data, and redirecting traffic.

Please note that CI builds triggered on your GitLab server in the time between
updating to 8.0 and finishing the migration will be lost. Your GitLab server
can be online for most of the procedure; the only GitLab downtime (if any) is
during the upgrade to 8.0. Your CI service will be offline from the moment you
upgrade to 8.0 until you finish the migration procedure.

## Before upgrading

If you have GitLab CI installed using omnibus-gitlab packages but you don’t want to migrate your existing data:

`bash
mv /var/opt/gitlab/gitlab-ci/builds /var/opt/gitlab/gitlab-ci/builds.$(date +%s)
`

run sudo gitlab-ctl reconfigure and you can reach CI at gitlab.example.com/ci.

If you want to migrate your existing data, continue reading.

### 0. Updating Omnibus from versions prior to 7.13

If you are updating from older versions you should first update to 7.14 and then to 8.0.
Otherwise it’s pretty likely that you will encounter problems described in the [Troubleshooting](#troubleshooting).

### 1. Verify that backups work

Make sure that the backup script on both servers can connect to the database.

```
On your CI server:
Omnibus
sudo chown gitlab-ci:gitlab-ci /var/opt/gitlab/gitlab-ci/builds
sudo gitlab-ci-rake backup:create

Source
cd /home/gitlab_ci/gitlab-ci
sudo -u gitlab_ci -H bundle exec rake backup:create RAILS_ENV=production
```

Also check on your GitLab server.

```
On your GitLab server:
Omnibus
sudo gitlab-rake gitlab:backup:create SKIP=repositories,uploads

Source
cd /home/git/gitlab
sudo -u git -H bundle exec rake gitlab:backup:create RAILS_ENV=production SKIP=repositories,uploads
```

If this fails you need to fix it before upgrading to 8.0. Also see
https://about.gitlab.com/getting-help/

### 2. Check source and target database types


	Check what databases you use on your GitLab server and your CI server.
	Look for the ‘adapter:’ line. If your CI server and your GitLab server use





the same database adapter no special care is needed. If your CI server uses
MySQL and your GitLab server uses PostgreSQL you need to pass a special option
during the ‘Moving data’ part. If your CI server uses PostgreSQL and your
GitLab server uses MySQL you cannot migrate your CI data to GitLab 8.0.

```
On your CI server:
Omnibus
sudo gitlab-ci-rake env:info

Source
cd /home/gitlab_ci/gitlab-ci
sudo -u gitlab_ci -H bundle exec rake env:info RAILS_ENV=production
```

```
On your GitLab server:
Omnibus
sudo gitlab-rake gitlab:env:info

Source
cd /home/git/gitlab
sudo -u git -H bundle exec rake gitlab:env:info RAILS_ENV=production
```

### 3. Storage planning


	Decide where to store CI build traces on GitLab server. GitLab CI uses
	files on disk to store CI build traces. The default path for these build





traces is /var/opt/gitlab/gitlab-ci/builds (Omnibus) or
/home/git/gitlab/builds (Source). If you are storing your repository data in
a special location, or if you are using NFS, you should make sure that you
store build traces on the same storage as your Git repositories.

## I. Upgrading

From this point on, GitLab CI will be unavailable for your end users.

### 1. Upgrade GitLab to 8.0

First upgrade your GitLab server to version 8.0:
https://about.gitlab.com/update/

### 2. Disable CI on the GitLab server during the migration


	After you update, go to the admin panel and temporarily disable CI.  As
	an administrator, go to Admin Area -> Settings, and under





Continuous Integration uncheck Disable to prevent CI usage until rake
ci:migrate is run (8.0 only).

### 3. CI settings are now in GitLab


	If you want to use custom CI settings (e.g. change where builds are
	stored), please update /etc/gitlab/gitlab.rb (Omnibus) or





/home/git/gitlab/config/gitlab.yml (Source).

### 4. Upgrade GitLab CI to 8.0


	Now upgrade GitLab CI to version 8.0. If you are using Omnibus packages,
	this may have already happened when you upgraded GitLab to 8.0.





### 5. Disable GitLab CI on the CI server

Disable GitLab CI after upgrading to 8.0.

```
On your CI server:
Omnibus
sudo gitlab-ctl stop ci-unicorn
sudo gitlab-ctl stop ci-sidekiq

Source
sudo service gitlab_ci stop
cd /home/gitlab_ci/gitlab-ci
sudo -u gitlab_ci -H bundle exec whenever –clear-crontab RAILS_ENV=production
```

## II. Moving data

### 1. Database encryption key


	Move the database encryption key from your CI server to your GitLab
	server. The command below will show you what you need to copy-paste to your





GitLab server. On Omnibus GitLab servers you will have to add a line to
/etc/gitlab/gitlab.rb. On GitLab servers installed from source you will have
to replace the contents of /home/git/gitlab/config/secrets.yml.

```
On your CI server:
Omnibus
sudo gitlab-ci-rake backup:show_secrets

Source
cd /home/gitlab_ci/gitlab-ci
sudo -u gitlab_ci -H bundle exec rake backup:show_secrets RAILS_ENV=production
```

### 2. SQL data and build traces


	Create your final CI data export. If you are converting from MySQL to
	PostgreSQL, add ` MYSQL_TO_POSTGRESQL=1` to the end of the rake command. When





the command finishes it will print the path to your data export archive; you
will need this file later.

```
On your CI server:
Omnibus
sudo chown gitlab-ci:gitlab-ci /var/opt/gitlab/gitlab-ci/builds
sudo gitlab-ci-rake backup:create

Source
cd /home/gitlab_ci/gitlab-ci
sudo -u gitlab_ci -H bundle exec rake backup:create RAILS_ENV=production
```

### 3. Copy data to the GitLab server

If you were running GitLab and GitLab CI on the same server you can skip this
step.

Copy your CI data archive to your GitLab server. There are many ways to do
this, below we use SSH agent forwarding and ‘scp’, which will be easy and fast
for most setups. You can also copy the data archive first from the CI server to
your laptop and then from your laptop to the GitLab server.

`
# Start from your laptop
ssh -A ci_admin@ci_server.example
# Now on the CI server
scp /path/to/12345_gitlab_ci_backup.tar gitlab_admin@gitlab_server.example:~
`

### 4. Move data to the GitLab backups folder

Make the CI data archive discoverable for GitLab. We assume below that you
store backups in the default path, adjust the command if necessary.

```
On your GitLab server:
Omnibus
sudo mv /path/to/12345_gitlab_ci_backup.tar /var/opt/gitlab/backups/

Source
sudo mv /path/to/12345_gitlab_ci_backup.tar /home/git/gitlab/tmp/backups/
```

### 5. Import the CI data into GitLab.

This step will delete any existing CI data on your GitLab server. There should
be no CI data yet because you turned CI on the GitLab server off earlier.

```
On your GitLab server:
Omnibus
sudo chown git:git /var/opt/gitlab/gitlab-ci/builds
sudo gitlab-rake ci:migrate

Source
cd /home/git/gitlab
sudo -u git -H bundle exec rake ci:migrate RAILS_ENV=production
```

### 6. Restart GitLab

```
On your GitLab server:
Omnibus
sudo gitlab-ctl hup unicorn
sudo gitlab-ctl restart sidekiq

Source
sudo service gitlab reload
```

## III. Redirecting traffic

If you were running GitLab CI with Omnibus packages and you were using the
internal NGINX configuration your CI service should now be available both at
ci.example.com (the old address) and gitlab.example.com/ci. You are done!

If you installed GitLab CI from source we now need to configure a redirect in
NGINX so that existing CI runners can keep using the old CI server address, and
so that existing links to your CI server keep working.

### 1. Update Nginx configuration

To ensure that your existing CI runners are able to communicate with the
migrated installation, and that existing build triggers still work, you’ll need
to update your Nginx configuration to redirect requests for the old locations to
the new ones.

Edit /etc/nginx/sites-available/gitlab_ci and paste:

```nginx
GITLAB CI
server {

listen 80 default_server; # e.g., listen 192.168.1.1:80;
server_name YOUR_CI_SERVER_FQDN; # e.g., server_name source.example.com;

access_log /var/log/nginx/gitlab_ci_access.log;
error_log /var/log/nginx/gitlab_ci_error.log;

expose API to fix runners
location /api {

proxy_read_timeout 300;
proxy_connect_timeout 300;
proxy_redirect off;
proxy_set_header X-Real-IP $remote_addr;

You need to specify your DNS servers that are able to resolve YOUR_GITLAB_SERVER_FQDN
resolver 8.8.8.8 8.8.4.4;
proxy_pass $scheme://YOUR_GITLAB_SERVER_FQDN/ci$request_uri;

}

redirect all other CI requests
location / {

return 301 $scheme://YOUR_GITLAB_SERVER_FQDN/ci$request_uri;

}

adjust this to match the largest build log your runners might submit,
set to 0 to disable limit
client_max_body_size 10m;

}

Make sure you substitute these placeholder values with your real ones:

	YOUR_CI_SERVER_FQDN: The existing public-facing address of your GitLab CI
install (e.g., ci.gitlab.com).

	YOUR_GITLAB_SERVER_FQDN: The current public-facing address of your GitLab
CE (or EE) install (e.g., gitlab.com).

Make sure not to remove the `/ci$request_uri` part. This is required to
properly forward the requests.

You should also make sure that you can:

1. curl https://YOUR_GITLAB_SERVER_FQDN/ from your previous GitLab CI server.
1. curl https://YOUR_CI_SERVER_FQDN/ from your GitLab CE (or EE) server.

2. Check Nginx configuration

sudo nginx -t

3. Restart Nginx

sudo /etc/init.d/nginx restart

Restore from backup

If something went wrong and you need to restore a backup, consult the [Backup
restoration](../raketasks/backup_restore.md) guide.

Troubleshooting

show:secrets problem (Omnibus-only)
If you see errors like this:
`
Missing `secret_key_base` or `db_key_base` for 'production' environment. The secrets will be generated and stored in `config/secrets.yml`
rake aborted!
Errno::EACCES: Permission denied @ rb_sysopen - config/secrets.yml
`

This can happen if you are updating from versions prior to 7.13 straight to 8.0.
The fix for this is to update to Omnibus 7.14 first and then update it to 8.0.

Permission denied when accessing /var/opt/gitlab/gitlab-ci/builds
To fix that issue you have to change builds/ folder permission before doing final backup:
`
sudo chown -R gitlab-ci:gitlab-ci /var/opt/gitlab/gitlab-ci/builds
`

Then before executing ci:migrate you need to fix builds folder permission:
`
sudo chown git:git /var/opt/gitlab/gitlab-ci/builds
`

Problems when importing CI database to GitLab
If you were migrating CI database from MySQL to PostgreSQL manually you can see errors during import about missing sequences:
`
ALTER SEQUENCE
ERROR: relation "ci_builds_id_seq" does not exist
ERROR: relation "ci_commits_id_seq" does not exist
ERROR: relation "ci_events_id_seq" does not exist
ERROR: relation "ci_jobs_id_seq" does not exist
ERROR: relation "ci_projects_id_seq" does not exist
ERROR: relation "ci_runner_projects_id_seq" does not exist
ERROR: relation "ci_runners_id_seq" does not exist
ERROR: relation "ci_services_id_seq" does not exist
ERROR: relation "ci_taggings_id_seq" does not exist
ERROR: relation "ci_tags_id_seq" does not exist
CREATE TABLE
`

To fix that you need to apply this SQL statement before doing final backup:

```sql
## Omnibus GitLab

gitlab-ci-rails dbconsole <<EOF
– ALTER TABLES - DROP DEFAULTS
ALTER TABLE ONLY ci_application_settings ALTER COLUMN id DROP DEFAULT;
ALTER TABLE ONLY ci_builds ALTER COLUMN id DROP DEFAULT;
ALTER TABLE ONLY ci_commits ALTER COLUMN id DROP DEFAULT;
ALTER TABLE ONLY ci_events ALTER COLUMN id DROP DEFAULT;
ALTER TABLE ONLY ci_jobs ALTER COLUMN id DROP DEFAULT;
ALTER TABLE ONLY ci_projects ALTER COLUMN id DROP DEFAULT;
ALTER TABLE ONLY ci_runner_projects ALTER COLUMN id DROP DEFAULT;
ALTER TABLE ONLY ci_runners ALTER COLUMN id DROP DEFAULT;
ALTER TABLE ONLY ci_services ALTER COLUMN id DROP DEFAULT;
ALTER TABLE ONLY ci_taggings ALTER COLUMN id DROP DEFAULT;
ALTER TABLE ONLY ci_tags ALTER COLUMN id DROP DEFAULT;
ALTER TABLE ONLY ci_trigger_requests ALTER COLUMN id DROP DEFAULT;
ALTER TABLE ONLY ci_triggers ALTER COLUMN id DROP DEFAULT;
ALTER TABLE ONLY ci_variables ALTER COLUMN id DROP DEFAULT;
ALTER TABLE ONLY ci_web_hooks ALTER COLUMN id DROP DEFAULT;

– ALTER SEQUENCES
ALTER SEQUENCE ci_application_settings_id_seq OWNED BY ci_application_settings.id;
ALTER SEQUENCE ci_builds_id_seq OWNED BY ci_builds.id;
ALTER SEQUENCE ci_commits_id_seq OWNED BY ci_commits.id;
ALTER SEQUENCE ci_events_id_seq OWNED BY ci_events.id;
ALTER SEQUENCE ci_jobs_id_seq OWNED BY ci_jobs.id;
ALTER SEQUENCE ci_projects_id_seq OWNED BY ci_projects.id;
ALTER SEQUENCE ci_runner_projects_id_seq OWNED BY ci_runner_projects.id;
ALTER SEQUENCE ci_runners_id_seq OWNED BY ci_runners.id;
ALTER SEQUENCE ci_services_id_seq OWNED BY ci_services.id;
ALTER SEQUENCE ci_taggings_id_seq OWNED BY ci_taggings.id;
ALTER SEQUENCE ci_tags_id_seq OWNED BY ci_tags.id;
ALTER SEQUENCE ci_trigger_requests_id_seq OWNED BY ci_trigger_requests.id;
ALTER SEQUENCE ci_triggers_id_seq OWNED BY ci_triggers.id;
ALTER SEQUENCE ci_variables_id_seq OWNED BY ci_variables.id;
ALTER SEQUENCE ci_web_hooks_id_seq OWNED BY ci_web_hooks.id;

– ALTER TABLES - RE-APPLY DEFAULTS
ALTER TABLE ONLY ci_application_settings ALTER COLUMN id SET DEFAULT nextval(‘ci_application_settings_id_seq’::regclass);
ALTER TABLE ONLY ci_builds ALTER COLUMN id SET DEFAULT nextval(‘ci_builds_id_seq’::regclass);
ALTER TABLE ONLY ci_commits ALTER COLUMN id SET DEFAULT nextval(‘ci_commits_id_seq’::regclass);
ALTER TABLE ONLY ci_events ALTER COLUMN id SET DEFAULT nextval(‘ci_events_id_seq’::regclass);
ALTER TABLE ONLY ci_jobs ALTER COLUMN id SET DEFAULT nextval(‘ci_jobs_id_seq’::regclass);
ALTER TABLE ONLY ci_projects ALTER COLUMN id SET DEFAULT nextval(‘ci_projects_id_seq’::regclass);
ALTER TABLE ONLY ci_runner_projects ALTER COLUMN id SET DEFAULT nextval(‘ci_runner_projects_id_seq’::regclass);
ALTER TABLE ONLY ci_runners ALTER COLUMN id SET DEFAULT nextval(‘ci_runners_id_seq’::regclass);
ALTER TABLE ONLY ci_services ALTER COLUMN id SET DEFAULT nextval(‘ci_services_id_seq’::regclass);
ALTER TABLE ONLY ci_taggings ALTER COLUMN id SET DEFAULT nextval(‘ci_taggings_id_seq’::regclass);
ALTER TABLE ONLY ci_tags ALTER COLUMN id SET DEFAULT nextval(‘ci_tags_id_seq’::regclass);
ALTER TABLE ONLY ci_trigger_requests ALTER COLUMN id SET DEFAULT nextval(‘ci_trigger_requests_id_seq’::regclass);
ALTER TABLE ONLY ci_triggers ALTER COLUMN id SET DEFAULT nextval(‘ci_triggers_id_seq’::regclass);
ALTER TABLE ONLY ci_variables ALTER COLUMN id SET DEFAULT nextval(‘ci_variables_id_seq’::regclass);
ALTER TABLE ONLY ci_web_hooks ALTER COLUMN id SET DEFAULT nextval(‘ci_web_hooks_id_seq’::regclass);
EOF

## Source installations

cd /home/gitlab_ci/gitlab-ci
sudo -u gitlab_ci -H bundle exec rails dbconsole production <<EOF
… COPY SQL STATEMENTS FROM ABOVE …
EOF
```


 This document was moved to [user/admin_area/monitoring/health_check](../user/admin_area/monitoring/health_check.md).

 This document was moved to [administration/monitoring/performance/gitlab_configuration](../../administration/monitoring/performance/gitlab_configuration.md).

 This document was moved to [administration/monitoring/performance/grafana_configuration](../../administration/monitoring/performance/grafana_configuration.md).

 This document was moved to [administration/monitoring/performance/influxdb_configuration](../../administration/monitoring/performance/influxdb_configuration.md).

 This document was moved to [administration/monitoring/performance/influxdb_schema](../../administration/monitoring/performance/influxdb_schema.md).

 This document was moved to [administration/monitoring/performance/introduction](../../administration/monitoring/performance/index.md).

 This document was moved to [another location](../administration/operations/index.md).

 This document was moved to [administration/operations/cleaning_up_redis_sessions](../administration/operations/cleaning_up_redis_sessions.md).

 This document was moved to [administration/operations/moving_repositories](../administration/operations/moving_repositories.md).

 This document was moved to [administration/operations/sidekiq_memory_killer](../administration/operations/sidekiq_memory_killer.md).

 This document was moved to [administration/operations/unicorn](../administration/operations/unicorn.md).

 This document was moved to [pages/index.md](../user/project/pages/index.md).

 This document was moved to [administration/pages](../administration/pages/index.md).

 This document was moved to [another location](../user/project/pages/getting_started_part_one.md).

 This document was moved to [another location](../user/project/pages/getting_started_part_three.md).

 This document was moved to [another location](../user/project/pages/getting_started_part_two.md).

 # Permissions

This document was moved to [user/permissions.md](../user/permissions.md).

 # GitLab Maintenance Policy

Versioning

GitLab follows the [Semantic Versioning](http://semver.org/) for its releases:
(Major).(Minor).(Patch) in a [pragmatic way].

	Major version: Whenever there is something significant or any backwards
incompatible changes are introduced to the public API.

	Minor version: When new, backwards compatible functionality is introduced
to the public API or a minor feature is introduced, or when a set of smaller
features is rolled out.

	Patch number: When backwards compatible bug fixes are introduced that fix
incorrect behavior.

For example, for GitLab version 10.5.7:

	10 represents major version

	5 represents minor version

	7 represents patch number

Patch releases

Patch releases usually only include bug fixes and are only done for the current
stable release. That said, in some cases, we may backport it to previous stable
release, depending on the severity of the bug.

For instance, if we release 10.1.1 with a fix for a severe bug introduced in
10.0.0, we could backport the fix to a new 10.0.x patch release.

Security releases

Security releases are a special kind of patch release that only include security
fixes and patches (see below).

Our current policy is to support one stable release at any given time, but for
medium-level security issues, we may backport security fixes to the previous two
monthly releases.

For very serious security issues, there is
[precedent](https://about.gitlab.com/2016/05/02/cve-2016-4340-patches/)
to backport security fixes to even more monthly releases of GitLab.
This decision is made on a case-by-case basis.

Upgrade recommendations

We encourage everyone to run the [latest stable release](https://about.gitlab.com/blog/categories/release/) to ensure that you can
easily upgrade to the most secure and feature-rich GitLab experience. In order
to make sure you can easily run the most recent stable release, we are working
hard to keep the update process simple and reliable.

If you are unable to follow our monthly release cycle, there are a couple of
cases you need to consider.

It is considered safe to jump between patch versions and minor versions within
one major version. For example, it is safe to:

	Upgrade the patch version:
* 8.9.0 -> 8.9.7
* 8.9.0 -> 8.9.1
* 8.9.2 -> 8.9.6

	Upgrade the minor version:
* 8.9.4 -> 8.12.3
* 9.2.3 -> 9.5.5

Upgrading the major version requires more attention.
We cannot guarantee that upgrading between major versions will be seamless. As previously mentioned, major versions are reserved for backwards incompatible changes.

We recommend that you first upgrade to the latest available minor version within
your major version. By doing this, you can address any deprecation messages
that could possibly change behaviour in the next major release.

Please see the table below for some examples:

Latest stable version | Your version | Recommended upgrade path | Note |

————– | ———— | ———————— | —————- |

9.4.5 | 8.13.4 | 8.13.4 -> 8.17.7 -> 9.4.5 | 8.17.7 is the last version in version 8 |

10.1.4 | 8.13.4 | 8.13.4 -> 8.17.7 -> 9.5.8 -> 10.1.4 | 8.17.7 is the last version in version 8, 9.5.8 is the last version in version 9 |

More information about the release procedures can be found in our
[release-tools documentation][rel]. You may also want to read our
[Responsible Disclosure Policy][disclosure].

[rel]: https://gitlab.com/gitlab-org/release-tools/blob/master/doc/
[disclosure]: https://about.gitlab.com/disclosure/
[pragmatic way]: https://gist.github.com/jashkenas/cbd2b088e20279ae2c8e

 This document was moved to [user/profile/account](../user/profile/index.md).

 This document was moved to [another location](../user/profile/preferences.md).

 This document was moved to [user/profile/account](../user/profile/account/two_factor_authentication.md).

 This document was moved to [user/project/integrations/bamboo.md](../user/project/integrations/bamboo.md).

 This document was moved to [user/project/integrations/bugzilla.md](../user/project/integrations/bugzilla.md).

 This document was moved to [user/project/integrations/emails_on_push.md](../user/project/integrations/emails_on_push.md).

 This document was moved to [user/project/integrations/hipchat.md](../user/project/integrations/hipchat.md).

 This document was moved to [user/project/integrations/irker.md](../user/project/integrations/irker.md).

 This document was moved to [user/project/integrations/jira.md](../user/project/integrations/jira.md).

 This document was moved to [user/project/integrations/kubernetes.md](../user/project/integrations/kubernetes.md).

 This document was moved to [user/project/integrations/mattermost.md](../user/project/integrations/mattermost.md).

 This document was moved to [user/project/integrations/mattermost_slash_commands.md](../user/project/integrations/mattermost_slash_commands.md).

 This document was moved to [user/project/integrations/project_services.md](../user/project/integrations/project_services.md).

 This document was moved to [user/project/integrations/redmine.md](../user/project/integrations/redmine.md).

 This document was moved to [user/project/integrations/services_templates.md](../user/project/integrations/services_templates.md).

 This document was moved to [user/project/integrations/slack.md](../user/project/integrations/slack.md).

 This document was moved to [user/project/integrations/slack_slash_commands.md](../user/project/integrations/slack_slash_commands.md).

 # Public access

GitLab allows you to change your projects’ visibility in order be accessed
publicly or internally.

Projects with either of these visibility levels will be listed in the
public access directory (/public under your GitLab instance).
Here is the [GitLab.com example](https://gitlab.com/public).

Internal projects will only be available to authenticated users.

Visibility of projects

Public projects

Public projects can be cloned without any authentication.

They will also be listed on the public access directory (/public).

Any logged in user will have [Guest](../user/permissions.md)
permissions on the repository.

Internal projects

Internal projects can be cloned by any logged in user.

They will also be listed on the public access directory (/public) for logged
in users.

Any logged in user will have [Guest](../user/permissions.md) permissions
on the repository.

Private projects

Private projects can only be cloned and viewed by project members, and
they will only appear to project members on the public access directory
(https://gitlab.example.com/public).

How to change project visibility

1. Go to your project’s Settings
1. Change “Visibility Level” to either Public, Internal or Private

Visibility of groups

>**Note:**
[Starting with][3323] GitLab 8.6, the group visibility has changed and can be
configured the same way as projects. In previous versions, a group’s page was
always visible to all users.

Like with projects, the visibility of a group can be set to dictate whether
anonymous users, all signed in users, or only explicit group members can view
it. The restriction for visibility levels on the application setting level also
applies to groups, so if that’s set to internal, the explore page will be empty
for anonymous users. The group page now has a visibility level icon.

[3323]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/3323

Visibility of users

The public page of a user, located at /username, is always visible whether
you are logged in or not.

When visiting the public page of a user, you can only see the projects which
you are privileged to.

If the public level is restricted, user profiles are only visible to logged in users.

Restricting the use of public or internal projects

In the Admin area under Settings (/admin/application_settings), you can
restrict the use of visibility levels for users when they create a project or a
snippet:

![Restrict visibility levels](img/restrict_visibility_levels.png)

This is useful to prevent people exposing their repositories to public
by accident. The restricted visibility settings do not apply to admin users.

 —
comments: false
—

Rake tasks

	[Backup restore](backup_restore.md)

	[Check](check.md)

	[Cleanup](cleanup.md)

	[Features](features.md)

	[LDAP Maintenance](../administration/raketasks/ldap.md)

	[General Maintenance](maintenance.md) and self-checks

	[User management](user_management.md)

	[Webhooks](web_hooks.md)

	[Import](import.md) of git repositories in bulk

	[Rebuild authorized_keys file](http://docs.gitlab.com/ce/raketasks/maintenance.html#rebuild-authorized_keys-file) task for administrators

	[Migrate Uploads](../administration/raketasks/uploads/migrate.md)

 # Backing up and restoring GitLab

![backup banner](backup_hrz.png)

An application data backup creates an archive file that contains the database,
all repositories and all attachments.

You can only restore a backup to exactly the same version and type (CE/EE)
of GitLab on which it was created. The best way to migrate your repositories
from one server to another is through backup restore.

Backup

GitLab provides a simple command line interface to backup your whole installation,
and is flexible enough to fit your needs.

Requirements

If you’re using GitLab with the Omnibus package, you’re all set. If you
installed GitLab from source, make sure the following packages are installed:

	rsync

If you’re using Ubuntu, you could run:

`
sudo apt-get install -y rsync
`

Backup timestamp

>**Note:**
In GitLab 9.2 the timestamp format was changed from EPOCH_YYYY_MM_DD to
EPOCH_YYYY_MM_DD_GitLab_version, for example 1493107454_2018_04_25
would become 1493107454_2018_04_25_10.6.4-ce.

The backup archive will be saved in backup_path, which is specified in the
config/gitlab.yml file.
The filename will be [TIMESTAMP]_gitlab_backup.tar, where TIMESTAMP
identifies the time at which each backup was created, plus the GitLab version.
The timestamp is needed if you need to restore GitLab and multiple backups are
available.

For example, if the backup name is 1493107454_2018_04_25_10.6.4-ce_gitlab_backup.tar,
then the timestamp is 1493107454_2018_04_25_10.6.4-ce.

Creating a backup of the GitLab system

Use this command if you’ve installed GitLab with the Omnibus package:

`
sudo gitlab-rake gitlab:backup:create
`

Use this if you’ve installed GitLab from source:

`
sudo -u git -H bundle exec rake gitlab:backup:create RAILS_ENV=production
`

If you are running GitLab within a Docker container, you can run the backup from the host:

`
docker exec -t <container name> gitlab-rake gitlab:backup:create
`

If you are using the gitlab-omnibus helm chart on a Kubernetes cluster, you can
run the backup task on the gitlab application pod using kubectl

`
kubectl exec -it <gitlab-gitlab pod> gitlab-rake gitlab:backup:create
`

Example output:

`
Dumping database tables:
- Dumping table events... [DONE]
- Dumping table issues... [DONE]
- Dumping table keys... [DONE]
- Dumping table merge_requests... [DONE]
- Dumping table milestones... [DONE]
- Dumping table namespaces... [DONE]
- Dumping table notes... [DONE]
- Dumping table projects... [DONE]
- Dumping table protected_branches... [DONE]
- Dumping table schema_migrations... [DONE]
- Dumping table services... [DONE]
- Dumping table snippets... [DONE]
- Dumping table taggings... [DONE]
- Dumping table tags... [DONE]
- Dumping table users... [DONE]
- Dumping table users_projects... [DONE]
- Dumping table web_hooks... [DONE]
- Dumping table wikis... [DONE]
Dumping repositories:
- Dumping repository abcd... [DONE]
Creating backup archive: $TIMESTAMP_gitlab_backup.tar [DONE]
Deleting tmp directories...[DONE]
Deleting old backups... [SKIPPING]
`

Backup strategy option

> Note: Introduced as an option in GitLab 8.17.

The default backup strategy is to essentially stream data from the respective
data locations to the backup using the Linux command tar and gzip. This works
fine in most cases, but can cause problems when data is rapidly changing.

When data changes while tar is reading it, the error file changed as we read
it may occur, and will cause the backup process to fail. To combat this, 8.17
introduces a new backup strategy called copy. The strategy copies data files
to a temporary location before calling tar and gzip, avoiding the error.

A side-effect is that the backup process with take up to an additional 1X disk
space. The process does its best to clean up the temporary files at each stage
so the problem doesn’t compound, but it could be a considerable change for large
installations. This is why the copy strategy is not the default in 8.17.

To use the copy strategy instead of the default streaming strategy, specify
STRATEGY=copy in the Rake task command. For example,
sudo gitlab-rake gitlab:backup:create STRATEGY=copy.

Excluding specific directories from the backup

You can choose what should be backed up by adding the environment variable SKIP.
The available options are:

	db (database)

	uploads (attachments)

	repositories (Git repositories data)

	builds (CI job output logs)

	artifacts (CI job artifacts)

	lfs (LFS objects)

	registry (Container Registry images)

	pages (Pages content)

Use a comma to specify several options at the same time:

```
# use this command if you’ve installed GitLab with the Omnibus package
sudo gitlab-rake gitlab:backup:create SKIP=db,uploads

# if you’ve installed GitLab from source
sudo -u git -H bundle exec rake gitlab:backup:create SKIP=db,uploads RAILS_ENV=production
```

Uploading backups to a remote (cloud) storage

Starting with GitLab 7.4 you can let the backup script upload the ‘.tar’ file it creates.
It uses the [Fog library](http://fog.io/) to perform the upload.
In the example below we use Amazon S3 for storage, but Fog also lets you use
[other storage providers](http://fog.io/storage/). GitLab
[imports cloud drivers](https://gitlab.com/gitlab-org/gitlab-ce/blob/30f5b9a5b711b46f1065baf755e413ceced5646b/Gemfile#L88)
for AWS, Google, OpenStack Swift, Rackspace and Aliyun as well. A local driver is
[also available](#uploading-to-locally-mounted-shares).

Using Amazon S3

For Omnibus GitLab packages:

	Add the following to /etc/gitlab/gitlab.rb:


```ruby
gitlab_rails[‘backup_upload_connection’] = {


‘provider’ => ‘AWS’,
‘region’ => ‘eu-west-1’,
‘aws_access_key_id’ => ‘AKIAKIAKI’,
‘aws_secret_access_key’ => ‘secret123’
# If using an IAM Profile, don’t configure aws_access_key_id & aws_secret_access_key
# ‘use_iam_profile’ => true




}
gitlab_rails[‘backup_upload_remote_directory’] = ‘my.s3.bucket’
```


	[Reconfigure GitLab] for the changes to take effect

Digital Ocean Spaces

This example can be used for a bucket in Amsterdam (AMS3).

	Add the following to /etc/gitlab/gitlab.rb:


```ruby
gitlab_rails[‘backup_upload_connection’] = {


‘provider’ => ‘AWS’,
‘region’ => ‘ams3’,
‘aws_access_key_id’ => ‘AKIAKIAKI’,
‘aws_secret_access_key’ => ‘secret123’,
‘endpoint’              => ‘https://ams3.digitaloceanspaces.com’




}
gitlab_rails[‘backup_upload_remote_directory’] = ‘my.s3.bucket’
```


	[Reconfigure GitLab] for the changes to take effect

CAUTION: Warning:
If you see 400 Bad Request by using Digital Ocean Spaces, the cause may be the
usage of backup encryption. Remove or comment the line that
contains gitlab_rails[‘backup_encryption’] since Digital Ocean Spaces
doesn’t support encryption.

Other S3 Providers

Not all S3 providers are fully-compatible with the Fog library. For example,
if you see 411 Length Required errors after attempting to upload, you may
need to downgrade the aws_signature_version value from the default value to
2 [due to this issue](https://github.com/fog/fog-aws/issues/428).

—

For installations from source:

	Edit home/git/gitlab/config/gitlab.yml:


	```yaml
	
	backup:
	# snip
upload:


# Fog storage connection settings, see http://fog.io/storage/ .
connection:


provider: AWS
region: eu-west-1
aws_access_key_id: AKIAKIAKI
aws_secret_access_key: ‘secret123’
# If using an IAM Profile, leave aws_access_key_id & aws_secret_access_key empty
# ie. aws_access_key_id: ‘’
# use_iam_profile: ‘true’




# The remote ‘directory’ to store your backups. For S3, this would be the bucket name.
remote_directory: ‘my.s3.bucket’
# Turns on AWS Server-Side Encryption with Amazon S3-Managed Keys for backups, this is optional
# encryption: ‘AES256’
# Specifies Amazon S3 storage class to use for backups, this is optional
# storage_class: ‘STANDARD’












```


	[Restart GitLab] for the changes to take effect

If you are uploading your backups to S3 you will probably want to create a new
IAM user with restricted access rights. To give the upload user access only for
uploading backups create the following IAM profile, replacing my.s3.bucket
with the name of your bucket:

```json
{


“Version”: “2012-10-17”,
“Statement”: [



	{
	“Sid”: “Stmt1412062044000”,
“Effect”: “Allow”,
“Action”: [


“s3:AbortMultipartUpload”,
“s3:GetBucketAcl”,
“s3:GetBucketLocation”,
“s3:GetObject”,
“s3:GetObjectAcl”,
“s3:ListBucketMultipartUploads”,
“s3:PutObject”,
“s3:PutObjectAcl”




],
“Resource”: [


“arn:aws:s3:::my.s3.bucket/*”




]





},
{


“Sid”: “Stmt1412062097000”,
“Effect”: “Allow”,
“Action”: [


“s3:GetBucketLocation”,
“s3:ListAllMyBuckets”




],
“Resource”: [


“*”




]




},
{


“Sid”: “Stmt1412062128000”,
“Effect”: “Allow”,
“Action”: [


“s3:ListBucket”




],
“Resource”: [


“arn:aws:s3:::my.s3.bucket”




]




}




]





}

#### Using Google Cloud Storage

If you want to use Google Cloud Storage to save backups, you’ll have to create
an access key from the Google console first:

1. Go to the storage settings page https://console.cloud.google.com/storage/settings
1. Select “Interoperability” and create an access key
1. Make note of the “Access Key” and “Secret” and replace them in the


configurations below





	Make sure you already have a bucket created




For Omnibus GitLab packages:


	Edit /etc/gitlab/gitlab.rb:


```ruby
gitlab_rails[‘backup_upload_connection’] = {

‘provider’ => ‘Google’,
‘google_storage_access_key_id’ => ‘Access Key’,
‘google_storage_secret_access_key’ => ‘Secret’

}
gitlab_rails[‘backup_upload_remote_directory’] = ‘my.google.bucket’
```









	[Reconfigure GitLab] for the changes to take effect




—

For installations from source:


	Edit home/git/gitlab/config/gitlab.yml:



	```yaml
	
	backup:
	
	upload:
	
	connection:
	provider: ‘Google’
google_storage_access_key_id: ‘Access Key’
google_storage_secret_access_key: ‘Secret’

remote_directory: ‘my.google.bucket’


```









	[Restart GitLab] for the changes to take effect




#### Specifying a custom directory for backups

Note: This option only works for remote storage. If you want to group your backups
you can pass a DIRECTORY environment variable:

`
sudo gitlab-rake gitlab:backup:create DIRECTORY=daily
sudo gitlab-rake gitlab:backup:create DIRECTORY=weekly
`

### Uploading to locally mounted shares

You may also send backups to a mounted share (NFS / CIFS / SMB / etc.) by
using the Fog [Local](https://github.com/fog/fog-local#usage) storage provider.
The directory pointed to by the local_root key must be owned by the git
user when mounted (mounting with the uid= of the git user for CIFS and
SMB) or the user that you are executing the backup tasks under (for omnibus
packages, this is the git user).

The backup_upload_remote_directory must be set in addition to the
local_root key. This is the sub directory inside the mounted directory that
backups will be copied to, and will be created if it does not exist. If the
directory that you want to copy the tarballs to is the root of your mounted
directory, just use . instead.

For omnibus packages:

```ruby
gitlab_rails[‘backup_upload_connection’] = {

:provider => ‘Local’,
:local_root => ‘/mnt/backups’

}

The directory inside the mounted folder to copy backups to
Use ‘.’ to store them in the root directory
gitlab_rails[‘backup_upload_remote_directory’] = ‘gitlab_backups’
```

For installations from source:


	```yaml
	
	backup:
	# snip
upload:

Fog storage connection settings, see http://fog.io/storage/ .
connection:

provider: Local
local_root: ‘/mnt/backups’

The directory inside the mounted folder to copy backups to
Use ‘.’ to store them in the root directory
remote_directory: ‘gitlab_backups’


```

### Backup archive permissions

The backup archives created by GitLab (1393513186_2014_02_27_gitlab_backup.tar)
will have owner/group git:git and 0600 permissions by default.
This is meant to avoid other system users reading GitLab’s data.
If you need the backup archives to have different permissions you can use the ‘archive_permissions’ setting.

`
# In /etc/gitlab/gitlab.rb, for omnibus packages
gitlab_rails['backup_archive_permissions'] = 0644 # Makes the backup archives world-readable
`

```
In gitlab.yml, for installations from source:

	backup:
	archive_permissions: 0644 # Makes the backup archives world-readable


```

### Storing configuration files

Please be informed that a backup does not store your configuration
files. One reason for this is that your database contains encrypted
information for two-factor authentication. Storing encrypted
information along with its key in the same place defeats the purpose
of using encryption in the first place!

If you use an Omnibus package please see the [instructions in the readme to backup your configuration](https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/README.md#backup-and-restore-omnibus-gitlab-configuration).
If you have a cookbook installation there should be a copy of your configuration in Chef.
If you installed from source, please consider backing up your config/secrets.yml file, gitlab.yml file, any SSL keys and certificates, and your [SSH host keys](https://superuser.com/questions/532040/copy-ssh-keys-from-one-server-to-another-server/532079#532079).

At the very minimum you should backup /etc/gitlab/gitlab.rb and
/etc/gitlab/gitlab-secrets.json (Omnibus), or
/home/git/gitlab/config/secrets.yml (source) to preserve your database
encryption key.

### Configuring cron to make daily backups

>**Note:**
The following cron jobs do not [backup your GitLab configuration files](#storing-configuration-files)
or [SSH host keys](https://superuser.com/questions/532040/copy-ssh-keys-from-one-server-to-another-server/532079#532079).

For Omnibus installations

To schedule a cron job that backs up your repositories and GitLab metadata, use the root user:

`
sudo su -
crontab -e
`

There, add the following line to schedule the backup for everyday at 2 AM:

`
0 2 * * * /opt/gitlab/bin/gitlab-rake gitlab:backup:create CRON=1
`

You may also want to set a limited lifetime for backups to prevent regular
backups using all your disk space.  To do this add the following lines to
/etc/gitlab/gitlab.rb and reconfigure:

`
# limit backup lifetime to 7 days - 604800 seconds
gitlab_rails['backup_keep_time'] = 604800
`

Note that the backup_keep_time configuration option only manages local
files. GitLab does not automatically prune old files stored in a third-party
object storage (e.g., AWS S3) because the user may not have permission to list
and delete files. We recommend that you configure the appropriate retention
policy for your object storage. For example, you can configure [the S3 backup
policy as described here](http://stackoverflow.com/questions/37553070/gitlab-omnibus-delete-backup-from-amazon-s3).

For installation from source

`
cd /home/git/gitlab
sudo -u git -H editor config/gitlab.yml # Enable keep_time in the backup section to automatically delete old backups
sudo -u git crontab -e # Edit the crontab for the git user
`

Add the following lines at the bottom:

`
# Create a full backup of the GitLab repositories and SQL database every day at 4am
0 4 * * * cd /home/git/gitlab && PATH=/usr/local/bin:/usr/bin:/bin bundle exec rake gitlab:backup:create RAILS_ENV=production CRON=1
`

The CRON=1 environment setting tells the backup script to suppress all progress output if there are no errors.
This is recommended to reduce cron spam.

## Restore

GitLab provides a simple command line interface to restore your whole installation,
and is flexible enough to fit your needs.

The [restore prerequisites section](#restore-prerequisites) includes crucial
information. Make sure to read and test the whole restore process at least once
before attempting to perform it in a production environment.

You can only restore a backup to exactly the same version and type (CE/EE) of
GitLab that you created it on, for example CE 9.1.0.

### Restore prerequisites

You need to have a working GitLab installation before you can perform
a restore. This is mainly because the system user performing the
restore actions (‘git’) is usually not allowed to create or delete
the SQL database it needs to import data into (‘gitlabhq_production’).
All existing data will be either erased (SQL) or moved to a separate
directory (repositories, uploads).

To restore a backup, you will also need to restore /etc/gitlab/gitlab-secrets.json
(for Omnibus packages) or /home/git/gitlab/.secret (for installations
from source). This file contains the database encryption key,
[CI/CD variables](../ci/variables/README.md#variables), and
variables used for [two-factor authentication](../user/profile/account/two_factor_authentication.md).
If you fail to restore this encryption key file along with the application data
backup, users with two-factor authentication enabled and GitLab Runners will
lose access to your GitLab server.

Depending on your case, you might want to run the restore command with one or
more of the following options:


	BACKUP=timestamp_of_backup - Required if more than one backup exists.
Read what the [backup timestamp is about](#backup-timestamp).


	force=yes - Does not ask if the authorized_keys file should get regenerated and assumes ‘yes’ for warning that database tables will be removed.




If you are restoring into directories that are mountpoints you will need to make
sure these directories are empty before attempting a restore. Otherwise GitLab
will attempt to move these directories before restoring the new data and this
would cause an error.

Read more on [configuring NFS mounts](../administration/high_availability/nfs.md)

### Restore for installation from source

```
Stop processes that are connected to the database
sudo service gitlab stop

bundle exec rake gitlab:backup:restore RAILS_ENV=production
```

Example output:

```
Unpacking backup… [DONE]
Restoring database tables:
– create_table(“events”, {:force=>true})

-> 0.2231s

[…]
- Loading fixture events…[DONE]
- Loading fixture issues…[DONE]
- Loading fixture keys…[SKIPPING]
- Loading fixture merge_requests…[DONE]
- Loading fixture milestones…[DONE]
- Loading fixture namespaces…[DONE]
- Loading fixture notes…[DONE]
- Loading fixture projects…[DONE]
- Loading fixture protected_branches…[SKIPPING]
- Loading fixture schema_migrations…[DONE]
- Loading fixture services…[SKIPPING]
- Loading fixture snippets…[SKIPPING]
- Loading fixture taggings…[SKIPPING]
- Loading fixture tags…[SKIPPING]
- Loading fixture users…[DONE]
- Loading fixture users_projects…[DONE]
- Loading fixture web_hooks…[SKIPPING]
- Loading fixture wikis…[SKIPPING]
Restoring repositories:
- Restoring repository abcd… [DONE]
Deleting tmp directories…[DONE]
```

Next, restore /home/git/gitlab/.secret if necessary as mentioned above.

Restart GitLab:

`shell
sudo service gitlab restart
`

### Restore for Omnibus installations

This procedure assumes that:


	You have installed the exact same version and type (CE/EE) of GitLab
Omnibus with which the backup was created.


	You have run sudo gitlab-ctl reconfigure at least once.


	GitLab is running.  If not, start it using sudo gitlab-ctl start.




First make sure your backup tar file is in the backup directory described in the
gitlab.rb configuration gitlab_rails[‘backup_path’]. The default is
/var/opt/gitlab/backups.

`shell
sudo cp 11493107454_2018_04_25_10.6.4-ce_gitlab_backup.tar /var/opt/gitlab/backups/
`

Stop the processes that are connected to the database.  Leave the rest of GitLab
running:

`shell
sudo gitlab-ctl stop unicorn
sudo gitlab-ctl stop sidekiq
# Verify
sudo gitlab-ctl status
`

Next, restore the backup, specifying the timestamp of the backup you wish to
restore:

`shell
# This command will overwrite the contents of your GitLab database!
sudo gitlab-rake gitlab:backup:restore BACKUP=1493107454_2018_04_25_10.6.4-ce
`

Next, restore /etc/gitlab/gitlab-secrets.json if necessary as mentioned above.

Restart and check GitLab:

`shell
sudo gitlab-ctl restart
sudo gitlab-rake gitlab:check SANITIZE=true
`

If there is a GitLab version mismatch between your backup tar file and the installed
version of GitLab, the restore command will abort with an error. Install the
[correct GitLab version](https://packages.gitlab.com/gitlab/) and try again.

### Restore for Docker image and gitlab-omnibus helm chart

For GitLab installations using docker image or the gitlab-omnibus helm chart on
a Kubernetes cluster, restore task expects the restore directories to be empty.
However, with docker and Kubernetes volume mounts, some system level directories
may be created at the volume roots, like lost+found directory found in Linux
operating systems. These directories are usually owned by root, which can
cause access permission errors since the restore rake task runs as git user.
So, to restore a GitLab installation, users have to confirm the restore target
directories are empty.

For both these installation types, the backup tarball has to be available in the
backup location (default location is /var/opt/gitlab/backups).

For docker installations, the restore task can be run from host using the
command

`
docker exec -it <name of container> gitlab-rake gitlab:backup:restore
`

Similarly, for gitlab-omnibus helm chart, the restore task can be run on the
gitlab application pod using kubectl

`
kubectl exec -it <gitlab-gitlab pod> gitlab-rake gitlab:backup:restore
`

## Alternative backup strategies

If your GitLab server contains a lot of Git repository data you may find the GitLab backup script to be too slow.
In this case you can consider using filesystem snapshots as part of your backup strategy.

Example: Amazon EBS

> A GitLab server using omnibus-gitlab hosted on Amazon AWS.
> An EBS drive containing an ext4 filesystem is mounted at /var/opt/gitlab.
> In this case you could make an application backup by taking an EBS snapshot.
> The backup includes all repositories, uploads and Postgres data.

Example: LVM snapshots + rsync

> A GitLab server using omnibus-gitlab, with an LVM logical volume mounted at /var/opt/gitlab.
> Replicating the /var/opt/gitlab directory using rsync would not be reliable because too many files would change while rsync is running.
> Instead of rsync-ing /var/opt/gitlab, we create a temporary LVM snapshot, which we mount as a read-only filesystem at /mnt/gitlab_backup.
> Now we can have a longer running rsync job which will create a consistent replica on the remote server.
> The replica includes all repositories, uploads and Postgres data.

If you are running GitLab on a virtualized server you can possibly also create VM snapshots of the entire GitLab server.
It is not uncommon however for a VM snapshot to require you to power down the server, so this approach is probably of limited practical use.

## Additional notes

This documentation is for GitLab Community and Enterprise Edition. We backup
GitLab.com and make sure your data is secure, but you can’t use these methods
to export / backup your data yourself from GitLab.com.

Issues are stored in the database. They can’t be stored in Git itself.

To migrate your repositories from one server to another with an up-to-date version of
GitLab, you can use the [import rake task](import.md) to do a mass import of the
repository. Note that if you do an import rake task, rather than a backup restore, you
will have all your repositories, but not any other data.

## Troubleshooting

### Restoring database backup using omnibus packages outputs warnings
If you are using backup restore procedures you might encounter the following warnings:

`
psql:/var/opt/gitlab/backups/db/database.sql:22: ERROR:  must be owner of extension plpgsql
psql:/var/opt/gitlab/backups/db/database.sql:2931: WARNING:  no privileges could be revoked for "public" (two occurrences)
psql:/var/opt/gitlab/backups/db/database.sql:2933: WARNING:  no privileges were granted for "public" (two occurrences)
`

Be advised that, backup is successfully restored in spite of these warnings.

The rake task runs this as the gitlab user which does not have the superuser access to the database. When restore is initiated it will also run as gitlab user but it will also try to alter the objects it does not have access to.
Those objects have no influence on the database backup/restore but they give this annoying warning.

For more information see similar questions on postgresql issue tracker[here](http://www.postgresql.org/message-id/201110220712.30886.adrian.klaver@gmail.com) and [here](http://www.postgresql.org/message-id/2039.1177339749@sss.pgh.pa.us) as well as [stack overflow](http://stackoverflow.com/questions/4368789/error-must-be-owner-of-language-plpgsql).

[reconfigure GitLab]: ../administration/restart_gitlab.md#omnibus-gitlab-reconfigure
[restart GitLab]: ../administration/restart_gitlab.md#installations-from-source





            

          

      

      

    

  

    
      
          
            
  # Check Rake Tasks

This document was moved to [administration/raketasks/check](../administration/raketasks/check.md).



            

          

      

      

    

  

    
      
          
            
  # Cleanup

## Remove garbage from filesystem. Important! Data loss!

Remove namespaces(dirs) from all repository storage paths if they don’t exist in GitLab database.

```
omnibus-gitlab
sudo gitlab-rake gitlab:cleanup:dirs

installation from source
bundle exec rake gitlab:cleanup:dirs RAILS_ENV=production
```

Rename repositories from all repository storage paths if they don’t exist in GitLab database.
The repositories get a +orphaned+TIMESTAMP suffix so that they cannot block new repositories from being created.

```
omnibus-gitlab
sudo gitlab-rake gitlab:cleanup:repos

installation from source
bundle exec rake gitlab:cleanup:repos RAILS_ENV=production
```

Clean up local project upload files if they don’t exist in GitLab database. The
task attempts to fix the file if it can find its project, otherwise it moves the
file to a lost and found directory.

```
omnibus-gitlab
sudo gitlab-rake gitlab:cleanup:project_uploads

installation from source
bundle exec rake gitlab:cleanup:project_uploads RAILS_ENV=production
```

Example output:

```
$ sudo gitlab-rake gitlab:cleanup:project_uploads
I, [2018-07-27T12:08:27.671559 #89817] INFO – : Looking for orphaned project uploads to clean up. Dry run…
D, [2018-07-27T12:08:28.293568 #89817] DEBUG – : Processing batch of 500 project upload file paths, starting with /opt/gitlab/embedded/service/gitlab-rails/public/uploads/test.out
I, [2018-07-27T12:08:28.689869 #89817] INFO – : Can move to lost and found /opt/gitlab/embedded/service/gitlab-rails/public/uploads/test.out -> /opt/gitlab/embedded/service/gitlab-rails/public/uploads/-/project-lost-found/test.out
I, [2018-07-27T12:08:28.755624 #89817] INFO – : Can fix /opt/gitlab/embedded/service/gitlab-rails/public/uploads/foo/bar/89a0f7b0b97008a4a18cedccfdcd93fb/foo.txt -> /opt/gitlab/embedded/service/gitlab-rails/public/uploads/qux/foo/bar/89a0f7b0b97008a4a18cedccfdcd93fb/foo.txt
I, [2018-07-27T12:08:28.760257 #89817] INFO – : Can move to lost and found /opt/gitlab/embedded/service/gitlab-rails/public/uploads/foo/bar/1dd6f0f7eefd2acc4c2233f89a0f7b0b/image.png -> /opt/gitlab/embedded/service/gitlab-rails/public/uploads/-/project-lost-found/foo/bar/1dd6f0f7eefd2acc4c2233f89a0f7b0b/image.png
I, [2018-07-27T12:08:28.764470 #89817] INFO – : To cleanup these files run this command with DRY_RUN=false

$ sudo gitlab-rake gitlab:cleanup:project_uploads DRY_RUN=false
I, [2018-07-27T12:08:32.944414 #89936] INFO – : Looking for orphaned project uploads to clean up…
D, [2018-07-27T12:08:33.293568 #89817] DEBUG – : Processing batch of 500 project upload file paths, starting with /opt/gitlab/embedded/service/gitlab-rails/public/uploads/test.out
I, [2018-07-27T12:08:33.689869 #89817] INFO – : Did move to lost and found /opt/gitlab/embedded/service/gitlab-rails/public/uploads/test.out -> /opt/gitlab/embedded/service/gitlab-rails/public/uploads/-/project-lost-found/test.out
I, [2018-07-27T12:08:33.755624 #89817] INFO – : Did fix /opt/gitlab/embedded/service/gitlab-rails/public/uploads/foo/bar/89a0f7b0b97008a4a18cedccfdcd93fb/foo.txt -> /opt/gitlab/embedded/service/gitlab-rails/public/uploads/qux/foo/bar/89a0f7b0b97008a4a18cedccfdcd93fb/foo.txt
I, [2018-07-27T12:08:33.760257 #89817] INFO – : Did move to lost and found /opt/gitlab/embedded/service/gitlab-rails/public/uploads/foo/bar/1dd6f0f7eefd2acc4c2233f89a0f7b0b/image.png -> /opt/gitlab/embedded/service/gitlab-rails/public/uploads/-/project-lost-found/foo/bar/1dd6f0f7eefd2acc4c2233f89a0f7b0b/image.png
```

Remove object store upload files if they don’t exist in GitLab database.

```
omnibus-gitlab
sudo gitlab-rake gitlab:cleanup:remote_upload_files

installation from source
bundle exec rake gitlab:cleanup:remote_upload_files RAILS_ENV=production
```

Example output:

```
$ sudo gitlab-rake gitlab:cleanup:remote_upload_files

I, [2018-08-02T10:26:13.995978 #45011] INFO – : Looking for orphaned remote uploads to remove. Dry run…
I, [2018-08-02T10:26:14.120400 #45011] INFO – : Can be moved to lost and found: @hashed/6b/DSC_6152.JPG
I, [2018-08-02T10:26:14.120482 #45011] INFO – : Can be moved to lost and found: @hashed/79/02/7902699be42c8a8e46fbbb4501726517e86b22c56a189f7625a6da49081b2451/711491b29d3eb08837798c4909e2aa4d/DSC00314.jpg
I, [2018-08-02T10:26:14.120634 #45011] INFO – : To cleanup these files run this command with DRY_RUN=false
```

```
$ sudo gitlab-rake gitlab:cleanup:remote_upload_files DRY_RUN=false

I, [2018-08-02T10:26:47.598424 #45087] INFO – : Looking for orphaned remote uploads to remove…
I, [2018-08-02T10:26:47.753131 #45087] INFO – : Moved to lost and found: @hashed/6b/DSC_6152.JPG -> lost_and_found/@hashed/6b/DSC_6152.JPG
I, [2018-08-02T10:26:47.764356 #45087] INFO – : Moved to lost and found: @hashed/79/02/7902699be42c8a8e46fbbb4501726517e86b22c56a189f7625a6da49081b2451/711491b29d3eb08837798c4909e2aa4d/DSC00314.jpg -> lost_and_found/@hashed/79/02/7902699be42c8a8e46fbbb4501726517e86b22c56a189f7625a6da49081b2451/711491b29d3eb08837798c4909e2aa4d/DSC00314.jpg
```



            

          

      

      

    

  

    
      
          
            
  # Namespaces

## Enable usernames and namespaces for user projects

This command will enable the namespaces feature introduced in v4.0. It will move every project in its namespace folder.

Note:


	Because the repository location will change, you will need to update all your git URLs to point to the new location.


	Username can be changed at Profile ➔ Account.




Example:

Old path: git@example.org:myrepo.git

New path: git@example.org:username/myrepo.git or git@example.org:groupname/myrepo.git

`
bundle exec rake gitlab:enable_namespaces RAILS_ENV=production
`



            

          

      

      

    

  

    
      
          
            
  # Import bare repositories into your GitLab instance

## Notes


	The owner of the project will be the first admin


	The groups will be created as needed, including subgroups


	The owner of the group will be the first admin


	Existing projects will be skipped


	The existing Git repos will be moved from disk (removed from the original path)




## How to use

### Create a new folder to import your Git repositories from.

The new folder needs to have git user ownership and read/write/execute access for git user and its group:

`
sudo -u git mkdir /var/opt/gitlab/git-data/repository-import-<date>/new_group
`

### Copy your bare repositories inside this newly created folder:


	Any .git repositories found on any of the subfolders will be imported as projects


	Groups will be created as needed, these could be nested folders. Example:




If we copy the repos to /var/opt/gitlab/git-data/repository-import-<date>, and repo A needs to be under the groups G1 and G2, it will
have to be created under those folders: /var/opt/gitlab/git-data/repository-import-<date>/G1/G2/A.git.

```
sudo cp -r /old/git/foo.git /var/opt/gitlab/git-data/repository-import-<date>/new_group/

Do this once when you are done copying git repositories
sudo chown -R git:git /var/opt/gitlab/git-data/repository-import-<date>
```

foo.git needs to be owned by the git user and git users group.

If you are using an installation from source, replace /var/opt/gitlab/ with /home/git.

### Run the command below depending on your type of installation:

#### Omnibus Installation

`
$ sudo gitlab-rake gitlab:import:repos['/var/opt/gitlab/git-data/repository-import-<date>']
`

#### Installation from source

Before running this command you need to change the directory to where your GitLab installation is located:

`
$ cd /home/git/gitlab
$ sudo -u git -H bundle exec rake gitlab:import:repos['/var/opt/gitlab/git-data/repository-import-<date>'] RAILS_ENV=production
`

#### Example output

```
Processing /var/opt/gitlab/git-data/repository-import-1/a/b/c/blah.git

	Using namespace: a/b/c

	Created blah (a/b/c/blah)

	Skipping repo /var/opt/gitlab/git-data/repository-import-1/a/b/c/blah.wiki.git

	Processing /var/opt/gitlab/git-data/repository-import-1/abcd.git
	
	Created abcd (abcd.git)

	Processing /var/opt/gitlab/git-data/repository-import-1/group/xyz.git
	
	Using namespace: group (2)

	Created xyz (group/xyz.git)

	Skipping repo /var/opt/gitlab/git-data/repository-import-1/@shared/a/b/abcd.git

[…]
```



            

          

      

      

    

  

    
      
          
            
  # Listing repository directories

You can print a list of all Git repositories on disk managed by
GitLab with the following command:

```
Omnibus
sudo gitlab-rake gitlab:list_repos

Source
cd /home/git/gitlab
sudo -u git -H bundle exec rake gitlab:list_repos RAILS_ENV=production
```

If you only want to list projects with recent activity you can pass
a date with the ‘SINCE’ environment variable.  The time you specify
is parsed by the Rails [TimeZone#parse
function](http://api.rubyonrails.org/classes/ActiveSupport/TimeZone.html#method-i-parse).

```
Omnibus
sudo gitlab-rake gitlab:list_repos SINCE=’Sep 1 2015’

Source
cd /home/git/gitlab
sudo -u git -H bundle exec rake gitlab:list_repos RAILS_ENV=production SINCE=’Sep 1 2015’
```

Note that the projects listed are NOT sorted by activity; they use
the default ordering of the GitLab Rails application.



            

          

      

      

    

  

    
      
          
            
  # Maintenance Rake Tasks

This document was moved to [administration/raketasks/maintenance](../administration/raketasks/maintenance.md).



            

          

      

      

    

  

    
      
          
            
  # User management

## Add user as a developer to all projects

```bash
omnibus-gitlab
sudo gitlab-rake gitlab:import:user_to_projects[username@domain.tld]

installation from source
bundle exec rake gitlab:import:user_to_projects[username@domain.tld] RAILS_ENV=production
```

## Add all users to all projects

Notes:


	admin users are added as maintainers




```bash
omnibus-gitlab
sudo gitlab-rake gitlab:import:all_users_to_all_projects

installation from source
bundle exec rake gitlab:import:all_users_to_all_projects RAILS_ENV=production
```

## Add user as a developer to all groups

```bash
omnibus-gitlab
sudo gitlab-rake gitlab:import:user_to_groups[username@domain.tld]

installation from source
bundle exec rake gitlab:import:user_to_groups[username@domain.tld] RAILS_ENV=production
```

## Add all users to all groups

Notes:


	admin users are added as owners so they can add additional users to the group




```bash
omnibus-gitlab
sudo gitlab-rake gitlab:import:all_users_to_all_groups

installation from source
bundle exec rake gitlab:import:all_users_to_all_groups RAILS_ENV=production
```

## Maintain tight control over the number of active users on your GitLab installation


	Enable this setting to keep new users blocked until they have been cleared by the admin (default: false).




`
block_auto_created_users: false
`

## Disable Two-factor Authentication (2FA) for all users

This task will disable 2FA for all users that have it enabled. This can be
useful if GitLab’s config/secrets.yml file has been lost and users are unable
to login, for example.

```bash
omnibus-gitlab
sudo gitlab-rake gitlab:two_factor:disable_for_all_users

installation from source
bundle exec rake gitlab:two_factor:disable_for_all_users RAILS_ENV=production
```

## Rotate Two-factor Authentication (2FA) encryption key

GitLab stores the secret data enabling 2FA to work in an encrypted database
column. The encryption key for this data is known as otp_key_base, and is
stored in config/secrets.yml.

If that file is leaked, but the individual 2FA secrets have not, it’s possible
to re-encrypt those secrets with a new encryption key. This allows you to change
the leaked key without forcing all users to change their 2FA details.

First, look up the old key. This is in the config/secrets.yml file, but
make sure you’re working with the production section. The line you’re
interested in will look like this:

```yaml
production:

otp_key_base: ff


```

Next, generate a new secret:

```
omnibus-gitlab
sudo gitlab-rake secret

installation from source
bundle exec rake secret RAILS_ENV=production
```

Now you need to stop the GitLab server, back up the existing secrets file and
update the database:

```
omnibus-gitlab
sudo gitlab-ctl stop
sudo cp config/secrets.yml config/secrets.yml.bak
sudo gitlab-rake gitlab:two_factor:rotate_key:apply filename=backup.csv old_key=<old key> new_key=<new key>

installation from source
sudo /etc/init.d/gitlab stop
cp config/secrets.yml config/secrets.yml.bak
bundle exec rake gitlab:two_factor:rotate_key:apply filename=backup.csv old_key=<old key> new_key=<new key> RAILS_ENV=production
```

The <old key> value can be read from config/secrets.yml; <new key> was
generated earlier. The encrypted values for the user 2FA secrets will be
written to the specified filename - you can use this to rollback in case of
error.

Finally, change config/secrets.yml to set otp_key_base to <new key> and
restart. Again, make sure you’re operating in the production section.

```
omnibus-gitlab
sudo gitlab-ctl start

installation from source
sudo /etc/init.d/gitlab start
```

If there are any problems (perhaps using the wrong value for old_key), you can
restore your backup of config/secrets.yml and rollback the changes:

```
omnibus-gitlab
sudo gitlab-ctl stop
sudo gitlab-rake gitlab:two_factor:rotate_key:rollback filename=backup.csv
sudo cp config/secrets.yml.bak config/secrets.yml
sudo gitlab-ctl start

installation from source
sudo /etc/init.d/gitlab start
bundle exec rake gitlab:two_factor:rotate_key:rollback filename=backup.csv RAILS_ENV=production
cp config/secrets.yml.bak config/secrets.yml
sudo /etc/init.d/gitlab start

```



            

          

      

      

    

  

    
      
          
            
  # Webhooks administration [CORE ONLY]

## Add a webhook for ALL projects:


# omnibus-gitlab
sudo gitlab-rake gitlab:web_hook:add URL=”http://example.com/hook”
# source installations
bundle exec rake gitlab:web_hook:add URL=”http://example.com/hook” RAILS_ENV=production




## Add a webhook for projects in a given NAMESPACE:


# omnibus-gitlab
sudo gitlab-rake gitlab:web_hook:add URL=”http://example.com/hook” NAMESPACE=acme
# source installations
bundle exec rake gitlab:web_hook:add URL=”http://example.com/hook” NAMESPACE=acme RAILS_ENV=production




## Remove a webhook from ALL projects using:


# omnibus-gitlab
sudo gitlab-rake gitlab:web_hook:rm URL=”http://example.com/hook”
# source installations
bundle exec rake gitlab:web_hook:rm URL=”http://example.com/hook” RAILS_ENV=production




## Remove a webhook from projects in a given NAMESPACE:


# omnibus-gitlab
sudo gitlab-rake gitlab:web_hook:rm URL=”http://example.com/hook” NAMESPACE=acme
# source installations
bundle exec rake gitlab:web_hook:rm URL=”http://example.com/hook” NAMESPACE=acme RAILS_ENV=production




## List ALL webhooks:


# omnibus-gitlab
sudo gitlab-rake gitlab:web_hook:list
# source installations
bundle exec rake gitlab:web_hook:list RAILS_ENV=production




## List the webhooks from projects in a given NAMESPACE:


# omnibus-gitlab
sudo gitlab-rake gitlab:web_hook:list NAMESPACE=/
# source installations
bundle exec rake gitlab:web_hook:list NAMESPACE=/ RAILS_ENV=production




> Note: / is the global namespace.



            

          

      

      

    

  

    
      
          
            
  —
comments: false
—

# Security


	[Password length limits](password_length_limits.md)


	[Restrict SSH key technologies and minimum length](ssh_keys_restrictions.md)


	[Rack attack](rack_attack.md)


	[Webhooks and insecure internal web services](webhooks.md)


	[Information exclusivity](information_exclusivity.md)


	[Reset your root password](reset_root_password.md)


	[User File Uploads](user_file_uploads.md)


	[How we manage the CRIME vulnerability](crime_vulnerability.md)


	[Enforce Two-factor authentication](two_factor_authentication.md)


	[Send email confirmation on sign-up](user_email_confirmation.md)






            

          

      

      

    

  

    
      
          
            
  # How we manage the TLS protocol CRIME vulnerability

> CRIME (“Compression Ratio Info-leak Made Easy”) is a security exploit against
secret web cookies over connections using the HTTPS and SPDY protocols that also
use data compression. When used to recover the content of secret
authentication cookies, it allows an attacker to perform session hijacking on an
authenticated web session, allowing the launching of further attacks.
([CRIME](https://en.wikipedia.org/w/index.php?title=CRIME&oldid=692423806))

### Description

The TLS Protocol CRIME Vulnerability affects compression over HTTPS, therefore
it warns against using SSL Compression (for example gzip) or SPDY which
optionally uses compression as well.

GitLab supports both gzip and [SPDY][ngx-spdy] and mitigates the CRIME
vulnerability by deactivating gzip when HTTPS is enabled. You can see the
sources of the files in question:


	[Source installation NGINX file][source-nginx]


	[Omnibus installation NGINX file][omnibus-nginx]




Although SPDY is enabled in Omnibus installations, CRIME relies on compression
(the ‘C’) and the default compression level in NGINX’s SPDY module is 0
(no compression).

### Nessus

The Nessus scanner, [reports a possible CRIME vulnerability][nessus] in GitLab
similar to the following format:

```
Description

This remote service has one of two configurations that are known to be required for the CRIME attack:
SSL/TLS compression is enabled.
TLS advertises the SPDY protocol earlier than version 4.

…

Output

The following configuration indicates that the remote service may be vulnerable to the CRIME attack:
SPDY support earlier than version 4 is advertised.
```

From the report above it is important to note that Nessus is only checking if
TLS advertises the SPDY protocol earlier than version 4, it does not perform an
attack nor does it check if compression is enabled. With just this approach, it
cannot tell that SPDY’s compression is disabled and not subject to the CRIME
vulnerability.

### References


	Nginx [“Module ngx_http_spdy_module”][ngx-spdy]


	Tenable Network Security, Inc. [“Transport Layer Security (TLS) Protocol CRIME Vulnerability”][nessus]


	Wikipedia contributors, [“CRIME”][wiki-crime] Wikipedia, The Free Encyclopedia




[source-nginx]: https://gitlab.com/gitlab-org/gitlab-ce/blob/master/lib/support/nginx/gitlab-ssl
[omnibus-nginx]: https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-cookbooks/gitlab/templates/default/nginx-gitlab-http.conf.erb
[ngx-spdy]: http://nginx.org/en/docs/http/ngx_http_spdy_module.html
[nessus]: https://www.tenable.com/plugins/index.php?view=single&id=62565
[wiki-crime]: https://en.wikipedia.org/wiki/CRIME



            

          

      

      

    

  

    
      
          
            
  # Information exclusivity

Git is a distributed version control system (DVCS).
This means that everyone that works with the source code has a local copy of the complete repository.
In GitLab every project member that is not a guest (so reporters, developers and maintainers) can clone the repository to get a local copy.
After obtaining this local copy the user can upload the full repository anywhere, including another project under their control or another server.
The consequence is that you can’t build access controls that prevent the intentional sharing of source code by users that have access to the source code.
This is an inherent feature of a DVCS and all git management systems have this limitation.
Obviously you can take steps to prevent unintentional sharing and information destruction, this is why only some people are allowed to invite others and nobody can force push a protected branch.



            

          

      

      

    

  

    
      
          
            
  # Custom password length limits

If you want to enforce longer user passwords you can create an extra Devise initializer with the steps below.

If you do not use the devise_password_length.rb initializer the password length is set to a minimum of 8 characters in config/initializers/devise.rb.

`bash
cd /home/git/gitlab
sudo -u git -H cp config/initializers/devise_password_length.rb.example config/initializers/devise_password_length.rb
sudo -u git -H editor config/initializers/devise_password_length.rb   # inspect and edit the new password length limits
`



            

          

      

      

    

  

    
      
          
            
  # Rack Attack

Rack Attack, also known as Rack::Attack, is [a rubygem](https://github.com/kickstarter/rack-attack)
that is meant to protect GitLab with the ability to customize throttling and
blocking user IPs.
You can prevent brute-force passwords attacks, scrapers, or any other offenders
by throttling requests from IP addresses making large volumes of requests.
In case you find throttling is not enough to protect you against abusive clients,
Rack Attack offers IP whitelisting, blacklisting, Fail2ban style filtering and
tracking.

Note: Starting with 11.2, Rack Attack is disabled by default. To continue
using this feature, please enable it in your gitlab.rb by setting
gitlab_rails[‘rack_attack_git_basic_auth’] = true.

By default, user sign-in, user sign-up (if enabled), and user password reset is
limited to 6 requests per minute. After trying for 6 times, the client will
have to wait for the next minute to be able to try again.

If you installed or upgraded GitLab by following the [official guides](../install/README.md)
this should be disabled by default. If your instance is not exposed to any incoming
connections, it is recommended to leave Rack Attack disabled.

For more information on how to use these options check out
[rack-attack README](https://github.com/kickstarter/rack-attack/blob/master/README.md).

## Settings

Omnibus GitLab

1. Open /etc/gitlab/gitlab.rb with you editor
1. Add the following:


```ruby
gitlab_rails[‘rack_attack_git_basic_auth’] = {

‘enabled’ => true,
‘ip_whitelist’ => [“127.0.0.1”],
‘maxretry’ => 10,
‘findtime’ => 60,
‘bantime’ => 3600

	Reconfigure GitLab:

`
sudo gitlab-ctl reconfigure
`

The following settings can be configured:

	enabled: By default this is set to false. Set this to true to enable Rack Attack.

	
	ip_whitelist: Whitelist any IPs from being blocked. They must be formatted as strings within a ruby array.
	For example, [“127.0.0.1”, “127.0.0.2”, “127.0.0.3”].

	
	maxretry: The maximum amount of times a request can be made in the
	specified time.

	
	findtime: The maximum amount of time failed requests can count against an IP
	before it’s blacklisted.

	
	bantime: The total amount of time that a blacklisted IP will be blocked in
	seconds.

Installations from source

These settings can be found in config/initializers/rack_attack.rb. If you are
missing config/initializers/rack_attack.rb, the following steps need to be
taken in order to enable protection for your GitLab instance:

	In config/application.rb find and uncomment the following line:

`ruby
config.middleware.use Rack::Attack
`

1. Copy config/initializers/rack_attack.rb.example to config/initializers/rack_attack.rb
1. Open config/initializers/rack_attack.rb, review the

paths_to_be_protected, and add any other path you need protecting

	Restart GitLab:

`sh
sudo service gitlab restart
`

If you want more restrictive/relaxed throttle rules, edit
config/initializers/rack_attack.rb and change the limit or period values.
For example, more relaxed throttle rules will be if you set
limit: 3 and period: 1.seconds (this will allow 3 requests per second).
You can also add other paths to the protected list by adding to paths_to_be_protected
variable. If you change any of these settings do not forget to restart your
GitLab instance.

Remove blocked IPs from Rack Attack via Redis

In case you want to remove a blocked IP, follow these steps:

	Find the IPs that have been blocked in the production log:

`sh
grep "Rack_Attack" /var/log/gitlab/gitlab-rails/production.log
`

	Since the blacklist is stored in Redis, you need to open up redis-cli:

`sh
/opt/gitlab/embedded/bin/redis-cli -s /var/opt/gitlab/redis/redis.socket
`

	You can remove the block using the following syntax, replacing <ip> with
the actual IP that is blacklisted:

`
del cache:gitlab:rack::attack:allow2ban:ban:<ip>
`

	Confirm that the key with the IP no longer shows up:

`
keys *rack::attack*
`

	Optionally, add the IP to the whitelist to prevent it from being blacklisted
again (see [settings](#settings)).

Troubleshooting

Rack attack is blacklisting the load balancer

Rack Attack may block your load balancer if all traffic appears to come from
the load balancer. In that case, you will need to:

	[Configure nginx[real_ip_trusted_addresses]](https://docs.gitlab.com/omnibus/settings/nginx.html#configuring-gitlab-trusted_proxies-and-the-nginx-real_ip-module).
This will keep users’ IPs from being listed as the load balancer IPs.

	Whitelist the load balancer’s IP address(es) in the Rack Attack [settings](#settings).

	Reconfigure GitLab:

`
sudo gitlab-ctl reconfigure
`

	[Remove the block via Redis.](#remove-blocked-ips-from-rack-attack-via-redis)

 # How to reset your root password

Log into your server with root privileges. Then start a Ruby on Rails console.

Start the console with this command:

`bash
gitlab-rails console production
`

Wait until the console has loaded.

There are multiple ways to find your user. You can search for email or username.

`bash
user = User.where(id: 1).first
`

or

`bash
user = User.find_by(email: 'admin@local.host')
`

Now you can change your password:

`bash
user.password = 'secret_pass'
user.password_confirmation = 'secret_pass'
`

It’s important that you change both password and password_confirmation to make it work.

Don’t forget to save the changes.

`bash
user.save!
`

Exit the console and try to login with your new password.

 # Restrict allowed SSH key technologies and minimum length

ssh-keygen allows users to create RSA keys with as few as 768 bits, which
falls well below recommendations from certain standards groups (such as the US
NIST). Some organizations deploying GitLab will need to enforce minimum key
strength, either to satisfy internal security policy or for regulatory
compliance.

Similarly, certain standards groups recommend using RSA, ECDSA, or ED25519 over
the older DSA, and administrators may need to limit the allowed SSH key
algorithms.

GitLab allows you to restrict the allowed SSH key technology as well as specify
the minimum key length for each technology.

In the Admin area under Settings (/admin/application_settings), look for
the “Visibility and Access Controls” area:

![SSH keys restriction admin settings](img/ssh_keys_restrictions_settings.png)

 # Enforce Two-factor Authentication (2FA)

Two-factor Authentication (2FA) provides an additional level of security to your
users’ GitLab account. Once enabled, in addition to supplying their username and
password to login, they’ll be prompted for a code generated by an application on
their phone.

You can read more about it here:
[Two-factor Authentication (2FA)](../profile/two_factor_authentication.md)

Enforcing 2FA for all users

Users on GitLab, can enable it without any admin’s intervention. If you want to
enforce everyone to setup 2FA, you can choose from two different ways:

	Enforce on next login

	Suggest on next login, but allow a grace period before enforcing.

In the Admin area under Settings (/admin/application_settings), look for
the “Sign-in Restrictions” area, where you can configure both.

If you want 2FA enforcement to take effect on next login, change the grace
period to 0.

—

![Two factor authentication admin settings](img/two_factor_authentication_settings.png)

—

Enforcing 2FA for all users in a group

If you want to enforce 2FA only for certain groups, you can enable it in the
group settings and specify a grace period as above. To change this setting you
need to be administrator or owner of the group.

If there are multiple 2FA requirements (i.e. group + all users, or multiple
groups) the shortest grace period will be used.

—

![Two factor authentication group settings](img/two_factor_authentication_group_settings.png)

—

Disabling 2FA for everyone

There may be some special situations where you want to disable 2FA for everyone
even when forced 2FA is disabled. There is a rake task for that:

```
# Omnibus installations
sudo gitlab-rake gitlab:two_factor:disable_for_all_users

# Installations from source
sudo -u git -H bundle exec rake gitlab:two_factor:disable_for_all_users RAILS_ENV=production
```


	**IMPORTANT: this is a permanent and irreversible action. Users will have to
	reactivate 2FA from scratch if they want to use it again.**

 # User email confirmation at sign-up

Gitlab admin can enable email confirmation on sign-up, if you want to confirm all
user emails before they are able to sign-in.

In the Admin area under Settings (/admin/application_settings), go to section
Sign-in Restrictions and look for Send confirmation email on sign-up option.

 # User File Uploads

Images attached to issues, merge requests or comments do not require authentication
to be viewed if someone knows the direct URL. This direct URL contains a random
32-character ID that prevents unauthorized people from guessing the URL to an
image containing sensitive information. We don’t enable authentication because
these images need to be visible in the body of notification emails, which are
often read from email clients that are not authenticated with GitLab, like
Outlook, Apple Mail, or the Mail app on your mobile device.

Note that non-image attachments do require authentication to be viewed.

 # Webhooks and insecure internal web services

If you have non-GitLab web services running on your GitLab server or within its local network, these may be vulnerable to exploitation via Webhooks.

With [Webhooks](../user/project/integrations/webhooks.md), you and your project maintainers and owners can set up URLs to be triggered when specific things happen to projects. Normally, these requests are sent to external web services specifically set up for this purpose, that process the request and its attached data in some appropriate way.

Things get hairy, however, when a Webhook is set up with a URL that doesn’t point to an external, but to an internal service, that may do something completely unintended when the webhook is triggered and the POST request is sent.

Because Webhook requests are made by the GitLab server itself, these have complete access to everything running on the server (http://localhost:123) or within the server’s local network (http://192.168.1.12:345), even if these services are otherwise protected and inaccessible from the outside world.

If a web service does not require authentication, Webhooks can be used to trigger destructive commands by getting the GitLab server to make POST requests to endpoints like “http://localhost:123/some-resource/delete”.

To prevent this type of exploitation from happening, starting with GitLab 10.6, all Webhook requests to the current GitLab instance server address and/or in a private network will be forbidden by default. That means that all requests made to 127.0.0.1, ::1 and 0.0.0.0, as well as IPv4 10.0.0.0/8, 172.16.0.0/12, 192.168.0.0/16 and IPv6 site-local (ffc0::/10) addresses won’t be allowed.

This behavior can be overridden by enabling the option “Allow requests to the local network from hooks and services” in the “Outbound requests” section inside the Admin area under Settings (/admin/application_settings):

![Outbound requests admin settings](img/outbound_requests_section.png)

>**Note:**
System hooks are exempt from this protection because they are set up by admins.

 # GitLab and SSH keys

Git is a distributed version control system, which means you can work locally
but you can also share or “push” your changes to other servers.
Before you can push your changes to a GitLab server
you need a secure communication channel for sharing information.

The SSH protocol provides this security and allows you to authenticate to the
GitLab remote server without supplying your username or password each time.

For a more detailed explanation of how the SSH protocol works, we advise you to
read [this nice tutorial by DigitalOcean](https://www.digitalocean.com/community/tutorials/understanding-the-ssh-encryption-and-connection-process).

Locating an existing SSH key pair

Before generating a new SSH key pair check if your system already has one
at the default location by opening a shell, or Command Prompt on Windows,
and running the following command:

Windows Command Prompt:

`bash
type %userprofile%\.ssh\id_rsa.pub
`

Git Bash on Windows / GNU/Linux / macOS / PowerShell:

`bash
cat ~/.ssh/id_rsa.pub
`

If you see a string starting with ssh-rsa you already have an SSH key pair
and you can skip the generate portion of the next section and skip to the copy
to clipboard step.
If you don’t see the string or would like to generate a SSH key pair with a
custom name continue onto the next step.

Note that Public SSH key may also be named as follows:

	id_dsa.pub

	id_ecdsa.pub

	id_ed25519.pub

Generating a new SSH key pair

	To generate a new SSH key pair, use the following command:

Git Bash on Windows / GNU/Linux / macOS:

`bash
ssh-keygen -t rsa -C "your.email@example.com" -b 4096
`

Windows:

Alternatively on Windows you can download
[PuttyGen](http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html)
and follow [this documentation article][winputty] to generate a SSH key pair.

	Next, you will be prompted to input a file path to save your SSH key pair to.

If you don’t already have an SSH key pair use the suggested path by pressing
enter. Using the suggested path will normally allow your SSH client
to automatically use the SSH key pair with no additional configuration.

If you already have a SSH key pair with the suggested file path, you will need
to input a new file path and declare what host this SSH key pair will be used
for in your .ssh/config file, see [Working with non-default SSH key pair paths](#working-with-non-default-ssh-key-pair-paths)
for more information.

	Once you have input a file path you will be prompted to input a password to
secure your SSH key pair. It is a best practice to use a password for an SSH
key pair, but it is not required and you can skip creating a password by
pressing enter.

NOTE: Note:
If you want to change the password of your SSH key pair, you can use
ssh-keygen -p <keyname>.

Adding a SSH key to your GitLab account

	The next step is to copy the public SSH key as we will need it afterwards.

To copy your public SSH key to the clipboard, use the appropriate code below:

macOS:

`bash
pbcopy < ~/.ssh/id_rsa.pub
`

GNU/Linux (requires the xclip package):

`bash
xclip -sel clip < ~/.ssh/id_rsa.pub
`

Windows Command Line:

`bash
type %userprofile%\.ssh\id_rsa.pub | clip
`

Git Bash on Windows / Windows PowerShell:

`bash
cat ~/.ssh/id_rsa.pub | clip
`

	The final step is to add your public SSH key to GitLab.

Navigate to the ‘SSH Keys’ tab in your ‘Profile Settings’.
Paste your key in the ‘Key’ section and give it a relevant ‘Title’.
Use an identifiable title like ‘Work Laptop - Windows 7’ or
‘Home MacBook Pro 15’.

If you manually copied your public SSH key make sure you copied the entire
key starting with ssh-rsa and ending with your email.

	Optionally you can test your setup by running ssh -T git@example.com
(replacing example.com with your GitLab domain) and verifying that you
receive a Welcome to GitLab message.

Working with non-default SSH key pair paths

If you used a non-default file path for your GitLab SSH key pair,
you must configure your SSH client to find your GitLab private SSH key
for connections to your GitLab server (perhaps gitlab.com).

For your current terminal session you can do so using the following commands
(replacing other_id_rsa with your private SSH key):

Git Bash on Windows / GNU/Linux / macOS:

`bash
eval $(ssh-agent -s)
ssh-add ~/.ssh/other_id_rsa
`

To retain these settings you’ll need to save them to a configuration file.
For OpenSSH clients this is configured in the ~/.ssh/config file for some
operating systems.
Below are two example host configurations using their own SSH key:

```
# GitLab.com server
Host gitlab.com
RSAAuthentication yes
IdentityFile ~/.ssh/config/private-key-filename-01

# Private GitLab server
Host gitlab.company.com
RSAAuthentication yes
IdentityFile ~/.ssh/config/private-key-filename
```

Due to the wide variety of SSH clients and their very large number of
configuration options, further explanation of these topics is beyond the scope
of this document.

Public SSH keys need to be unique, as they will bind to your account.
Your SSH key is the only identifier you’ll have when pushing code via SSH.
That’s why it needs to uniquely map to a single user.

Deploy keys

Per-repository deploy keys

Deploy keys allow read-only or read-write (if enabled) access to one or
multiple projects with a single SSH key pair.

This is really useful for cloning repositories to your Continuous
Integration (CI) server. By using deploy keys, you don’t have to set up a
dummy user account.

If you are a project maintainer or owner, you can add a deploy key in the
project settings under the section ‘Repository’. Specify a title for the new
deploy key and paste a public SSH key. After this, the machine that uses
the corresponding private SSH key has read-only or read-write (if enabled)
access to the project.

You can’t add the same deploy key twice using the form.
If you want to add the same key to another project, please enable it in the
list that says ‘Deploy keys from projects available to you’. All the deploy
keys of all the projects you have access to are available. This project
access can happen through being a direct member of the project, or through
a group.

Deploy keys can be shared between projects, you just need to add them to each
project.

Global shared deploy keys

Global Shared Deploy keys allow read-only or read-write (if enabled) access to
be configured on any repository in the entire GitLab installation.

This is really useful for integrating repositories to secured, shared Continuous
Integration (CI) services or other shared services.
GitLab administrators can set up the Global Shared Deploy key in GitLab and
add the private key to any shared systems. Individual repositories opt into
exposing their repository using these keys when a project maintainers (or higher)
authorizes a Global Shared Deploy key to be used with their project.

Global Shared Keys can provide greater security compared to Per-Project Deploy
Keys since an administrator of the target integrated system is the only one
who needs to know and configure the private key.

GitLab administrators set up Global Deploy keys in the Admin area under the
section Deploy Keys. Ensure keys have a meaningful title as that will be
the primary way for project maintainers and owners to identify the correct Global
Deploy key to add. For instance, if the key gives access to a SaaS CI instance,
use the name of that service in the key name if that is all it is used for.
When creating Global Shared Deploy keys, give some thought to the granularity
of keys - they could be of very narrow usage such as just a specific service or
of broader usage for something like “Anywhere you need to give read access to
your repository”.

Once a GitLab administrator adds the Global Deployment key, project maintainers
and owners can add it in project’s Settings > Repository section by expanding the
Deploy Key section and clicking Enable next to the appropriate key listed
under Public deploy keys available to any project.

NOTE: Note:
The heading Public deploy keys available to any project only appears
if there is at least one Global Deploy Key configured.

CAUTION: Warning:
Defining Global Deploy Keys does not expose any given repository via
the key until that repository adds the Global Deploy Key to their project.
In this way the Global Deploy Keys enable access by other systems, but do
not implicitly give any access just by setting them up.

Applications

Eclipse

How to add your SSH key to Eclipse: https://wiki.eclipse.org/EGit/User_Guide#Eclipse_SSH_Configuration

[winputty]: https://the.earth.li/~sgtatham/putty/0.67/htmldoc/Chapter8.html#pubkey-puttygen

SSH on the GitLab server

GitLab integrates with the system-installed SSH daemon, designating a user
(typically named git) through which all access requests are handled. Users
connecting to the GitLab server over SSH are identified by their SSH key instead
of their username.

SSH client operations performed on the GitLab server wil be executed as this
user. Although it is possible to modify the SSH configuration for this user to,
e.g., provide a private SSH key to authenticate these requests by, this practice
is not supported and is strongly discouraged as it presents significant
security risks.

The GitLab check process includes a check for this condition, and will direct you
to this section if your server is configured like this, e.g.:

```
$ gitlab-rake gitlab:check
# …
Git user has default SSH configuration? … no


Try fixing it:
mkdir ~/gitlab-check-backup-1504540051
sudo mv /var/lib/git/.ssh/id_rsa ~/gitlab-check-backup-1504540051
sudo mv /var/lib/git/.ssh/id_rsa.pub ~/gitlab-check-backup-1504540051
For more information see:
doc/ssh/README.md in section “SSH on the GitLab server”
Please fix the error above and rerun the checks.




```

Remove the custom configuration as soon as you’re able to. These customizations
are explicitly not supported and may stop working at any time.

Troubleshooting

If on Git clone you are prompted for a password like git@gitlab.com’s password:
something is wrong with your SSH setup.

	Ensure that you generated your SSH key pair correctly and added the public SSH
key to your GitLab profile

	Try manually registering your private SSH key using ssh-agent as documented
earlier in this document

	Try to debug the connection by running ssh -Tv git@example.com
(replacing example.com with your GitLab domain)

 # System hooks

Your GitLab instance can perform HTTP POST requests on the following events:

	project_create

	project_destroy

	project_rename

	project_transfer

	project_update

	user_add_to_team

	user_remove_from_team

	user_create

	user_destroy

	user_failed_login

	user_rename

	key_create

	key_destroy

	group_create

	group_destroy

	group_rename

	user_add_to_group

	user_remove_from_group

The triggers for most of these are self-explanatory, but project_update and project_rename deserve some clarification: project_update is fired any time an attribute of a project is changed (name, description, tags, etc.) unless the path attribute is also changed. In that case, a project_rename is triggered instead (so that, for instance, if all you care about is the repo URL, you can just listen for project_rename).

user_failed_login is sent whenever a blocked user attempts to login and denied access.

System hooks can be used, e.g. for logging or changing information in a LDAP server.

> Note:
>
> We follow the same structure from Webhooks for Push and Tag events, but we never display commits.
>
> Same deprecations from Webhooks are valid here.

Hooks request example

Request header:

`
X-Gitlab-Event: System Hook
`

Project created:

```json
{




“created_at”: “2012-07-21T07:30:54Z”,
“updated_at”: “2012-07-21T07:38:22Z”,
“event_name”: “project_create”,


“name”: “StoreCloud”,








	“owner_email”: “johnsmith@gmail.com”,
	
	“owner_name”: “John Smith”,
	“path”: “storecloud”,













	“path_with_namespace”: “jsmith/storecloud”,
	
“project_id”: 74,




“project_visibility”: “private”









}

Project destroyed:

```json
{

“created_at”: “2012-07-21T07:30:58Z”,
“updated_at”: “2012-07-21T07:38:22Z”,
“event_name”: “project_destroy”,

“name”: “Underscore”,

	“owner_email”: “johnsmith@gmail.com”,
	
	“owner_name”: “John Smith”,
	“path”: “underscore”,

	“path_with_namespace”: “jsmith/underscore”,
	
“project_id”: 73,

“project_visibility”: “internal”

}

Project renamed:

```json
{




“created_at”: “2012-07-21T07:30:58Z”,
“updated_at”: “2012-07-21T07:38:22Z”,
“event_name”: “project_rename”,


“name”: “Underscore”,
“path”: “underscore”,








	“path_with_namespace”: “jsmith/underscore”,
	

“project_id”: 73,
“owner_name”: “John Smith”,




“owner_email”: “johnsmith@gmail.com”,




“project_visibility”: “internal”,








“old_path_with_namespace”: “jsmith/overscore”







}

Note that project_rename is not triggered if the namespace changes.
Please refer to group_rename and user_rename for that case.

Project transferred:

```json
{

“created_at”: “2012-07-21T07:30:58Z”,
“updated_at”: “2012-07-21T07:38:22Z”,
“event_name”: “project_transfer”,

“name”: “Underscore”,
“path”: “underscore”,

	“path_with_namespace”: “scores/underscore”,
	

“project_id”: 73,
“owner_name”: “John Smith”,

“owner_email”: “johnsmith@gmail.com”,

“project_visibility”: “internal”,

“old_path_with_namespace”: “jsmith/overscore”

}

Project updated:

```json
{




“created_at”: “2012-07-21T07:30:54Z”,
“updated_at”: “2012-07-21T07:38:22Z”,
“event_name”: “project_update”,


“name”: “StoreCloud”,








	“owner_email”: “johnsmith@gmail.com”,
	
	“owner_name”: “John Smith”,
	“path”: “storecloud”,













	“path_with_namespace”: “jsmith/storecloud”,
	
“project_id”: 74,




“project_visibility”: “private”











}

New Team Member:

```json
{

“created_at”: “2012-07-21T07:30:56Z”,
“updated_at”: “2012-07-21T07:38:22Z”,
“event_name”: “user_add_to_team”,

	“project_access”: “Maintainer”,
	
“project_id”: 74,

“project_name”: “StoreCloud”,
“project_path”: “storecloud”,

	“project_path_with_namespace”: “jsmith/storecloud”,
	

	“user_email”: “johnsmith@gmail.com”,
	“user_name”: “John Smith”,

	“user_username”: “johnsmith”,
	“user_id”: 41,

“project_visibility”: “private”

}

Team Member Removed:

```json
{




“created_at”: “2012-07-21T07:30:56Z”,
“updated_at”: “2012-07-21T07:38:22Z”,
“event_name”: “user_remove_from_team”,





	“project_access”: “Maintainer”,
	
“project_id”: 74,




“project_name”: “StoreCloud”,
“project_path”: “storecloud”,









	“project_path_with_namespace”: “jsmith/storecloud”,
	


	“user_email”: “johnsmith@gmail.com”,
	“user_name”: “John Smith”,









	“user_username”: “johnsmith”,
	“user_id”: 41,








“project_visibility”: “private”











}

User created:

```json
{

“created_at”: “2012-07-21T07:44:07Z”,
“updated_at”: “2012-07-21T07:38:22Z”,

“email”: “js@gitlabhq.com”,

	“event_name”: “user_create”,
	
“name”: “John Smith”,

	“username”: “js”,
	“user_id”: 41

}

User removed:

```json
{


“created_at”: “2012-07-21T07:44:07Z”,
“updated_at”: “2012-07-21T07:38:22Z”,


“email”: “js@gitlabhq.com”,





	“event_name”: “user_destroy”,
	
“name”: “John Smith”,





	“username”: “js”,
	“user_id”: 41















}

User failed login:

```json
{

“event_name”: “user_failed_login”,
“created_at”: “2017-10-03T06:08:48Z”,
“updated_at”: “2018-01-15T04:52:06Z”,

“name”: “John Smith”,

“email”: “user4@example.com”,

“user_id”: 26,

	“username”: “user4”,
	“state”: “blocked”

}

If the user is blocked via LDAP, state will be ldap_blocked.

User renamed:

```json
{



“event_name”: “user_rename”,
“created_at”: “2017-11-01T11:21:04Z”,
“updated_at”: “2017-11-01T14:04:47Z”,





“name”: “new-name”,




“email”: “best-email@example.tld”,




“user_id”: 58,




“username”: “new-exciting-name”,







“old_username”: “old-boring-name”







}

Key added

```json
{

“event_name”: “key_create”,
“created_at”: “2014-08-18 18:45:16 UTC”,
“updated_at”: “2012-07-21T07:38:22Z”,

	“username”: “root”,
	“key”: “ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQC58FwqHUbebw2SdT7SP4FxZ0w+lAO/erhy2ylhlcW/tZ3GY3mBu9VeeiSGoGz8hCx80Zrz+aQv28xfFfKlC8XQFpCWwsnWnQqO2Lv9bS8V1fIHgMxOHIt5Vs+9CAWGCCvUOAurjsUDoE2ALIXLDMKnJxcxD13XjWdK54j6ZXDB4syLF0C2PnAQSVY9X7MfCYwtuFmhQhKaBussAXpaVMRHltie3UYSBUUuZaB3J4cg/7TxlmxcNd+ppPRIpSZAB0NI6aOnqoBCpimscO/VpQRJMVLr3XiSYeT6HBiDXWHnIVPfQc03OGcaFqOit6p8lYKMaP/iUQLm+pgpZqrXZ9vB john@localhost”,
“id”: 4

}

Key removed

```json
{


“event_name”: “key_destroy”,
“created_at”: “2014-08-18 18:45:16 UTC”,
“updated_at”: “2012-07-21T07:38:22Z”,



	“username”: “root”,
	
	“key”: “ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQC58FwqHUbebw2SdT7SP4FxZ0w+lAO/erhy2ylhlcW/tZ3GY3mBu9VeeiSGoGz8hCx80Zrz+aQv28xfFfKlC8XQFpCWwsnWnQqO2Lv9bS8V1fIHgMxOHIt5Vs+9CAWGCCvUOAurjsUDoE2ALIXLDMKnJxcxD13XjWdK54j6ZXDB4syLF0C2PnAQSVY9X7MfCYwtuFmhQhKaBussAXpaVMRHltie3UYSBUUuZaB3J4cg/7TxlmxcNd+ppPRIpSZAB0NI6aOnqoBCpimscO/VpQRJMVLr3XiSYeT6HBiDXWHnIVPfQc03OGcaFqOit6p8lYKMaP/iUQLm+pgpZqrXZ9vB john@localhost”,
	“id”: 4


















}

Group created:

```json
{

“created_at”: “2012-07-21T07:30:54Z”,
“updated_at”: “2012-07-21T07:38:22Z”,
“event_name”: “group_create”,

“name”: “StoreCloud”,

	“owner_email”: null,
	
	“owner_name”: null,
	
“path”: “storecloud”,

“group_id”: 78

}

owner_name and owner_email are always null. Please see https://gitlab.com/gitlab-org/gitlab-ce/issues/39675.

Group removed:

```json
{



“created_at”: “2012-07-21T07:30:54Z”,
“updated_at”: “2012-07-21T07:38:22Z”,
“event_name”: “group_destroy”,


“name”: “StoreCloud”,








	“owner_email”: null,
	
	“owner_name”: null,
	
“path”: “storecloud”,




“group_id”: 78















}

owner_name and owner_email are always null. Please see https://gitlab.com/gitlab-org/gitlab-ce/issues/39675.

Group renamed:

```json
{

“event_name”: “group_rename”,
“created_at”: “2017-10-30T15:09:00Z”,
“updated_at”: “2017-11-01T10:23:52Z”,

“name”: “Better Name”,
“path”: “better-name”,

	“full_path”: “parent-group/better-name”,
	“group_id”: 64,

“owner_name”: null,

	“owner_email”: null,
	“old_path”: “old-name”,

“old_full_path”: “parent-group/old-name”

}

owner_name and owner_email are always null. Please see https://gitlab.com/gitlab-org/gitlab-ce/issues/39675.

New Group Member:

```json
{




“created_at”: “2012-07-21T07:30:56Z”,
“updated_at”: “2012-07-21T07:38:22Z”,
“event_name”: “user_add_to_group”,





	“group_access”: “Maintainer”,
	
“group_id”: 78,




“group_name”: “StoreCloud”,
“group_path”: “storecloud”,
“user_email”: “johnsmith@gmail.com”,


“user_name”: “John Smith”,












	“user_username”: “johnsmith”,
	“user_id”: 41











}

Group Member Removed:

```json
{

“created_at”: “2012-07-21T07:30:56Z”,
“updated_at”: “2012-07-21T07:38:22Z”,
“event_name”: “user_remove_from_group”,

	“group_access”: “Maintainer”,
	
“group_id”: 78,

“group_name”: “StoreCloud”,
“group_path”: “storecloud”,
“user_email”: “johnsmith@gmail.com”,

“user_name”: “John Smith”,

	“user_username”: “johnsmith”,
	“user_id”: 41

}

Push events

Triggered when you push to the repository, except when pushing tags.
It generates one event per modified branch.

Request header:

`
X-Gitlab-Event: System Hook
`

Request body:

```json
{


“event_name”: “push”,
“before”: “95790bf891e76fee5e1747ab589903a6a1f80f22”,
“after”: “da1560886d4f094c3e6c9ef40349f7d38b5d27d7”,
“ref”: “refs/heads/master”,
“checkout_sha”: “da1560886d4f094c3e6c9ef40349f7d38b5d27d7”,
“user_id”: 4,
“user_name”: “John Smith”,
“user_email”: “john@example.com”,
“user_avatar”: “https://s.gravatar.com/avatar/d4c74594d841139328695756648b6bd6?s=8://s.gravatar.com/avatar/d4c74594d841139328695756648b6bd6?s=80”,
“project_id”: 15,
“project”:{


“name”:”Diaspora”,
“description”:””,
“web_url”:”http://example.com/mike/diaspora”,
“avatar_url”:null,
“git_ssh_url”:”git@example.com:mike/diaspora.git”,
“git_http_url”:”http://example.com/mike/diaspora.git”,
“namespace”:”Mike”,
“visibility_level”:0,
“path_with_namespace”:”mike/diaspora”,
“default_branch”:”master”,
“homepage”:”http://example.com/mike/diaspora”,
“url”:”git@example.com:mike/diaspora.git”,
“ssh_url”:”git@example.com:mike/diaspora.git”,
“http_url”:”http://example.com/mike/diaspora.git”




},
“repository”:{


“name”: “Diaspora”,
“url”: “git@example.com:mike/diaspora.git”,
“description”: “”,
“homepage”: “http://example.com/mike/diaspora”,
“git_http_url”:”http://example.com/mike/diaspora.git”,
“git_ssh_url”:”git@example.com:mike/diaspora.git”,
“visibility_level”:0




},
“commits”: [



	{
	“id”: “c5feabde2d8cd023215af4d2ceeb7a64839fc428”,
“message”: “Add simple search to projects in public area”,
“timestamp”: “2013-05-13T18:18:08+00:00”,
“url”: “https://dev.gitlab.org/gitlab/gitlabhq/commit/c5feabde2d8cd023215af4d2ceeb7a64839fc428”,
“author”: {


“name”: “Dmitriy Zaporozhets”,
“email”: “dmitriy.zaporozhets@gmail.com”




}





}




],
“total_commits_count”: 1







}

## Tag events

Triggered when you create (or delete) tags to the repository.
It generates one event per modified tag.

Request header:

`
X-Gitlab-Event: System Hook
`

Request body:

```json
{

“event_name”: “tag_push”,
“before”: “00”,
“after”: “82b3d5ae55f7080f1e6022629cdb57bfae7cccc7”,
“ref”: “refs/tags/v1.0.0”,
“checkout_sha”: “5937ac0a7beb003549fc5fd26fc247adbce4a52e”,
“user_id”: 1,
“user_name”: “John Smith”,
“user_avatar”: “https://s.gravatar.com/avatar/d4c74594d841139328695756648b6bd6?s=8://s.gravatar.com/avatar/d4c74594d841139328695756648b6bd6?s=80”,
“project_id”: 1,
“project”:{

“name”:”Example”,
“description”:””,
“web_url”:”http://example.com/jsmith/example”,
“avatar_url”:null,
“git_ssh_url”:”git@example.com:jsmith/example.git”,
“git_http_url”:”http://example.com/jsmith/example.git”,
“namespace”:”Jsmith”,
“visibility_level”:0,
“path_with_namespace”:”jsmith/example”,
“default_branch”:”master”,
“homepage”:”http://example.com/jsmith/example”,
“url”:”git@example.com:jsmith/example.git”,
“ssh_url”:”git@example.com:jsmith/example.git”,
“http_url”:”http://example.com/jsmith/example.git”

},
“repository”:{

“name”: “Example”,
“url”: “ssh://git@example.com/jsmith/example.git”,
“description”: “”,
“homepage”: “http://example.com/jsmith/example”,
“git_http_url”:”http://example.com/jsmith/example.git”,
“git_ssh_url”:”git@example.com:jsmith/example.git”,
“visibility_level”:0

},
“commits”: [],
“total_commits_count”: 0

}

Merge request events

Triggered when a new merge request is created, an existing merge request was
updated/merged/closed or a commit is added in the source branch.

Request header:

`
X-Gitlab-Event: System Hook
`

```json
{


“object_kind”: “merge_request”,
“user”: {


“name”: “Administrator”,
“username”: “root”,
“avatar_url”: “http://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”




},
“project”: {


“name”: “Example”,
“description”: “”,
“web_url”: “http://example.com/jsmith/example”,
“avatar_url”: null,
“git_ssh_url”: “git@example.com:jsmith/example.git”,
“git_http_url”: “http://example.com/jsmith/example.git”,
“namespace”: “Jsmith”,
“visibility_level”: 0,
“path_with_namespace”: “jsmith/example”,
“default_branch”: “master”,
“ci_config_path”: “”,
“homepage”: “http://example.com/jsmith/example”,
“url”: “git@example.com:jsmith/example.git”,
“ssh_url”: “git@example.com:jsmith/example.git”,
“http_url”: “http://example.com/jsmith/example.git”




},
“object_attributes”: {


“id”: 90,
“target_branch”: “master”,
“source_branch”: “ms-viewport”,
“source_project_id”: 14,
“author_id”: 51,
“assignee_id”: 6,
“title”: “MS-Viewport”,
“created_at”: “2017-09-20T08:31:45.944Z”,
“updated_at”: “2017-09-28T12:23:42.365Z”,
“milestone_id”: null,
“state”: “opened”,
“merge_status”: “unchecked”,
“target_project_id”: 14,
“iid”: 1,
“description”: “”,
“updated_by_id”: 1,
“merge_error”: null,
“merge_params”: {


“force_remove_source_branch”: “0”




},
“merge_when_pipeline_succeeds”: false,
“merge_user_id”: null,
“merge_commit_sha”: null,
“deleted_at”: null,
“in_progress_merge_commit_sha”: null,
“lock_version”: 5,
“time_estimate”: 0,
“last_edited_at”: “2017-09-27T12:43:37.558Z”,
“last_edited_by_id”: 1,
“head_pipeline_id”: 61,
“ref_fetched”: true,
“merge_jid”: null,
“source”: {


“name”: “Awesome Project”,
“description”: “”,
“web_url”: “http://example.com/awesome_space/awesome_project”,
“avatar_url”: null,
“git_ssh_url”: “git@example.com:awesome_space/awesome_project.git”,
“git_http_url”: “http://example.com/awesome_space/awesome_project.git”,
“namespace”: “root”,
“visibility_level”: 0,
“path_with_namespace”: “awesome_space/awesome_project”,
“default_branch”: “master”,
“ci_config_path”: “”,
“homepage”: “http://example.com/awesome_space/awesome_project”,
“url”: “http://example.com/awesome_space/awesome_project.git”,
“ssh_url”: “git@example.com:awesome_space/awesome_project.git”,
“http_url”: “http://example.com/awesome_space/awesome_project.git”




},
“target”: {


“name”: “Awesome Project”,
“description”: “Aut reprehenderit ut est.”,
“web_url”: “http://example.com/awesome_space/awesome_project”,
“avatar_url”: null,
“git_ssh_url”: “git@example.com:awesome_space/awesome_project.git”,
“git_http_url”: “http://example.com/awesome_space/awesome_project.git”,
“namespace”: “Awesome Space”,
“visibility_level”: 0,
“path_with_namespace”: “awesome_space/awesome_project”,
“default_branch”: “master”,
“ci_config_path”: “”,
“homepage”: “http://example.com/awesome_space/awesome_project”,
“url”: “http://example.com/awesome_space/awesome_project.git”,
“ssh_url”: “git@example.com:awesome_space/awesome_project.git”,
“http_url”: “http://example.com/awesome_space/awesome_project.git”




},
“last_commit”: {


“id”: “ba3e0d8ff79c80d5b0bbb4f3e2e343e0aaa662b7”,
“message”: “fixed readme”,
“timestamp”: “2017-09-26T16:12:57Z”,
“url”: “http://example.com/awesome_space/awesome_project/commits/da1560886d4f094c3e6c9ef40349f7d38b5d27d7”,
“author”: {


“name”: “GitLab dev user”,
“email”: “gitlabdev@dv6700.(none)”




}




},
“work_in_progress”: false,
“total_time_spent”: 0,
“human_total_time_spent”: null,
“human_time_estimate”: null




},
“labels”: null,
“repository”: {


“name”: “git-gpg-test”,
“url”: “git@example.com:awesome_space/awesome_project.git”,
“description”: “”,
“homepage”: “http://example.com/awesome_space/awesome_project”




}







}

## Repository Update events

Triggered only once when you push to the repository (including tags).

Request header:

`
X-Gitlab-Event: System Hook
`

Request body:

```json
{

“event_name”: “repository_update”,
“user_id”: 1,
“user_name”: “John Smith”,
“user_email”: “admin@example.com”,
“user_avatar”: “https://s.gravatar.com/avatar/d4c74594d841139328695756648b6bd6?s=8://s.gravatar.com/avatar/d4c74594d841139328695756648b6bd6?s=80”,
“project_id”: 1,
“project”: {

“name”:”Example”,
“description”:””,
“web_url”:”http://example.com/jsmith/example”,
“avatar_url”:null,
“git_ssh_url”:”git@example.com:jsmith/example.git”,
“git_http_url”:”http://example.com/jsmith/example.git”,
“namespace”:”Jsmith”,
“visibility_level”:0,
“path_with_namespace”:”jsmith/example”,
“default_branch”:”master”,
“homepage”:”http://example.com/jsmith/example”,
“url”:”git@example.com:jsmith/example.git”,
“ssh_url”:”git@example.com:jsmith/example.git”,
“http_url”:”http://example.com/jsmith/example.git”,

},
“changes”: [

	{
	“before”:”8205ea8d81ce0c6b90fbe8280d118cc9fdad6130”,
“after”:”4045ea7a3df38697b3730a20fb73c8bed8a3e69e”,
“ref”:”refs/heads/master”

}

],
“refs”:[“refs/heads/master”]

}

 # Topics

Welcome to Topics! We have organized our content resources into topics
to get you started on areas of your interest. Each topic page
consists of an index listing all related content. It will guide
you through better understanding GitLab’s concepts
through our regular docs, and, when available, through articles (guides,
tutorials, technical overviews, blog posts) and videos.

	[Auto DevOps](autodevops/index.md)

	[Authentication](authentication/index.md)

	[Continuous Integration (GitLab CI)](../ci/README.md)

	[Git](git/index.md)

	[GitLab Installation](../install/README.md)

	[GitLab Pages](../user/project/pages/index.md)

>**Note:** More topics will be available soon.

 # Authentication

This page gathers all the resources for the topic Authentication within GitLab.

GitLab users

	[SSH](../../ssh/README.md)

	[Two-Factor Authentication (2FA)](../../user/profile/account/two_factor_authentication.md#two-factor-authentication)

	[Why do I keep getting signed out?](../../user/profile/index.md#why-do-i-keep-getting-signed-out)

	Articles:
- [Support for Universal 2nd Factor Authentication - YubiKeys](https://about.gitlab.com/2016/06/22/gitlab-adds-support-for-u2f/)
- [Security Webcast with Yubico](https://about.gitlab.com/2016/08/31/gitlab-and-yubico-security-webcast/)

	Integrations:
- [GitLab as OAuth2 authentication service provider](../../integration/oauth_provider.md#introduction-to-oauth)
- [GitLab as OpenID Connect identity provider](../../integration/openid_connect_provider.md)

GitLab administrators

	[LDAP (Community Edition)](../../administration/auth/ldap.md)

	[LDAP (Enterprise Edition)](https://docs.gitlab.com/ee/administration/auth/ldap-ee.html)

	[Enforce Two-factor Authentication (2FA)](../../security/two_factor_authentication.md#enforce-two-factor-authentication-2fa)

	Articles:
- [How to Configure LDAP with GitLab CE](../../administration/auth/how_to_configure_ldap_gitlab_ce/index.md)
- [How to Configure LDAP with GitLab EE](https://docs.gitlab.com/ee/articles/how_to_configure_ldap_gitlab_ee/)
- [Feature Highlight: LDAP Integration](https://about.gitlab.com/2014/07/10/feature-highlight-ldap-sync/)
- [Debugging LDAP](https://about.gitlab.com/handbook/support/workflows/ldap/debugging_ldap.html)

	Integrations:
- [OmniAuth](../../integration/omniauth.md)
- [Authentiq OmniAuth Provider](../../administration/auth/authentiq.md#authentiq-omniauth-provider)
- [Atlassian Crowd OmniAuth Provider](../../administration/auth/crowd.md)
- [CAS OmniAuth Provider](../../integration/cas.md)
- [SAML OmniAuth Provider](../../integration/saml.md)
- [Okta SSO provider](../../administration/auth/okta.md)
- [Kerberos integration (GitLab EE)](https://docs.gitlab.com/ee/integration/kerberos.html)

API

	[OAuth 2 Tokens](../../api/README.md#oauth-2-tokens)

	[Private Tokens](../../api/README.md#private-tokens)

	[Impersonation tokens](../../api/README.md#impersonation-tokens)

	[GitLab as an OAuth2 provider](../../api/oauth2.md#gitlab-as-an-oauth2-provider)

Third-party resources

	[Kanboard Plugin GitLab Authentication](https://kanboard.net/plugin/gitlab-auth)

	[Jenkins GitLab OAuth Plugin](https://wiki.jenkins-ci.org/display/JENKINS/GitLab+OAuth+Plugin)

	[Setup Gitlab CE with Active Directory authentication](https://www.caseylabs.com/setup-gitlab-ce-with-active-directory-authentication/)

	[How to customize GitLab to support OpenID authentication](http://eric.van-der-vlist.com/blog/2013/11/23/how-to-customize-gitlab-to-support-openid-authentication/)

	[Openshift - Configuring Authentication and User Agent](https://docs.openshift.org/latest/install_config/configuring_authentication.html#GitLab)

 # Auto DevOps

> [Introduced][ce-37115] in GitLab 10.0. Generally available on GitLab 11.0.

Auto DevOps automatically detects, builds, tests, deploys, and monitors your
applications.

Overview

With Auto DevOps, the software development process becomes easier to set up
as every project can have a complete workflow from verification to monitoring
without needing to configure anything. Just push your code and GitLab takes
care of everything else. This makes it easier to start new projects and brings
consistency to how applications are set up throughout a company.

Quick start

If you are using GitLab.com, see the [quick start guide](quick_start_guide.md)
for using Auto DevOps with GitLab.com and a Kubernetes cluster on Google Kubernetes
Engine.

Comparison to application platforms and PaaS

Auto DevOps provides functionality described by others as an application
platform or as a Platform as a Service (PaaS). It takes inspiration from the
innovative work done by [Heroku](https://www.heroku.com/) and goes beyond it
in a couple of ways:

	Auto DevOps works with any Kubernetes cluster, you’re not limited to running
on GitLab’s infrastructure (note that many features also work without Kubernetes).

	There is no additional cost (no markup on the infrastructure costs), and you
can use a self-hosted Kubernetes cluster or Containers as a Service on any
public cloud (for example [Google Kubernetes Engine](https://cloud.google.com/kubernetes-engine/)).

	Auto DevOps has more features including security testing, performance testing,
and code quality testing.

	It offers an incremental graduation path. If you need advanced customizations
you can start modifying the templates without having to start over on a
completely different platform.

Features

Comprised of a set of stages, Auto DevOps brings these best practices to your
project in a simple and automatic way:

1. [Auto Build](#auto-build)
1. [Auto Test](#auto-test)
1. [Auto Code Quality](#auto-code-quality) [STARTER]
1. [Auto SAST (Static Application Security Testing)](#auto-sast) [ULTIMATE]
1. [Auto Dependency Scanning](#auto-dependency-scanning) [ULTIMATE]
1. [Auto License Management](#auto-license-management) [ULTIMATE]
1. [Auto Container Scanning](#auto-container-scanning)
1. [Auto Review Apps](#auto-review-apps)
1. [Auto DAST (Dynamic Application Security Testing)](#auto-dast) [ULTIMATE]
1. [Auto Deploy](#auto-deploy)
1. [Auto Browser Performance Testing](#auto-browser-performance-testing) [PREMIUM]
1. [Auto Monitoring](#auto-monitoring)

As Auto DevOps relies on many different components, it’s good to have a basic
knowledge of the following:

	[Kubernetes](https://kubernetes.io/docs/home/)

	[Helm](https://docs.helm.sh/)

	[Docker](https://docs.docker.com)

	[GitLab Runner](https://docs.gitlab.com/runner/)

	[Prometheus](https://prometheus.io/docs/introduction/overview/)

Auto DevOps provides great defaults for all the stages; you can, however,
[customize](#customizing) almost everything to your needs.

For an overview on the creation of Auto DevOps, read the blog post [From 2/3 of the Self-Hosted Git Market, to the Next-Generation CI System, to Auto DevOps](https://about.gitlab.com/2017/06/29/whats-next-for-gitlab-ci/).

Requirements

TIP: Tip:
For self-hosted installations, the easiest way to make use of Auto DevOps is to
install GitLab inside a Kubernetes cluster using the [GitLab Omnibus Helm Chart]
which automatically installs and configures everything you need!

To make full use of Auto DevOps, you will need:

	GitLab Runner (needed for all stages) - Your Runner needs to be
configured to be able to run Docker. Generally this means using the
[Docker](https://docs.gitlab.com/runner/executors/docker.html) or [Kubernetes
executor](https://docs.gitlab.com/runner/executors/kubernetes.html), with
[privileged mode enabled](https://docs.gitlab.com/runner/executors/docker.html#use-docker-in-docker-with-privileged-mode).
The Runners do not need to be installed in the Kubernetes cluster, but the
Kubernetes executor is easy to use and is automatically autoscaling.
Docker-based Runners can be configured to autoscale as well, using [Docker
Machine](https://docs.gitlab.com/runner/install/autoscaling.html). Runners
should be registered as [shared Runners](../../ci/runners/README.md#registering-a-shared-runner)
for the entire GitLab instance, or [specific Runners](../../ci/runners/README.md#registering-a-specific-runner)
that are assigned to specific projects.

	Base domain (needed for Auto Review Apps and Auto Deploy) - You will need
a domain configured with wildcard DNS which is going to be used by all of your
Auto DevOps applications. [Read the specifics](#auto-devops-base-domain).

	Kubernetes (needed for Auto Review Apps, Auto Deploy, and Auto Monitoring) -
To enable deployments, you will need Kubernetes 1.5+. You need a [Kubernetes cluster][kubernetes-clusters]
for the project, or a Kubernetes [default service template](../../user/project/integrations/services_templates.md)
for the entire GitLab installation.

	A load balancer - You can use NGINX ingress by deploying it to your
Kubernetes cluster using the
[nginx-ingress](https://github.com/kubernetes/charts/tree/master/stable/nginx-ingress)
Helm chart.

	Wildcard TLS termination - You can deploy the
[kube-lego](https://github.com/kubernetes/charts/tree/master/stable/kube-lego)
Helm chart to your Kubernetes cluster to automatically issue certificates
for your domains using Let’s Encrypt.

	Prometheus (needed for Auto Monitoring) - To enable Auto Monitoring, you
will need Prometheus installed somewhere (inside or outside your cluster) and
configured to scrape your Kubernetes cluster. To get response metrics
(in addition to system metrics), you need to
[configure Prometheus to monitor NGINX](../../user/project/integrations/prometheus_library/nginx_ingress.md#configuring-prometheus-to-monitor-for-nginx-ingress-metrics).
The [Prometheus service](../../user/project/integrations/prometheus.md)
integration needs to be enabled for the project, or enabled as a
[default service template](../../user/project/integrations/services_templates.md)
for the entire GitLab installation.

NOTE: Note:
If you do not have Kubernetes or Prometheus installed, then Auto Review Apps,
Auto Deploy, and Auto Monitoring will be silently skipped.

Auto DevOps base domain

The Auto DevOps base domain is required if you want to make use of [Auto
Review Apps](#auto-review-apps) and [Auto Deploy](#auto-deploy). It can be defined
in three places:

	either under the project’s CI/CD settings while [enabling Auto DevOps](#enabling-auto-devops)

	or in instance-wide settings in the admin area > Settings under the “Continuous Integration and Delivery” section

	or at the project or group level as a variable: AUTO_DEVOPS_DOMAIN (required if you want to use [multiple clusters](#using-multiple-kubernetes-clusters))

A wildcard DNS A record matching the base domain(s) is required, for example,
given a base domain of example.com, you’d need a DNS entry like:

`
*.example.com 3600 A 1.2.3.4
`

In this case, example.com is the domain name under which the deployed apps will be served,
and 1.2.3.4 is the IP address of your load balancer; generally NGINX
([see requirements](#requirements)). How to set up the DNS record is beyond
the scope of this document; you should check with your DNS provider.

Alternatively you can use free public services like nip.io
which provide automatic wildcard DNS without any configuration. Just set the
Auto DevOps base domain to 1.2.3.4.nip.io.

Once set up, all requests will hit the load balancer, which in turn will route
them to the Kubernetes pods that run your application(s).

NOTE: Note:
If GitLab is installed using the [GitLab Omnibus Helm Chart], there are two
options: provide a static IP, or have one assigned. For more information see the
relevant docs on the [network prerequisites](../../install/kubernetes/gitlab_omnibus.md#networking-prerequisites).

Using multiple Kubernetes clusters [PREMIUM]

When using Auto DevOps, you may want to deploy different environments to
different Kubernetes clusters. This is possible due to the 1:1 connection that
[exists between them](../../user/project/clusters/index.md#multiple-kubernetes-clusters).

In the [Auto DevOps template](https://gitlab.com/gitlab-org/gitlab-ci-yml/blob/master/Auto-DevOps.gitlab-ci.yml)
(used behind the scenes by Auto DevOps), there are currently 3 defined environment names that you need to know:

	review/ (every environment starting with review/)

	staging

	production

Those environments are tied to jobs that use [Auto Deploy](#auto-deploy), so
except for the environment scope, they would also need to have a different
domain they would be deployed to. This is why you need to define a separate
AUTO_DEVOPS_DOMAIN variable for all the above
[based on the environment](../../ci/variables/README.md#limiting-environment-scopes-of-variables).

The following table is an example of how the three different clusters would
be configured.

Cluster name | Cluster environment scope | AUTO_DEVOPS_DOMAIN variable value | Variable environment scope | Notes |

———— | ————– | —————————– | ————- | —— |

review | review/* | review.example.com | review/* | The review cluster which will run all [Review Apps](../../ci/review_apps/index.md). * is a wildcard, which means it will be used by every environment name starting with review/. |

staging | staging | staging.example.com | staging | (Optional) The staging cluster which will run the deployments of the staging environments. You need to [enable it first](#deploy-policy-for-staging-and-production-environments). |

production | production | example.com | production | The production cluster which will run the deployments of the production environment. You can use [incremental rollouts](#incremental-rollout-to-production). |

To add a different cluster for each environment:

	Navigate to your project’s Operations > Kubernetes and create the Kubernetes clusters
with their respective environment scope as described from the table above.

![Auto DevOps multiple clusters](img/autodevops_multiple_clusters.png)

	After the clusters are created, navigate to each one and install Helm Tiller
and Ingress.

	Make sure you have [configured your DNS](#auto-devops-base-domain) with the
specified Auto DevOps domains.

	Navigate to your project’s Settings > CI/CD > Variables and add
the AUTO_DEVOPS_DOMAIN variables with their respective environment
scope.

![Auto DevOps domain variables](img/autodevops_domain_variables.png)

Now that all is configured, you can test your setup by creating a merge request
and verifying that your app is deployed as a review app in the Kubernetes
cluster with the review/* environment scope. Similarly, you can check the
other environments.

Enabling Auto DevOps

If you haven’t done already, read the [requirements](#requirements) to make
full use of Auto DevOps. If this is your fist time, we recommend you follow the
[quick start guide](quick_start_guide.md).

To enable Auto DevOps to your project:

1. Check that your project doesn’t have a .gitlab-ci.yml, or remove it otherwise
1. Go to your project’s Settings > CI/CD > Auto DevOps
1. Select “Enable Auto DevOps”
1. Optionally, but recommended, add in the [base domain](#auto-devops-base-domain)

that will be used by Kubernetes to [deploy your application](#auto-deploy)
and choose the [deployment strategy](#deployment-strategy)

	Hit Save changes for the changes to take effect

Once saved, an Auto DevOps pipeline will be triggered on the default branch.

NOTE: Note:
For GitLab versions 10.0 - 10.2, when enabling Auto DevOps, a pipeline needs to be
manually triggered either by pushing a new commit to the repository or by visiting
https://example.gitlab.com/<username>/<project>/pipelines/new and creating
a new pipeline for your default branch, generally master.

NOTE: Note:
If you are a GitLab Administrator, you can enable Auto DevOps instance wide
in Admin Area > Settings > Continuous Integration and Deployment. Doing that,
all the projects that haven’t explicitly set an option will have Auto DevOps
enabled by default.

Deployment strategy

> [Introduced](https://gitlab.com/gitlab-org/gitlab-ce/issues/38542) in GitLab 11.0.

You can change the deployment strategy used by Auto DevOps by going to your
project’s Settings > CI/CD > Auto DevOps.

The available options are:

	Continuous deployment to production - enables [Auto Deploy](#auto-deploy)
by setting the [STAGING_ENABLED](#deploy-policy-for-staging-and-production-environments) and
[INCREMENTAL_ROLLOUT_ENABLED](#incremental-rollout-to-production) variables
to false.

	Automatic deployment to staging, manual deployment to production - sets the
[STAGING_ENABLED](#deploy-policy-for-staging-and-production-environments) and
[INCREMENTAL_ROLLOUT_ENABLED](#incremental-rollout-to-production) variables
to true, and the user is responsible for manually deploying to staging and production.

Stages of Auto DevOps

The following sections describe the stages of Auto DevOps. Read them carefully
to understand how each one works.

Auto Build

Auto Build creates a build of the application in one of two ways:

	If there is a Dockerfile, it will use docker build to create a Docker image.

	Otherwise, it will use [Herokuish](https://github.com/gliderlabs/herokuish)
and [Heroku buildpacks](https://devcenter.heroku.com/articles/buildpacks)
to automatically detect and build the application into a Docker image.

Either way, the resulting Docker image is automatically pushed to the
[Container Registry][container-registry] and tagged with the commit SHA.

CAUTION: Important:
If you are also using Auto Review Apps and Auto Deploy and choose to provide
your own Dockerfile, make sure you expose your application to port
5000 as this is the port assumed by the default Helm chart.

Auto Test

Auto Test automatically runs the appropriate tests for your application using
[Herokuish](https://github.com/gliderlabs/herokuish) and [Heroku
buildpacks](https://devcenter.heroku.com/articles/buildpacks) by analyzing
your project to detect the language and framework. Several languages and
frameworks are detected automatically, but if your language is not detected,
you may succeed with a [custom buildpack](#custom-buildpacks). Check the
[currently supported languages](#currently-supported-languages).

NOTE: Note:
Auto Test uses tests you already have in your application. If there are no
tests, it’s up to you to add them.

Auto Code Quality [STARTER]

Auto Code Quality uses the
[Code Quality image](https://gitlab.com/gitlab-org/security-products/codequality) to run
static analysis and other code checks on the current code. The report is
created, and is uploaded as an artifact which you can later download and check
out.

In GitLab Starter, differences between the source and
target branches are also
[shown in the merge request widget](https://docs.gitlab.com/ee/user/project/merge_requests/code_quality.html).

Auto SAST [ULTIMATE]

> Introduced in [GitLab Ultimate][ee] 10.3.

Static Application Security Testing (SAST) uses the
[SAST Docker image](https://gitlab.com/gitlab-org/security-products/sast) to run static
analysis on the current code and checks for potential security issues. Once the
report is created, it’s uploaded as an artifact which you can later download and
check out.

In GitLab Ultimate, any security warnings are also
[shown in the merge request widget](https://docs.gitlab.com/ee//user/project/merge_requests/sast.html).

Auto Dependency Scanning [ULTIMATE]

> Introduced in [GitLab Ultimate][ee] 10.7.

Dependency Scanning uses the
[Dependency Scanning Docker image](https://gitlab.com/gitlab-org/security-products/dependency-scanning)
to run analysis on the project dependencies and checks for potential security issues. Once the
report is created, it’s uploaded as an artifact which you can later download and
check out.

Any security warnings are also
[shown in the merge request widget](https://docs.gitlab.com/ee//user/project/merge_requests/dependency_scanning.html).

Auto License Management [ULTIMATE]

> Introduced in [GitLab Ultimate][ee] 11.0.

License Management uses the
[License Management Docker image](https://gitlab.com/gitlab-org/security-products/license-management)
to search the project dependencies for their license. Once the
report is created, it’s uploaded as an artifact which you can later download and
check out.

Any licenses are also
[shown in the merge request widget](https://docs.gitlab.com/ee//user/project/merge_requests/license_management.html).

Auto Container Scanning

> Introduced in GitLab 10.4.

Vulnerability Static Analysis for containers uses
[Clair](https://github.com/coreos/clair) to run static analysis on a
Docker image and checks for potential security issues. Once the report is
created, it’s uploaded as an artifact which you can later download and
check out.

In GitLab Ultimate, any security warnings are also
[shown in the merge request widget](https://docs.gitlab.com/ee//user/project/merge_requests/container_scanning.html).

Auto Review Apps

NOTE: Note:
This is an optional step, since many projects do not have a Kubernetes cluster
available. If the [requirements](#requirements) are not met, the job will
silently be skipped.

CAUTION: Caution:
Your apps should not be manipulated outside of Helm (using Kubernetes directly.)
This can cause confusion with Helm not detecting the change, and subsequent
deploys with Auto DevOps can undo your changes. Also, if you change something
and want to undo it by deploying again, Helm may not detect that anything changed
in the first place, and thus not realize that it needs to re-apply the old config.

[Review Apps][review-app] are temporary application environments based on the
branch’s code so developers, designers, QA, product managers, and other
reviewers can actually see and interact with code changes as part of the review
process. Auto Review Apps create a Review App for each branch.

The Review App will have a unique URL based on the project name, the branch
name, and a unique number, combined with the Auto DevOps base domain. For
example, user-project-branch-1234.example.com. A link to the Review App shows
up in the merge request widget for easy discovery. When the branch is deleted,
for example after the merge request is merged, the Review App will automatically
be deleted.

Auto DAST [ULTIMATE]

> Introduced in [GitLab Ultimate][ee] 10.4.

Dynamic Application Security Testing (DAST) uses the
popular open source tool [OWASP ZAProxy](https://github.com/zaproxy/zaproxy)
to perform an analysis on the current code and checks for potential security
issues. Once the report is created, it’s uploaded as an artifact which you can
later download and check out.

In GitLab Ultimate, any security warnings are also
[shown in the merge request widget](https://docs.gitlab.com/ee//user/project/merge_requests/dast.html).

Auto Browser Performance Testing [PREMIUM]

> Introduced in [GitLab Premium][ee] 10.4.

Auto Browser Performance Testing utilizes the [Sitespeed.io container](https://hub.docker.com/r/sitespeedio/sitespeed.io/) to measure the performance of a web page. A JSON report is created and uploaded as an artifact, which includes the overall performance score for each page. By default, the root page of Review and Production environments will be tested. If you would like to add additional URL’s to test, simply add the paths to a file named .gitlab-urls.txt in the root directory, one per line. For example:

`
/
/features
/direction
`

In GitLab Premium, performance differences between the source
and target branches are [shown in the merge request widget](https://docs.gitlab.com/ee//user/project/merge_requests/browser_performance_testing.html).

Auto Deploy

NOTE: Note:
This is an optional step, since many projects do not have a Kubernetes cluster
available. If the [requirements](#requirements) are not met, the job will
silently be skipped.

CAUTION: Caution:
Your apps should not be manipulated outside of Helm (using Kubernetes directly.)
This can cause confusion with Helm not detecting the change, and subsequent
deploys with Auto DevOps can undo your changes. Also, if you change something
and want to undo it by deploying again, Helm may not detect that anything changed
in the first place, and thus not realize that it needs to re-apply the old config.

After a branch or merge request is merged into the project’s default branch (usually
master), Auto Deploy deploys the application to a production environment in
the Kubernetes cluster, with a namespace based on the project name and unique
project ID, for example project-4321.

Auto Deploy doesn’t include deployments to staging or canary by default, but the
[Auto DevOps template] contains job definitions for these tasks if you want to
enable them.

You can make use of [environment variables](#helm-chart-variables) to automatically
scale your pod replicas.

It’s important to note that when a project is deployed to a Kubernetes cluster,
it relies on a Docker image that has been pushed to the
[GitLab Container Registry](../../user/project/container_registry.md). Kubernetes
fetches this image and uses it to run the application. If the project is public,
the image can be accessed by Kubernetes without any authentication, allowing us
to have deployments more usable. If the project is private/internal, the
Registry requires credentials to pull the image. Currently, this is addressed
by providing CI_JOB_TOKEN as the password that can be used, but this token will
no longer be valid as soon as the deployment job finishes. This means that
Kubernetes can run the application, but in case it should be restarted or
executed somewhere else, it cannot be accessed again.

> [Introduced][ce-19507] in GitLab 11.0.

For internal and private projects a [GitLab Deploy Token](../../user/project/deploy_tokens/index.md###gitlab-deploy-token)
will be automatically created, when Auto DevOps is enabled and the Auto DevOps settings are saved. This Deploy Token
can be used for permanent access to the registry.

Note: Note
When the GitLab Deploy Token has been manually revoked, it won’t be automatically created.

Auto Monitoring

NOTE: Note:
Check the [requirements](#requirements) for Auto Monitoring to make this stage
work.

Once your application is deployed, Auto Monitoring makes it possible to monitor
your application’s server and response metrics right out of the box. Auto
Monitoring uses [Prometheus](../../user/project/integrations/prometheus.md) to
get system metrics such as CPU and memory usage directly from
[Kubernetes](../../user/project/integrations/prometheus_library/kubernetes.md),
and response metrics such as HTTP error rates, latency, and throughput from the
[NGINX server](../../user/project/integrations/prometheus_library/nginx_ingress.md).

The metrics include:

	Response Metrics: latency, throughput, error rate

	System Metrics: CPU utilization, memory utilization

If GitLab has been deployed using the [GitLab Omnibus Helm Chart], no
configuration is required.

If you have installed GitLab using a different method, you need to:

1. [Deploy Prometheus](../../user/project/integrations/prometheus.md#configuring-your-own-prometheus-server-within-kubernetes) into your Kubernetes cluster
1. If you would like response metrics, ensure you are running at least version

0.9.0 of NGINX Ingress and
[enable Prometheus metrics](https://github.com/kubernetes/ingress-nginx/blob/master/docs/examples/customization/custom-vts-metrics-prometheus/nginx-vts-metrics-conf.yaml).

	Finally, [annotate](https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/)
the NGINX Ingress deployment to be scraped by Prometheus using
prometheus.io/scrape: “true” and prometheus.io/port: “10254”.

To view the metrics, open the
[Monitoring dashboard for a deployed environment](../../ci/environments.md#monitoring-environments).

![Auto Metrics](img/auto_monitoring.png)

Customizing

While Auto DevOps provides great defaults to get you started, you can customize
almost everything to fit your needs; from custom [buildpacks](#custom-buildpacks),
to [`Dockerfile`s](#custom-dockerfile), [Helm charts](#custom-helm-chart), or
even copying the complete [CI/CD configuration](#customizing-gitlab-ci-yml)
into your project to enable staging and canary deployments, and more.

Custom buildpacks

If the automatic buildpack detection fails for your project, or if you want to
use a custom buildpack, you can override the buildpack(s) using a project variable
or a .buildpacks file in your project:

	Project variable - Create a project variable BUILDPACK_URL with the URL
of the buildpack to use.

	`.buildpacks` file - Add a file in your project’s repo called .buildpacks
and add the URL of the buildpack to use on a line in the file. If you want to
use multiple buildpacks, you can enter them in, one on each line.

CAUTION: Caution:
Using multiple buildpacks isn’t yet supported by Auto DevOps.

Custom Dockerfile

If your project has a Dockerfile in the root of the project repo, Auto DevOps
will build a Docker image based on the Dockerfile rather than using buildpacks.
This can be much faster and result in smaller images, especially if your
Dockerfile is based on [Alpine](https://hub.docker.com/_/alpine/).

Custom Helm Chart

Auto DevOps uses [Helm](https://helm.sh/) to deploy your application to Kubernetes.
You can override the Helm chart used by bundling up a chart into your project
repo or by specifying a project variable:

	Bundled chart - If your project has a ./chart directory with a Chart.yaml
file in it, Auto DevOps will detect the chart and use it instead of the [default
one](https://gitlab.com/charts/auto-deploy-app).
This can be a great way to control exactly how your application is deployed.

	Project variable - Create a [project variable](../../ci/variables/README.md#secret-variables)
AUTO_DEVOPS_CHART with the URL of a custom chart to use.

Customizing .gitlab-ci.yml

If you want to modify the CI/CD pipeline used by Auto DevOps, you can copy the
[Auto DevOps template] into your project’s repo and edit as you see fit.

Assuming that your project is new or it doesn’t have a .gitlab-ci.yml file
present:

	From your project home page, either click on the “Set up CI/CD” button, or click
on the plus button and (+), then “New file”

1. Pick .gitlab-ci.yml as the template type
1. Select “Auto-DevOps” from the template dropdown
1. Edit the template or add any jobs needed
1. Give an appropriate commit message and hit “Commit changes”

TIP: Tip: The Auto DevOps template includes useful comments to help you
customize it. For example, if you want deployments to go to a staging environment
instead of directly to a production one, you can enable the staging job by
renaming .staging to staging. Then make sure to uncomment the when key of
the production job to turn it into a manual action instead of deploying
automatically.

PostgreSQL database support

In order to support applications that require a database,
[PostgreSQL][postgresql] is provisioned by default. The credentials to access
the database are preconfigured, but can be customized by setting the associated
[variables](#environment-variables). These credentials can be used for defining a
DATABASE_URL of the format:

`yaml
postgres://user:password@postgres-host:postgres-port/postgres-database
`

Environment variables

The following variables can be used for setting up the Auto DevOps domain,
providing a custom Helm chart, or scaling your application. PostgreSQL can be
also be customized, and you can easily use a [custom buildpack](#custom-buildpacks).

Variable | Description |

———— | ————— |

AUTO_DEVOPS_DOMAIN | The [Auto DevOps domain](#auto-devops-domain); by default set automatically by the [Auto DevOps setting](#enabling-auto-devops). |

AUTO_DEVOPS_CHART | The Helm Chart used to deploy your apps; defaults to the one [provided by GitLab](https://gitlab.com/charts/charts.gitlab.io/tree/master/charts/auto-deploy-app). |

REPLICAS | The number of replicas to deploy; defaults to 1. |

PRODUCTION_REPLICAS | The number of replicas to deploy in the production environment. This takes precedence over REPLICAS; defaults to 1. |

CANARY_REPLICAS | The number of canary replicas to deploy for [Canary Deployments](https://docs.gitlab.com/ee/user/project/canary_deployments.html); defaults to 1 |

CANARY_PRODUCTION_REPLICAS | The number of canary replicas to deploy for [Canary Deployments](https://docs.gitlab.com/ee/user/project/canary_deployments.html) in the production environment. This takes precedence over CANARY_REPLICAS; defaults to 1 |

POSTGRES_ENABLED | Whether PostgreSQL is enabled; defaults to “true”. Set to false to disable the automatic deployment of PostgreSQL. |

POSTGRES_USER | The PostgreSQL user; defaults to user. Set it to use a custom username. |

POSTGRES_PASSWORD | The PostgreSQL password; defaults to testing-password. Set it to use a custom password. |

POSTGRES_DB | The PostgreSQL database name; defaults to the value of [$CI_ENVIRONMENT_SLUG](../../ci/variables/README.md#predefined-variables-environment-variables). Set it to use a custom database name. |

BUILDPACK_URL | The buildpack’s full URL. It can point to either Git repositories or a tarball URL. For Git repositories, it is possible to point to a specific ref, for example https://github.com/heroku/heroku-buildpack-ruby.git#v142 |

SAST_CONFIDENCE_LEVEL | The minimum confidence level of security issues you want to be reported; 1 for Low, 2 for Medium, 3 for High; defaults to 3.|

DEP_SCAN_DISABLE_REMOTE_CHECKS | Whether remote Dependency Scanning checks are disabled; defaults to “false”. Set to “true” to disable checks that send data to GitLab central servers. [Read more about remote checks](https://gitlab.com/gitlab-org/security-products/dependency-scanning#remote-checks).|

STAGING_ENABLED | From GitLab 10.8, this variable can be used to define a [deploy policy for staging and production environments](#deploy-policy-for-staging-and-production-environments). |

CANARY_ENABLED | From GitLab 11.0, this variable can be used to define a [deploy policy for canary environments](#deploy-policy-for-canary-environments). |

`INCREMENTAL_ROLLOUT_ENABLED`| From GitLab 10.8, this variable can be used to enable an [incremental rollout](#incremental-rollout-to-production) of your application for the production environment. |

TEST_DISABLED | From GitLab 11.0, this variable can be used to disable the test job. If the variable is present, the job will not be created. |

CODE_QUALITY_DISABLED | From GitLab 11.0, this variable can be used to disable the codequality job. If the variable is present, the job will not be created. |

SAST_DISABLED | From GitLab 11.0, this variable can be used to disable the sast job. If the variable is present, the job will not be created. |

DEPENDENCY_SCANNING_DISABLED | From GitLab 11.0, this variable can be used to disable the dependency_scanning job. If the variable is present, the job will not be created. |

CONTAINER_SCANNING_DISABLED | From GitLab 11.0, this variable can be used to disable the sast:container job. If the variable is present, the job will not be created. |

REVIEW_DISABLED | From GitLab 11.0, this variable can be used to disable the review and the manual review:stop job. If the variable is present, these jobs will not be created. |

DAST_DISABLED | From GitLab 11.0, this variable can be used to disable the dast job. If the variable is present, the job will not be created. |

PERFORMANCE_DISABLED | From GitLab 11.0, this variable can be used to disable the performance job. If the variable is present, the job will not be created. |

TIP: Tip:
Set up the replica variables using a
[project variable](../../ci/variables/README.md#secret-variables)
and scale your application by just redeploying it!

CAUTION: Caution:
You should not scale your application using Kubernetes directly. This can
cause confusion with Helm not detecting the change, and subsequent deploys with
Auto DevOps can undo your changes.

Advanced replica variables setup

Apart from the two replica-related variables for production mentioned above,
you can also use others for different environments.

There’s a very specific mapping between Kubernetes’ label named track,
GitLab CI/CD environment names, and the replicas environment variable.
The general rule is: TRACK_ENV_REPLICAS. Where:

	TRACK: The capitalized value of the track
[Kubernetes label](https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/)
in the Helm Chart app definition. If not set, it will not be taken into account
to the variable name.

	ENV: The capitalized environment name of the deploy job that is set in
.gitlab-ci.yml.

That way, you can define your own TRACK_ENV_REPLICAS variables with which
you will be able to scale the pod’s replicas easily.

In the example below, the environment’s name is qa and it deploys the track
foo which would result in looking for the FOO_QA_REPLICAS environment
variable:

```yaml
QA testing:


stage: deploy
environment:


name: qa




script:
- deploy foo




```

The track foo being referenced would also need to be defined in the
application’s Helm chart, like:

```yaml
replicaCount: 1
image:


repository: gitlab.example.com/group/project
tag: stable
pullPolicy: Always
secrets:



	name: gitlab-registry











	application:
	track: foo
tier: web



	service:
	enabled: true
name: web
type: ClusterIP
url: http://my.host.com/
externalPort: 5000
internalPort: 5000





```

Deploy policy for staging and production environments

> [Introduced](https://gitlab.com/gitlab-org/gitlab-ci-yml/merge_requests/160)
in GitLab 10.8.

TIP: Tip:
You can also set this inside your [project’s settings](#deployment-strategy).

The normal behavior of Auto DevOps is to use Continuous Deployment, pushing
automatically to the production environment every time a new pipeline is run
on the default branch. However, there are cases where you might want to use a
staging environment and deploy to production manually. For this scenario, the
STAGING_ENABLED environment variable was introduced.

If STAGING_ENABLED is defined in your project (e.g., set STAGING_ENABLED to
1 as a secret variable), then the application will be automatically deployed
to a staging environment, and a production_manual job will be created for
you when you’re ready to manually deploy to production.

Deploy policy for canary environments [PREMIUM]

> [Introduced](https://gitlab.com/gitlab-org/gitlab-ci-yml/merge_requests/171)
in GitLab 11.0.

A [canary environment](https://docs.gitlab.com/ee/user/project/canary_deployments.html) can be used
before any changes are deployed to production.

If CANARY_ENABLED is defined in your project (e.g., set CANARY_ENABLED to
1 as a secret variable) then two manual jobs will be created:

	canary which will deploy the application to the canary environment

	production_manual which is to be used by you when you’re ready to manually
deploy to production.

Incremental rollout to production [PREMIUM]

> [Introduced](https://gitlab.com/gitlab-org/gitlab-ee/issues/5415) in GitLab 10.8.

TIP: Tip:
You can also set this inside your [project’s settings](#deployment-strategy).

When you have a new version of your app to deploy in production, you may want
to use an incremental rollout to replace just a few pods with the latest code.
This will allow you to first check how the app is behaving, and later manually
increasing the rollout up to 100%.

If INCREMENTAL_ROLLOUT_ENABLED is defined in your project (e.g., set
INCREMENTAL_ROLLOUT_ENABLED to 1 as a secret variable), then instead of the
standard production job, 4 different
[manual jobs](../../ci/pipelines.md#manual-actions-from-the-pipeline-graph)
will be created:

1. rollout 10%
1. rollout 25%
1. rollout 50%
1. rollout 100%

The percentage is based on the REPLICAS variable and defines the number of
pods you want to have for your deployment. If you say 10, and then you run
the 10% rollout job, there will be 1 new pod + 9 old ones.

To start a job, click on the play icon next to the job’s name. You are not
required to go from 10% to 100%, you can jump to whatever job you want.
You can also scale down by running a lower percentage job, just before hitting
100%. Once you get to 100%, you cannot scale down, and you’d have to roll
back by redeploying the old version using the
[rollback button](../../ci/environments.md#rolling-back-changes) in the
environment page.

Below, you can see how the pipeline will look if the rollout or staging
variables are defined.

	Without `INCREMENTAL_ROLLOUT_ENABLED` and without `STAGING_ENABLED`

![Staging and rollout disabled](img/rollout_staging_disabled.png)

	Without `INCREMENTAL_ROLLOUT_ENABLED` and with `STAGING_ENABLED`

![Staging enabled](img/staging_enabled.png)

	With `INCREMENTAL_ROLLOUT_ENABLED` and without `STAGING_ENABLED`

![Rollout enabled](img/rollout_enabled.png)

	With `INCREMENTAL_ROLLOUT_ENABLED` and with `STAGING_ENABLED`

![Rollout and staging enabled](img/rollout_staging_enabled.png)

Currently supported languages

NOTE: Note:
Not all buildpacks support Auto Test yet, as it’s a relatively new
enhancement. All of Heroku’s [officially supported
languages](https://devcenter.heroku.com/articles/heroku-ci#currently-supported-languages)
support it, and some third-party buildpacks as well e.g., Go, Node, Java, PHP,
Python, Ruby, Gradle, Scala, and Elixir all support Auto Test, but notably the
multi-buildpack does not.

As of GitLab 10.0, the supported buildpacks are:

`
- heroku-buildpack-multi v1.0.0
- heroku-buildpack-ruby v168
- heroku-buildpack-nodejs v99
- heroku-buildpack-clojure v77
- heroku-buildpack-python v99
- heroku-buildpack-java v53
- heroku-buildpack-gradle v23
- heroku-buildpack-scala v78
- heroku-buildpack-play v26
- heroku-buildpack-php v122
- heroku-buildpack-go v72
- heroku-buildpack-erlang fa17af9
- buildpack-nginx v8
`

Limitations

The following restrictions apply.

Private project support

CAUTION: Caution: Private project support in Auto DevOps is experimental.

When a project has been marked as private, GitLab’s [Container
Registry][container-registry] requires authentication when downloading
containers. Auto DevOps will automatically provide the required authentication
information to Kubernetes, allowing temporary access to the registry.
Authentication credentials will be valid while the pipeline is running, allowing
for a successful initial deployment.

After the pipeline completes, Kubernetes will no longer be able to access the
Container Registry. Restarting a pod, scaling a service, or other actions which
require on-going access to the registry may fail. On-going secure access is
planned for a subsequent release.

Troubleshooting

	Auto Build and Auto Test may fail in detecting your language/framework. There
may be no buildpack for your application, or your application may be missing the
key files the buildpack is looking for. For example, for ruby apps, you must
have a Gemfile to be properly detected, even though it is possible to write a
Ruby app without a Gemfile. Try specifying a [custom
buildpack](#custom-buildpacks).

	Auto Test may fail because of a mismatch between testing frameworks. In this
case, you may need to customize your .gitlab-ci.yml with your test commands.

Disable the banner instance wide

If an administrator would like to disable the banners on an instance level, this
feature can be disabled either through the console:

`sh
sudo gitlab-rails console
`

Then run:

`ruby
Feature.get(:auto_devops_banner_disabled).enable
`

Or through the HTTP API with an admin access token:

`sh
curl --data "value=true" --header "PRIVATE-TOKEN: personal_access_token" https://gitlab.example.com/api/v4/features/auto_devops_banner_disabled
`

[ce-37115]: https://gitlab.com/gitlab-org/gitlab-ce/issues/37115
[kubernetes-clusters]: ../../user/project/clusters/index.md
[docker-in-docker]: ../../docker/using_docker_build.md#use-docker-in-docker-executor
[review-app]: ../../ci/review_apps/index.md
[container-registry]: ../../user/project/container_registry.md
[postgresql]: https://www.postgresql.org/
[Auto DevOps template]: https://gitlab.com/gitlab-org/gitlab-ci-yml/blob/master/Auto-DevOps.gitlab-ci.yml
[GitLab Omnibus Helm Chart]: ../../install/kubernetes/gitlab_omnibus.md
[ee]: https://about.gitlab.com/pricing/
[ce-19507]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/19507

 # Getting started with Auto DevOps

This is a step-by-step guide that will help you use [Auto DevOps](index.md) to
deploy a project hosted on GitLab.com to Google Kubernetes Engine.

We will use GitLab’s native Kubernetes integration, so you will not need
to create a Kubernetes cluster manually using the Google Cloud Platform console.
We will create and deploy a simple application that we create from a GitLab template.

These instructions will also work for a self-hosted GitLab instance; you’ll just
need to ensure your own [Runners are configured](../../ci/runners/README.md) and
[Google OAuth is enabled](../../integration/google.md).

Configuring your Google account

Before creating and connecting your Kubernetes cluster to your GitLab project,
you need a Google Cloud Platform account. If you don’t already have one,
sign up at https://console.cloud.google.com. You’ll need to either sign in with an existing
Google account (for example, one that you use to access Gmail, Drive, etc.) or create a new one.

	Follow the steps as outlined in the [“Before you begin” section of the Kubernetes Engine docs](https://cloud.google.com/kubernetes-engine/docs/quickstart#before-you-begin)
in order for the required APIs and related services to be enabled.

	Make sure you have created a [billing account](https://cloud.google.com/billing/docs/how-to/manage-billing-account).

TIP: Tip:
Every new Google Cloud Platform (GCP) account receives [$300 in credit](https://console.cloud.google.com/freetrial),
and in partnership with Google, GitLab is able to offer an additional $200 for new GCP accounts to get started with GitLab’s
Google Kubernetes Engine Integration. All you have to do is [follow this link](https://goo.gl/AaJzRW) and apply for credit.

Creating a new project from a template

We will use one of GitLab’s project templates to get started. As the name suggests,
those projects provide a barebones application built on some well-known frameworks.

	In GitLab, click the plus icon (+) at the top of the navigation bar and select
New project.

	Go to the Create from template tab where you can choose among a Ruby on
Rails, Spring, or NodeJS Express project. For this example,
we’ll use the Ruby on Rails template.

![Select project template](img/guide_project_template.png)

	Give your project a name, optionally a description, and make it public so that
you can take advantage of the features available in the
[GitLab Gold plan](https://about.gitlab.com/pricing/#gitlab-com).

![Create project](img/guide_create_project.png)

	Click Create project.

Now that the project is created, the next step is to create the Kubernetes cluster
under which this application will be deployed.

Creating a Kubernetes cluster from within GitLab

	On the project’s landing page, click the button labeled Add Kubernetes cluster
(note that this option is also available when you navigate to Operations > Kubernetes).

![Project landing page](img/guide_project_landing_page.png)

	Choose Create on Google Kubernetes Engine.

![Choose GKE](img/guide_choose_gke.png)

	Sign in with Google.

![Google sign in](img/guide_google_signin.png)

	Connect with your Google account and press Allow when asked (this will
be shown only the first time you connect GitLab with your Google account).

![Google auth](img/guide_google_auth.png)

	The last step is to fill in the cluster details. Give it a name, leave the
environment scope as is, and choose the GCP project under which the cluster
will be created. (Per the instructions when you
[configured your Google account](#configuring-your-google-account), a project
should have already been created for you.) Next, choose the
[region/zone](https://cloud.google.com/compute/docs/regions-zones/) under which the
cluster will be created, enter the number of nodes you want it to have, and
finally choose their [machine type](https://cloud.google.com/compute/docs/machine-types).

![GitLab GKE cluster details](img/guide_gitlab_gke_details.png)

	Once ready, click Create Kubernetes cluster.

After a couple of minutes, the cluster will be created. You can also see its
status on your [GCP dashboard](https://console.cloud.google.com/kubernetes).

The next step is to install some applications on your cluster that are needed
to take full advantage of Auto DevOps.

Installing Helm, Ingress, and Prometheus

GitLab’s Kubernetes integration comes with some
[pre-defined applications](../../user/project/clusters/index.md#installing-applications)
for you to install.

![Cluster applications](img/guide_cluster_apps.png)

The first one to install is Helm Tiller, a package manager for Kubernetes, which
is needed in order to install the rest of the applications. Go ahead and click
its Install button.

Once it’s installed, the other applications that rely on it will each have their Install
button enabled. For this guide, we need Ingress and Prometheus. Ingress provides
load balancing, SSL termination, and name-based virtual hosting, using NGINX behind
the scenes. Prometheus is an open-source monitoring and alerting system that we’ll
use to supervise the deployed application. We will not install GitLab Runner as
we’ll use the shared Runners that GitLab.com provides.

After the Ingress is installed, wait a few seconds and copy the IP address that
is displayed, which we’ll use in the next step when enabling Auto DevOps.

Enabling Auto DevOps

Now that the Kubernetes cluster is set up and ready, let’s enable Auto DevOps.

1. First, navigate to Settings > CI/CD > Auto DevOps.
1. Select Enable Auto DevOps.
1. Add in your base Domain by using the one GitLab suggests. Note that

generally, you would associate the IP address with a domain name on your
registrar’s settings. In this case, for the sake of the guide, we will use
an alternative DNS that will map any domain name of the scheme
anything.ip_address.nip.io to the corresponding ip_address. For example,
if the IP address of the Ingress is 1.2.3.4, the domain name to fill in
would be 1.2.3.4.nip.io.

	Lastly, let’s select the [continuous deployment strategy](index.md#deployment-strategy)
which will automatically deploy the application to production once the pipeline
successfully runs on the master branch.

	Click Save changes.

![Auto DevOps settings](img/guide_enable_autodevops.png)

Once you complete all the above and save your changes, a new pipeline is
automatically created. To view the pipeline, go to CI/CD > Pipelines.

![First pipeline](img/guide_first_pipeline.png)

In the next section we’ll break down the pipeline and explain what each job does.

Deploying the application

By now you should see the pipeline running, but what is it running exactly?

To navigate inside the pipeline, click its status badge. (It’s status should be “running”).
The pipeline is split into 4 stages, each running a couple of jobs.

![Pipeline stages](img/guide_pipeline_stages.png)

In the build stage, the application is built into a Docker image and then
uploaded to your project’s [Container Registry](../../user/project/container_registry.md) ([Auto Build](index.md#auto-build)).

In the test stage, GitLab runs various checks on the application:

	The test job runs unit and integration tests by detecting the language and
framework ([Auto Test](index.md#auto-test))

	The code_quality job checks the code quality and is allowed to fail
([Auto Code Quality](index.md#auto-code-quality)) [STARTER]

	The container_scanning job checks the Docker container if it has any
vulnerabilities and is allowed to fail ([Auto Container Scanning](index.md#auto-container-scanning))

	The dependency_scanning job checks if the application has any dependencies
susceptible to vulnerabilities and is allowed to fail ([Auto Dependency Scanning](index.md#auto-dependency-scanning)) [ULTIMATE]

	The sast job runs static analysis on the current code to check for potential
security issues and is allowed to fail([Auto SAST](index.md#auto-sast)) [ULTIMATE]

	The license_management job searches the application’s dependencies to determine each of their
licenses and is allowed to fail ([Auto License Management](index.md#auto-license-management)) [ULTIMATE]

NOTE: Note:
As you might have noticed, all jobs except test are allowed to fail in the
test stage.

The production stage is run after the tests and checks finish, and it automatically
deploys the application in Kubernetes ([Auto Deploy](index.md#auto-deploy)).

Lastly, in the performance stage, some performance tests will run
on the deployed application
([Auto Browser Performance Testing](index.md#auto-browser-performance-testing)). [PREMIUM]

—

The URL for the deployed application can be found under the Environments
page where you can also monitor your application. Let’s explore that.

Monitoring

Now that the application is successfully deployed, let’s navigate to its
website. First, go to Operations > Environments.

![Environments](img/guide_environments.png)

In Environments you can see some details about the deployed
applications. In the rightmost column for the production environment, you can make use of the three icons:

	The first icon will open the URL of the application that is deployed in
production. It’s a very simple page, but the important part is that it works!

	The next icon with the small graph will take you to the metrics page where
Prometheus collects data about the Kubernetes cluster and how the application
affects it (in terms of memory/CPU usage, latency, etc.).

![Environments metrics](img/guide_environments_metrics.png)

	The third icon is the [web terminal](../../ci/environments.md#web-terminals)
and it will open a terminal session right inside the container where the
application is running.

Right below, there is the
[Deploy Board](https://docs.gitlab.com/ee/user/project/deploy_boards.md).
The squares represent pods in your Kubernetes cluster that are associated with
the given environment. Hovering above each square you can see the state of a
deployment and clicking a square will take you to the pod’s logs page.

TIP: Tip:
There is only one pod hosting the application at the moment, but you can add
more pods by defining the [REPLICAS variable](index.md#environment-variables)
under Settings > CI/CD > Variables.

Working with branches

Following the [GitLab flow](../../workflow/gitlab_flow.md#working-with-feature-branches)
let’s create a feature branch that will add some content to the application.

Under your repository, navigate to the following file: app/views/welcome/index.html.erb.
By now, it should only contain a paragraph: <p>You’re on Rails!</p>, so let’s
start adding content. Let’s use GitLab’s [Web IDE](../../user/project/web_ide/index.md) to make the change. Once
you’re on the Web IDE, make the following change:

`html
<p>You're on Rails! Powered by GitLab Auto DevOps.</p>
`

Stage the file, add a commit message, and create a new branch and a merge request
by clicking Commit.

![Web IDE commit](img/guide_ide_commit.png)

Once you submit the merge request, you’ll see the pipeline running. This will
run all the jobs as [described previously](#deploying-the-application), as well
a few more that run only on branches other than master.

![Merge request](img/guide_merge_request.png)

After a few minutes you’ll notice that there was a failure in a test.
This means there’s a test that was ‘broken’ by our change.
Navigating into the test job that failed, you can see what the broken test is:

```
Failure:
WelcomeControllerTest#test_should_get_index [/app/test/controllers/welcome_controller_test.rb:7]:
<You’re on Rails!> expected but was
<You’re on Rails! Powered by GitLab Auto DevOps.>..
Expected 0 to be >= 1.

bin/rails test test/controllers/welcome_controller_test.rb:4
```

Let’s fix that:

1. Back to the merge request, click the Web IDE button.
1. Find the test/controllers/welcome_controller_test.rb file and open it.
1. Change line 7 to say You’re on Rails! Powered by GitLab Auto DevOps.
1. Click Commit.
1. On your left, under “Unstaged changes”, click the little checkmark icon

to stage the changes.

	Write a commit message and click Commit.

Now, if you go back to the merge request you should not only see the test passing,
but also the application deployed as a [review app](index.md#auto-review-apps). You
can visit it by following the URL in the merge request. The changes that we
previously made should be there.

![Review app](img/guide_merge_request_review_app.png)

Once you merge the merge request, the pipeline will run on the master branch,
and the application will be eventually deployed straight to production.

Conclusion

After implementing this project, you should now have a solid understanding of the basics of Auto DevOps.
We started from building and testing to deploying and monitoring an application
all within GitLab. Despite its automatic nature, Audo DevOps can also be configured
and customized to fit your workflow. Here are some helpful resources for further reading:

1. [Auto DevOps](index.md)
1. [Multiple Kubernetes clusters](index.md#using-multiple-kubernetes-clusters) [PREMIUM]
1. [Incremental rollout to production](index.md#incremental-rollout-to-production) [PREMIUM]
1. [Disable jobs you don’t need with environment variables](index.md#environment-variables)
1. [Use a static IP for your cluster](../../user/project/clusters/index.md#using-a-static-ip)
1. [Use your own buildpacks to build your application](index.md#custom-buildpacks)
1. [Prometheus monitoring](../../user/project/integrations/prometheus.md)

 # Git documentation

Git is a [free and open source](https://git-scm.com/about/free-and-open-source)
distributed version control system designed to handle everything from small to
very large projects with speed and efficiency.

[GitLab](https://about.gitlab.com) is a Git-based fully integrated platform for
software development. Besides Git’s functionalities, GitLab has a lot of
powerful [features](https://about.gitlab.com/features/) to enhance your
[workflow](https://about.gitlab.com/2016/10/25/gitlab-workflow-an-overview/).

We’ve gathered some resources to help you to get the best from Git with GitLab.

Getting started

	[Git concepts](../../university/training/user_training.md#git-concepts)

	[How to install Git](how_to_install_git/index.md)

	[Start using Git on the command line](../../gitlab-basics/start-using-git.md)

	[Command Line basic commands](../../gitlab-basics/command-line-commands.md)

	[GitLab Git Cheat Sheet (download)](https://about.gitlab.com/images/press/git-cheat-sheet.pdf)

	Commits
- [Revert a commit](../../user/project/merge_requests/revert_changes.md#reverting-a-commit)
- [Cherry-picking a commit](../../user/project/merge_requests/cherry_pick_changes.md#cherry-picking-a-commit)
- [Squashing commits](../../workflow/gitlab_flow.md#squashing-commits-with-rebase)

Third-party references:

	[Getting Started - Git website](https://git-scm.com)

	[Getting Started - Version control](https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control)

	[Getting Started - Git Basics](https://git-scm.com/book/en/v2/Getting-Started-Git-Basics)

	[Getting Started - Installing Git](https://git-scm.com/book/en/v2/Getting-Started-Installing-Git)

	[Git on the Server - GitLab](https://git-scm.com/book/en/v2/Git-on-the-Server-GitLab)

Concepts

	Article (2017-05-17): [Why Git is Worth the Learning Curve](https://about.gitlab.com/2017/05/17/learning-curve-is-the-biggest-challenge-developers-face-with-git/)

	Article (2016-05-11): [The future of SaaS hosted Git repository pricing](https://about.gitlab.com/2016/05/11/git-repository-pricing/)

	GLU Course (Presentation): [About Version Control](https://docs.google.com/presentation/d/16sX7hUrCZyOFbpvnrAFrg6tVO5_yT98IgdAqOmXwBho/edit?usp=sharing)

Exploring Git

	[Git Tips & Tricks](https://about.gitlab.com/2016/12/08/git-tips-and-tricks/)

	[Eight Tips to help you work better with Git](https://about.gitlab.com/2015/02/19/8-tips-to-help-you-work-better-with-git/)

Troubleshooting Git

	[Numerous _undo_ possibilities in Git](numerous_undo_possibilities_in_git/index.md)

	Learn a few [Git troubleshooting](troubleshooting_git.md) techniques to help you out.

Branching strategies

	[GitLab Flow](https://about.gitlab.com/2014/09/29/gitlab-flow/)

Third-party references:

	[Git Branching - Branches in a Nutshell](https://git-scm.com/book/en/v2/Git-Branching-Branches-in-a-Nutshell)

	[Git Branching - Branching Workflows](https://git-scm.com/book/en/v2/Git-Branching-Branching-Workflows)

Advanced use

	[Custom Git Hooks](../../administration/custom_hooks.md)

	[Git Attributes](../../user/project/git_attributes.md)

	Git Submodules: [Using Git submodules with GitLab CI](../../ci/git_submodules.md#using-git-submodules-with-gitlab-ci)

API

	[Gitignore templates](../../api/templates/gitignores.md)

Git LFS

	[Getting Started with Git LFS](https://about.gitlab.com/2017/01/30/getting-started-with-git-lfs-tutorial/)

	[GitLab Git LFS documentation](../../workflow/lfs/manage_large_binaries_with_git_lfs.md)

	[Git-Annex to Git-LFS migration guide](https://docs.gitlab.com/ee/workflow/lfs/migrate_from_git_annex_to_git_lfs.html)

	Article (2015-08-13): [Towards a production quality open source Git LFS server](https://about.gitlab.com/2015/08/13/towards-a-production-quality-open-source-git-lfs-server/)

 # Troubleshooting Git

Sometimes things don’t work the way they should or as you might expect when
you’re using Git. Here are some tips on troubleshooting and resolving issues
with Git.

Broken pipe errors on git push

‘Broken pipe’ errors can occur when attempting to push to a remote repository.
When pushing you will usually see:

`
Write failed: Broken pipe
fatal: The remote end hung up unexpectedly
`

To fix this issue, here are some possible solutions.

Increase the POST buffer size in Git

If pushing over HTTP, you can try increasing the POST buffer size in Git’s
configuration. Open a terminal and enter:

`sh
git config http.postBuffer 52428800
`

The value is specified in bytes, so in the above case the buffer size has been
set to 50MB. The default is 1MB.

Check your SSH configuration

If pushing over SSH, first check your SSH configuration as ‘Broken pipe’
errors can sometimes be caused by underlying issues with SSH (such as
authentication). Make sure that SSH is correctly configured by following the
instructions in the [SSH troubleshooting] docs.

There’s another option where you can prevent session timeouts by configuring
SSH ‘keep alive’ either on the client or on the server (if you are a GitLab
admin and have access to the server).

NOTE: Note: configuring both the client and the server is unnecessary.

To configure SSH on the client side:

	On UNIX, edit ~/.ssh/config (create the file if it doesn’t exist) and
add or edit:


```
Host your-gitlab-instance-url.com


ServerAliveInterval 60
ServerAliveCountMax 5




```


	On Windows, if you are using PuTTY, go to your session properties, then
navigate to “Connection” and under “Sending of null packets to keep
session active”, set “Seconds between keepalives (0 to turn off)” to 60.

To configure SSH on the server side, edit /etc/ssh/sshd_config and add:

`
ClientAliveInterval 60
ClientAliveCountMax 5
`

Running a git repack

If ‘pack-objects’ type errors are also being displayed, you can try to
run a git repack before attempting to push to the remote repository again:

`sh
git repack
git push
`

Upgrade your Git client

In case you’re running an older version of Git (< 2.9), consider upgrading
to >= 2.9 (see [Broken pipe when pushing to Git repository][Broken-Pipe]).

[SSH troubleshooting]: ../../ssh/README.md#troubleshooting “SSH Troubleshooting”
[Broken-Pipe]: https://stackoverflow.com/questions/19120120/broken-pipe-when-pushing-to-git-repository/36971469#36971469 “StackOverflow: ‘Broken pipe when pushing to Git repository’”

 —
author: Sean Packham
author_gitlab: SeanPackham
level: beginner
article_type: user guide
date: 2017-05-15
description: ‘This article describes how to install Git on macOS, Ubuntu Linux and Windows.’
—

Installing Git

To begin contributing to GitLab projects
you will need to install the Git client on your computer.
This article will show you how to install Git on macOS, Ubuntu Linux and Windows.

Install Git on macOS using the Homebrew package manager

Although it is easy to use the version of Git shipped with macOS
or install the latest version of Git on macOS by downloading it from the project website,
we recommend installing it via Homebrew to get access to
an extensive selection of dependency managed libraries and applications.

If you are sure you don’t need access to any additional development libraries
or don’t have approximately 15gb of available disk space for Xcode and Homebrew
use one of the the aforementioned methods.

Installing Xcode

Xcode is needed by Homebrew to build dependencies.
You can install [XCode](https://developer.apple.com/xcode/)
through the macOS App Store.

Installing Homebrew

Once Xcode is installed browse to the [Homebrew website](http://brew.sh/index.html)
for the official Homebrew installation instructions.

Installing Git via Homebrew

With Homebrew installed you are now ready to install Git.
Open a Terminal and enter in the following command:

`bash
brew install git
`

Congratulations you should now have Git installed via Homebrew.
Next read our article on [adding an SSH key to GitLab](../../../ssh/README.md).

Install Git on Ubuntu Linux

On Ubuntu and other Linux operating systems
it is recommended to use the built in package manager to install Git.

Open a Terminal and enter in the following commands
to install the latest Git from the official Git maintained package archives:

`bash
sudo apt-add-repository ppa:git-core/ppa
sudo apt-get update
sudo apt-get install git
`

Congratulations you should now have Git installed via the Ubuntu package manager.
Next read our article on [adding an SSH key to GitLab](../../../ssh/README.md).

Installing Git on Windows from the Git website

Browse to the [Git website](https://git-scm.com/) and download and install Git for Windows.
Next read our article on [adding an SSH key to GitLab](../../../ssh/README.md).

 —
author: Crt Mori
author_gitlab: Letme
level: intermediary
article_type: tutorial
date: 2017-05-15
—

Numerous undo possibilities in Git

Introduction

In this tutorial, we will show you different ways of undoing your work in Git, for which
we will assume you have a basic working knowledge of. Check GitLab’s
[Git documentation](../index.md#git-documentation) for reference.
Also, we will only provide some general info of the commands, which is enough
to get you started for the easy cases/examples, but for anything more advanced please refer to the [Git book](https://git-scm.com/book/en/v2).

We will explain a few different techniques to undo your changes based on the stage
of the change in your current development. Also, keep in mind that [nothing in
Git is really deleted.][git-autoclean-ref]
This means that until Git automatically cleans detached commits (which cannot be
accessed by branch or tag) it will be possible to view them with git reflog command
and access them with direct commit-id. Read more about _[redoing the undo](#redoing-the-undo)_ on the section below.

This guide is organized depending on the [stage of development][git-basics]
where you want to undo your changes from and if they were shared with other developers
or not. Because Git is tracking changes a created or edited file is in the unstaged state
(if created it is untracked by Git). After you add it to a repository (git add) you put
a file into the staged state, which is then committed (git commit) to your
local repository. After that, file can be shared with other developers (git push).
Here’s what we’ll cover in this tutorial:

	[Undo local changes](#undo-local-changes) which were not pushed to remote repository

	Before you commit, in both unstaged and staged state

	After you committed

	Undo changes after they are pushed to remote repository

	[Without history modification](#undo-remote-changes-without-changing-history) (preferred way)

	[With history modification](#undo-remote-changes-with-modifying-history) (requires
coordination with team and force pushes).

	[Usecases when modifying history is generally acceptable](#where-modifying-history-is-generally-acceptable)

	[How to modify history](#how-modifying-history-is-done)

	[How to remove sensitive information from repository](#deleting-sensitive-information-from-commits)

Branching strategy

[Git][git-official] is a de-centralized version control system, which means that beside regular
versioning of the whole repository, it has possibilities to exchange changes
with other repositories. To avoid chaos with
[multiple sources of truth][git-distributed], various
development workflows have to be followed, and it depends on your internal
workflow how certain changes or commits can be undone or changed.
[GitLab Flow][gitlab-flow] provides a good
balance between developers clashing with each other while
developing the same feature and cooperating seamlessly, but it does not enable
joined development of the same feature by multiple developers by default.
When multiple developers develop the same feature on the same branch, clashing
with every synchronization is unavoidable, but a proper or chosen Git Workflow will
prevent that anything is lost or out of sync when feature is complete. You can also
read through this blog post on [Git Tips & Tricks][gitlab-git-tips-n-tricks]
to learn how to easily do things in Git.

Undo local changes

Until you push your changes to any remote repository, they will only affect you.
That broadens your options on how to handle undoing them. Still, local changes
can be on various stages and each stage has a different approach on how to tackle them.

Unstaged local changes (before you commit)

When a change is made, but it is not added to the staged tree, Git itself
proposes a solution to discard changes to certain file.

Suppose you edited a file to change the content using your favorite editor:

`shell
vim <file>
`

Since you did not git add <file> to staging, it should be under unstaged files (or
untracked if file was created). You can confirm that with:

```shell
$ git status
On branch master
Your branch is up-to-date with ‘origin/master’.
Changes not staged for commit:


(use “git add <file>…” to update what will be committed)
(use “git checkout – <file>…” to discard changes in working directory)


modified:   <file>







no changes added to commit (use “git add” and/or “git commit -a”)
```

At this point there are 3 options to undo the local changes you have:

	Discard all local changes, but save them for possible re-use [later](#quickly-save-local-changes)

`shell
git stash
`

	Discarding local changes (permanently) to a file

`shell
git checkout -- <file>
`

	Discard all local changes to all files permanently

`shell
git reset --hard
`

Before executing git reset –hard, keep in mind that there is also a way to
just temporary store the changes without committing them using git stash.
This command resets the changes to all files, but it also saves them in case
you would like to apply them at some later time. You can read more about it in
[section below](#quickly-save-local-changes).

Quickly save local changes

You are working on a feature when a boss drops by with an urgent task. Since your
feature is not complete, but you need to swap to another branch, you can use
git stash to save what you had done, swap to another branch, commit, push,
test, then get back to previous feature branch, do git stash pop and continue
where you left.

The example above shows that discarding all changes is not always a preferred option,
but Git provides a way to save them for later, while resetting the repository to state without
them. This is achieved by Git stashing command git stash, which in fact saves your
current work and runs git reset –hard, but it also has various
additional options like:

	git stash save, which enables including temporary commit message, which will help you identify changes, among with other options

	git stash list, which lists all previously stashed commits (yes, there can be more) that were not `pop`ed

	git stash pop, which redoes previously stashed changes and removes them from stashed list

	git stash apply, which redoes previously stashed changes, but keeps them on stashed list

Staged local changes (before you commit)

Let’s say you have added some files to staging, but you want to remove them from the
current commit, yet you want to retain those changes - just move them outside
of the staging tree. You also have an option to discard all changes with
git reset –hard or think about git stash [as described earlier.](#quickly-save-local-changes)

Lets start the example by editing a file, with your favorite editor, to change the
content and add it to staging

`
vim <file>
git add <file>
`

The file is now added to staging as confirmed by git status command:

```shell
$ git status
On branch master
Your branch is up-to-date with ‘origin/master’.
Changes to be committed:


(use “git reset HEAD <file>…” to unstage)


new file:   <file>







```

Now you have 4 options to undo your changes:

	Unstage the file to current commit (HEAD)

`shell
git reset HEAD <file>
`

	Unstage everything - retain changes

`shell
git reset
`

	Discard all local changes, but save them for [later](#quickly-save-local-changes)

`shell
git stash
`

	Discard everything permanently

`shell
git reset --hard
`

Committed local changes

Once you commit, your changes are recorded by the version control system.
Because you haven’t pushed to your remote repository yet, your changes are
still not public (or shared with other developers). At this point, undoing
things is a lot easier, we have quite some workaround options. Once you push
your code, you’ll have less options to troubleshoot your work.

Without modifying history

Through the development process some of the previously committed changes do not
fit anymore in the end solution, or are source of the bugs. Once you find the
commit which triggered bug, or once you have a faulty commit, you can simply
revert it with git revert commit-id. This command inverts (swaps) the additions and
deletions in that commit, so that it does not modify history. Retaining history
can be helpful in future to notice that some changes have been tried
unsuccessfully in the past.

In our example we will assume there are commits A,`B`,`C`,`D`,`E` committed in this order: A-B-C-D-E,
and B is the commit you want to undo. There are many different ways to identify commit
B as bad, one of them is to pass a range to git bisect command. The provided range includes
last known good commit (we assume A) and first known bad commit (where bug was detected - we will assume E).

`shell
git bisect A..E
`

Bisect will provide us with commit-id of the middle commit to test, and then guide us
through simple bisection process. You can read more about it [in official Git Tools][git-debug]
In our example we will end up with commit B, that introduced bug/error. We have
4 options on how to remove it (or part of it) from our repository.

	Undo (swap additions and deletions) changes introduced by commit B.

`shell
git revert commit-B-id
`

	Undo changes on a single file or directory from commit B, but retain them in the staged state

`shell
git checkout commit-B-id <file>
`

	Undo changes on a single file or directory from commit B, but retain them in the unstaged state

`shell
git reset commit-B-id <file>
`

	There is one command we also must not forget: creating a new branch
from the point where changes are not applicable or where the development has hit a
dead end. For example you have done commits A-B-C-D on your feature-branch
and then you figure C and D are wrong. At this point you either reset to B
and do commit F (which will cause problems with pushing and if forced pushed also with other developers)
since branch now looks A-B-F, which clashes with what other developers have locally (you will
[change history](#with-history-modification)), or you simply checkout commit B create
a new branch and do commit F. In the last case, everyone else can still do their work while you
have your new way to get it right and merge it back in later. Alternatively, with GitLab,
you can [cherry-pick](../../../user/project/merge_requests/cherry_pick_changes.md#cherry-picking-a-commit)
that commit into a new merge request.

![Create a new branch to avoid clashing](img/branching.png)

`shell
git checkout commit-B-id
git checkout -b new-path-of-feature
Create <commit F>
git commit -a
`

With history modification

There is one command for history modification and that is git rebase. Command
provides interactive mode (-i flag) which enables you to:

	reword commit messages (there is also git commit –amend for editing
last commit message)

	edit the commit content (changes introduced by commit) and message

	squash multiple commits into a single one, and have a custom or aggregated
commit message

	drop commits - simply delete them

	and few more options

Let us check few examples. Again there are commits A-B-C-D where you want to
delete commit B.

	Rebase the range from current commit D to A:

`shell
git rebase -i A
`

	Command opens your favorite editor where you write drop in front of commit

B, but you leave default pick with all other commits. Save and exit the
editor to perform a rebase. Remember: if you want to cancel delete whole
file content before saving and exiting the editor

In case you want to modify something introduced in commit B.

	Rebase the range from current commit D to A:

`shell
git rebase -i A
`

	Command opens your favorite text editor where you write edit in front of commit

B, but leave default pick with all other commits. Save and exit the editor to
perform a rebase

	Now do your edits and commit changes:

`shell
git commit -a
`

You can find some more examples in [below section where we explain how to modify
history](#how-modifying-history-is-done)

Redoing the Undo

Sometimes you realize that the changes you undid were useful and you want them
back. Well because of first paragraph you are in luck. Command git reflog
enables you to recall detached local commits by referencing or applying them
via commit-id. Although, do not expect to see really old commits in reflog, because
Git regularly [cleans the commits which are unreachable by branches or tags][git-autoclean-ref].

To view repository history and to track older commits you can use below command:

```shell
$ git reflog show

# Example output:
b673187 HEAD@{4}: merge 6e43d5987921bde189640cc1e37661f7f75c9c0b: Merge made by the ‘recursive’ strategy.
eb37e74 HEAD@{5}: rebase -i (finish): returning to refs/heads/master
eb37e74 HEAD@{6}: rebase -i (pick): Commit C
97436c6 HEAD@{7}: rebase -i (start): checkout 97436c6eec6396c63856c19b6a96372705b08b1b
…
88f1867 HEAD@{12}: commit: Commit D
97436c6 HEAD@{13}: checkout: moving from 97436c6eec6396c63856c19b6a96372705b08b1b to test
97436c6 HEAD@{14}: checkout: moving from master to 97436c6
05cc326 HEAD@{15}: commit: Commit C
6e43d59 HEAD@{16}: commit: Commit B
```

Output of command shows repository history. In first column there is commit-id,
in following column, number next to HEAD indicates how many commits ago something
was made, after that indicator of action that was made (commit, rebase, merge, …)
and then on end description of that action.

Undo remote changes without changing history

This topic is roughly same as modifying committed local changes without modifying
history. It should be the preferred way of undoing changes on any remote repository
or public branch. Keep in mind that branching is the best solution when you want
to retain the history of faulty development, yet start anew from certain point. Branching
enables you to include the existing changes in new development (by merging) and
it also provides a clear timeline and development structure.

![Use revert to keep branch flowing](img/revert.png)

If you want to revert changes introduced in certain commit-id you can simply
revert that commit-id (swap additions and deletions) in newly created commit:
You can do this with

`shell
git revert commit-id
`

or creating a new branch:

`shell
git checkout commit-id
git checkout -b new-path-of-feature
`

Undo remote changes with modifying history

This is useful when you want to hide certain things - like secret keys,
passwords, SSH keys, etc. It is and should not be used to hide mistakes, as
it will make it harder to debug in case there are some other bugs. The main
reason for this is that you loose the real development progress. Also keep in
mind that, even with modified history, commits are just detached and can still be
accessed through commit-id - at least until all repositories perform
the cleanup of detached commits (happens automatically).

![Modifying history causes problems on remote branch](img/rebase_reset.png)

Where modifying history is generally acceptable

Modified history breaks the development chain of other developers, as changed
history does not have matching commits’ids. For that reason it should not
be used on any public branch or on branch that might be used by other
developers. When contributing to big open source repositories (e.g. [GitLab CE][gitlab-ce]),
it is acceptable to squash commits into a single one, to present
a nicer history of your contribution.
Keep in mind that this also removes the comments attached to certain commits
in merge requests, so if you need to retain traceability in GitLab, then
modifying history is not acceptable.
A feature-branch of a merge request is a public branch and might be used by
other developers, but project process and rules might allow or require
you to use git rebase (command that changes history) to reduce number of
displayed commits on target branch after reviews are done (for example
GitLab). There is a git merge –squash command which does exactly that
(squashes commits on feature-branch to a single commit on target branch
at merge).

>**Note:**
Never modify the commit history of master or shared branch

How modifying history is done

After you know what you want to modify (how far in history or how which range of
old commits), use git rebase -i commit-id. This command will then display all the commits from
current version to chosen commit-id and allow modification, squashing, deletion
of that commits.

```shell
$ git rebase -i commit1-id..commit3-id
pick <commit1-id> <commit1-commit-message>
pick <commit2-id> <commit2-commit-message>
pick <commit3-id> <commit3-commit-message>

# Rebase commit1-id..commit3-id onto <commit4-id> (3 command(s))
#
# Commands:
# p, pick = use commit
# r, reword = use commit, but edit the commit message
# e, edit = use commit, but stop for amending
# s, squash = use commit, but meld into previous commit
# f, fixup = like “squash”, but discard this commit’s log message
# x, exec = run command (the rest of the line) using shell
# d, drop = remove commit
#
# These lines can be re-ordered; they are executed from top to bottom.
#
# If you remove a line here THAT COMMIT WILL BE LOST.
#
# However, if you remove everything, the rebase will be aborted.
#
# Note that empty commits are commented out
```

>**Note:**
It is important to notice that comment from the output clearly states that, if
you decide to abort, then do not just close your editor (as that will in-fact
modify history), but remove all uncommented lines and save.

That is one of the reasons why git rebase should be used carefully on
shared and remote branches. But don’t worry, there will be nothing broken until
you push back to the remote repository (so you can freely explore the
different outcomes locally).

`shell
Modify history from commit-id to HEAD (current commit)
git rebase -i commit-id
`

Deleting sensitive information from commits

Git also enables you to delete sensitive information from your past commits and
it does modify history in the progress. That is why we have included it in this
section and not as a standalone topic. To do so, you should run the
git filter-branch, which enables you to rewrite history with
[certain filters][git-filters-manual].
This command uses rebase to modify history and if you want to remove certain
file from history altogether use:

`shell
git filter-branch --tree-filter 'rm filename' HEAD
`

Since git filter-branch command might be slow on big repositories, there are
tools that can use some of Git specifics to enable faster execution of common
tasks (which is exactly what removing sensitive information file is about).
An alternative is [BFG Repo-cleaner][bfg-repo-cleaner]. Keep in mind that these
tools are faster because they do not provide a same fully feature set as git filter-branch
does, but focus on specific usecases.

Conclusion

There are various options of undoing your work with any version control system, but
because of de-centralized nature of Git, these options are multiplied (or limited)
depending on the stage of your process. Git also enables rewriting history, but that
should be avoided as it might cause problems when multiple developers are
contributing to the same codebase.

<!– Identifiers, in alphabetical order –>

[bfg-repo-cleaner]: https://rtyley.github.io/bfg-repo-cleaner/
[git-autoclean-ref]: https://git-scm.com/book/en/v2/Git-Internals-Maintenance-and-Data-Recovery
[git-basics]: https://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository
[git-debug]: https://git-scm.com/book/en/v2/Git-Tools-Debugging-with-Git
[git-distributed]: https://git-scm.com/about/distributed
[git-filters-manual]: https://git-scm.com/docs/git-filter-branch#_options
[git-official]: https://git-scm.com/
[gitlab-ce]: https://gitlab.com/gitlab-org/gitlab-ce/blob/master/CONTRIBUTING.md#contribution-acceptance-criteria
[gitlab-flow]: https://about.gitlab.com/2014/09/29/gitlab-flow/
[gitlab-git-tips-n-tricks]: https://about.gitlab.com/2016/12/08/git-tips-and-tricks/

 —
comments: false
—

GitLab University

GitLab University is the best place to learn about Version Control with Git and GitLab.

It doesn’t replace, but accompanies our great [Documentation](https://docs.gitlab.com)
and [Blog Articles](https://about.gitlab.com/blog/).

Would you like to contribute to GitLab University? Then please take a look at our contribution [process](https://gitlab.com/gitlab-org/gitlab-ce/blob/master/PROCESS.md) for more information.

Gitlab University Curriculum

The curriculum is composed of GitLab videos, screencasts, presentations, projects and external GitLab content hosted on other services and has been organized into the following sections.

1. [GitLab Beginner](#1-gitlab-beginner)
1. [GitLab Intermediate](#2-gitlab-intermediate)
1. [GitLab Advanced](#3-gitlab-advanced)
1. [External Articles](#4-external-articles)
1. [Resources for GitLab Team Members](#5-resources-for-gitlab-team-members)

—

1. GitLab Beginner

1.1. Version Control and Git

1. [Version Control Systems](https://docs.google.com/presentation/d/16sX7hUrCZyOFbpvnrAFrg6tVO5_yT98IgdAqOmXwBho/edit#slide=id.g72f2e4906_2_29)
1. [Code School: An Introduction to Git](https://www.codeschool.com/account/courses/try-git)

1.2. GitLab Basics

1. [An Overview of GitLab.com - Video](https://www.youtube.com/watch?v=WaiL5DGEMR4)
1. [Why Use Git and GitLab - Slides](https://docs.google.com/a/gitlab.com/presentation/d/1RcZhFmn5VPvoFu6UMxhMOy7lAsToeBZRjLRn0LIdaNc/edit?usp=drive_web)
1. [GitLab Basics - Article](../gitlab-basics/README.md)
1. [Git and GitLab Basics - Video](https://www.youtube.com/watch?v=03wb9FvO4Ak&index=5&list=PLFGfElNsQthbQu_IWlNOxul0TbS_2JH-e)
1. [Git and GitLab Basics - Online Course](https://courses.platzi.com/classes/git-gitlab/concepto/part-1/part-23370/material/)
1. [Comparison of GitLab Versions](https://about.gitlab.com/features/#compare)

1.3. Your GitLab Account

1. [Create a GitLab Account - Online Course](https://courses.platzi.com/classes/git-gitlab/concepto/first-steps/create-an-account-on-gitlab/material/)
1. [Create and Add your SSH key to GitLab - Video](https://www.youtube.com/watch?v=54mxyLo3Mqk)

1.4. GitLab Projects

1. [Repositories, Projects and Groups - Video](https://www.youtube.com/watch?v=4TWfh1aKHHw&index=1&list=PLFGfElNsQthbQu_IWlNOxul0TbS_2JH-e)
1. [Creating a Project in GitLab - Video](https://www.youtube.com/watch?v=7p0hrpNaJ14)
1. [How to Create Files and Directories](https://about.gitlab.com/2016/02/10/feature-highlight-create-files-and-directories-from-files-page/)
1. [GitLab Todos](https://about.gitlab.com/2016/03/02/gitlab-todos-feature-highlight/)
1. [GitLab’s Work in Progress (WIP) Flag](https://about.gitlab.com/2016/01/08/feature-highlight-wip/)

1.5. Migrating from other Source Control

1. [Migrating from BitBucket/Stash](https://docs.gitlab.com/ee/user/project/import/bitbucket.html)
1. [Migrating from GitHub](https://docs.gitlab.com/ee/user/project/import/github.html)
1. [Migrating from SVN](https://docs.gitlab.com/ee/user/project/import/svn.html)
1. [Migrating from Fogbugz](https://docs.gitlab.com/ee/user/project/import/fogbugz.html)

1.6. GitLab Inc.

1. [About GitLab](https://about.gitlab.com/about/)
1. [GitLab Direction](https://about.gitlab.com/direction/)
1. [GitLab Master Plan](https://about.gitlab.com/2016/09/13/gitlab-master-plan/)
1. [Making GitLab Great for Everyone - Video](https://www.youtube.com/watch?v=GGC40y4vMx0) - Response to “Dear GitHub” letter
1. [Using Innersourcing to Improve Collaboration](https://about.gitlab.com/2014/09/05/innersourcing-using-the-open-source-workflow-to-improve-collaboration-within-an-organization/)
1. [The Software Development Market and GitLab - Video](https://www.youtube.com/watch?v=sXlhgPK1NTY&list=PLFGfElNsQthbQu_IWlNOxul0TbS_2JH-e&index=6) - [Slides](https://docs.google.com/presentation/d/1vCU-NbZWz8NTNK8Vu3y4zGMAHb5DpC8PE5mHtw1PWfI/edit)
1. [The GitLab Book Club](bookclub/index.md)
1. [GitLab Resources](https://about.gitlab.com/resources/)

1.7 Community and Support

	[Getting Help](https://about.gitlab.com/getting-help/)

	Proposing Features and Reporting and Tracking bugs for GitLab

	The GitLab IRC channel, Gitter Chat Room, Community Forum and Mailing List

	Getting Technical Support

	Being part of our Great Community and Contributing to GitLab

1. [Getting Started with the GitLab Development Kit (GDK)](https://about.gitlab.com/2016/06/08/getting-started-with-gitlab-development-kit/)
1. [Contributing Technical Articles to the GitLab Blog](https://about.gitlab.com/2016/01/26/call-for-writers/)
1. [GitLab Training Workshops](https://docs.gitlab.com/ce/university/training/end-user/)
1. [GitLab Professional Services](https://about.gitlab.com/services/)

1.8 GitLab Training Material

1. [Git and GitLab Terminology](glossary/README.md)
1. [Git and GitLab Workshop - Slides](https://docs.google.com/presentation/d/1JzTYD8ij9slejV2-TO-NzjCvlvj6mVn9BORePXNJoMI/edit?usp=drive_web)

—

2. GitLab Intermediate

2.1 GitLab Pages

1. [Using any Static Site Generator with GitLab Pages](https://about.gitlab.com/2016/06/17/ssg-overview-gitlab-pages-part-3-examples-ci/)
1. [Securing GitLab Pages with SSL](https://about.gitlab.com/2016/06/24/secure-gitlab-pages-with-startssl/)
1. [GitLab Pages Documentation](https://docs.gitlab.com/ce/user/project/pages/)

2.2. GitLab Issues

1. [Markdown in GitLab](../user/markdown.md)
1. [Issues and Merge Requests - Video](https://www.youtube.com/watch?v=raXvuwet78M)
1. [Due Dates and Milestones for GitLab Issues](https://about.gitlab.com/2016/08/05/feature-highlight-set-dates-for-issues/)
1. [How to Use GitLab Labels](https://about.gitlab.com/2016/08/17/using-gitlab-labels/)
1. [Applying GitLab Labels Automatically](https://about.gitlab.com/2016/08/19/applying-gitlab-labels-automatically/)
1. [GitLab Issue Board - Product Page](https://about.gitlab.com/solutions/issueboard/)
1. [An Overview of GitLab Issue Board](https://about.gitlab.com/2016/08/22/announcing-the-gitlab-issue-board/)
1. [Designing GitLab Issue Board](https://about.gitlab.com/2016/08/31/designing-issue-boards/)
1. [From Idea to Production with GitLab - Video](https://www.youtube.com/watch?v=25pHyknRgEo&index=14&list=PLFGfElNsQthbQu_IWlNOxul0TbS_2JH-e)

2.3. Continuous Integration

1. [Operating Systems, Servers, VMs, Containers and Unix - Video](https://www.youtube.com/watch?v=V61kL6IC-zY&index=8&list=PLFGfElNsQthbQu_IWlNOxul0TbS_2JH-e)
1. [GitLab CI - Product Page](https://about.gitlab.com/gitlab-ci/)
1. [Getting started with GitLab and GitLab CI](https://about.gitlab.com/2015/12/14/getting-started-with-gitlab-and-gitlab-ci/)
1. [GitLab Container Registry](https://about.gitlab.com/2016/05/23/gitlab-container-registry/)
1. [GitLab and Docker - Video](https://www.youtube.com/watch?v=ugOrCcbdHko&index=12&list=PLFGfElNsQthbQu_IWlNOxul0TbS_2JH-e)
1. [How we scale GitLab with built in Docker](https://about.gitlab.com/2016/06/21/how-we-scale-gitlab-by-having-docker-built-in/)
1. [Continuous Integration, Delivery, and Deployment with GitLab](https://about.gitlab.com/2016/08/05/continuous-integration-delivery-and-deployment-with-gitlab/)
1. [Deployments and Environments](https://about.gitlab.com/2016/08/26/ci-deployment-and-environments/)
1. [Sequential, Parallel or Custom Pipelines](https://about.gitlab.com/2016/07/29/the-basics-of-gitlab-ci/)
1. [Setting up GitLab Runner For Continuous Integration](https://about.gitlab.com/2016/03/01/gitlab-runner-with-docker/)
1. [Setting up GitLab Runner on DigitalOcean](https://about.gitlab.com/2016/04/19/how-to-set-up-gitlab-runner-on-digitalocean/)
1. [Setting up GitLab CI for iOS projects](https://about.gitlab.com/2016/03/10/setting-up-gitlab-ci-for-ios-projects/)
1. [IBM: Continuous Delivery vs Continuous Deployment - Video](https://www.youtube.com/watch?v=igwFj8PPSnw)
1. [Amazon: Transition to Continuous Delivery - Video](https://www.youtube.com/watch?v=esEFaY0FDKc)
2. [TechBeacon: Doing continuous delivery? Focus first on reducing release cycle times](https://techbeacon.com/doing-continuous-delivery-focus-first-reducing-release-cycle-times)
1. See [Integrations](#39-integrations) for integrations with other CI services.

2.4. Workflow

1. [GitLab Flow - Video](https://youtu.be/enMumwvLAug?list=PLFGfElNsQthZnwMUFi6rqkyUZkI00OxIV)
1. [GitLab Flow vs Forking in GitLab - Video](https://www.youtube.com/watch?v=UGotqAUACZA)
1. [GitLab Flow Overview](https://about.gitlab.com/2014/09/29/gitlab-flow/)
1. [Always Start with an Issue](https://about.gitlab.com/2016/03/03/start-with-an-issue/)
1. [GitLab Flow Documentation](https://docs.gitlab.com/ee/workflow/gitlab_flow.html)

2.5. GitLab Comparisons

1. [GitLab Compared to Other Tools](https://about.gitlab.com/comparison/)
1. [Comparing GitLab Terminology](https://about.gitlab.com/2016/01/27/comparing-terms-gitlab-github-bitbucket/)
1. [GitLab Compared to Atlassian (Recording 2016-03-03)](https://youtu.be/Nbzp1t45ERo)
1. [GitLab Position FAQ](https://about.gitlab.com/handbook/positioning-faq)
1. [Customer review of GitLab with points on why they prefer GitLab](https://www.enovate.co.uk/web-design-blog/2015/11/25/gitlab-review/)

—

3. GitLab Advanced

3.1. Dev Ops

1. [Xebia Labs: Dev Ops Terminology](https://xebialabs.com/glossary/)
1. [Xebia Labs: Periodic Table of DevOps Tools](https://xebialabs.com/periodic-table-of-devops-tools/)
1. [Puppet Labs: State of Dev Ops 2016 - Book](https://puppet.com/resources/white-paper/2016-state-of-devops-report)

3.2. Installing GitLab with Omnibus

1. [What is Omnibus - Video](https://www.youtube.com/watch?v=XTmpKudd-Oo)
1. [How to Install GitLab with Omnibus - Video](https://www.youtube.com/watch?v=Q69YaOjqNhg)
1. [Installing GitLab - Online Course](https://courses.platzi.com/classes/git-gitlab/concepto/part-1/part-3/material/)
1. [Using a Non-Packaged PostgreSQL Database](https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/README.md#using-a-non-packaged-postgresql-database-management-server)
1. [Using a MySQL Database](https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/README.md#using-a-mysql-database-management-server-enterprise-edition-only)
1. [Installing GitLab on Microsoft Azure](https://about.gitlab.com/2016/07/13/how-to-setup-a-gitlab-instance-on-microsoft-azure/)
1. [Installing GitLab on Digital Ocean](https://about.gitlab.com/2016/04/27/getting-started-with-gitlab-and-digitalocean/)

3.3. Permissions

	[How to Manage Permissions in GitLab EE - Video](https://www.youtube.com/watch?v=DjUoIrkiNuM)

3.4. Large Files

	[Big files in Git (Git LFS) - Video](https://www.youtube.com/watch?v=DawznUxYDe4)

3.5. LDAP and Active Directory

	[How to Manage LDAP, Active Directory in GitLab - Video](https://www.youtube.com/watch?v=HPMjM-14qa8)

3.6 Custom Languages

	[How to add Syntax Highlighting Support for Custom Languages to GitLab - Video](https://youtu.be/6WxTMqatrrA)

3.7. Scalability and High Availability

1. [Scalability and High Availability - Video](https://www.youtube.com/watch?v=cXRMJJb6sp4&list=PLFGfElNsQthbQu_IWlNOxul0TbS_2JH-e&index=2)
1. [High Availability - Video](https://www.youtube.com/watch?v=36KS808u6bE&index=15&list=PLFGfElNsQthbQu_IWlNOxul0TbS_2JH-e)
1. [High Availability Documentation](https://about.gitlab.com/high-availability/)

3.8 Cycle Analytics

1. [GitLab Cycle Analytics Overview](https://about.gitlab.com/2016/09/21/cycle-analytics-feature-highlight/)
1. [GitLab Cycle Analytics - Product Page](https://about.gitlab.com/solutions/cycle-analytics/)

3.9. Integrations

1. [How to Integrate JIRA and Jenkins with GitLab - Video](https://gitlabmeetings.webex.com/gitlabmeetings/ldr.php?RCID=44b548147a67ab4d8a62274047146415)
1. [How to Integrate Jira with GitLab](https://docs.gitlab.com/ce/user/project/integrations/jira.html)
1. [How to Integrate Jenkins with GitLab](https://docs.gitlab.com/ee/integration/jenkins.html)
1. [How to Integrate Bamboo with GitLab](https://docs.gitlab.com/ce/user/project/integrations/bamboo.html)
1. [How to Integrate Slack with GitLab](https://docs.gitlab.com/ce/user/project/integrations/slack.html)
1. [How to Integrate Convox with GitLab](https://about.gitlab.com/2016/06/09/continuous-delivery-with-gitlab-and-convox/)
1. [Getting Started with GitLab and Shippable CI](https://about.gitlab.com/2016/05/05/getting-started-gitlab-and-shippable/)

—

4. External Articles

1. [2011 WSJ article by Marc Andreessen - Software is Eating the World](http://www.wsj.com/articles/SB10001424053111903480904576512250915629460)
1. [2014 Blog post by Chris Dixon - Software eats software development](http://cdixon.org/2014/04/13/software-eats-software-development/)
1. [2015 Venture Beat article - Actually, Open Source is Eating the World](http://venturebeat.com/2015/12/06/its-actually-open-source-software-thats-eating-the-world/)

—

5. Resources for GitLab Team Members

Some content can only be accessed by GitLab team members

1. [Support Path](support/README.md)
1. [Sales Path (redirect to sales handbook)](https://about.gitlab.com/handbook/sales-onboarding/)
1. [User Training](training/user_training.md)
1. [GitLab Flow Training](training/gitlab_flow.md)
1. [Training Topics](https://gitlab.com/gitlab-org/gitlab-ce/tree/master/doc/university/training/topics/)
1. [GitLab architecture for noobs](https://dev.gitlab.org/gitlab/gitlabhq/blob/master/doc/development/architecture.md)
1. [Client Assessment of GitLab versus GitHub](https://docs.google.com/a/gitlab.com/spreadsheets/d/18cRF9Y5I6I7Z_ab6qhBEW55YpEMyU4PitZYjomVHM-M/edit?usp=sharing)

 —
comments: false
—

Books

List of books and resources, that may be worth reading.

Papers

	The Humble Programmer

Edsger W. Dijkstra, 1972 ([paper](http://dl.acm.org/citation.cfm?id=361591))

Programming

	Design Patterns: Elements of Reusable Object-Oriented Software

Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, 1994 ([amazon](http://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612))

	Clean Code: A Handbook of Agile Software Craftsmanship

Robert C. “Uncle Bob” Martin, 2008 ([amazon](http://www.amazon.com/Clean-Code-Handbook-Software-Craftsmanship/dp/0132350882))

	Code Complete: A Practical Handbook of Software Construction, 2nd Edition

Steve McConnell, 2004 ([amazon](http://www.amazon.com/Code-Complete-Practical-Handbook-Construction/dp/0735619670))

	The Pragmatic Programmer: From Journeyman to Master

Andrew Hunt, David Thomas, 1999 ([amazon](http://www.amazon.com/Pragmatic-Programmer-Journeyman-Master/dp/020161622X))

	Working Effectively with Legacy Code

Michael Feathers, 2004 ([amazon](http://www.amazon.com/Working-Effectively-Legacy-Michael-Feathers/dp/0131177052))

	Eloquent Ruby

Russ Olsen, 2011 ([amazon](http://www.amazon.com/Eloquent-Ruby-Addison-Wesley-Professional/dp/0321584104))

	Domain-Driven Design: Tackling Complexity in the Heart of Software

Eric Evans, 2003 ([amazon](http://www.amazon.com/Domain-Driven-Design-Tackling-Complexity-Software/dp/0321125215))

	How to Solve It: A New Aspect of Mathematical Method

Polya G. 1957 ([amazon](http://www.amazon.com/How-Solve-Mathematical-Princeton-Science/dp/069116407X))

	Software Creativity 2.0

Robert L. Glass, 2006 ([amazon](http://www.amazon.com/Software-Creativity-2-0-Robert-Glass/dp/0977213315))

	Object-Oriented Software Construction

Bertrand Meyer, 1997 ([amazon](http://www.amazon.com/Object-Oriented-Software-Construction-Book-CD-ROM/dp/0136291554))

	Refactoring: Improving the Design of Existing Code

Martin Fowler, Kent Beck, 1999 ([amazon](http://www.amazon.com/Refactoring-Improving-Design-Existing-Code/dp/0201485672))

	Test Driven Development: By Example

Kent Beck, 2002 ([amazon](http://www.amazon.com/Test-Driven-Development-Kent-Beck/dp/0321146530))

	Algorithms in C++: Fundamentals, Data Structure, Sorting, Searching

Robert Sedgewick, 1990 ([amazon](http://www.amazon.com/Algorithms-Parts-1-4-Fundamentals-Structure/dp/0201350882))

	Effective C++

Scott Mayers, 1996 ([amazon](http://www.amazon.com/Effective-Specific-Improve-Programs-Designs/dp/0321334876))

	Extreme Programming Explained: Embrace Change

Kent Beck, 1999 ([amazon](http://www.amazon.com/Extreme-Programming-Explained-Embrace-Change/dp/0321278658))

	The Art of Computer Programming

Donald E. Knuth, 1997 ([amazon](http://www.amazon.com/Computer-Programming-Volumes-1-4A-Boxed/dp/0321751043))

	Writing Efficient Programs

Jon Louis Bentley, 1982 ([amazon](http://www.amazon.com/Writing-Efficient-Programs-Prentice-Hall-Software/dp/013970244X))

	The Mythical Man-Month: Essays on Software Engineering

Frederick Phillips Brooks, 1975 ([amazon](http://www.amazon.com/Mythical-Man-Month-Essays-Software-Engineering/dp/0201006502))

	Peopleware: Productive Projects and Teams 3rd Edition

Tom DeMarco, Tim Lister, 2013 ([amazon](http://www.amazon.com/Peopleware-Productive-Projects-Teams-3rd/dp/0321934113))

	Principles Of Software Engineering Management

Tom Gilb, 1988 ([amazon](http://www.amazon.com/Principles-Software-Engineering-Management-Gilb/dp/0201192462))

Other

	Thinking, Fast and Slow

Daniel Kahneman, 2013 ([amazon](http://www.amazon.com/Thinking-Fast-Slow-Daniel-Kahneman/dp/0374533555))

	The Social Animal 11th Edition

Elliot Aronson, 2011 ([amazon](http://www.amazon.com/Social-Animal-Elliot-Aronson/dp/1429233419))

	Influence: Science and Practice 5th Edition

Robert B. Cialdini, 2008 ([amazon](http://www.amazon.com/Influence-Practice-Robert-B-Cialdini/dp/0205609996))

	Getting to Yes: Negotiating Agreement Without Giving In

Roger Fisher, William L. Ury, Bruce Patton, 2011 ([amazon](http://www.amazon.com/Getting-Yes-Negotiating-Agreement-Without/dp/0143118757))

	How to Win Friends & Influence People

Dale Carnegie, 1981 ([amazon](http://www.amazon.com/How-Win-Friends-Influence-People/dp/0671027034))

 —
comments: false
—

The GitLab Book Club

The Book Club is a casual meet-up to read and discuss books we like.
We’ll find a time that suits most, if not all.

See the [book list](booklist.md) for additional recommendations.

Currently reading : Books about remote work

	Remote: Office not required

David Heinemeier Hansson and Jason Fried, 2013
([amazon](http://www.amazon.co.uk/Remote-Required-David-Heinemeier-Hansson/dp/0091954673))

	The Year Without Pants

Scott Berkun, 2013 ([ScottBerkun.com](http://scottberkun.com/yearwithoutpants/))

Any other books you’d like to suggest? Edit this page and add them to the queue.

 —
comments: false
—

What is the Glossary

This contains a simplified list and definitions of some of the terms that you will encounter in your day to day activities when working with GitLab.
Please add any terms that you discover that you think would be useful for others.

2FA

User authentication by combination of 2 different steps during login. This allows for [more security](https://about.gitlab.com/handbook/security/).

Access Levels

Process of selective restriction to create, view, modify or delete a resource based on a set of assigned permissions. See [GitLab’s Permission Guidelines](../../user/permissions.md)

Active Directory (AD)

A Microsoft-based [directory service](https://msdn.microsoft.com/en-us/library/bb742424.aspx) for windows domain networks. It uses LDAP technology under the hood.

Agile

Building and [delivering software](http://agilemethodology.org/) in phases/parts rather than trying to build everything at once then delivering to the user/client. The latter is known as the WaterFall model.

Amazon RDS

External reference: <http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Storage.html>

Application Lifecycle Management (ALM)

The entire product lifecycle management process for an application, from requirements management, development, and testing until deployment. GitLab has [advantages](https://docs.google.com/presentation/d/1vCU-NbZWz8NTNK8Vu3y4zGMAHb5DpC8PE5mHtw1PWfI/edit#slide=id.g72f2e4906_2_288) over both legacy and modern ALM tools.

Artifactory

A version control [system](https://www.jfrog.com/open-source/#os-arti) for non-text files.

Artifacts

Objects (usually binary and large) created by a build process. These can include use cases, class diagrams, requirements and design documents.

Atlassian

A [company](https://www.atlassian.com) that develops software products for developers and project managers including Bitbucket, Jira, Hipchat, Confluence, Bamboo.

Audit Log

Also called an [audit trail](https://en.wikipedia.org/wiki/Audit_trail), an audit log is a document that records an event in an IT system.

Auto Defined User Group

User groups are a way of centralizing control over important management tasks, particularly access control and password policies. A simple example of such groups are the users and the admins groups.
In most of the cases these groups are auto defined in terms of access, rules of usage, conditions to be part of, etc.

Bamboo

Atlassian’s CI tool similar to GitLab CI and Jenkins.

Basic Subscription

Entry level [subscription](https://about.gitlab.com/pricing/) for GitLab EE currently available in packs of 10.

Bitbucket

Atlassian’s web hosting service for Git and Mercurial Projects. Read about [migrating](https://docs.gitlab.com/ce/workflow/importing/import_projects_from_bitbucket.html) from BitBucket to a GitLab instance.

Branch

A branch is a parallel version of a repository. This allows you to work on the repository without affecting the “master” branch, and without affecting the current “live” version. When you have made all your changes to your branch you can then merge to the master. When your merge request is accepted your changes will be “live.”

Branded Login

Having your own logo on [your GitLab instance login page](https://docs.gitlab.com/ee/customization/branded_login_page.html) instead of the GitLab logo.

Job triggers (Build Triggers)
These protect your code base against breaks, for instance when a team is working on the same project. Learn about [setting up](https://docs.gitlab.com/ce/ci/triggers/README.html) job triggers.

CEPH

A distributed object store and file [system](http://ceph.com/) designed to provide excellent performance, reliability and scalability.

ChatOps

The ability to [initiate an action](https://gitlab.com/gitlab-org/omnibus-gitlab/issues/1412) from chat. ChatBots run in your chat application and give you the ability to do “anything” from chat.

Clone

A [copy](https://git-scm.com/docs/git-clone) of a repository stored on your machine that allows you to use your own editor without being online, but still tracks the changes made remotely.

Code Review

Examination of a program’s code. The main aim is to maintain high quality standards of code that is being shipped. Merge requests [serve as a code review tool](https://about.gitlab.com/2014/09/29/gitlab-flow/) in GitLab.

Code Snippet

A small amount of code, usually selected for the purpose of showing other developers how to do something specific or reproduce a problem.

Collaborator

Person with read and write access to a repository who has been invited by repository owner.

Commit

A [change](https://git-scm.com/docs/git-commit) (revision) to a file that also creates an ID, allowing you to see revision history and the author of the changes.

Community

[Everyone](https://about.gitlab.com/community/) who uses GitLab.

Confluence

Atlassian’s product for collaboration on documents and projects.

Continuous Delivery

A [software engineering approach](https://about.gitlab.com/2016/08/05/continuous-integration-delivery-and-deployment-with-gitlab/) in which continuous integration, automated testing, and automated deployment capabilities allow software to be developed and deployed rapidly, reliably and repeatedly with minimal human intervention. Still, the deployment to production is defined strategically and triggered manually. [Amazon moves toward continuous delivery](https://www.youtube.com/watch?v=esEFaY0FDKc)

Continuous Deployment

A [software development practice](https://about.gitlab.com/2016/08/05/continuous-integration-delivery-and-deployment-with-gitlab/) in which every code change goes through the entire pipeline and is put into production automatically, resulting in many production deployments every day. It does everything that Continuous Delivery does, but the process is fully automated, there’s no human intervention at all. [The difference between Continuous Delivery and Continuous Integration.](https://www.youtube.com/watch?v=igwFj8PPSnw)

Continuous Integration

A [software development practice](https://about.gitlab.com/2016/08/05/continuous-integration-delivery-and-deployment-with-gitlab/) in which you build and test software every time a developer pushes code to the application, and it happens several times a day. [Thoughtworks discusses continuous integration.](https://www.thoughtworks.com/continuous-integration)

Contributor

Term used for a person contributing to an open source project.

Conversational Development (ConvDev)

A [natural evolution](https://about.gitlab.com/2016/09/14/gitlab-live-event-recap/) of software development that carries a conversation across functional groups throughout the development process, enabling developers to track the full path of development in a cohesive and intuitive way. ConvDev accelerates the development lifecycle by fostering collaboration and knowledge sharing from idea to production.

Cycle Analytics

See <https://gitlab.com/gitlab-org/gitlab-ce/issues/22458>

Cycle Time

The time it takes to move from [idea to production](https://about.gitlab.com/2016/08/05/continuous-integration-delivery-and-deployment-with-gitlab/#from-idea-to-production-with-gitlab).

Data Centre

Atlassian product for High Availability.

Dependencies

As in “specify [dependencies](https://gitlab.com/gitlab-org/gitlab-ce/issues/14728) between stages.”

Deploy Keys

A [SSH key](https://docs.gitlab.com/ce/gitlab-basics/create-your-ssh-keys.html)stored on your server that grants access to a single GitLab repository. This is used by a GitLab runner to clone a project’s code so that tests can be run against the checked out code.

Developer

For us at GitLab, this means a software developer, or someone who makes software. It is also one of the levels of access in our multi-level approval system.

DevOps

The intersection of software engineering, quality assurance, and technology operations. Explore more DevOps topics in the [glossary by XebiaLabs](https://xebialabs.com/glossary/)

Diff

The difference between two commits, or saved changes. This will also be shown visually after the changes.

Directory

A folder used for storing multiple files.

Docker Container Registry

A [feature](https://docs.gitlab.com/ce/user/project/container_registry.html) of [GitLab projects](https://about.gitlab.com/2016/05/23/gitlab-container-registry/). Containers wrap up a piece of software in a complete filesystem that contains everything it needs to run: code, runtime, system tools, system libraries – anything you can install on a server. This guarantees that it will always run the same, regardless of the environment it is running in.

Dynamic Environment (review apps)

EC2 Instance

Elasticsearch

Elasticsearch is a flexible, scalable and powerful search service. When [enabled](https://gitlab.com/help/integration/elasticsearch.md), it helps keep GitLab’s search fast when dealing with a huge amount of data.

Emacs

External reference: <https://www.masteringemacs.org/article/mastering-key-bindings-emacs>

First Byte

External reference: <https://en.wikipedia.org/wiki/Time_To_First_Byte>

First Byte (sometimes referred to as time to first byte or [TTFB](https://en.wikipedia.org/wiki/Time_To_First_Byte)) measures the time between making a request and receiving the first byte of information in return. As a result, First Byte encompasses everything that is the backend as well as network transit issues. It differs from [_Speed Index_](#speed-index) mostly by frontend related issues which are included in Speed Index such as javascript loading, page rendering, and so on.

Fork

Your [own copy](https://docs.gitlab.com/ce/workflow/forking_workflow.html) of a repository that allows you to make changes to the repository without affecting the original.

Funnel, or: TOFU, MOFU, BOFU

External reference: [Blog post](https://www.weidert.com/whole_brain_marketing_blog/bid/113688/ToFu-MoFu-BoFu-Serving-Up-The-Right-Content-for-Lead-Nurturing)

TOFU: top of funnel
MOFU: middle of funnel
BOFU: bottom of funnel

Gerrit

A code review [tool](https://www.gerritcodereview.com/) built on top of Git.

Git Attributes

A [git attributes file](https://git-scm.com/docs/gitattributes) is a simple text file that gives attributes to pathnames.

Git Hooks

[Scripts](https://git-scm.com/book/en/v2/Customizing-Git-Git-Hooks) you can use to trigger actions at certain points.

Difference between a [webhook](#webhooks) and a git hook: a git hook is local to its repo (usually) while a webhook is not (it can make API or http calls). So for example if you want your linter to fire before you commit, you can set that up with a git hook. If the linter fails, the commit does not go through. A git hook _can_ be configured to go beyond its repo, e.g. by having it make an API call.

GitHost.io

A single-tenant solution that provides GitLab CE or EE as a managed service. GitLab Inc. is responsible for installing, updating, hosting, and backing up customers’ own private and secure GitLab instance.

GitHub

A web-based Git repository hosting service with an enterprise offering. Its main features are: issue tracking, pull request with code review, abundancy of integrations and wiki. It offers free public repos, private repos and enterprise services are paid. Read about [importing a project](https://docs.gitlab.com/ce/workflow/importing/import_projects_from_github.html) from GitHub to GitLab.

GitLab CE

Our free on Premise solution with >100,000 users

GitLab CI

Our own Continuous Integration [feature](https://about.gitlab.com/gitlab-ci/) that is shipped with each instance

GitLab EE

Our premium on premise [solution](https://about.gitlab.com/features/#enterprise) that currently has Basic, Standard and Plus subscription packages with additional features and support.

GitLab.com

Our free SaaS for public and private repositories.

GitLab Geo

Allows you to replicate your GitLab instance to other geographical locations as a read-only fully operational version. It [can be used](https://docs.gitlab.com/ee/gitlab-geo/README.html) for cloning and fetching projects, in addition to reading any data. This will make working with large repositories over large distances much faster.

GitLab High Availability

GitLab Master Plan

Related blog post: <https://about.gitlab.com/2016/09/13/gitlab-master-plan/>.

GitLab Pages

These allow you to [create websites](https://gitlab.com/help/pages/README.md) for your GitLab projects, groups, or user account.

GitLab Runner

Related project: <https://gitlab.com/gitlab-org/gitlab-runner>

Gitolite

An [access layer](https://git-scm.com/book/en/v1/Git-on-the-Server-Gitolite) that sits on top of Git. Users are granted access to repos via a simple config file. As an admin, you only need the users’ public SSH key and a username.

Gitorious

A web-based hosting service for projects using Git. It was acquired by GitLab and we discontinued the service. Read the[Gitorious Acquisition Blog Post](https://about.gitlab.com/2015/03/03/gitlab-acquires-gitorious/).

Go

An open source programming [language](https://golang.org/).

Gogs

External reference: <https://gogs.io/>

GUI/ Git GUI

A portable [graphical interface](https://git-scm.com/docs/git-gui) to Git that allows users to make changes to their repository by making new commits, amending existing ones, creating branches, performing local merges, and fetching/pushing to remote repositories.

High Availability for Disaster Recovery (HADR)

Sometimes written HA/DR, this usually refers to a strategy for having a failover server in place in case the main server fails.

Hip Chat

Atlassian’s real time chat application for teams, Hip Chat is a competitor to Slack, RocketChat and MatterMost.

High Availability

Refers to a [system or component](https://about.gitlab.com/high-availability/) that is continuously operational for a desirably long length of time. Availability can be measured relative to “100% operational” or “never failing.”

Inner-sourcing

The [use of](https://about.gitlab.com/2014/09/05/innersourcing-using-the-open-source-workflow-to-improve-collaboration-within-an-organization/) open source development techniques within the corporation.

Internet Relay Chat (IRC)

An [application layer protocol](http://www.irchelp.org/) that facilitates communication in the form of text.

Issue Tracker

A [tool](https://docs.gitlab.com/ee/integration/external-issue-tracker.html) used to manage, organize, and maintain a list of issues, making it easier for an organization to manage.

Jenkins

An Open Source CI tool written using the Java programming language. [Jenkins](https://jenkins-ci.org/) does the same job as GitLab CI, Bamboo, and Travis CI. It is extremely popular. Related [documentation](https://docs.gitlab.com/ee/integration/jenkins.html).

Jira

Atlassian’s [project management software](https://www.atlassian.com/software/jira), i.e. a complex issue tracker. GitLab [can be configured](https://docs.gitlab.com/ee/project_services/jira.html) to interact with JIRA Core either using an on-premise instance or the SaaS solution that Atlassian offers.

JUnit

A testing framework for the Java programming language, [JUnit](http://junit.org/junit4/) has been important in the evolution of test-driven development.

Kerberos

A network authentication [protocol](http://web.mit.edu/kerberos/) that uses secret-key cryptography for security.

Kubernetes

An open source container cluster manager originally designed by Google. It’s basically a platform for automating deployment, scaling, and operations of application containers over clusters of hosts.

Labels

An [identifier](https://docs.gitlab.com/ce/user/project/labels.html) to describe a group of one or more specific file revisions.

Lightweight Directory Access Protocol (LDAP)

A directory (electronic address book) with user information (e.g. name, phone_number etc.)

LDAP User Authentication

GitLab [integrates](https://docs.gitlab.com/ce/administration/auth/ldap.html) with LDAP to support user authentication. This enables GitLab to sign in people from an LDAP server (i.e., allowing people whose names are on the electronic user directory server to be able to use their LDAP accounts to login.)

LDAP Group Sync

Allows you to synchronize the members of a GitLab group with one or more LDAP groups.

Lint

Static code analysis for our various file types. For example, we use [scss-lint](https://github.com/brigade/scss-lint) to ensure that a consistent code styling is respected. Similar tools: rubocop / eslint.

Load Balancer

A [device](https://en.wikipedia.org/wiki/Load_balancing_(computing)) that distributes network or application traffic across multiple servers.

Git Large File Storage (LFS)

A way [to enable](https://about.gitlab.com/2015/11/23/announcing-git-lfs-support-in-gitlab/) git to handle large binary files by using reference pointers within small text files to point to the large files. Large files such as high resolution images and videos, audio files, and assets can be called from a remote server.

Linux

An operating system like Windows or OS X. It is mostly used by software developers and on servers.

Markdown

A lightweight markup language with plain text formatting syntax designed so that it can be converted to HTML and many other formats using a tool by the same name. Markdown is often used to format readme files, for writing messages in online discussion forums, and to create rich text using a plain text editor. Checkout GitLab’s [Markdown guide](https://gitlab.com/help/user/markdown.md).

Maria DB

A community developed fork/variation of MySQL. MySQL is owned by Oracle.

Master

Name of the [default branch](https://git-scm.com/book/en/v1/Git-Branching-What-a-Branch-Is) in every git repository.

Mattermost

An open source, self-hosted messaging alternative to Slack. View GitLab’s Mattermost [feature](https://gitlab.com/gitlab-org/gitlab-mattermost).

Mercurial

A free distributed version control system similar to and a competitor with Git.

Merge

Takes changes from one branch, and [applies them](https://git-scm.com/docs/git-merge) into another branch.

Merge Conflict

[Arises](https://about.gitlab.com/2016/09/06/resolving-merge-conflicts-from-the-gitlab-ui/) when a merge can’t be performed cleanly between two versions of the same file.

Merge Request

[Takes changes](https://docs.gitlab.com/ce/gitlab-basics/add-merge-request.html) from one branch, and applies them into another branch.

Meteor

A [platform](https://www.meteor.com) for building javascript apps.

Milestones

Allow you to [organize issues](../../user/project/milestones/index.md) and merge requests in GitLab into a cohesive group, optionally setting a due date. A common use is keeping track of an upcoming software version. Milestones are created per-project.

Mirror Repositories

A project that is setup to automatically have its branches, tags, and commits [updated from an upstream repository](https://docs.gitlab.com/ee/workflow/repository_mirroring.html). This is useful when a repository you’re interested in is located on a different server, and you want to be able to browse its content and activity using the familiar GitLab interface.

MIT License

A type of software license. It lets people do anything with your code with proper attribution and without warranty. It is the most common license for open source applications written in Ruby on Rails. GitLab CE is issued under this [license](https://docs.gitlab.com/ce/development/licensing.html). This means you can download the code, modify it as you want, and even build a new commercial product using the underlying code and it’s not illegal. The only condition is that there is no form of warranty provided by GitLab so whatever happens when you use the code is your own problem.

Mondo Rescue

A free disaster recovery [software](https://help.ubuntu.com/community/MondoMindi).

Mount

External reference:

As stated on the [wikipedia page](https://en.wikipedia.org/wiki/Mount_(Unix)), “Mounting makes file systems, files, directories, devices and special files available for use and available to the user.”

For example, we have NFS servers where the _git files_ reside. In order for a worker node to “see” or “use” the git files, the NFS server needs to be _mounted_ on the worker; that is, the worker needs to know that the NFS server exists and how to connect to it. Think of it as getting a shared drive to show up in your Finder (on Mac) or Explorer (on Windows).

MySQL

A relational [database](http://www.mysql.com/) owned by Oracle. Currently only supported if you are using EE.

Namespace

A set of symbols that are used to organize objects of various kinds so that these objects may be referred to by name. Examples of namespaces in action include file systems that assign names to files; programming languages that organize their variables and subroutines in namespaces; and computer networks and distributed systems that assign names to resources, such as computers, printers, websites, (remote) files, etc.

Nginx

A web [server](https://www.nginx.com/resources/wiki/) (pronounced “engine x”). [It can act]((https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/doc/settings/nginx.md) as a reverse proxy server for HTTP, HTTPS, SMTP, POP3, and IMAP protocols, as well as a load balancer and an HTTP cache.

OAuth

An open standard for authorization, commonly used as a way for internet users to log into third party websites using their Microsoft, Google, Facebook or Twitter accounts without exposing their password. GitLab [is](https://docs.gitlab.com/ce/integration/oauth_provider.html) an OAuth2 authentication service provider.

Omnibus Packages

A way to [package different services and tools](https://docs.gitlab.com/omnibus/) required to run GitLab, so that most developers can install it without laborious configuration.

On Premise

On your own server. In GitLab, this [refers](https://about.gitlab.com/2015/02/12/why-ship-on-premises-in-the-saas-era/) to the ability to download GitLab EE/GitLab CE and host it on your own server rather than using GitLab.com, which is hosted by GitLab Inc’s servers.

Open Core

GitLab’s [business model](https://about.gitlab.com/2016/07/20/gitlab-is-open-core-github-is-closed-source/). Coined by Andrew Lampitt in 2008, the [open core model](https://en.wikipedia.org/wiki/Open_core) primarily involves offering a “core” or feature-limited version of a software product as free and open-source software, while offering “commercial” versions or add-ons as proprietary software.

Open Source Software

Software for which the original source code is freely [available](https://opensource.org/docs/osd) and may be redistributed and modified. GitLab prioritizes open source [stewardship](https://about.gitlab.com/2016/01/11/being-a-good-open-source-steward/). Including to providing access to the source code, open source software must comply with a number of criteria, among them free distribution and no discrimination against persons, groups, or fields of endeavor.

Open Source Stewardship

[Related blog post](https://about.gitlab.com/2016/01/11/being-a-good-open-source-steward/).

Owner

The most powerful person on a GitLab project. They have the permissions of all the other users plus the additional permission of being able to destroy (i.e. delete) the project.

Platform as a Service (PaaS)

Typically referred to in regards to application development, PaaS is a model in which a cloud provider delivers hardware and software tools to its users as a service.

Perforce

The company that produces Helix. A commercial, proprietary, centralised VCS well known for its ability to version files of any size and type. They OEM a re-branded version of GitLab called “GitSwarm” that is tightly integrated with their “GitFusion” product, which in turn represents a portion of a Helix repository (called a depot) as a git repo.

Phabricator

A suite of web-based software development collaboration tools, including the Differential code review tool, the Diffusion repository browser, the Herald change monitoring tool, the Maniphest bug tracker and the Phriction wiki. Phabricator integrates with Git, Mercurial, and Subversion.

Piwik Analytics

An open source analytics software to help you analyze web traffic. It is similar to Google Analytics, except that the latter is not open source and information is stored by Google. In Piwik, the information is stored on your own server and hence is fully private.

Plus Subscription

GitLab Premium EE [subscription](https://about.gitlab.com/pricing/) that includes training and dedicated Account Management and Service Engineer and complete support package.

PostgreSQL

An [object-relational](https://en.wikipedia.org/wiki/PostgreSQL) database. Touted as the most advanced open source database, it is one of two database management systems [supported by](https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/doc/settings/database.md) GitLab, the other being MySQL.

Protected Branches

A [feature](https://docs.gitlab.com/ce/user/project/protected_branches.html) that protects branches from unauthorized pushes, force pushing or deletion.

Protected Tags

A [feature](https://docs.gitlab.com/ce/user/project/protected_tags.html) that protects tags from unauthorized creation, update or deletion

Pull

Git command to [synchronize](https://git-scm.com/docs/git-pull) the local repository with the remote repository, by fetching all remote changes and merging them into the local repository.

Puppet

A popular DevOps [automation tool](https://puppet.com/product/how-puppet-works).

Push

Git [command](https://git-scm.com/docs/git-push) to send commits from the local repository to the remote repository. Read about [advanced push rules](https://gitlab.com/help/pages/README.md) in GitLab.

Raketasks

RE Read Only

Permissions to see a file and its contents, but not change it.

Rebase

In addition to the merge, the [rebase](https://git-scm.com/book/en/v2/Git-Branching-Rebasing) is a main way to integrate changes from one branch into another.

Regression

A regression is something that used to work one way in the last release and then we made a breaking change and it no longer works the same way.

or

A regression is defined as a change that results in a negative impact on the functionality of an existing feature due to recent changes, i.e. the latest release.

Remote mirroring

(Git) Repository

A directory where Git [has been initiatlized](https://git-scm.com/book/en/v2/Git-Basics-Getting-a-Git-Repository) to start version controlling your files. The history of your work is stored here. A remote repository is not on your machine, but usually online (like on GitLab.com, for instance). The main remote repository is usually called “Origin.”

Remote repository

A [repository](https://about.gitlab.com/2015/05/18/simple-words-for-a-gitlab-newbie/) that is not-on-your-machine, so it’s anything that is not your computer. Usually, it is online, GitLab.com for instance. The main remote repository is usually called “Origin”.

Requirements management

Gives your distributed teams a single shared repository to collaborate and share requirements, understand their relationship to tests, and evaluate linked defects. It includes multiple, preconfigured requirement types.

Revision Control

Also known as version control or source control, this is the management of changes to documents, computer programs, large web sites, and other collections of information. Changes are usually identified by a number or letter code, termed the “revision number,” “revision level,” or simply “revision.”

RocketChat

An open source chat application for teams, RocketChat is very similar to Slack but it is also open-source.

Route Table

A route table contains rules (called routes) that determine where network traffic is directed. Each [subnet in a VPC](http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Route_Tables.html) must be associated with a route table.

Runners

Actual build machines/containers that [run and execute tests](https://gitlab.com/gitlab-org/gitlab-runner) you have specified to be run on GitLab CI.

Sidekiq

The background job processor GitLab [uses](https://docs.gitlab.com/ce/administration/troubleshooting/sidekiq.html) to asynchronously run tasks.

Software as a service (SaaS)

Software that is hosted centrally and accessed on-demand (i.e. whenever you want to). This applies to GitLab.com.

Software Configuration Management (SCM)

This term is often used by people when they mean “Version Control.”

Scrum

An Agile [framework](https://www.scrum.org/Resources/What-is-Scrum) designed to typically help complete complex software projects. It’s made up of several parts: product requirements backlog, sprint planning, sprint (development), sprint review, and retrospec (analyzing the sprint). The goal is to end up with potentially shippable products.

Scrum Board

The board used to track the status and progress of each of the sprint backlog items.

Shell

Terminal on Mac OSX, GitBash on Windows, or Linux Terminal on Linux. You [use git](https://docs.gitlab.com/ce/gitlab-basics/start-using-git.html) and make changes to GitLab projects in your shell. You [use git](https://docs.gitlab.com/ce/gitlab-basics/start-using-git.html) and make changes to GitLab projects in your shell.

Shell command runner

Single-tenant

The tenant purchases their own copy of the software and the software can be customized to meet the specific and needs of that customer. [GitHost.io](https://about.gitlab.com/handbook/positioning-faq/) is our provider of single-tenant ‘managed cloud’ GitLab instances.

Slack

Real time messaging app for teams that is used internally by GitLab team members. GitLab users can enable [Slack integration](https://docs.gitlab.com/ce/project_services/slack.html) to trigger push, issue, and merge request events among others.

Slash commands

Slave Servers

Also known as secondary servers, these help to spread the load over multiple machines. They also provide backups when the master/primary server crashes.

Source Code

Program code as typed by a computer programmer (i.e. it has not yet been compiled/translated by the computer to machine language).

Speed Index

[Speed Index](https://sites.google.com/a/webpagetest.org/docs/using-webpagetest/metrics/speed-index) is “the average time at which visible parts of the page are displayed”.

SSH Key

A unique identifier of a computer. It is used to identify computers without the need for a password (e.g., On GitLab I have [added the ssh key](https://docs.gitlab.com/ce/gitlab-basics/create-your-ssh-keys.html) of all my work machines so that the GitLab instance knows that it can accept code pushes and pulls from this trusted machines whose keys are I have added.)

Single Sign On (SSO)

An authentication process that allows you enter one username and password to access multiple applications.

Staging Area

[Staging occurs](https://git-scm.com/book/en/v2/Getting-Started-Git-Basics) before the commit process in git. The staging area is a file, generally contained in your Git directory, that stores information about what will go into your next commit. It’s sometimes referred to as the “index.””

Standard Subscription

Our mid range EE subscription that includes 24/7 support and support for High Availability [Standard Subscription](https://about.gitlab.com/pricing/).

Stash

Atlassian’s Git on-premise solution. Think of it as Atlassian’s GitLab EE, now known as BitBucket Server.

Static Site Generators (SSGs)

A [software](https://wiki.python.org/moin/StaticSiteGenerator) that takes some text and templates as input and produces html files on the output.

Subversion

Non-proprietary, centralized version control system.

Sudo

A program that allows you to perform superuser/administrator actions on Unix Operating Systems (e.g., Linux, OS X.) It actually stands for ‘superuser do.’

Subversion (SVN)

An open source version control system. Read about [migrating from SVN](https://docs.gitlab.com/ce/workflow/importing/migrating_from_svn.html) to GitLab using SubGit.

Tag

[Represents](https://docs.gitlab.com/ce/api/tags.html) a version of a particular branch at a moment in time.

Tenancy

Multi-tenant

A [multi-tenant](http://whatis.techtarget.com/definition/multi-tenancy) GitLab instance can have any number of customers - such as companies or groups of users using it. GitLab.com is an example of a multi-tenant GitLab instance.

Single-tenant

A [single-tenant](http://searchcloudapplications.techtarget.com/definition/single-tenancy) GitLab instance has only one customer - such as a company - using it. On premise GitLab instances are almost exclusively single-tenant.

Tool Stack

The set of tools used in a process to achieve a common outcome (e.g. set of tools used in Application Lifecycle Management).

Trac

An open source project management and bug tracking web [application](https://trac.edgewall.org/).

True-Up licensing model

Ubuntu

Untracked files

New files that Git has not [been told](https://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository) to track previously. Add them by using the command “git add [file path]”

Upstream repository vs. GitLab repository

[External conversation](https://news.ycombinator.com/item?id=12487112)

User

Anyone interacting with the software.

Version Control Software (VCS)

Version control is a system that records changes to a file or set of files over time so that you can recall specific versions later. VCS [has evolved](https://docs.google.com/presentation/d/16sX7hUrCZyOFbpvnrAFrg6tVO5_yT98IgdAqOmXwBho/edit#slide=id.gd69537a19_0_32) from local version control systems, to centralized version control systems, to the present [distributed version control systems](https://en.wikipedia.org/wiki/Distributed_version_control) like Git, Mercurial, Bazaar, and Darcs. If any server dies, and these systems were collaborating via it, any of the client repositories can be copied back up to the server to restore it.

Virtual Private Cloud (VPC)

A [VPC](https://docs.gitlab.com/ce/university/glossary/README.html#virtual-private-cloud-vpc) is an on demand configurable pool of shared computing resources allocated within a public cloud environment, providing some isolation between the different users using the resources. GitLab users need to create a new Amazon VPC in order to [setup High Availability](https://docs.gitlab.com/ce/university/high-availability/aws/).

Virtual private server (VPS)

A [virtual machine](https://en.wikipedia.org/wiki/Virtual_private_server) sold as a service by an Internet hosting service. A VPS runs its own copy of an operating system, and customers have superuser-level access to that operating system instance, so they can install almost any software that runs on that OS.

VM Instance

In object-oriented programming, an [instance](http://stackoverflow.com/questions/20461907/what-is-meaning-of-instance-in-programming) is a specific realization of any [object](https://cloud.google.com/compute/docs/instances/). An object may be varied in a number of ways. Each realized variation of that object is an instance. Therefore, a VM instance is an instance of a virtual machine, which is an emulation of a computer system.

Waterfall

A [model](http://www.umsl.edu/~hugheyd/is6840/waterfall.html) of building software that involves collecting all requirements from the customer, then building and refining all the requirements and finally delivering the complete software to the customer that meets all the requirements they specified.

Webhooks

A way for for an app to [provide](https://docs.gitlab.com/ce/user/project/integrations/webhooks.html) other applications with real-time information (e.g., send a message to a slack channel when a commit is pushed.) Read about setting up [custom git hooks](https://gitlab.com/help/administration/custom_hooks.md) for when webhooks are insufficient.

Wiki

A [website/system](http://www.wiki.com/) that allows for collaborative editing of its content by the users. In programming, wikis usually contain documentation of how to use the software.

Working area

Files that have been modified but are not committed. Check them by using the command “git status”.

Working Tree

[Consists of files](http://stackoverflow.com/questions/3689838/difference-between-head-working-tree-index-in-git) that you are currently working on.

YAML

A human-readable data serialization [language](http://www.yaml.org/about.html) that takes concepts from programming languages such as C, Perl, and Python, and ideas from XML and the data format of electronic mail.

 —
comments: false
—

> Note: We do not recommend using the AWS Elastic File System (EFS), as it can result
in [significantly degraded performance](https://gitlab.com/gitlab-org/gitlab-ee/blob/master/doc/administration/high_availability/nfs.md#aws-elastic-file-system).

High Availability on AWS

GitLab on AWS can leverage many of the services that are already
configurable with High Availability. These services have a lot of
flexibility and are able to adopt to most companies, best of all is the
ability to automate both vertical and horizontal scaling.

In this article we’ll go through a basic HA setup where we’ll start by
configuring our Virtual Private Cloud and subnets to later integrate
services such as RDS for our database server and ElastiCache as a Redis
cluster to finally manage them within an auto scaling group with custom
scaling policies.

Where to Start

Login to your AWS account through the My Account dropdown on
https://aws.amazon.com or through the URI assigned to your team such as
https://myteam.signin.aws.amazon.com/console/. You’ll start on the
Amazon Web Services console from where we can choose all of the services
we’ll be using to configure our cloud infrastructure.

Reference Architecture

![Reference Architecture](img/reference-arch.png)

Network

We’ll start by creating a VPC for our GitLab cloud infrastructure, then
we can create subnets to have public and private instances in at least
two AZs. Public subnets will require a Route Table keep an associated
Internet Gateway.

VPC

Start by looking for the VPC option on the web console. Now create a new
VPC. We can use 10.0.0.0/16 for the CIDR block and leave tenancy as
default if we don’t require dedicated hardware.

![New VPC](img/new_vpc.png)

If you’re setting up the Elastic File System service then select the VPC
and from the Actions dropdown choose Edit DNS Hostnames and select Yes.

Subnet

Now let’s create some subnets in different Availability Zones. Make sure
that each subnet is associated the the VPC we just created, that it has
a distinct VPC and lastly that CIDR blocks don’t overlap. This will also
allow us to enable multi AZ for redundancy.

We will create private and public subnets to match load balancers and
RDS instances as well.

![Subnet Creation](img/subnet.png)

The subnets are listed with their name, AZ and CIDR block:

	gitlab-public-10.0.0.0 - us-west-2a - 10.0.0.0

	gitlab-private-10.0.1.0 - us-west-2a - 10.0.1.0

	gitlab-public-10.0.2.0 - us-west-2b - 10.0.2.0

	gitlab-private-10.0.3.0 - us-west-2b - 10.0.3.0

Route Table

Up to now all our subnets are private. We need to create a Route Table
to associate an Internet Gateway. On the same VPC dashboard choose
Route Tables on the left column and give it a name and associate it to
our newly created VPC.

![Route Table](img/route_table.png)

Internet Gateway

Now still on the same dashboard head over to Internet Gateways and
create a new one. After its created pres on the Attach to VPC button and
select our VPC.

![Internet Gateway](img/ig.png)

Configure Subnets

Go back to the Router Tables screen and select the newly created one,
press the Routes tab on the bottom section and edit it. We need to add a
new target which will be our Internet Gateway and have it receive
traffic from any destination.

![Subnet Config](img/ig-rt.png)

Before leaving this screen select the next tab to the rgiht which is
Subnet Associations and add our public subnets. If you followed our
naming convention they should be easy to find.

Database with RDS

For our database server we will use Amazon RDS which offers Multi AZ
for redundancy. Lets start by creating a subnet group and then we’ll
create the actual RDS instance.

Subnet Group

From the RDS dashboard select Subnet Groups. Lets select our VPC from
the VPC ID dropdown and at the bottom we can add our private subnets.

![Subnet Group](img/db-subnet-group.png)

RDS

Select the RDS service from the Database section and create a new
PostgreSQL instance. After choosing between a Production or
Development instance we’ll start with the actual configuration. On the
image bellow we have the settings for this article but note the
following two options which are of particular interest for HA:

1. Multi-AZ-Deployment is recommended as redundancy. Read more at
[High Availability (Multi-AZ)](http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.MultiAZ.html)
1. While we chose a General Purpose (SSD) for this article a Provisioned
IOPS (SSD) is best suited for HA. Read more about it at
[Storage for Amazon RDS](http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Storage.html)

![RDS Instance Specs](img/instance_specs.png)

The rest of the setting on this page request a DB identifier, username
and a master password. We’ve chosen to use gitlab-ha, gitlab and a
very secure password respectively. Keep these in hand for later.

![Network and Security](img/rds-net-opt.png)

Make sure to choose our gitlab VPC, our subnet group, not have it public,
and to leave it to create a new security group. The only additional
change which will be helpful is the database name for which we can use
gitlabhq_production.

ElastiCache

EC is an in-memory hosted caching solution. Redis maintains its own
persistence and is used for certain types of application.

Let’s choose the ElastiCache service in the Database section from our
AWS console. Now lets create a cache subnet group which will be very
similar to the RDS subnet group. Make sure to select our VPC and its
private subnets.

![ElastiCache](img/ec-subnet.png)

Now press the Launch a Cache Cluster and choose Redis for our
DB engine. You’ll be able to configure details such as replication,
Multi AZ and node types. The second section will allow us to choose our
subnet and security group and

![Redis Cluster details](img/redis-cluster-det.png)

![Redis Network](img/redis-net.png)

Network File System

GitLab requires a shared filesystem such as NFS. The file share(s) will be
mounted on all application servers. There are a variety of ways to build an
NFS server on AWS.

One option is to use a third-party AMI that offers NFS as a service. A [search
for ‘NFS’ in the AWS Marketplace](https://aws.amazon.com/marketplace/search/results?x=0&y=0&searchTerms=NFS&page=1&ref_=nav_search_box)
shows options such as NetApp, SoftNAS and others.

Another option is to build a simple NFS server using a vanilla Linux server backed
by AWS Elastic Block Storage (EBS).

	> Note: GitLab does not recommend using AWS Elastic File System (EFS). See
	details in [High Availability NFS documentation](../../../administration/high_availability/nfs.md#aws-elastic-file-system)

Initiate AMI

We are going to launch an EC2 instance and bake an image so that we can
later use it for auto scaling. We’ll also take this opportunity to add an
extension to our RDS through this temporary EC2 instance.

EC2 Instance

Look for the EC2 option and choose to create an instance. We’ll need at
least a t2.medium type and for this article we’ll choose an Ubuntu 14.04
HVM 64-bit. In the Configure Instance section choose our GitLab VPC and
a public subnet. I’d choose at least 10GB of storage.

In the security group we’ll create a new one considering that we need to
SSH into the instance and also try it out through http. So let’s add the
http traffic from anywhere and name it something such as
gitlab-ec2-security-group.

While we wait for it to launch we can allocate an Elastic IP and
associate it with our new EC2 instance.

RDS and Redis Security Group

After the instance is being created we will navigate to our EC2 security
groups and add a small change for our EC2 instances to be able to
connect to RDS. First copy the security group name we just defined,
namely gitlab-ec2-security-group, and edit select the RDS security
group and edit the inbound rules. Choose the rule type to be PostgreSQL
and paste the name under source.

![RDS security group](img/rds-sec-group.png)

Similar to the above we’ll jump to the gitlab-ec2-security-group group
and add a custom TCP rule for port 6379 accessible within itself.

Install GitLab

To connect through SSH you will need to have the pem file which you
chose available and with the correct permissions such as 400.

After accessing your server don’t forget to update and upgrade your
packages.

sudo apt-get update && sudo apt-get upgrade -y

Then follow installation instructions from
[GitLab](https://about.gitlab.com/downloads-ee/#ubuntu1404), but before
running reconfigure we need to make sure all our services are tied down
so just leave the reconfigure command until after we edit our gitlab.rb
file.

Extension for PostgreSQL

Connect to your new RDS instance to verify access and to install
a required extension. We can find the host or endpoint by selecting the
instance and we just created and after the details drop down we’ll find
it labeled as ‘Endpoint’; do remember not to include the colon and port
number.

sudo /opt/gitlab/embedded/bin/psql -U gitlab -h <rds-endpoint> -d gitlabhq_production
psql (9.4.7)
Type “help” for help.

gitlab=# CREATE EXTENSION pg_trgm;
gitlab=# q

Configure GitLab

While connected to your server edit the gitlab.rb file at /etc/gitlab/gitlab.rb
find the external_url ‘http://gitlab.example.com’ option and change it
to the domain you will be using or the public IP address of the current
instance to test the configuration.

For a more detailed description about configuring GitLab read [Configuring GitLab for HA](http://docs.gitlab.com/ee/administration/high_availability/gitlab.html)

Now look for the GitLab database settings and uncomment as necessary. In
our current case we’ll specify the adapter, encoding, host, db name,
username, and password.

gitlab_rails[‘db_adapter’] = “postgresql”
gitlab_rails[‘db_encoding’] = “unicode”
gitlab_rails[‘db_database’] = “gitlabhq_production”
gitlab_rails[‘db_username’] = “gitlab”
gitlab_rails[‘db_password’] = “mypassword”
gitlab_rails[‘db_host’] = “<rds-endpoint>”

Next we only need to configure the Redis section by adding the host and
uncommenting the port.

The last configuration step is to [change the default file locations](http://docs.gitlab.com/ee/administration/high_availability/nfs.html)
to make the EFS integration easier to manage.

gitlab_rails[‘redis_host’] = “<redis-endpoint>”
gitlab_rails[‘redis_port’] = 6379

Finally run reconfigure, you might find it useful to run a check and
a service status to make sure everything has been setup correctly.

sudo gitlab-ctl reconfigure
sudo gitlab-rake gitlab:check
sudo gitlab-ctl status

If everything looks good copy the Elastic IP over to your browser and
test the instance manually.

AMI

After you finish testing your EC2 instance go back to its dashboard and
while the instance is selected press on the Actions dropdown to choose
Image -> Create an Image. Give it a name and description and confirm.

Load Balancer

On the same dashboard look for Load Balancer on the left column and press
the Create button. Choose a classic Load Balancer, our gitlab VPC, not
internal and make sure its listening for HTTP and HTTPS on port 80.

Here is a tricky part though, when adding subnets we need to associate
public subnets instead of the private ones where our instances will
actually live.

On the security group section let’s create a new one named
gitlab-loadbalancer-sec-group and allow both HTTP ad HTTPS traffic
from anywhere.

The Load Balancer Health will allow us to indicate where to ping and what
makes up a healthy or unhealthy instance.

We won’t add the instance on the next session because we’ll destroy it
momentarily as we’ll be using the image we where creating. We will keep
the Enable Cross-Zone and Enable Connection Draining active.

After we finish creating the Load Balancer we can re visit our Security
Groups to improve access only through the ELB and any other requirement
you might have.

Auto Scaling Group

Our AMI should be done by now so we can start working on our Auto
Scaling Group.

This option is also available through the EC2 dashboard on the left
sidebar. Press on the create button. Select the new image on My AMIs and
give it a t2.medium size. To be able to use Elastic File System we need
to add a script to mount EFS automatically at launch. We’ll do this at
the Advanced Details section where we have a [User Data](http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/user-data.html)
text area that allows us to add a lot of custom configurations which
allows you to add a custom script for when launching an instance. Let’s
add the following script to the User Data section:

#cloud-config
package_upgrade: true
packages:
- nfs-common
runcmd:
- mkdir -p /gitlab-data
- chown ec2-user:ec2-user /gitlab-data
- echo “$(curl –silent http://169.254.169.254/latest/meta-data/placement/availability-zone).file-system-id.aws-region.amazonaws.com:/ /gitlab-data nfs defaults,vers=4.1 0 0” >> /etc/fstab
- mount -a -t nfs
- sudo gitlab-ctl reconfigure

On the security group section we can choose our existing
gitlab-ec2-security-group group which has already been tested.

After this is launched we are able to start creating our Auto Scaling
Group. Start by giving it a name and assigning it our VPC and private
subnets. We also want to always start with two instances and if you
scroll down to Advanced Details we can choose to receive traffic from ELBs.
Lets enable that option and select our ELB. We also want to use the ELB’s
health check.

![Auto scaling](img/auto-scaling-det.png)

Policies

This is the really great part of Auto Scaling, we get to choose when AWS
launches new instances and when it removes them. For this group we’ll
scale between 2 and 4 instances where one instance will be added if CPU
utilization is greater than 60% and one instance is removed if it falls
to less than 45%. Here are the complete policies:

![Policies](img/policies.png)

You’ll notice that after we save this AWS starts launching our two
instances in different AZs and without a public IP which is exactly what
we where aiming for.

Final Thoughts

After you’re done with the policies section have some fun trying to break
instances. You should be able to see how the Auto Scaling Group and the
EC2 screen start bringing them up again.

High Availability is a very big area, we went mostly through scaling and
some redundancy options but it might also imply Geographic replication.
There is a lot of ground yet to cover so have a read through these other
resources and feel free to open an issue to request additional material.

	[GitLab High Availability](http://docs.gitlab.com/ce/administration/high_availability/README.html#sts=High Availability)

	[GitLab Geo](http://docs.gitlab.com/ee/gitlab-geo/README.html)

 —
comments: false
—

—
title: University | Process
—

Suggesting improvements

If you would like to teach a class or participate or help in any way please
submit a merge request and assign it to [Job](https://gitlab.com/u/JobV).

If you have suggestions for additional courses you would like to see,
please submit a merge request to add an upcoming class, assign to
[Chad](https://gitlab.com/u/chadmalchow) and /cc [Job](https://gitlab.com/u/JobV).

Adding classes

	All training materials of any kind should be added to [GitLab CE](https://gitlab.com/gitlab-org/gitlab-ce/)
to ensure they are available to a broad audience (don’t use any other repo or
storage for training materials).

	Don’t make materials that are needlessly specific to one group of people, try
to keep the wording broad and inclusive (don’t make things for only GitLab Inc.
people, only interns, only customers, etc.).

1. To allow people to contribute all content should be in git.
1. The content can go in a subdirectory under /doc/university/.
1. To make, view or modify the slides of the classes use [Deckset](http://www.decksetapp.com/)

or [RevealJS](http://lab.hakim.se/reveal-js/). Do not use Powerpoint or Google
Slides since this prevents everyone from contributing.

	Please upload any video recordings to our Youtube channel. We prefer them to
be public, if needed they can be unlisted but if so they should be linked from
this page.

	Please create a merge request and assign to [Erica](https://gitlab.com/u/Erica).

 —
comments: false
—

Support Boot Camp

Goal: Prepare new Service Engineers at GitLab

For each stage there are learning goals and content to support the learning of the engineer.
The goal of this boot camp is to have every Service Engineer prepared to help our customers
with whatever needs they might have and to also assist our awesome community with their
questions.

Always start with the [University Overview](../README.md) and then work
your way here for more advanced and specific training. Once you feel comfortable
with the topics of the current stage, move to the next.

Stage 1

Follow the topics on the [University Overview](../README.md), concentrate on it
during your first Stage, but also:

	
	Perform the [first steps](https://about.gitlab.com/handbook/support/onboarding/#first-steps) of
	the on-boarding process for new Service Engineers

Goals

Aim to have a good overview of the Product and main features, Git and the Company

Stage 2

Continue to look over remaining portions of the [University Overview](../README.md) and continue on to these topics:

Set up your development machine

Get your development machine ready to familiarize yourself with the codebase, the components, and to be prepared to reproduce issues that our users encounter

	Install the [GDK](https://gitlab.com/gitlab-org/gitlab-development-kit)
- [Setup OpenLDAP as part of this](https://gitlab.com/gitlab-org/gitlab-development-kit#openldap)

Become comfortable with the Installation processes that we support

It’s important to understand how to install GitLab in the same way that our users do. Try installing different versions and upgrading and downgrading between them. Installation from source will give you a greater understanding of the components that we employ and how everything fits together.

Sometimes we need to upgrade customers from old versions of GitLab to latest, so it’s good to get some experience of doing that now.

	[Installation Methods](https://about.gitlab.com/installation/):
- [Omnibus](https://gitlab.com/gitlab-org/omnibus-gitlab/)
- [Docker](https://gitlab.com/gitlab-org/gitlab-ce/tree/master/docker)
- [Source](https://gitlab.com/gitlab-org/gitlab-ce/blob/master/doc/install/installation.md)

	Get yourself a Digital Ocean droplet, where you can install and maintain your own instance of GitLab
- Ask in #infrastructure about this
- Populate with some test data
- Keep this up-to-date as patch and version releases become available, just like our customers would

	Try out the following installation path
- [Install GitLab 4.2 from source](https://gitlab.com/gitlab-org/gitlab-ce/blob/d67117b5a185cfb15a1d7e749588ff981ffbf779/doc/install/installation.md)

	External MySQL database

	External NGINX

	Create some test data
- Populated Repos
- Users
- Groups
- Projects

	[Backup using our Backup rake task](https://docs.gitlab.com/ce/raketasks/backup_restore.html#create-a-backup-of-the-gitlab-system)

	[Upgrade to 5.0 source using our Upgrade documentation](https://gitlab.com/gitlab-org/gitlab-ee/blob/master/doc/update/4.2-to-5.0.md)

	[Upgrade to 5.1 source](https://gitlab.com/gitlab-org/gitlab-ee/blob/master/doc/update/5.0-to-5.1.md)

	[Upgrade to 6.0 source](https://gitlab.com/gitlab-org/gitlab-ee/blob/master/doc/update/5.1-to-6.0.md)

	[Upgrade to 7.14 source](https://gitlab.com/gitlab-org/gitlab-ee/blob/master/doc/update/6.x-or-7.x-to-7.14.md)

	[Backup using our Backup rake task](https://docs.gitlab.com/ce/raketasks/backup_restore.html#create-a-backup-of-the-gitlab-system)

	[Perform the MySQL to PostgreSQL migration to convert your backup](https://docs.gitlab.com/ce/update/mysql_to_postgresql.html#converting-a-gitlab-backup-file-from-mysql-to-postgres)

	[Upgrade to Omnibus 7.14](https://docs.gitlab.com/omnibus/update/README.html#upgrading-from-a-non-omnibus-installation-to-an-omnibus-installation)

	[Restore backup using our Restore rake task](https://docs.gitlab.com/ce/raketasks/backup_restore.html#restore-a-previously-created-backup)

	[Upgrade to latest EE](https://about.gitlab.com/downloads-ee)
- (GitLab inc. only) Acquire and apply a license for the Enterprise Edition product, ask in #support

	Perform a downgrade from [EE to CE](https://docs.gitlab.com/ee/downgrade_ee_to_ce/README.html)

Start to learn about some of the integrations that we support

Our integrations add great value to GitLab. User questions often relate to integrating GitLab with existing external services and the configuration involved

	Learn about our Integrations (specially, not only):
- [LDAP](https://docs.gitlab.com/ee/integration/ldap.html)
- [JIRA](https://docs.gitlab.com/ee/project_services/jira.html)
- [Jenkins](https://docs.gitlab.com/ee/integration/jenkins.html)
- [SAML](https://docs.gitlab.com/ce/integration/saml.html)

Goals

	Aim to be comfortable with installation of the GitLab product and configuration of some of the major integrations

	Aim to have an installation available for reproducing customer reports

Stage 3

Understand the gathering of diagnostics for GitLab instances

	Learn about the GitLab checks that are available
- [Environment Information and maintenance checks](https://docs.gitlab.com/ce/raketasks/maintenance.html)
- [GitLab check](https://docs.gitlab.com/ce/raketasks/check.html)
- Omnibus commands

	[Status](https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/doc/maintenance/README.md#get-service-status)

	[Starting and stopping services](https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/doc/maintenance/README.md#starting-and-stopping)

	[Starting a rails console](https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/doc/maintenance/README.md#invoking-rake-tasks)

Learn about the Support process

Zendesk is our Support Centre and our main communication line with our Customers. We communicate with customers through several other channels too

	Familiarize yourself with ZenDesk
- [UI Overview](https://support.zendesk.com/hc/en-us/articles/203661806-Introduction-to-the-Zendesk-agent-interface)
- [Updating Tickets](https://support.zendesk.com/hc/en-us/articles/212530318-Updating-and-solving-tickets)
- [Working w/ Tickets](https://support.zendesk.com/hc/en-us/articles/203690856-Working-with-tickets) Read: avoiding agent collision.

	Dive into our ZenDesk support process by reading how to [handle tickets](https://about.gitlab.com/handbook/support/onboarding/#handling-tickets)

	Start getting real world experience by handling real tickets, all the while gaining further experience with the Product.
- First, learn about our [Support Channels](https://about.gitlab.com/handbook/support/#support-channels)
- Ask other Service Engineers for help, when necessary, and to review your responses
- Start with [StackOverflow](https://about.gitlab.com/handbook/support/#stack-overflowa-namestack-overflowa) and the [GitLab forum](https://about.gitlab.com/handbook/support/#foruma-namegitlab-foruma)
- Here you will find a large variety of queries mainly from our Users who are self hosting GitLab CE
- Understand the questions that are asked and dig in to try to find a solution
- [Proceed on to the GitLab.com Support Forum](https://about.gitlab.com/handbook/support/#gitlabcom-support-trackera-namesupp-foruma)

	Here you will find queries regarding our own GitLab.com

	Helping Users here will give you an understanding of our Admin interface and other tools

	[Proceed on to the Twitter tickets in Zendesk](https://about.gitlab.com/handbook/support/#twitter)
- Here you will gain a great insight into our userbase
- Learn from any complaints and problems and feed them back to the team
- Tweets can range from help needed with GitLab installations, the API and just general queries

	[Proceed on to Regular email Support tickets](https://about.gitlab.com/handbook/support/#regular-zendesk-tickets-a-nameregulara)
- Here you will find tickets from our GitLab EE Customers and GitLab CE Users
- Tickets here are extremely varied and often very technical
- You should be prepared for these tickets, given the knowledge gained from previous tiers and your training

	Check out your colleagues’ responses
- Hop on to the #support-live-feed channel in Slack and see the tickets as they come in and are updated
- Read through old tickets that your colleagues have worked on

	Start arranging to pair on calls with other Service Engineers. Aim to cover a few of each type of call
- [Learn about Cisco WebEx](https://about.gitlab.com/handbook/support/onboarding/#webexa-namewebexa)
- Training calls
- Information gathering calls

	It’s good to find out how new and prospective customers are going to be using the product and how they will set up their infrastructure

	Diagnosis calls
- When email isn’t enough we may need to hop on a call and do some debugging along side the customer
- These paired calls are a great learning experience

	Upgrade calls

	Emergency calls

Learn about the Escalation process for tickets

Some tickets need specific knowledge or a deep understanding of a particular component and will need to be escalated to a Senior Service Engineer or Developer

	Read about [Escalation](https://about.gitlab.com/handbook/support/onboarding/#create-issuesa-namecreate-issuea)

	Find the macros in Zendesk for ticket escalations

	Take a look at the [GitLab.com Team page](https://about.gitlab.com/team/) to find the resident experts in their fields

Learn about raising issues and fielding feature proposals

	Understand what’s in the pipeline and proposed features at GitLab: [Direction Page](https://about.gitlab.com/direction/)

	Practice searching issues and filtering using [labels](https://gitlab.com/gitlab-org/gitlab-ce/labels) to find existing feature proposals and bugs

	If raising a new issue always provide a relevant label and a link to the relevant ticket in Zendesk

	Add [customer labels](https://gitlab.com/gitlab-org/gitlab-ce/issues?label_name%5B%5D=customer) for those issues relevant to our subscribers

	Take a look at the [existing issue templates](https://gitlab.com/gitlab-org/gitlab-ce/blob/master/CONTRIBUTING.md#issue-tracker) to see what is expected

	Raise issues for bugs in a manner that would make the issue easily reproducible. A Developer or a contributor may work on your issue

Goals

	Aim to have a good understanding of the problems that customers are facing

	Aim to have gained experience in scheduling and participating in calls with customers

	Aim to have a good understanding of ticket flow through Zendesk and how to interact with our various channels

Stage 4

Advanced GitLab topics

Move on to understanding some of GitLab’s more advanced features. You can make use of GitLab.com to understand the features from an end-user perspective and then use your own instance to understand setup and configuration of the feature from an Administrative perspective

	Set up and try [Git LFS](https://docs.gitlab.com/ee/workflow/lfs/manage_large_binaries_with_git_lfs.html)

	Get to know the [GitLab API](https://docs.gitlab.com/ee/api/README.html), its capabilities and shortcomings

	Learn how to [migrate from SVN to Git](https://docs.gitlab.com/ee/workflow/importing/migrating_from_svn.html)

	Set up [GitLab CI](https://docs.gitlab.com/ee/ci/quick_start/README.html)

	Create your first [GitLab Page](https://docs.gitlab.com/ce/administration/pages/)

	Get to know the GitLab Codebase by reading through the source code:
- Find the differences between the [EE codebase](https://gitlab.com/gitlab-org/gitlab-ce)

and the [CE codebase](https://gitlab.com/gitlab-org/gitlab-ce)

	Ask as many questions as you can think of on the #support chat channel

Get initiated for on-call duty

	Read over the [public run-books to understand common tasks](https://gitlab.com/gitlab-com/runbooks)

	Create an issue on the internal Organization tracker to schedule time with the DevOps / Production team, so that you learn how to handle GitLab.com going down. Once you are trained for this, you are ready to be added to the on-call rotation.

Goals

	Aim to become a fully-fledged Service Engineer!

 —
comments: false
—

What is the GitLab Flow

	A simplified branching strategy

	All features and fixes first go to master

	Allows for ‘production’ or ‘stable’ branches

	Bug fixes/hot fix patches are cherry-picked from master

Feature branches

	Create a feature/bugfix branch to do all work

	Use merge requests to merge to master

![inline](gitlab_flow/feature_branches.png)

Production branch

	One, long-running production release branch
as opposed to individual stable branches

	Consider creating a tag for each version that gets deployed

Production branch

![inline](gitlab_flow/production_branch.png)

Release branch

	Useful if you release software to customers

	When preparing a new release, create stable branch
from master

	Consider creating a tag for each version

	Cherry-pick critical bug fixes to stable branch for patch release

	Never commit bug fixes directly to stable branch

Release branch

![inline](gitlab_flow/release_branches.png)

More details

For more information read through the [GitLab Flow](../../workflow/gitlab_flow.md)
documentation.

 —
comments: false
—

GitLab Training Material

All GitLab training material is stored in markdown format. Slides are
generated using [Deskset](http://www.decksetapp.com/).

All training material is open to public contribution.

 —
comments: false
—

GitLab Git Workshop

—

Agenda

1. Brief history of Git
1. GitLab walkthrough
1. Configure your environment
1. Workshop

—

Git introduction

https://git-scm.com/about

	Distributed version control
- Does not rely on connection to a central server
- Many copies of the complete history

	Powerful branching and merging

	Adapts to nearly any workflow

	Fast, reliable and stable file format

—

Help!

Use the tools at your disposal when you get stuck.

	Use ‘git help <command>’ command

	Use Google

	Read documentation at https://git-scm.com

—

GitLab Walkthrough

![fit](logo.png)

—

Configure your environment

	Windows: Install ‘Git for Windows’

> https://git-for-windows.github.io

	Mac: Type ‘git’ in the Terminal application.

> If it’s not installed, it will prompt you to install it.

	Debian: ‘sudo apt-get install git-all’

or Red Hat ‘sudo yum install git-all’

—

Git Workshop

Overview

1. Configure Git
1. Configure SSH Key
1. Create a project
1. Committing
1. Feature branching
1. Merge requests
1. Feedback and Collaboration

—

Configure Git

One-time configuration of the Git client

`bash
git config --global user.name "Your Name"
git config --global user.email you@example.com
`

—

Configure SSH Key

`bash
ssh-keygen -t rsa -b 4096 -C "you@computer-name"
`

`bash
You will be prompted for the following information. Press enter to accept the defaults. Defaults appear in parentheses.
Generating public/private rsa key pair.
Enter file in which to save the key (/Users/you/.ssh/id_rsa):
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /Users/you/.ssh/id_rsa.
Your public key has been saved in /Users/you/.ssh/id_rsa.pub.
The key fingerprint is:
39:fc:ce:94:f4:09:13:95:64:9a:65:c1:de:05:4d:01 you@computer-name
`

Copy your public key and add it to your GitLab profile

`bash
cat ~/.ssh/id_rsa.pub
`

`bash
ssh-rsa AAAAB3NzaC1yc2EAAAADAQEL17Ufacg8cDhlQMS5NhV8z3GHZdhCrZbl4gz you@example.com
`

—

Create a project

	Create a project in your user namespace
- Choose to import from ‘Any Repo by URL’ and use

https://gitlab.com/gitlab-org/training-examples.git

	Create a ‘development’ or ‘workspace’ directory in your home directory.

	Clone the ‘training-examples’ project

—

Commands

```
mkdir ~/development
cd ~/development

-or-

mkdir ~/workspace
cd ~/workspace

git clone git@gitlab.example.com:<username>/training-examples.git
cd training-examples
```

—

Git concepts

Untracked files

New files that Git has not been told to track previously.

Working area

Files that have been modified but are not committed.

Staging area

Modified files that have been marked to go in the next commit.

—

Committing

1. Edit ‘edit_this_file.rb’ in ‘training-examples’
1. See it listed as a changed file (working area)
1. View the differences
1. Stage the file
1. Commit
1. Push the commit to the remote
1. View the git log

—

Commands

`
Edit `edit_this_file.rb`
git status
git diff
git add <file>
git commit -m 'My change'
git push origin master
git log
`

—

Feature branching

	Efficient parallel workflow for teams

	Develop each feature in a branch

	Keeps changes isolated

	Consider a 1-to-1 link to issues

	Push branches to the server frequently
- Hint: This is a cheap backup for your work-in-progress code

—

Feature branching

1. Create a new feature branch called ‘squash_some_bugs’
1. Edit ‘bugs.rb’ and remove all the bugs.
1. Commit
1. Push

—

Commands

`
git checkout -b squash_some_bugs
Edit `bugs.rb`
git status
git add bugs.rb
git commit -m 'Fix some buggy code'
git push origin squash_some_bugs
`

—

Merge requests

	When you want feedback create a merge request

	Target is the ‘default’ branch (usually master)

	Assign or mention the person you would like to review

	Add ‘WIP’ to the title if it’s a work in progress

	When accepting, always delete the branch

	Anyone can comment, not just the assignee

	Push corrections to the same branch

—

Merge requests

Create your first merge request

1. Use the blue button in the activity feed
1. View the diff (changes) and leave a comment
1. Push a new commit to the same branch
1. Review the changes again and notice the update

—

Feedback and Collaboration

	Merge requests are a time for feedback and collaboration

	Giving feedback is hard

	Be as kind as possible

	Receiving feedback is hard

	Be as receptive as possible

	Feedback is about the best code, not the person. You are not your code

—

Feedback and Collaboration

Review the Thoughtbot code-review guide for suggestions to follow when reviewing merge requests:
https://github.com/thoughtbot/guides/tree/master/code-review

See GitLab merge requests for examples:
https://gitlab.com/gitlab-org/gitlab-ce/merge_requests

—

Explore GitLab projects

![fit](logo.png)

	Dashboard

	User Preferences

	ReadMe, Changelog, License shortcuts

	Issues

	Milestones and Labels

	Manage project members

	Project settings

—

Tags

	Useful for marking deployments and releases

	Annotated tags are an unchangeable part of Git history

	Soft/lightweight tags can be set and removed at will

	Many projects combine an annotated release tag with a stable branch

	Consider setting deployment/release tags automatically

—

Tags

	Create a lightweight tag

	Create an annotated tag

	Push the tags to the remote repository

Additional resources

http://git-scm.com/book/en/Git-Basics-Tagging

—

Commands

```
git checkout master

# Lightweight tag
git tag my_lightweight_tag

# Annotated tag
git tag -a v1.0 -m ‘Version 1.0’
git tag

git push origin –tags
```

—

Merge conflicts

	Happen often

	Learning to fix conflicts is hard

	Practice makes perfect

	Force push after fixing conflicts. Be careful!

—

Merge conflicts

1. Checkout a new branch and edit conflicts.rb. Add ‘Line4’ and ‘Line5’.
1. Commit and push
1. Checkout master and edit conflicts.rb. Add ‘Line6’ and ‘Line7’ below ‘Line3’.
1. Commit and push to master
1. Create a merge request

—

Merge conflicts

After creating a merge request you should notice that conflicts exist. Resolve
the conflicts locally by rebasing.

```
git rebase master

# Fix conflicts by editing the files.

git add conflicts.rb
git commit -m ‘Fix conflicts’
git rebase –continue
git push origin <branch> -f
```

—

Rebase with squash

You may end up with a commit log that looks like this:

`
Fix issue #13
Test
Fix
Fix again
Test
Test again
Does this work?
`

Squash these in to meaningful commits using an interactive rebase.

—

Rebase with squash

Squash the commits on the same branch we used for the merge conflicts step.

`
git rebase -i master
`

In the editor, leave the first commit as ‘pick’ and set others to ‘fixup’.

—

Questions?

![fit](logo.png)

Thank you for your hard work!

Additional Resources

GitLab Documentation http://docs.gitlab.com
GUI Clients http://git-scm.com/downloads/guis
Pro git book http://git-scm.com/book
Platzi Course https://courses.platzi.com/courses/git-gitlab/
Code School tutorial http://try.github.io/
Contact Us at subscribers@gitlab.com

 —
comments: false
—

Training

This training material is the markdown used to generate training slides
which can be found at [End User Slides](https://gitlab-org.gitlab.io/end-user-training-slides/#/)
through it’s [RevealJS](https://gitlab.com/gitlab-org/end-user-training-slides)
project.

—

Git Intro

—

What is a Version Control System (VCS)

	Records changes to a file

	Maintains history of changes

	Disaster Recovery

	Types of VCS: Local, Centralized and Distributed

—

Short Story of Git

	1991-2002: The Linux kernel was being maintained by sharing archived files
and patches.

	2002: The Linux kernel project began using a DVCS called BitKeeper

	2005: BitKeeper revoked the free-of-charge status and Git was created

—

What is Git

	Distributed Version Control System

	Great branching model that adapts well to most workflows

	Fast and reliable

	Keeps a complete history

	Disaster recovery friendly

	Open Source

—

Getting Help

	Use the tools at your disposal when you get stuck.
- Use git help <command> command
- Use Google (i.e. StackOverflow, Google groups)
- Read documentation at https://git-scm.com

—

Git Setup
Workshop Time!

—

Setup

	Windows: Install ‘Git for Windows’
- https://git-for-windows.github.io

	Mac: Type git in the Terminal application.
- If it’s not installed, it will prompt you to install it.

	Linux
- Debian: sudo apt-get install git-all
- Red Hat sudo yum install git-all

—

Configure

	One-time configuration of the Git client:

`bash
git config --global user.name "Your Name"
git config --global user.email you@example.com
`

	If you don’t use the global flag you can setup a different author for
each project

	Check settings with:

`bash
git config --global --list
`
- You might want or be required to use an SSH key.

	Instructions: [SSH](http://doc.gitlab.com/ce/ssh/README.html)

—

Workspace

	Choose a directory on you machine easy to access

	Create a workspace or development directory

	This is where we’ll be working and adding content

—

```bash
mkdir ~/development
cd ~/development

-or-

mkdir ~/workspace
cd ~/workspace
```

—

Git Basics

—

Git Workflow

	
	Untracked files
	
	New files that Git has not been told to track previously.

	
	Working area (Workspace)
	
	Files that have been modified but are not committed.

	
	Staging area (Index)
	
	Modified files that have been marked to go in the next commit.

	
	Upstream
	
	Hosted repository on a shared server

—

GitLab

	GitLab is an application to code, test and deploy.

	Provides repository management with access controls, code reviews,
issue tracking, Merge Requests, and other features.

	The hosted version of GitLab is gitlab.com

—

New Project

	Sign in into your gitlab.com account

	Create a project

	Choose to import from ‘Any Repo by URL’ and use https://gitlab.com/gitlab-org/training-examples.git

	On your machine clone the training-examples project

—

Git and GitLab basics

	Edit edit_this_file.rb in training-examples

	See it listed as a changed file (working area)

	View the differences

	Stage the file

	Commit

	Push the commit to the remote

	View the git log

—

`shell
Edit `edit_this_file.rb`
git status
git diff
git add <file>
git commit -m 'My change'
git push origin master
git log
`

—

Feature Branching

	Create a new feature branch called squash_some_bugs

	Edit bugs.rb and remove all the bugs.

	Commit

	Push

—

`shell
git checkout -b squash_some_bugs
Edit `bugs.rb`
git status
git add bugs.rb
git commit -m 'Fix some buggy code'
git push origin squash_some_bugs
`

—

Merge Request

—

Merge requests

	When you want feedback create a merge request

	Target is the ‘default’ branch (usually master)

	Assign or mention the person you would like to review

	Add WIP to the title if it’s a work in progress

	When accepting, always delete the branch

	Anyone can comment, not just the assignee

	Push corrections to the same branch

—

Merge request example

	Create your first merge request
- Use the blue button in the activity feed
- View the diff (changes) and leave a comment
- Push a new commit to the same branch
- Review the changes again and notice the update

—

Feedback and Collaboration

	Merge requests are a time for feedback and collaboration

	Giving feedback is hard

	Be as kind as possible

	Receiving feedback is hard

	Be as receptive as possible

	Feedback is about the best code, not the person. You are not your code

	Feedback and Collaboration

—

Feedback and Collaboration

	Review the Thoughtbot code-review guide for suggestions to follow when reviewing merge requests:[Thoughtbot](https://github.com/thoughtbot/guides/tree/master/code-review)

	See GitLab merge requests for examples: [Merge Requests](https://gitlab.com/gitlab-org/gitlab-ce/merge_requests)

—

Merge Conflicts

—

Merge Conflicts
* Happen often
* Learning to fix conflicts is hard
* Practice makes perfect
* Force push after fixing conflicts. Be careful!

—

Example Plan
1. Checkout a new branch and edit conflicts.rb. Add ‘Line4’ and ‘Line5’.
2. Commit and push
3. Checkout master and edit conflicts.rb. Add ‘Line6’ and ‘Line7’ below ‘Line3’.
4. Commit and push to master
5. Create a merge request and watch it fail
6. Rebase our new branch with master
7. Fix conflicts on the conflicts.rb file.
8. Stage the file and continue rebasing
9. Force push the changes
10. Finally continue with the Merge Request

—

Example 1/2

git checkout -b conflicts_branch

vi conflicts.rb
Add ‘Line4’ and ‘Line5’

git commit -am “add line4 and line5”
git push origin conflicts_branch

git checkout master

vi conflicts.rb
Add ‘Line6’ and ‘Line7’
git commit -am “add line6 and line7”
git push origin master

—

Example 2/2

Create a merge request on the GitLab web UI. You’ll see a conflict warning.

git checkout conflicts_branch
git fetch
git rebase master

Fix conflicts by editing the files.

git add conflicts.rb
No need to commit this file

git rebase –continue

Remember that we have rewritten our commit history so we
need to force push so that our remote branch is restructured
git push origin conflicts_branch -f

—

Notes

	When to use git merge and when to use git rebase

	Rebase when updating your branch with master

	Merge when bringing changes from feature to master

	Reference: https://www.atlassian.com/git/tutorials/merging-vs-rebasing/

—

Revert and Unstage

—

Unstage

To remove files from stage use reset HEAD. Where HEAD is the last commit of the current branch:

git reset HEAD <file>

This will unstage the file but maintain the modifications. To revert the file back to the state it was in before the changes we can use:

git checkout – <file>

To remove a file from disk and repo use ‘git rm’ and to rm a dir use the ‘-r’ flag:

git rm ‘*.txt’
git rm -r <dirname>

If we want to remove a file from the repository but keep it on disk, say we forgot to add it to our .gitignore file then use –cache:

git rm <filename> –cache

—

Undo Commits

Undo last commit putting everything back into the staging area:

git reset –soft HEAD^

Add files and change message with:

git commit –amend -m “New Message”

Undo last and remove changes

git reset –hard HEAD^

Same as last one but for two commits back:

git reset –hard HEAD^^

Don’t reset after pushing

—

Reset Workflow

	Edit file again ‘edit_this_file.rb’

	Check status

	Add and commit with wrong message

	Check log

	Amend commit

	Check log

	Soft reset

	Check log

	Pull for updates

	Push changes

Change file edit_this_file.rb
git status
git commit -am “kjkfjkg”
git log
git commit –amend -m “New comment added”
git log
git reset –soft HEAD^
git log
git pull origin master
git push origin master

—

Note

git revert vs git reset
Reset removes the commit while revert removes the changes but leaves the commit
Revert is safer considering we can revert a revert

Changed file
git commit -am “bug introduced”
git revert HEAD
New commit created reverting changes
Now we want to re apply the reverted commit
git log # take hash from the revert commit
git revert <rev commit hash>
reverted commit is back (new commit created again)

—

Questions

—

Instructor Notes

—

	### Version Control
	
	Local VCS was used with a filesystem or a simple db.

	Centralized VCS such as Subversion includes collaboration but
still is prone to data loss as the main server is the single point of
failure.

	Distributed VCS enables the team to have a complete copy of the project
and work with little dependency to the main server. In case of a main
server failing the project can be recovered by any of the latest copies
from the team

 —
comments: false
—

Additional Resources

	GitLab Documentation http://docs.gitlab.com

	GUI Clients http://git-scm.com/downloads/guis

	Pro git book http://git-scm.com/book

	Platzi Course https://courses.platzi.com/courses/git-gitlab/

	Code School tutorial http://try.github.io/

	Contact Us at subscribers@gitlab.com

 —
comments: false
—

Agile and Git

Agile

Lean software development methods focused on collaboration and interaction
with fast and smaller deployment cycles.

Where Git comes in

Git is an excellent tool for an Agile team considering that it allows
decentralized and simultaneous development.

Branching And Workflows

Branching in an Agile environment usually happens around user stories with one
or more developers working on it.

If more than one developer then another branch for each developer is also used
with his/her initials, and US id.

After its tested merge into master and remove the branch.

What about GitLab
Tools like GitLab enhance collaboration by adding dialog around code mainly
through issues and merge requests.

 —
comments: false
—

Bisect

Bisect

	Find a commit that introduced a bug

	Works through a process of elimination

	Specify a known good and bad revision to begin

Bisect

	Start the bisect process

	Enter the bad revision (usually latest commit)

	Enter a known good revision (commit/branch)

	Run code to see if bug still exists

	Tell bisect the result

	Repeat the previous 2 items until you find the offending commit

Setup


	```
	mkdir bisect-ex
cd bisect-ex
touch index.html
git add -A
git commit -m “starting out”
vi index.html
# Add all good
git add -A
git commit -m “second commit”
vi index.html
# Add all good 2
git add -A
git commit -m “third commit”
vi index.html





```



	```
	# Add all good 3
git add -A
git commit -m “fourth commit”
vi index.html
# This looks bad
git add -A
git commit -m “fifth commit”
vi index.html
# Really bad
git add -A
git commit -m “sixth commit”
vi index.html
# again just bad
git add -A
git commit -m “seventh commit”





```


Commands


	```
	git bisect start
# Test your code
git bisect bad
git bisect next
# Say yes to the warning
# Test
git bisect good
# Test
git bisect bad
# Test
git bisect good
# done
git bisect reset





```


 —
comments: false
—

Cherry Pick

Cherry Pick

	Given an existing commit on one branch, apply the change to another branch

	Useful for backporting bug fixes to previous release branches

	Make the commit on the master branch and pick in to stable

Cherry Pick

1. Check out a new ‘stable’ branch from ‘master’
1. Change back to ‘master’
1. Edit ‘cherry_pick.rb’ and commit the changes.
1. Check commit log to get the commit SHA
1. Check out the ‘stable’ branch
1. Cherry pick the commit using the SHA obtained earlier

Commands

```bash
git checkout master
git checkout -b stable
git checkout master

# Edit cherry_pick.rb
git add cherry_pick.rb
git commit -m ‘Fix bugs in cherry_pick.rb’
git log
# Copy commit SHA
git checkout stable

git cherry-pick <commit SHA>
```


 —
comments: false
—

Configure your environment

	Windows
- Install ‘Git for Windows’ from https://git-for-windows.github.io

	Mac
- Type ‘git’ in the Terminal application.
- If it’s not installed, it will prompt you to install it.

	Linux
```bash


sudo yum install git-all




```
```bash


sudo apt-get install git-all




```


Configure Git

One-time configuration of the Git client

`bash
git config --global user.name "Your Name"
git config --global user.email you@example.com
`

Configure SSH Key

`bash
ssh-keygen -t rsa -b 4096 -C "you@computer-name"
`

`bash
You will be prompted for the following information. Press enter to accept the defaults. Defaults appear in parentheses.
Generating public/private rsa key pair.
Enter file in which to save the key (/Users/you/.ssh/id_rsa):
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /Users/you/.ssh/id_rsa.
Your public key has been saved in /Users/you/.ssh/id_rsa.pub.
The key fingerprint is:
39:fc:ce:94:f4:09:13:95:64:9a:65:c1:de:05:4d:01 you@computer-name
`

Copy your public key and add it to your GitLab profile

`bash
cat ~/.ssh/id_rsa.pub
`

`bash
ssh-rsa AAAAB3NzaC1yc2EAAAADAQEL17Ufacg8cDhlQMS5NhV8z3GHZdhCrZbl4gz you@example.com
`

 —
comments: false
—

Explore GitLab projects

	Dashboard

	User Preferences

	Issues

	Milestones and Labels

	Manage project members

	Project settings

 —
comments: false
—

Feature branching

	Efficient parallel workflow for teams

	Develop each feature in a branch

	Keeps changes isolated

	Consider a 1-to-1 link to issues

	Push branches to the server frequently
- Hint: This is a cheap backup for your work-in-progress code

Feature branching

1. Create a new feature branch called ‘squash_some_bugs’
1. Edit ‘bugs.rb’ and remove all the bugs.
1. Commit
1. Push

Commands

`
git checkout -b squash_some_bugs
Edit `bugs.rb`
git status
git add bugs.rb
git commit -m 'Fix some buggy code'
git push origin squash_some_bugs
`

 —
comments: false
—

Getting Started

Instantiating Repositories

	Create a new repository by instantiating it through

`bash
git init
`
* Copy an existing project by cloning the repository through
`bash
git clone <url>
`

Central Repos

	To instantiate a central repository a –bare flag is required.

	Bare repositories don’t allow file editing or committing changes.

	Create a bare repo with

`bash
git init --bare project-name.git
`

Instantiate workflow with clone

	Create a project in your user namespace

	Choose to import from ‘Any Repo by URL’ and use
https://gitlab.com/gitlab-org/training-examples.git

	Create a ‘Workspace’ directory in your home directory.

	Clone the ‘training-examples’ project

Commands

```
mkdir ~/workspace
cd ~/workspace

git clone git@gitlab.example.com:<username>/training-examples.git
cd training-examples
```
———-

Git concepts

Untracked files

New files that Git has not been told to track previously.

Working area

Files that have been modified but are not committed.

Staging area

Modified files that have been marked to go in the next commit.

Committing Workflow

1. Edit ‘edit_this_file.rb’ in ‘training-examples’
1. See it listed as a changed file (working area)
1. View the differences
1. Stage the file
1. Commit
1. Push the commit to the remote
1. View the git log

Commands

`
Edit `edit_this_file.rb`
git status
git diff
git add <file>
git commit -m 'My change'
git push origin master
git log
`

Note

	git fetch vs pull

	Pull is git fetch + git merge

 —
comments: false
—

Git Add

Git Add

Adds content to the index or staging area.

	Adds a list of file

`bash
git add <files>
`
* Adds all files including deleted ones
`bash
git add -A
`

Git add continued

	Add all text files in current dir

`bash
git add *.txt
`
* Add all text file in the project
`bash
git add "*.txt*"
`
* Adds all files in directory
`bash
git add views/layouts/
`

 —
comments: false
—

Git introduction

Intro

https://git-scm.com/about

	Distributed version control
- Does not rely on connection to a central server
- Many copies of the complete history

	Powerful branching and merging

	Adapts to nearly any workflow

	Fast, reliable and stable file format

Help!

Use the tools at your disposal when you get stuck.

	Use ‘git help <command>’ command

	Use Google

	Read documentation at https://git-scm.com

 —
comments: false
—

Git Log

Git log lists commit history. It allows searching and filtering.

	Initiate log

`
git log
`

	Retrieve set number of records:

`
git log -n 2
`

	Search commits by author. Allows user name or a regular expression.

`
git log --author="user_name"
`

	Search by comment message.

`
git log --grep="<pattern>"
`

	Search by date

`
git log --since=1.month.ago --until=3.weeks.ago
`

Git Log Workflow

	Change to workspace directory

	Clone the multi runner projects

	Change to project dir

	Search by author

	Search by date

	Combine

Commands

`
cd ~/workspace
git clone git@gitlab.com:gitlab-org/gitlab-runner.git
cd gitlab-runner
git log --author="Travis"
git log --since=1.month.ago --until=3.weeks.ago
git log --since=1.month.ago --until=1.day.ago --author="Travis"
`

 —
redirect_to: ‘../gitlab_flow.md’
—

 —
comments: false
—

Merge conflicts

	Happen often

	Learning to fix conflicts is hard

	Practice makes perfect

	Force push after fixing conflicts. Be careful!

Merge conflicts

	Checkout a new branch and edit conflicts.rb. Add ‘Line4’ and ‘Line5’.

	Commit and push

	Checkout master and edit conflicts.rb. Add ‘Line6’ and ‘Line7’ below ‘Line3’.

	Commit and push to master

	Create a merge request and watch it fail

	Rebase our new branch with master

	Fix conflicts on the conflicts.rb file.

	Stage the file and continue rebasing

	Force push the changes

	Finally continue with the Merge Request

Commands

```
git checkout -b conflicts_branch

# vi conflicts.rb
# Add ‘Line4’ and ‘Line5’

git commit -am “add line4 and line5”
git push origin conflicts_branch

git checkout master

# vi conflicts.rb
# Add ‘Line6’ and ‘Line7’
git commit -am “add line6 and line7”
git push origin master
```

Create a merge request on the GitLab web UI. You’ll see a conflict warning.

```
git checkout conflicts_branch
git fetch
git rebase master

# Fix conflicts by editing the files.

git add conflicts.rb
# No need to commit this file

git rebase –continue

# Remember that we have rewritten our commit history so we
# need to force push so that our remote branch is restructured
git push origin conflicts_branch -f
```
———-

Note
* When to use ‘git merge’ and when to use ‘git rebase’
* Rebase when updating your branch with master
* Merge when bringing changes from feature to master
* Reference: https://www.atlassian.com/git/tutorials/merging-vs-rebasing/

 —
comments: false
—

Code review and collaboration with Merge Requests

	When you want feedback create a merge request

	Target is the default branch (usually master)

	Assign or mention the person you would like to review

	Add ‘WIP’ to the title if it’s a work in progress

	When accepting, always delete the branch

	Anyone can comment, not just the assignee

	Push corrections to the same branch

Merge requests

Create your first merge request

1. Use the blue button in the activity feed
1. View the diff (changes) and leave a comment
1. Push a new commit to the same branch
1. Review the changes again and notice the update

Feedback and Collaboration

	Merge requests are a time for feedback and collaboration

	Giving feedback is hard

	Be as kind as possible

	Receiving feedback is hard

	Be as receptive as possible

	Feedback is about the best code, not the person. You are not your code

Feedback and Collaboration

Review the Thoughtbot code-review guide for suggestions to follow when reviewing merge requests:
https://github.com/thoughtbot/guides/tree/master/code-review

See GitLab merge requests for examples:
https://gitlab.com/gitlab-org/gitlab-ce/merge_requests

 —
comments: false
—

Rollback Commits

Undo Commits

	Undo last commit putting everything back into the staging area.

`
git reset --soft HEAD^
`

	Add files and change message with:

`
git commit --amend -m "New Message"
`

	Undo last and remove changes

`
git reset --hard HEAD^
`

	Same as last one but for two commits back

`
git reset --hard HEAD^^
`

** Don’t reset after pushing **

Reset Workflow

	Edit file again ‘edit_this_file.rb’

	Check status

	Add and commit with wrong message

	Check log

	Amend commit

	Check log

	Soft reset

	Check log

	Pull for updates

	Push changes

Commands

`
Change file edit_this_file.rb
git status
git commit -am "kjkfjkg"
git log
git commit --amend -m "New comment added"
git log
git reset --soft HEAD^
git log
git pull origin master
git push origin master
`

Note

	git revert vs git reset

	Reset removes the commit while revert removes the changes but leaves the commit

	Revert is safer considering we can revert a revert

`
Changed file
git commit -am "bug introduced"
git revert HEAD
New commit created reverting changes
Now we want to re apply the reverted commit
git log # take hash from the revert commit
git revert <rev commit hash>
reverted commit is back (new commit created again)
`

 —
comments: false
—

Git Stash

We use git stash to store our changes when they are not ready to be committed
and we need to change to a different branch.

	Stash

`
git stash save
or
git stash
or with a message
git stash save "this is a message to display on the list"
`

	Apply stash to keep working on it

`
git stash apply
or apply a specific one from out stack
git stash apply stash@{3}
`

	Every time we save a stash it gets stacked so by using list we can see all our

stashes.

`
git stash list
or for more information (log methods)
git stash list --stat
`

	To clean our stack we need to manually remove them.

`
drop top stash
git stash drop
or
git stash drop <name>
to clear all history we can use
git stash clear
`

	Apply and drop on one command


	```
	git stash pop





```


	If we meet conflicts we need to either reset or commit our changes.

	Conflicts through pop will not drop a stash afterwards.

Git Stash

	Modify a file

	Stage file

	Stash it

	View our stash list

5. Confirm no pending changes through status
5. Apply with pop
6. View list to confirm changes

Commands

```
# Modify edit_this_file.rb file
git add .

git stash save “Saving changes from edit this file”

git stash list
git status

git stash pop
git stash list
git status
```


 —
comments: false
—

Subtree

	Used when there are nested repositories.

	Not recommended when the amount of dependencies is too large

	For these cases we need a dependency control system

	Command are painfully long so aliases are necessary

Subtree Aliases

	Add: git subtree add –prefix <target-folder> <url> <branch> –squash

	Pull: git subtree add –prefix <target-folder> <url> <branch> –squash

	Push: git subtree add –prefix <target-folder> <url> <branch>

	Ex: git config alias.sbp ‘subtree pull –prefix st /
git@gitlab.com:balameb/subtree-nested-example.git master –squash’


	```
	# Add an alias
# Add
git config alias.sba ‘subtree add –prefix st /
git@gitlab.com:balameb/subtree-nested-example.git master –squash’
# Pull
git config alias.sbpl ‘subtree pull –prefix st /
git@gitlab.com:balameb/subtree-nested-example.git master –squash’
# Push
git config alias.sbph ‘subtree push –prefix st /
git@gitlab.com:balameb/subtree-nested-example.git master’

# Adding this subtree adds a st dir with a readme
git sba
vi st/README.md
# Edit file
git status shows differences





```



	```
	# Adding, or committing won’t change the sub repo at remote
# even if we push
git add -A
git commit -m “Adding to subtree readme”

# Push to subtree repo
git sbph
# now we can check our remote sub repo





```


 —
comments: false
—

Tags

	Useful for marking deployments and releases

	Annotated tags are an unchangeable part of Git history

	Soft/lightweight tags can be set and removed at will

	Many projects combine an annotated release tag with a stable branch

	Consider setting deployment/release tags automatically

Tags

	Create a lightweight tag

	Create an annotated tag

	Push the tags to the remote repository

Additional resources

http://git-scm.com/book/en/Git-Basics-Tagging

Commands

```
git checkout master

# Lightweight tag
git tag my_lightweight_tag

# Annotated tag
git tag -a v1.0 -m ‘Version 1.0’
git tag

git push origin –tags
```


 —
comments: false
—

Unstage

Unstage

	To remove files from stage use reset HEAD. Where HEAD is the last commit of the current branch.

`bash
git reset HEAD <file>
`

	This will unstage the file but maintain the modifications. To revert the file back to the state it was in before the changes we can use:

`bash
git checkout -- <file>
`

	To remove a file from disk and repo use ‘git rm’ and to rm a dir use the ‘-r’ flag.

`
git rm '*.txt'
git rm -r <dirname>
`

	If we want to remove a file from the repository but keep it on disk, say we forgot to add it to our .gitignore file then use –cache.

`
git rm <filename> --cache
`

 —
comments: false
—

From 10.0 to 10.1

Make sure you view this update guide from the tag (version) of GitLab you would
like to install. In most cases this should be the highest numbered production
tag (without rc in it). You can select the tag in the version dropdown at the
top left corner of GitLab (below the menu bar).

If the highest number stable branch is unclear please check the
[GitLab Blog](https://about.gitlab.com/blog/archives.html) for installation
guide links by version.

1. Stop server

`bash
sudo service gitlab stop
`

2. Backup

```bash
cd /home/git/gitlab

sudo -u git -H bundle exec rake gitlab:backup:create RAILS_ENV=production
```

3. Update Ruby

NOTE: GitLab 9.0 and higher only support Ruby 2.3.x and dropped support for Ruby 2.1.x. Be
sure to upgrade your interpreter if necessary.

You can check which version you are running with ruby -v.

Download and compile Ruby:

`bash
mkdir /tmp/ruby && cd /tmp/ruby
curl --remote-name --progress https://cache.ruby-lang.org/pub/ruby/2.3/ruby-2.3.5.tar.gz
echo '3247e217d6745c27ef23bdc77b6abdb4b57a118f ruby-2.3.5.tar.gz' | shasum -c - && tar xzf ruby-2.3.5.tar.gz
cd ruby-2.3.5
./configure --disable-install-rdoc
make
sudo make install
`

Install Bundler:

`bash
sudo gem install bundler --no-ri --no-rdoc
`

4. Update Node

GitLab now runs [webpack](http://webpack.js.org) to compile frontend assets and
it has a minimum requirement of node v4.3.0.

You can check which version you are running with node -v. If you are running
a version older than v4.3.0 you will need to update to a newer version. You
can find instructions to install from community maintained packages or compile
from source at the nodejs.org website.

<https://nodejs.org/en/download/>

Since 8.17, GitLab requires the use of yarn >= v0.17.0 to manage
JavaScript dependencies.

`bash
curl --silent --show-error https://dl.yarnpkg.com/debian/pubkey.gpg | sudo apt-key add -
echo "deb https://dl.yarnpkg.com/debian/ stable main" | sudo tee /etc/apt/sources.list.d/yarn.list
sudo apt-get update
sudo apt-get install yarn
`

More information can be found on the [yarn website](https://yarnpkg.com/en/docs/install).

5. Update Go

NOTE: GitLab 9.2 and higher only supports Go 1.8.3 and dropped support for Go
1.5.x through 1.7.x. Be sure to upgrade your installation if necessary.

You can check which version you are running with go version.

Download and install Go:

```bash
# Remove former Go installation folder
sudo rm -rf /usr/local/go

curl –remote-name –progress https://storage.googleapis.com/golang/go1.8.3.linux-amd64.tar.gz
echo ‘1862f4c3d3907e59b04a757cfda0ea7aa9ef39274af99a784f5be843c80c6772  go1.8.3.linux-amd64.tar.gz’ | shasum -a256 -c - && 


sudo tar -C /usr/local -xzf go1.8.3.linux-amd64.tar.gz




sudo ln -sf /usr/local/go/bin/{go,godoc,gofmt} /usr/local/bin/
rm go1.8.3.linux-amd64.tar.gz
```

6. Get latest code

```bash
cd /home/git/gitlab

sudo -u git -H git fetch –all
sudo -u git -H git checkout – db/schema.rb # local changes will be restored automatically
sudo -u git -H git checkout – locale
```

For GitLab Community Edition:

```bash
cd /home/git/gitlab

sudo -u git -H git checkout 10-1-stable
```

OR

For GitLab Enterprise Edition:

```bash
cd /home/git/gitlab

sudo -u git -H git checkout 10-1-stable-ee
```

7. Update gitlab-shell

```bash
cd /home/git/gitlab-shell

sudo -u git -H git fetch –all –tags
sudo -u git -H git checkout v$(</home/git/gitlab/GITLAB_SHELL_VERSION)
sudo -u git -H bin/compile
```

8. Update gitlab-workhorse

Install and compile gitlab-workhorse. GitLab-Workhorse uses
[GNU Make](https://www.gnu.org/software/make/).
If you are not using Linux you may have to run gmake instead of
make below.

```bash
cd /home/git/gitlab-workhorse

sudo -u git -H git fetch –all –tags
sudo -u git -H git checkout v$(</home/git/gitlab/GITLAB_WORKHORSE_VERSION)
sudo -u git -H make
```

9. Update Gitaly

New Gitaly configuration options required

In order to function Gitaly needs some additional configuration information. Below we assume you installed Gitaly in /home/git/gitaly and GitLab Shell in /home/git/gitlab-shell.

```shell
echo ‘
[gitaly-ruby]
dir = “/home/git/gitaly/ruby”

[gitlab-shell]
dir = “/home/git/gitlab-shell”
‘ | sudo -u git tee -a /home/git/gitaly/config.toml
```

Check Gitaly configuration

Due to a bug in the rake gitlab:gitaly:install script your Gitaly
configuration file may contain syntax errors. The block name
[[storages]], which may occur more than once in your config.toml
file, should be [[storage]] instead.

`shell
sudo -u git -H sed -i.pre-10.1 's/\[\[storages\]\]/[[storage]]/' /home/git/gitaly/config.toml
`

Compile Gitaly

`shell
cd /home/git/gitaly
sudo -u git -H git fetch --all --tags
sudo -u git -H git checkout v$(</home/git/gitlab/GITALY_SERVER_VERSION)
sudo -u git -H make
`

10. Update MySQL permissions

If you are using MySQL you need to grant the GitLab user the necessary
permissions on the database:

`bash
mysql -u root -p -e "GRANT TRIGGER ON \`gitlabhq_production\`.* TO 'git'@'localhost';"
`

If you use MySQL with replication, or just have MySQL configured with binary logging,
you will need to also run the following on all of your MySQL servers:

`bash
mysql -u root -p -e "SET GLOBAL log_bin_trust_function_creators = 1;"
`

You can make this setting permanent by adding it to your my.cnf:

`
log_bin_trust_function_creators=1
`

11. Update configuration files

New configuration options for gitlab.yml

There might be configuration options available for [gitlab.yml][yaml]. View them with the command below and apply them manually to your current gitlab.yml:

```sh
cd /home/git/gitlab

git diff origin/10-0-stable:config/gitlab.yml.example origin/10-1-stable:config/gitlab.yml.example
```

Nginx configuration

Ensure you’re still up-to-date with the latest NGINX configuration changes:

```sh
cd /home/git/gitlab

# For HTTPS configurations
git diff origin/10-0-stable:lib/support/nginx/gitlab-ssl origin/10-1-stable:lib/support/nginx/gitlab-ssl

# For HTTP configurations
git diff origin/10-0-stable:lib/support/nginx/gitlab origin/10-1-stable:lib/support/nginx/gitlab
```

If you are using Strict-Transport-Security in your installation to continue using it you must enable it in your Nginx
configuration as GitLab application no longer handles setting it.

If you are using Apache instead of NGINX please see the updated [Apache templates].
Also note that because Apache does not support upstreams behind Unix sockets you
will need to let gitlab-workhorse listen on a TCP port. You can do this
via [/etc/default/gitlab].

[Apache templates]: https://gitlab.com/gitlab-org/gitlab-recipes/tree/master/web-server/apache
[/etc/default/gitlab]: https://gitlab.com/gitlab-org/gitlab-ce/blob/10-1-stable/lib/support/init.d/gitlab.default.example#L38

SMTP configuration

If you’re installing from source and use SMTP to deliver mail, you will need to add the following line
to config/initializers/smtp_settings.rb:

`ruby
ActionMailer::Base.delivery_method = :smtp
`

See [smtp_settings.rb.sample] as an example.

[smtp_settings.rb.sample]: https://gitlab.com/gitlab-org/gitlab-ce/blob/10-1-stable/config/initializers/smtp_settings.rb.sample#L13

Init script

There might be new configuration options available for [gitlab.default.example][gl-example]. View them with the command below and apply them manually to your current /etc/default/gitlab:

```sh
cd /home/git/gitlab

git diff origin/10-0-stable:lib/support/init.d/gitlab.default.example origin/10-1-stable:lib/support/init.d/gitlab.default.example
```

Ensure you’re still up-to-date with the latest init script changes:

```bash
cd /home/git/gitlab

sudo cp lib/support/init.d/gitlab /etc/init.d/gitlab
```

For Ubuntu 16.04.1 LTS:

`bash
sudo systemctl daemon-reload
`

12. Install libs, migrations, etc.

```bash
cd /home/git/gitlab

# MySQL installations (note: the line below states ‘–without postgres’)
sudo -u git -H bundle install –without postgres development test –deployment

# PostgreSQL installations (note: the line below states ‘–without mysql’)
sudo -u git -H bundle install –without mysql development test –deployment

# Optional: clean up old gems
sudo -u git -H bundle clean

# Run database migrations
sudo -u git -H bundle exec rake db:migrate RAILS_ENV=production

# Compile GetText PO files

sudo -u git -H bundle exec rake gettext:compile RAILS_ENV=production

# Update node dependencies and recompile assets
sudo -u git -H bundle exec rake yarn:install gitlab:assets:clean gitlab:assets:compile RAILS_ENV=production NODE_ENV=production

# Clean up cache
sudo -u git -H bundle exec rake cache:clear RAILS_ENV=production
```

MySQL installations: Run through the MySQL strings limits and Tables and data conversion to utf8mb4 [tasks](../install/database_mysql.md).

13. Start application

`bash
sudo service gitlab start
sudo service nginx restart
`

14. Check application status

Check if GitLab and its environment are configured correctly:

```bash
cd /home/git/gitlab

sudo -u git -H bundle exec rake gitlab:env:info RAILS_ENV=production
```

To make sure you didn’t miss anything run a more thorough check:

```bash
cd /home/git/gitlab

sudo -u git -H bundle exec rake gitlab:check RAILS_ENV=production
```

If all items are green, then congratulations, the upgrade is complete!

Things went south? Revert to previous version (10.0)

1. Revert the code to the previous version

Follow the [upgrade guide from 9.5 to 10.0](9.5-to-10.0.md), except for the
database migration (the backup is already migrated to the previous version).

2. Restore from the backup

```bash
cd /home/git/gitlab

sudo -u git -H bundle exec rake gitlab:backup:restore RAILS_ENV=production
```

If you have more than one backup *.tar file(s) please add BACKUP=timestamp_of_backup to the command above.

[yaml]: https://gitlab.com/gitlab-org/gitlab-ce/blob/10-1-stable/config/gitlab.yml.example
[gl-example]: https://gitlab.com/gitlab-org/gitlab-ce/blob/10-1-stable/lib/support/init.d/gitlab.default.example

 —
comments: false
—

From 10.1 to 10.2

Make sure you view this update guide from the tag (version) of GitLab you would
like to install. In most cases this should be the highest numbered production
tag (without rc in it). You can select the tag in the version dropdown at the
top left corner of GitLab (below the menu bar).

If the highest number stable branch is unclear please check the
[GitLab Blog](https://about.gitlab.com/blog/archives.html) for installation
guide links by version.

1. Stop server

`bash
sudo service gitlab stop
`

2. Backup

```bash
cd /home/git/gitlab

sudo -u git -H bundle exec rake gitlab:backup:create RAILS_ENV=production
```

3. Update Ruby

NOTE: GitLab 9.0 and higher only support Ruby 2.3.x and dropped support for Ruby 2.1.x. Be
sure to upgrade your interpreter if necessary.

You can check which version you are running with ruby -v.

Download and compile Ruby:

`bash
mkdir /tmp/ruby && cd /tmp/ruby
curl --remote-name --progress https://cache.ruby-lang.org/pub/ruby/2.3/ruby-2.3.5.tar.gz
echo '3247e217d6745c27ef23bdc77b6abdb4b57a118f ruby-2.3.5.tar.gz' | shasum -c - && tar xzf ruby-2.3.5.tar.gz
cd ruby-2.3.5
./configure --disable-install-rdoc
make
sudo make install
`

Install Bundler:

`bash
sudo gem install bundler --no-ri --no-rdoc
`

4. Update Node

GitLab now runs [webpack](http://webpack.js.org) to compile frontend assets and
it has a minimum requirement of node v4.3.0.

You can check which version you are running with node -v. If you are running
a version older than v4.3.0 you will need to update to a newer version. You
can find instructions to install from community maintained packages or compile
from source at the nodejs.org website.

<https://nodejs.org/en/download/>

Since 8.17, GitLab requires the use of yarn >= v0.17.0 to manage
JavaScript dependencies.

`bash
curl --silent --show-error https://dl.yarnpkg.com/debian/pubkey.gpg | sudo apt-key add -
echo "deb https://dl.yarnpkg.com/debian/ stable main" | sudo tee /etc/apt/sources.list.d/yarn.list
sudo apt-get update
sudo apt-get install yarn
`

More information can be found on the [yarn website](https://yarnpkg.com/en/docs/install).

5. Update Go

NOTE: GitLab 9.2 and higher only supports Go 1.8.3 and dropped support for Go
1.5.x through 1.7.x. Be sure to upgrade your installation if necessary.

You can check which version you are running with go version.

Download and install Go:

```bash
# Remove former Go installation folder
sudo rm -rf /usr/local/go

curl –remote-name –progress https://storage.googleapis.com/golang/go1.8.3.linux-amd64.tar.gz
echo ‘1862f4c3d3907e59b04a757cfda0ea7aa9ef39274af99a784f5be843c80c6772  go1.8.3.linux-amd64.tar.gz’ | shasum -a256 -c - && 


sudo tar -C /usr/local -xzf go1.8.3.linux-amd64.tar.gz




sudo ln -sf /usr/local/go/bin/{go,godoc,gofmt} /usr/local/bin/
rm go1.8.3.linux-amd64.tar.gz
```

6. Get latest code

```bash
cd /home/git/gitlab

sudo -u git -H git fetch –all
sudo -u git -H git checkout – db/schema.rb # local changes will be restored automatically
sudo -u git -H git checkout – locale
```

For GitLab Community Edition:

```bash
cd /home/git/gitlab

sudo -u git -H git checkout 10-2-stable
```

OR

For GitLab Enterprise Edition:

```bash
cd /home/git/gitlab

sudo -u git -H git checkout 10-2-stable-ee
```

7. Update gitlab-shell

```bash
cd /home/git/gitlab-shell

sudo -u git -H git fetch –all –tags
sudo -u git -H git checkout v$(</home/git/gitlab/GITLAB_SHELL_VERSION)
sudo -u git -H bin/compile
```

8. Update gitlab-workhorse

Install and compile gitlab-workhorse. GitLab-Workhorse uses
[GNU Make](https://www.gnu.org/software/make/).
If you are not using Linux you may have to run gmake instead of
make below.

```bash
cd /home/git/gitlab-workhorse

sudo -u git -H git fetch –all –tags
sudo -u git -H git checkout v$(</home/git/gitlab/GITLAB_WORKHORSE_VERSION)
sudo -u git -H make
```

9. Update Gitaly

New Gitaly configuration options required

In order to function Gitaly needs some additional configuration information. Below we assume you installed Gitaly in /home/git/gitaly and GitLab Shell in /home/git/gitlab-shell.

```shell
echo ‘
[gitaly-ruby]
dir = “/home/git/gitaly/ruby”

[gitlab-shell]
dir = “/home/git/gitlab-shell”
‘ | sudo -u git tee -a /home/git/gitaly/config.toml
```

Check Gitaly configuration

Due to a bug in the rake gitlab:gitaly:install script your Gitaly
configuration file may contain syntax errors. The block name
[[storages]], which may occur more than once in your config.toml
file, should be [[storage]] instead.

`shell
sudo -u git -H sed -i.pre-10.1 's/\[\[storages\]\]/[[storage]]/' /home/git/gitaly/config.toml
`

Compile Gitaly

`shell
cd /home/git/gitaly
sudo -u git -H git fetch --all --tags
sudo -u git -H git checkout v$(</home/git/gitlab/GITALY_SERVER_VERSION)
sudo -u git -H make
`

10. Update MySQL permissions

If you are using MySQL you need to grant the GitLab user the necessary
permissions on the database:

`bash
mysql -u root -p -e "GRANT TRIGGER ON \`gitlabhq_production\`.* TO 'git'@'localhost';"
`

If you use MySQL with replication, or just have MySQL configured with binary logging,
you will need to also run the following on all of your MySQL servers:

`bash
mysql -u root -p -e "SET GLOBAL log_bin_trust_function_creators = 1;"
`

You can make this setting permanent by adding it to your my.cnf:

`
log_bin_trust_function_creators=1
`

11. Update configuration files

New configuration options for gitlab.yml

There might be configuration options available for [gitlab.yml][yaml]. View them with the command below and apply them manually to your current gitlab.yml:

```sh
cd /home/git/gitlab

git diff origin/10-1-stable:config/gitlab.yml.example origin/10-2-stable:config/gitlab.yml.example
```

Nginx configuration

Ensure you’re still up-to-date with the latest NGINX configuration changes:

```sh
cd /home/git/gitlab

# For HTTPS configurations
git diff origin/10-1-stable:lib/support/nginx/gitlab-ssl origin/10-2-stable:lib/support/nginx/gitlab-ssl

# For HTTP configurations
git diff origin/10-1-stable:lib/support/nginx/gitlab origin/10-2-stable:lib/support/nginx/gitlab
```

If you are using Strict-Transport-Security in your installation to continue using it you must enable it in your Nginx
configuration as GitLab application no longer handles setting it.

If you are using Apache instead of NGINX please see the updated [Apache templates].
Also note that because Apache does not support upstreams behind Unix sockets you
will need to let gitlab-workhorse listen on a TCP port. You can do this
via [/etc/default/gitlab].

[Apache templates]: https://gitlab.com/gitlab-org/gitlab-recipes/tree/master/web-server/apache
[/etc/default/gitlab]: https://gitlab.com/gitlab-org/gitlab-ce/blob/10-2-stable/lib/support/init.d/gitlab.default.example#L38

SMTP configuration

If you’re installing from source and use SMTP to deliver mail, you will need to add the following line
to config/initializers/smtp_settings.rb:

`ruby
ActionMailer::Base.delivery_method = :smtp
`

See [smtp_settings.rb.sample] as an example.

[smtp_settings.rb.sample]: https://gitlab.com/gitlab-org/gitlab-ce/blob/10-2-stable/config/initializers/smtp_settings.rb.sample#L13

Init script

There might be new configuration options available for [gitlab.default.example][gl-example]. View them with the command below and apply them manually to your current /etc/default/gitlab:

```sh
cd /home/git/gitlab

git diff origin/10-1-stable:lib/support/init.d/gitlab.default.example origin/10-2-stable:lib/support/init.d/gitlab.default.example
```

Ensure you’re still up-to-date with the latest init script changes:

```bash
cd /home/git/gitlab

sudo cp lib/support/init.d/gitlab /etc/init.d/gitlab
```

For Ubuntu 16.04.1 LTS:

`bash
sudo systemctl daemon-reload
`

12. Install libs, migrations, etc.

```bash
cd /home/git/gitlab

# MySQL installations (note: the line below states ‘–without postgres’)
sudo -u git -H bundle install –without postgres development test –deployment

# PostgreSQL installations (note: the line below states ‘–without mysql’)
sudo -u git -H bundle install –without mysql development test –deployment

# Optional: clean up old gems
sudo -u git -H bundle clean

# Run database migrations
sudo -u git -H bundle exec rake db:migrate RAILS_ENV=production

# Compile GetText PO files

sudo -u git -H bundle exec rake gettext:compile RAILS_ENV=production

# Update node dependencies and recompile assets
sudo -u git -H bundle exec rake yarn:install gitlab:assets:clean gitlab:assets:compile RAILS_ENV=production NODE_ENV=production

# Clean up cache
sudo -u git -H bundle exec rake cache:clear RAILS_ENV=production
```

MySQL installations: Run through the MySQL strings limits and Tables and data conversion to utf8mb4 [tasks](../install/database_mysql.md).

13. Start application

`bash
sudo service gitlab start
sudo service nginx restart
`

14. Check application status

Check if GitLab and its environment are configured correctly:

```bash
cd /home/git/gitlab

sudo -u git -H bundle exec rake gitlab:env:info RAILS_ENV=production
```

To make sure you didn’t miss anything run a more thorough check:

```bash
cd /home/git/gitlab

sudo -u git -H bundle exec rake gitlab:check RAILS_ENV=production
```

If all items are green, then congratulations, the upgrade is complete!

Things went south? Revert to previous version (10.1)

1. Revert the code to the previous version

Follow the [upgrade guide from 10.0 to 10.1](10.0-to-10.1.md), except for the
database migration (the backup is already migrated to the previous version).

2. Restore from the backup

```bash
cd /home/git/gitlab

sudo -u git -H bundle exec rake gitlab:backup:restore RAILS_ENV=production
```

If you have more than one backup *.tar file(s) please add BACKUP=timestamp_of_backup to the command above.

[yaml]: https://gitlab.com/gitlab-org/gitlab-ce/blob/10-2-stable/config/gitlab.yml.example
[gl-example]: https://gitlab.com/gitlab-org/gitlab-ce/blob/10-2-stable/lib/support/init.d/gitlab.default.example

 —
comments: false
—

From 10.2 to 10.3

Make sure you view this update guide from the tag (version) of GitLab you would
like to install. In most cases this should be the highest numbered production
tag (without rc in it). You can select the tag in the version dropdown at the
top left corner of GitLab (below the menu bar).

If the highest number stable branch is unclear please check the
[GitLab Blog](https://about.gitlab.com/blog/archives.html) for installation
guide links by version.

1. Stop server

`bash
sudo service gitlab stop
`

2. Backup

```bash
cd /home/git/gitlab

sudo -u git -H bundle exec rake gitlab:backup:create RAILS_ENV=production
```

3. Update Ruby

NOTE: GitLab 9.0 and higher only support Ruby 2.3.x and dropped support for Ruby 2.1.x. Be
sure to upgrade your interpreter if necessary.

You can check which version you are running with ruby -v.

Download and compile Ruby:

`bash
mkdir /tmp/ruby && cd /tmp/ruby
curl --remote-name --progress https://cache.ruby-lang.org/pub/ruby/2.3/ruby-2.3.5.tar.gz
echo '3247e217d6745c27ef23bdc77b6abdb4b57a118f ruby-2.3.5.tar.gz' | shasum -c - && tar xzf ruby-2.3.5.tar.gz
cd ruby-2.3.5
./configure --disable-install-rdoc
make
sudo make install
`

Install Bundler:

`bash
sudo gem install bundler --no-ri --no-rdoc
`

4. Update Node

GitLab now runs [webpack](http://webpack.js.org) to compile frontend assets.
We require a minimum version of node v6.0.0.

You can check which version you are running with node -v. If you are running
a version older than v6.0.0 you will need to update to a newer version. You
can find instructions to install from community maintained packages or compile
from source at the nodejs.org website.

<https://nodejs.org/en/download/>

Since 8.17, GitLab requires the use of yarn >= v0.17.0 to manage
JavaScript dependencies.

`bash
curl --silent --show-error https://dl.yarnpkg.com/debian/pubkey.gpg | sudo apt-key add -
echo "deb https://dl.yarnpkg.com/debian/ stable main" | sudo tee /etc/apt/sources.list.d/yarn.list
sudo apt-get update
sudo apt-get install yarn
`

More information can be found on the [yarn website](https://yarnpkg.com/en/docs/install).

5. Update Go

NOTE: GitLab 9.2 and higher only supports Go 1.8.3 and dropped support for Go
1.5.x through 1.7.x. Be sure to upgrade your installation if necessary.

You can check which version you are running with go version.

Download and install Go:

```bash
# Remove former Go installation folder
sudo rm -rf /usr/local/go

curl –remote-name –progress https://storage.googleapis.com/golang/go1.8.3.linux-amd64.tar.gz
echo ‘1862f4c3d3907e59b04a757cfda0ea7aa9ef39274af99a784f5be843c80c6772  go1.8.3.linux-amd64.tar.gz’ | shasum -a256 -c - && 


sudo tar -C /usr/local -xzf go1.8.3.linux-amd64.tar.gz




sudo ln -sf /usr/local/go/bin/{go,godoc,gofmt} /usr/local/bin/
rm go1.8.3.linux-amd64.tar.gz
```

6. Get latest code

```bash
cd /home/git/gitlab

sudo -u git -H git fetch –all
sudo -u git -H git checkout – db/schema.rb # local changes will be restored automatically
sudo -u git -H git checkout – locale
```

For GitLab Community Edition:

```bash
cd /home/git/gitlab

sudo -u git -H git checkout 10-3-stable
```

OR

For GitLab Enterprise Edition:

```bash
cd /home/git/gitlab

sudo -u git -H git checkout 10-3-stable-ee
```

7. Update gitlab-shell

```bash
cd /home/git/gitlab-shell

sudo -u git -H git fetch –all –tags
sudo -u git -H git checkout v$(</home/git/gitlab/GITLAB_SHELL_VERSION)
sudo -u git -H bin/compile
```

8. Update gitlab-workhorse

Install and compile gitlab-workhorse. GitLab-Workhorse uses
[GNU Make](https://www.gnu.org/software/make/).
If you are not using Linux you may have to run gmake instead of
make below.

```bash
cd /home/git/gitlab-workhorse

sudo -u git -H git fetch –all –tags
sudo -u git -H git checkout v$(</home/git/gitlab/GITLAB_WORKHORSE_VERSION)
sudo -u git -H make
```

9. Update Gitaly

New Gitaly configuration options required

In order to function Gitaly needs some additional configuration information. Below we assume you installed Gitaly in /home/git/gitaly and GitLab Shell in /home/git/gitlab-shell.

```shell
echo ‘
[gitaly-ruby]
dir = “/home/git/gitaly/ruby”

[gitlab-shell]
dir = “/home/git/gitlab-shell”
‘ | sudo -u git tee -a /home/git/gitaly/config.toml
```

Check Gitaly configuration

Due to a bug in the rake gitlab:gitaly:install script your Gitaly
configuration file may contain syntax errors. The block name
[[storages]], which may occur more than once in your config.toml
file, should be [[storage]] instead.

`shell
sudo -u git -H sed -i.pre-10.1 's/\[\[storages\]\]/[[storage]]/' /home/git/gitaly/config.toml
`

Compile Gitaly

`shell
cd /home/git/gitaly
sudo -u git -H git fetch --all --tags
sudo -u git -H git checkout v$(</home/git/gitlab/GITALY_SERVER_VERSION)
sudo -u git -H make
`

10. Update MySQL permissions

If you are using MySQL you need to grant the GitLab user the necessary
permissions on the database:

`bash
mysql -u root -p -e "GRANT TRIGGER ON \`gitlabhq_production\`.* TO 'git'@'localhost';"
`

If you use MySQL with replication, or just have MySQL configured with binary logging,
you will need to also run the following on all of your MySQL servers:

`bash
mysql -u root -p -e "SET GLOBAL log_bin_trust_function_creators = 1;"
`

You can make this setting permanent by adding it to your my.cnf:

`
log_bin_trust_function_creators=1
`

11. Update configuration files

New configuration options for gitlab.yml

There might be configuration options available for [gitlab.yml][yaml]. View them with the command below and apply them manually to your current gitlab.yml:

```sh
cd /home/git/gitlab

git diff origin/10-2-stable:config/gitlab.yml.example origin/10-3-stable:config/gitlab.yml.example
```

Nginx configuration

Ensure you’re still up-to-date with the latest NGINX configuration changes:

```sh
cd /home/git/gitlab

# For HTTPS configurations
git diff origin/10-2-stable:lib/support/nginx/gitlab-ssl origin/10-3-stable:lib/support/nginx/gitlab-ssl

# For HTTP configurations
git diff origin/10-2-stable:lib/support/nginx/gitlab origin/10-3-stable:lib/support/nginx/gitlab
```

If you are using Strict-Transport-Security in your installation to continue using it you must enable it in your Nginx
configuration as GitLab application no longer handles setting it.

If you are using Apache instead of NGINX please see the updated [Apache templates].
Also note that because Apache does not support upstreams behind Unix sockets you
will need to let gitlab-workhorse listen on a TCP port. You can do this
via [/etc/default/gitlab].

[Apache templates]: https://gitlab.com/gitlab-org/gitlab-recipes/tree/master/web-server/apache
[/etc/default/gitlab]: https://gitlab.com/gitlab-org/gitlab-ce/blob/10-3-stable/lib/support/init.d/gitlab.default.example#L38

SMTP configuration

If you’re installing from source and use SMTP to deliver mail, you will need to add the following line
to config/initializers/smtp_settings.rb:

`ruby
ActionMailer::Base.delivery_method = :smtp
`

See [smtp_settings.rb.sample] as an example.

[smtp_settings.rb.sample]: https://gitlab.com/gitlab-org/gitlab-ce/blob/10-3-stable/config/initializers/smtp_settings.rb.sample#L13

Init script

There might be new configuration options available for [gitlab.default.example][gl-example]. View them with the command below and apply them manually to your current /etc/default/gitlab:

```sh
cd /home/git/gitlab

git diff origin/10-2-stable:lib/support/init.d/gitlab.default.example origin/10-3-stable:lib/support/init.d/gitlab.default.example
```

Ensure you’re still up-to-date with the latest init script changes:

```bash
cd /home/git/gitlab

sudo cp lib/support/init.d/gitlab /etc/init.d/gitlab
```

For Ubuntu 16.04.1 LTS:

`bash
sudo systemctl daemon-reload
`

12. Install libs, migrations, etc.

```bash
cd /home/git/gitlab

# MySQL installations (note: the line below states ‘–without postgres’)
sudo -u git -H bundle install –without postgres development test –deployment

# PostgreSQL installations (note: the line below states ‘–without mysql’)
sudo -u git -H bundle install –without mysql development test –deployment

# Optional: clean up old gems
sudo -u git -H bundle clean

# Run database migrations
sudo -u git -H bundle exec rake db:migrate RAILS_ENV=production

# Compile GetText PO files

sudo -u git -H bundle exec rake gettext:compile RAILS_ENV=production

# Update node dependencies and recompile assets
sudo -u git -H bundle exec rake yarn:install gitlab:assets:clean gitlab:assets:compile RAILS_ENV=production NODE_ENV=production

# Clean up cache
sudo -u git -H bundle exec rake cache:clear RAILS_ENV=production
```

MySQL installations: Run through the MySQL strings limits and Tables and data conversion to utf8mb4 [tasks](../install/database_mysql.md).

13. Start application

`bash
sudo service gitlab start
sudo service nginx restart
`

14. Check application status

Check if GitLab and its environment are configured correctly:

```bash
cd /home/git/gitlab

sudo -u git -H bundle exec rake gitlab:env:info RAILS_ENV=production
```

To make sure you didn’t miss anything run a more thorough check:

```bash
cd /home/git/gitlab

sudo -u git -H bundle exec rake gitlab:check RAILS_ENV=production
```

If all items are green, then congratulations, the upgrade is complete!

Things went south? Revert to previous version (10.2)

1. Revert the code to the previous version

Follow the [upgrade guide from 10.1 to 10.2](10.1-to-10.2.md), except for the
database migration (the backup is already migrated to the previous version).

2. Restore from the backup

```bash
cd /home/git/gitlab

sudo -u git -H bundle exec rake gitlab:backup:restore RAILS_ENV=production
```

If you have more than one backup *.tar file(s) please add BACKUP=timestamp_of_backup to the command above.

[yaml]: https://gitlab.com/gitlab-org/gitlab-ce/blob/10-3-stable/config/gitlab.yml.example
[gl-example]: https://gitlab.com/gitlab-org/gitlab-ce/blob/10-3-stable/lib/support/init.d/gitlab.default.example

 —
comments: false
—

From 10.3 to 10.4

Make sure you view this update guide from the tag (version) of GitLab you would
like to install. In most cases this should be the highest numbered production
tag (without rc in it). You can select the tag in the version dropdown at the
top left corner of GitLab (below the menu bar).

If the highest number stable branch is unclear please check the
[GitLab Blog](https://about.gitlab.com/blog/archives.html) for installation
guide links by version.

1. Stop server

`bash
sudo service gitlab stop
`

2. Backup

NOTE: If you installed GitLab from source, make sure rsync is installed.

```bash
cd /home/git/gitlab

sudo -u git -H bundle exec rake gitlab:backup:create RAILS_ENV=production
```

3. Update Ruby

NOTE: GitLab 9.0 and higher only support Ruby 2.3.x and dropped support for Ruby 2.1.x. Be
sure to upgrade your interpreter if necessary.

You can check which version you are running with ruby -v.

Download and compile Ruby:

`bash
mkdir /tmp/ruby && cd /tmp/ruby
curl --remote-name --progress https://cache.ruby-lang.org/pub/ruby/2.3/ruby-2.3.6.tar.gz
echo '4e6a0f828819e15d274ae58485585fc8b7caace0 ruby-2.3.6.tar.gz' | shasum -c - && tar xzf ruby-2.3.6.tar.gz
cd ruby-2.3.6
./configure --disable-install-rdoc
make
sudo make install
`

Install Bundler:

`bash
sudo gem install bundler --no-ri --no-rdoc
`

4. Update Node

GitLab now runs [webpack](http://webpack.js.org) to compile frontend assets.
We require a minimum version of node v6.0.0.

You can check which version you are running with node -v. If you are running
a version older than v6.0.0 you will need to update to a newer version. You
can find instructions to install from community maintained packages or compile
from source at the nodejs.org website.

<https://nodejs.org/en/download/>

Since 8.17, GitLab requires the use of yarn >= v0.17.0 to manage
JavaScript dependencies.

`bash
curl --silent --show-error https://dl.yarnpkg.com/debian/pubkey.gpg | sudo apt-key add -
echo "deb https://dl.yarnpkg.com/debian/ stable main" | sudo tee /etc/apt/sources.list.d/yarn.list
sudo apt-get update
sudo apt-get install yarn
`

More information can be found on the [yarn website](https://yarnpkg.com/en/docs/install).

5. Update Go

NOTE: GitLab 9.2 and higher only supports Go 1.8.3 and dropped support for Go
1.5.x through 1.7.x. Be sure to upgrade your installation if necessary.

You can check which version you are running with go version.

Download and install Go:

```bash
# Remove former Go installation folder
sudo rm -rf /usr/local/go

curl –remote-name –progress https://storage.googleapis.com/golang/go1.8.3.linux-amd64.tar.gz
echo ‘1862f4c3d3907e59b04a757cfda0ea7aa9ef39274af99a784f5be843c80c6772  go1.8.3.linux-amd64.tar.gz’ | shasum -a256 -c - && 


sudo tar -C /usr/local -xzf go1.8.3.linux-amd64.tar.gz




sudo ln -sf /usr/local/go/bin/{go,godoc,gofmt} /usr/local/bin/
rm go1.8.3.linux-amd64.tar.gz
```

6. Get latest code

```bash
cd /home/git/gitlab

sudo -u git -H git fetch –all
sudo -u git -H git checkout – db/schema.rb # local changes will be restored automatically
sudo -u git -H git checkout – locale
```

For GitLab Community Edition:

```bash
cd /home/git/gitlab

sudo -u git -H git checkout 10-4-stable
```

OR

For GitLab Enterprise Edition:

```bash
cd /home/git/gitlab

sudo -u git -H git checkout 10-4-stable-ee
```

7. Update gitlab-shell

```bash
cd /home/git/gitlab-shell

sudo -u git -H git fetch –all –tags
sudo -u git -H git checkout v$(</home/git/gitlab/GITLAB_SHELL_VERSION)
sudo -u git -H bin/compile
```

8. Update gitlab-workhorse

Install and compile gitlab-workhorse. GitLab-Workhorse uses
[GNU Make](https://www.gnu.org/software/make/).
If you are not using Linux you may have to run gmake instead of
make below.

```bash
cd /home/git/gitlab-workhorse

sudo -u git -H git fetch –all –tags
sudo -u git -H git checkout v$(</home/git/gitlab/GITLAB_WORKHORSE_VERSION)
sudo -u git -H make
```

9. Update Gitaly

New Gitaly configuration options required

In order to function Gitaly needs some additional configuration information. Below we assume you installed Gitaly in /home/git/gitaly and GitLab Shell in /home/git/gitlab-shell.

```shell
echo ‘
[gitaly-ruby]
dir = “/home/git/gitaly/ruby”

[gitlab-shell]
dir = “/home/git/gitlab-shell”
‘ | sudo -u git tee -a /home/git/gitaly/config.toml
```

Check Gitaly configuration

Due to a bug in the rake gitlab:gitaly:install script your Gitaly
configuration file may contain syntax errors. The block name
[[storages]], which may occur more than once in your config.toml
file, should be [[storage]] instead.

`shell
sudo -u git -H sed -i.pre-10.1 's/\[\[storages\]\]/[[storage]]/' /home/git/gitaly/config.toml
`

Compile Gitaly

`shell
cd /home/git/gitaly
sudo -u git -H git fetch --all --tags
sudo -u git -H git checkout v$(</home/git/gitlab/GITALY_SERVER_VERSION)
sudo -u git -H make
`

10. Update MySQL permissions

If you are using MySQL you need to grant the GitLab user the necessary
permissions on the database:

`bash
mysql -u root -p -e "GRANT TRIGGER ON \`gitlabhq_production\`.* TO 'git'@'localhost';"
`

If you use MySQL with replication, or just have MySQL configured with binary logging,
you will need to also run the following on all of your MySQL servers:

`bash
mysql -u root -p -e "SET GLOBAL log_bin_trust_function_creators = 1;"
`

You can make this setting permanent by adding it to your my.cnf:

`
log_bin_trust_function_creators=1
`

11. Update configuration files

New configuration options for gitlab.yml

There might be configuration options available for [gitlab.yml][yaml]. View them with the command below and apply them manually to your current gitlab.yml:

```sh
cd /home/git/gitlab

git diff origin/10-3-stable:config/gitlab.yml.example origin/10-4-stable:config/gitlab.yml.example
```

Nginx configuration

Ensure you’re still up-to-date with the latest NGINX configuration changes:

```sh
cd /home/git/gitlab

# For HTTPS configurations
git diff origin/10-3-stable:lib/support/nginx/gitlab-ssl origin/10-4-stable:lib/support/nginx/gitlab-ssl

# For HTTP configurations
git diff origin/10-3-stable:lib/support/nginx/gitlab origin/10-4-stable:lib/support/nginx/gitlab
```

If you are using Strict-Transport-Security in your installation to continue using it you must enable it in your Nginx
configuration as GitLab application no longer handles setting it.

If you are using Apache instead of NGINX please see the updated [Apache templates].
Also note that because Apache does not support upstreams behind Unix sockets you
will need to let gitlab-workhorse listen on a TCP port. You can do this
via [/etc/default/gitlab].

[Apache templates]: https://gitlab.com/gitlab-org/gitlab-recipes/tree/master/web-server/apache
[/etc/default/gitlab]: https://gitlab.com/gitlab-org/gitlab-ce/blob/10-4-stable/lib/support/init.d/gitlab.default.example#L38

SMTP configuration

If you’re installing from source and use SMTP to deliver mail, you will need to add the following line
to config/initializers/smtp_settings.rb:

`ruby
ActionMailer::Base.delivery_method = :smtp
`

See [smtp_settings.rb.sample] as an example.

[smtp_settings.rb.sample]: https://gitlab.com/gitlab-org/gitlab-ce/blob/10-4-stable/config/initializers/smtp_settings.rb.sample#L13

Init script

There might be new configuration options available for [gitlab.default.example][gl-example]. View them with the command below and apply them manually to your current /etc/default/gitlab:

```sh
cd /home/git/gitlab

git diff origin/10-3-stable:lib/support/init.d/gitlab.default.example origin/10-4-stable:lib/support/init.d/gitlab.default.example
```

Ensure you’re still up-to-date with the latest init script changes:

```bash
cd /home/git/gitlab

sudo cp lib/support/init.d/gitlab /etc/init.d/gitlab
```

For Ubuntu 16.04.1 LTS:

`bash
sudo systemctl daemon-reload
`

12. Install libs, migrations, etc.

```bash
cd /home/git/gitlab

# MySQL installations (note: the line below states ‘–without postgres’)
sudo -u git -H bundle install –without postgres development test –deployment

# PostgreSQL installations (note: the line below states ‘–without mysql’)
sudo -u git -H bundle install –without mysql development test –deployment

# Optional: clean up old gems
sudo -u git -H bundle clean

# Run database migrations
sudo -u git -H bundle exec rake db:migrate RAILS_ENV=production

# Compile GetText PO files

sudo -u git -H bundle exec rake gettext:compile RAILS_ENV=production

# Update node dependencies and recompile assets
sudo -u git -H bundle exec rake yarn:install gitlab:assets:clean gitlab:assets:compile RAILS_ENV=production NODE_ENV=production

# Clean up cache
sudo -u git -H bundle exec rake cache:clear RAILS_ENV=production
```

MySQL installations: Run through the MySQL strings limits and Tables and data conversion to utf8mb4 [tasks](../install/database_mysql.md).

13. Start application

`bash
sudo service gitlab start
sudo service nginx restart
`

14. Check application status

Check if GitLab and its environment are configured correctly:

```bash
cd /home/git/gitlab

sudo -u git -H bundle exec rake gitlab:env:info RAILS_ENV=production
```

To make sure you didn’t miss anything run a more thorough check:

```bash
cd /home/git/gitlab

sudo -u git -H bundle exec rake gitlab:check RAILS_ENV=production
```

If all items are green, then congratulations, the upgrade is complete!

Things went south? Revert to previous version (10.3)

1. Revert the code to the previous version

Follow the [upgrade guide from 10.2 to 10.3](10.2-to-10.3.md), except for the
database migration (the backup is already migrated to the previous version).

2. Restore from the backup

```bash
cd /home/git/gitlab

sudo -u git -H bundle exec rake gitlab:backup:restore RAILS_ENV=production
```

If you have more than one backup *.tar file(s) please add BACKUP=timestamp_of_backup to the command above.

[yaml]: https://gitlab.com/gitlab-org/gitlab-ce/blob/10-4-stable/config/gitlab.yml.example
[gl-example]: https://gitlab.com/gitlab-org/gitlab-ce/blob/10-4-stable/lib/support/init.d/gitlab.default.example

 —
comments: false
—

From 10.4 to 10.5

Make sure you view this update guide from the tag (version) of GitLab you would
like to install. In most cases this should be the highest numbered production
tag (without rc in it). You can select the tag in the version dropdown at the
top left corner of GitLab (below the menu bar).

If the highest number stable branch is unclear please check the
[GitLab Blog](https://about.gitlab.com/blog/archives.html) for installation
guide links by version.

1. Stop server

`bash
sudo service gitlab stop
`

2. Backup

NOTE: If you installed GitLab from source, make sure rsync is installed.

```bash
cd /home/git/gitlab

sudo -u git -H bundle exec rake gitlab:backup:create RAILS_ENV=production
```

3. Update Ruby

NOTE: GitLab 9.0 and higher only support Ruby 2.3.x and dropped support for Ruby 2.1.x. Be
sure to upgrade your interpreter if necessary.

You can check which version you are running with ruby -v.

Download and compile Ruby:

`bash
mkdir /tmp/ruby && cd /tmp/ruby
curl --remote-name --progress https://cache.ruby-lang.org/pub/ruby/2.3/ruby-2.3.6.tar.gz
echo '4e6a0f828819e15d274ae58485585fc8b7caace0 ruby-2.3.6.tar.gz' | shasum -c - && tar xzf ruby-2.3.6.tar.gz
cd ruby-2.3.6
./configure --disable-install-rdoc
make
sudo make install
`

Install Bundler:

`bash
sudo gem install bundler --no-ri --no-rdoc
`

4. Update Node

GitLab now runs [webpack](http://webpack.js.org) to compile frontend assets.
We require a minimum version of node v6.0.0.

You can check which version you are running with node -v. If you are running
a version older than v6.0.0 you will need to update to a newer version. You
can find instructions to install from community maintained packages or compile
from source at the nodejs.org website.

<https://nodejs.org/en/download/>

Since 8.17, GitLab requires the use of yarn >= v0.17.0 to manage
JavaScript dependencies.

`bash
curl --silent --show-error https://dl.yarnpkg.com/debian/pubkey.gpg | sudo apt-key add -
echo "deb https://dl.yarnpkg.com/debian/ stable main" | sudo tee /etc/apt/sources.list.d/yarn.list
sudo apt-get update
sudo apt-get install yarn
`

More information can be found on the [yarn website](https://yarnpkg.com/en/docs/install).

5. Update Go

NOTE: GitLab 9.2 and higher only supports Go 1.8.3 and dropped support for Go
1.5.x through 1.7.x. Be sure to upgrade your installation if necessary.

You can check which version you are running with go version.

Download and install Go:

```bash
# Remove former Go installation folder
sudo rm -rf /usr/local/go

curl –remote-name –progress https://storage.googleapis.com/golang/go1.8.3.linux-amd64.tar.gz
echo ‘1862f4c3d3907e59b04a757cfda0ea7aa9ef39274af99a784f5be843c80c6772  go1.8.3.linux-amd64.tar.gz’ | shasum -a256 -c - && 


sudo tar -C /usr/local -xzf go1.8.3.linux-amd64.tar.gz




sudo ln -sf /usr/local/go/bin/{go,godoc,gofmt} /usr/local/bin/
rm go1.8.3.linux-amd64.tar.gz
```

6. Get latest code

```bash
cd /home/git/gitlab

sudo -u git -H git fetch –all
sudo -u git -H git checkout – db/schema.rb # local changes will be restored automatically
sudo -u git -H git checkout – locale
```

For GitLab Community Edition:

```bash
cd /home/git/gitlab

sudo -u git -H git checkout 10-5-stable
```

OR

For GitLab Enterprise Edition:

```bash
cd /home/git/gitlab

sudo -u git -H git checkout 10-5-stable-ee
```

7. Update gitlab-shell

```bash
cd /home/git/gitlab-shell

sudo -u git -H git fetch –all –tags
sudo -u git -H git checkout v$(</home/git/gitlab/GITLAB_SHELL_VERSION)
sudo -u git -H bin/compile
```

8. Update gitlab-workhorse

Install and compile gitlab-workhorse. GitLab-Workhorse uses
[GNU Make](https://www.gnu.org/software/make/).
If you are not using Linux you may have to run gmake instead of
make below.

```bash
cd /home/git/gitlab-workhorse

sudo -u git -H git fetch –all –tags
sudo -u git -H git checkout v$(</home/git/gitlab/GITLAB_WORKHORSE_VERSION)
sudo -u git -H make
```

9. Update Gitaly

New Gitaly configuration options required

In order to function Gitaly needs some additional configuration information. Below we assume you installed Gitaly in /home/git/gitaly and GitLab Shell in /home/git/gitlab-shell.

```shell
echo ‘
[gitaly-ruby]
dir = “/home/git/gitaly/ruby”

[gitlab-shell]
dir = “/home/git/gitlab-shell”
‘ | sudo -u git tee -a /home/git/gitaly/config.toml
```

Check Gitaly configuration

Due to a bug in the rake gitlab:gitaly:install script your Gitaly
configuration file may contain syntax errors. The block name
[[storages]], which may occur more than once in your config.toml
file, should be [[storage]] instead.

`shell
sudo -u git -H sed -i.pre-10.1 's/\[\[storages\]\]/[[storage]]/' /home/git/gitaly/config.toml
`

Compile Gitaly

`shell
cd /home/git/gitaly
sudo -u git -H git fetch --all --tags
sudo -u git -H git checkout v$(</home/git/gitlab/GITALY_SERVER_VERSION)
sudo -u git -H make
`

10. Update MySQL permissions

If you are using MySQL you need to grant the GitLab user the necessary
permissions on the database:

`bash
mysql -u root -p -e "GRANT TRIGGER ON \`gitlabhq_production\`.* TO 'git'@'localhost';"
`

If you use MySQL with replication, or just have MySQL configured with binary logging,
you will need to also run the following on all of your MySQL servers:

`bash
mysql -u root -p -e "SET GLOBAL log_bin_trust_function_creators = 1;"
`

You can make this setting permanent by adding it to your my.cnf:

`
log_bin_trust_function_creators=1
`

11. Update configuration files

New configuration options for gitlab.yml

There might be configuration options available for [gitlab.yml][yaml]. View them with the command below and apply them manually to your current gitlab.yml:

```sh
cd /home/git/gitlab

git diff origin/10-4-stable:config/gitlab.yml.example origin/10-5-stable:config/gitlab.yml.example
```

Nginx configuration

Ensure you’re still up-to-date with the latest NGINX configuration changes:

```sh
cd /home/git/gitlab

# For HTTPS configurations
git diff origin/10-4-stable:lib/support/nginx/gitlab-ssl origin/10-5-stable:lib/support/nginx/gitlab-ssl

# For HTTP configurations
git diff origin/10-4-stable:lib/support/nginx/gitlab origin/10-5-stable:lib/support/nginx/gitlab
```

If you are using Strict-Transport-Security in your installation to continue using it you must enable it in your Nginx
configuration as GitLab application no longer handles setting it.

If you are using Apache instead of NGINX please see the updated [Apache templates].
Also note that because Apache does not support upstreams behind Unix sockets you
will need to let gitlab-workhorse listen on a TCP port. You can do this
via [/etc/default/gitlab].

[Apache templates]: https://gitlab.com/gitlab-org/gitlab-recipes/tree/master/web-server/apache
[/etc/default/gitlab]: https://gitlab.com/gitlab-org/gitlab-ce/blob/10-5-stable/lib/support/init.d/gitlab.default.example#L38

SMTP configuration

If you’re installing from source and use SMTP to deliver mail, you will need to add the following line
to config/initializers/smtp_settings.rb:

`ruby
ActionMailer::Base.delivery_method = :smtp
`

See [smtp_settings.rb.sample] as an example.

[smtp_settings.rb.sample]: https://gitlab.com/gitlab-org/gitlab-ce/blob/10-5-stable/config/initializers/smtp_settings.rb.sample#L13

Init script

There might be new configuration options available for [gitlab.default.example][gl-example]. View them with the command below and apply them manually to your current /etc/default/gitlab:

```sh
cd /home/git/gitlab

git diff origin/10-4-stable:lib/support/init.d/gitlab.default.example origin/10-5-stable:lib/support/init.d/gitlab.default.example
```

Ensure you’re still up-to-date with the latest init script changes:

```bash
cd /home/git/gitlab

sudo cp lib/support/init.d/gitlab /etc/init.d/gitlab
```

For Ubuntu 16.04.1 LTS:

`bash
sudo systemctl daemon-reload
`

12. Install libs, migrations, etc.

```bash
cd /home/git/gitlab

# MySQL installations (note: the line below states ‘–without postgres’)
sudo -u git -H bundle install –without postgres development test –deployment

# PostgreSQL installations (note: the line below states ‘–without mysql’)
sudo -u git -H bundle install –without mysql development test –deployment

# Optional: clean up old gems
sudo -u git -H bundle clean

# Run database migrations
sudo -u git -H bundle exec rake db:migrate RAILS_ENV=production

# Compile GetText PO files

sudo -u git -H bundle exec rake gettext:compile RAILS_ENV=production

# Update node dependencies and recompile assets
sudo -u git -H bundle exec rake yarn:install gitlab:assets:clean gitlab:assets:compile RAILS_ENV=production NODE_ENV=production

# Clean up cache
sudo -u git -H bundle exec rake cache:clear RAILS_ENV=production
```

MySQL installations: Run through the MySQL strings limits and Tables and data conversion to utf8mb4 [tasks](../install/database_mysql.md).

13. Start application

`bash
sudo service gitlab start
sudo service nginx restart
`

14. Check application status

Check if GitLab and its environment are configured correctly:

```bash
cd /home/git/gitlab

sudo -u git -H bundle exec rake gitlab:env:info RAILS_ENV=production
```

To make sure you didn’t miss anything run a more thorough check:

```bash
cd /home/git/gitlab

sudo -u git -H bundle exec rake gitlab:check RAILS_ENV=production
```

If all items are green, then congratulations, the upgrade is complete!

Things went south? Revert to previous version (10.4)

1. Revert the code to the previous version

Follow the [upgrade guide from 10.3 to 10.4](10.3-to-10.4.md), except for the
database migration (the backup is already migrated to the previous version).

2. Restore from the backup

```bash
cd /home/git/gitlab

sudo -u git -H bundle exec rake gitlab:backup:restore RAILS_ENV=production
```

If you have more than one backup *.tar file(s) please add BACKUP=timestamp_of_backup to the command above.

[yaml]: https://gitlab.com/gitlab-org/gitlab-ce/blob/10-5-stable/config/gitlab.yml.example
[gl-example]: https://gitlab.com/gitlab-org/gitlab-ce/blob/10-5-stable/lib/support/init.d/gitlab.default.example

 —
comments: false
—

From 10.5 to 10.6

Make sure you view this update guide from the tag (version) of GitLab you would
like to install. In most cases this should be the highest numbered production
tag (without rc in it). You can select the tag in the version dropdown at the
top left corner of GitLab (below the menu bar).

If the highest number stable branch is unclear please check the
[GitLab Blog](https://about.gitlab.com/blog/archives.html) for installation
guide links by version.

1. Stop server

`bash
sudo service gitlab stop
`

2. Backup

NOTE: If you installed GitLab from source, make sure rsync is installed.

```bash
cd /home/git/gitlab

sudo -u git -H bundle exec rake gitlab:backup:create RAILS_ENV=production
```

3. Update Ruby

NOTE: GitLab 9.0 and higher only support Ruby 2.3.x and dropped support for Ruby 2.1.x. Be
sure to upgrade your interpreter if necessary.

You can check which version you are running with ruby -v.

Download and compile Ruby:

`bash
mkdir /tmp/ruby && cd /tmp/ruby
curl --remote-name --progress https://cache.ruby-lang.org/pub/ruby/2.3/ruby-2.3.6.tar.gz
echo '4e6a0f828819e15d274ae58485585fc8b7caace0 ruby-2.3.6.tar.gz' | shasum -c - && tar xzf ruby-2.3.6.tar.gz
cd ruby-2.3.6
./configure --disable-install-rdoc
make
sudo make install
`

Install Bundler:

`bash
sudo gem install bundler --no-ri --no-rdoc
`

4. Update Node

GitLab utilizes [webpack](http://webpack.js.org) to compile frontend assets.
This requires a minimum version of node v6.0.0.

You can check which version you are running with node -v. If you are running
a version older than v6.0.0 you will need to update to a newer version. You
can find instructions to install from community maintained packages or compile
from source at the nodejs.org website.

<https://nodejs.org/en/download/>

GitLab also requires the use of yarn >= v1.2.0 to manage JavaScript
dependencies.

`bash
curl --silent --show-error https://dl.yarnpkg.com/debian/pubkey.gpg | sudo apt-key add -
echo "deb https://dl.yarnpkg.com/debian/ stable main" | sudo tee /etc/apt/sources.list.d/yarn.list
sudo apt-get update
sudo apt-get install yarn
`

More information can be found on the [yarn website](https://yarnpkg.com/en/docs/install).

5. Update Go

NOTE: GitLab 9.2 and higher only supports Go 1.8.3 and dropped support for Go
1.5.x through 1.7.x. Be sure to upgrade your installation if necessary.

You can check which version you are running with go version.

Download and install Go:

```bash
# Remove former Go installation folder
sudo rm -rf /usr/local/go

curl –remote-name –progress https://storage.googleapis.com/golang/go1.8.3.linux-amd64.tar.gz
echo ‘1862f4c3d3907e59b04a757cfda0ea7aa9ef39274af99a784f5be843c80c6772  go1.8.3.linux-amd64.tar.gz’ | shasum -a256 -c - && 


sudo tar -C /usr/local -xzf go1.8.3.linux-amd64.tar.gz




sudo ln -sf /usr/local/go/bin/{go,godoc,gofmt} /usr/local/bin/
rm go1.8.3.linux-amd64.tar.gz
```

6. Get latest code

```bash
cd /home/git/gitlab

sudo -u git -H git fetch –all –prune
sudo -u git -H git checkout – db/schema.rb # local changes will be restored automatically
sudo -u git -H git checkout – locale
```

For GitLab Community Edition:

```bash
cd /home/git/gitlab

sudo -u git -H git checkout 10-6-stable
```

OR

For GitLab Enterprise Edition:

```bash
cd /home/git/gitlab

sudo -u git -H git checkout 10-6-stable-ee
```

7. Update gitlab-shell

```bash
cd /home/git/gitlab-shell

sudo -u git -H git fetch –all –tags –prune
sudo -u git -H git checkout v$(</home/git/gitlab/GITLAB_SHELL_VERSION)
sudo -u git -H bin/compile
```

8. Update gitlab-workhorse

Install and compile gitlab-workhorse. GitLab-Workhorse uses
[GNU Make](https://www.gnu.org/software/make/).
If you are not using Linux you may have to run gmake instead of
make below.

```bash
cd /home/git/gitlab-workhorse

sudo -u git -H git fetch –all –tags –prune
sudo -u git -H git checkout v$(</home/git/gitlab/GITLAB_WORKHORSE_VERSION)
sudo -u git -H make
```

9. Update Gitaly

New Gitaly configuration options required

In order to function Gitaly needs some additional configuration information. Below we assume you installed Gitaly in /home/git/gitaly and GitLab Shell in /home/git/gitlab-shell.

```shell
echo ‘
[gitaly-ruby]
dir = “/home/git/gitaly/ruby”

[gitlab-shell]
dir = “/home/git/gitlab-shell”
‘ | sudo -u git tee -a /home/git/gitaly/config.toml
```

Check Gitaly configuration

Due to a bug in the rake gitlab:gitaly:install script your Gitaly
configuration file may contain syntax errors. The block name
[[storages]], which may occur more than once in your config.toml
file, should be [[storage]] instead.

`shell
sudo -u git -H sed -i.pre-10.1 's/\[\[storages\]\]/[[storage]]/' /home/git/gitaly/config.toml
`

Compile Gitaly

`shell
cd /home/git/gitaly
sudo -u git -H git fetch --all --tags --prune
sudo -u git -H git checkout v$(</home/git/gitlab/GITALY_SERVER_VERSION)
sudo -u git -H make
`

10. Update MySQL permissions

If you are using MySQL you need to grant the GitLab user the necessary
permissions on the database:

`bash
mysql -u root -p -e "GRANT TRIGGER ON \`gitlabhq_production\`.* TO 'git'@'localhost';"
`

If you use MySQL with replication, or just have MySQL configured with binary logging,
you will need to also run the following on all of your MySQL servers:

`bash
mysql -u root -p -e "SET GLOBAL log_bin_trust_function_creators = 1;"
`

You can make this setting permanent by adding it to your my.cnf:

`
log_bin_trust_function_creators=1
`

11. Update configuration files

New configuration options for gitlab.yml

There might be configuration options available for [gitlab.yml][yaml]. View them with the command below and apply them manually to your current gitlab.yml:

```sh
cd /home/git/gitlab

git diff origin/10-5-stable:config/gitlab.yml.example origin/10-6-stable:config/gitlab.yml.example
```

Nginx configuration

Ensure you’re still up-to-date with the latest NGINX configuration changes:

```sh
cd /home/git/gitlab

# For HTTPS configurations
git diff origin/10-5-stable:lib/support/nginx/gitlab-ssl origin/10-6-stable:lib/support/nginx/gitlab-ssl

# For HTTP configurations
git diff origin/10-5-stable:lib/support/nginx/gitlab origin/10-6-stable:lib/support/nginx/gitlab
```

If you are using Strict-Transport-Security in your installation to continue using it you must enable it in your Nginx
configuration as GitLab application no longer handles setting it.

If you are using Apache instead of NGINX please see the updated [Apache templates].
Also note that because Apache does not support upstreams behind Unix sockets you
will need to let gitlab-workhorse listen on a TCP port. You can do this
via [/etc/default/gitlab].

[Apache templates]: https://gitlab.com/gitlab-org/gitlab-recipes/tree/master/web-server/apache
[/etc/default/gitlab]: https://gitlab.com/gitlab-org/gitlab-ce/blob/10-6-stable/lib/support/init.d/gitlab.default.example#L38

SMTP configuration

If you’re installing from source and use SMTP to deliver mail, you will need to add the following line
to config/initializers/smtp_settings.rb:

`ruby
ActionMailer::Base.delivery_method = :smtp
`

See [smtp_settings.rb.sample] as an example.

[smtp_settings.rb.sample]: https://gitlab.com/gitlab-org/gitlab-ce/blob/10-6-stable/config/initializers/smtp_settings.rb.sample#L13

Init script

There might be new configuration options available for [gitlab.default.example][gl-example]. View them with the command below and apply them manually to your current /etc/default/gitlab:

```sh
cd /home/git/gitlab

git diff origin/10-5-stable:lib/support/init.d/gitlab.default.example origin/10-6-stable:lib/support/init.d/gitlab.default.example
```

Ensure you’re still up-to-date with the latest init script changes:

```bash
cd /home/git/gitlab

sudo cp lib/support/init.d/gitlab /etc/init.d/gitlab
```

For Ubuntu 16.04.1 LTS:

`bash
sudo systemctl daemon-reload
`

12. Install libs, migrations, etc.

```bash
cd /home/git/gitlab

# MySQL installations (note: the line below states ‘–without postgres’)
sudo -u git -H bundle install –without postgres development test –deployment

# PostgreSQL installations (note: the line below states ‘–without mysql’)
sudo -u git -H bundle install –without mysql development test –deployment

# Optional: clean up old gems
sudo -u git -H bundle clean

# Run database migrations
sudo -u git -H bundle exec rake db:migrate RAILS_ENV=production

# Compile GetText PO files

sudo -u git -H bundle exec rake gettext:compile RAILS_ENV=production

# Update node dependencies and recompile assets
sudo -u git -H bundle exec rake yarn:install gitlab:assets:clean gitlab:assets:compile RAILS_ENV=production NODE_ENV=production

# Clean up cache
sudo -u git -H bundle exec rake cache:clear RAILS_ENV=production
```

MySQL installations: Run through the MySQL strings limits and Tables and data conversion to utf8mb4 [tasks](../install/database_mysql.md).

13. Start application

`bash
sudo service gitlab start
sudo service nginx restart
`

14. Check application status

Check if GitLab and its environment are configured correctly:

```bash
cd /home/git/gitlab

sudo -u git -H bundle exec rake gitlab:env:info RAILS_ENV=production
```

To make sure you didn’t miss anything run a more thorough check:

```bash
cd /home/git/gitlab

sudo -u git -H bundle exec rake gitlab:check RAILS_ENV=production
```

If all items are green, then congratulations, the upgrade is complete!

Things went south? Revert to previous version (10.5)

1. Revert the code to the previous version

Follow the [upgrade guide from 10.4 to 10.5](10.4-to-10.5.md), except for the
database migration (the backup is already migrated to the previous version).

2. Restore from the backup

```bash
cd /home/git/gitlab

sudo -u git -H bundle exec rake gitlab:backup:restore RAILS_ENV=production
```

If you have more than one backup *.tar file(s) please add BACKUP=timestamp_of_backup to the command above.

[yaml]: https://gitlab.com/gitlab-org/gitlab-ce/blob/10-6-stable/config/gitlab.yml.example
[gl-example]: https://gitlab.com/gitlab-org/gitlab-ce/blob/10-6-stable/lib/support/init.d/gitlab.default.example

 —
comments: false
—

From 10.6 to 10.7

Make sure you view this update guide from the tag (version) of GitLab you would
like to install. In most cases this should be the highest numbered production
tag (without rc in it). You can select the tag in the version dropdown at the
top left corner of GitLab (below the menu bar).

If the highest number stable branch is unclear please check the
[GitLab Blog](https://about.gitlab.com/blog/archives.html) for installation
guide links by version.

1. Stop server

`bash
sudo service gitlab stop
`

2. Backup

NOTE: If you installed GitLab from source, make sure rsync is installed.

```bash
cd /home/git/gitlab

sudo -u git -H bundle exec rake gitlab:backup:create RAILS_ENV=production
```

3. Update Ruby

NOTE: GitLab 9.0 and higher only support Ruby 2.3.x and dropped support for Ruby 2.1.x. Be
sure to upgrade your interpreter if necessary.

You can check which version you are running with ruby -v.

Download and compile Ruby:

`bash
mkdir /tmp/ruby && cd /tmp/ruby
curl --remote-name --progress https://cache.ruby-lang.org/pub/ruby/2.3/ruby-2.3.6.tar.gz
echo '4e6a0f828819e15d274ae58485585fc8b7caace0 ruby-2.3.6.tar.gz' | shasum -c - && tar xzf ruby-2.3.6.tar.gz
cd ruby-2.3.6
./configure --disable-install-rdoc
make
sudo make install
`

Install Bundler:

`bash
sudo gem install bundler --no-ri --no-rdoc
`

4. Update Node

GitLab utilizes [webpack](http://webpack.js.org) to compile frontend assets.
This requires a minimum version of node v6.0.0.

You can check which version you are running with node -v. If you are running
a version older than v6.0.0 you will need to update to a newer version. You
can find instructions to install from community maintained packages or compile
from source at the nodejs.org website.

<https://nodejs.org/en/download/>

GitLab also requires the use of yarn >= v1.2.0 to manage JavaScript
dependencies.

`bash
curl --silent --show-error https://dl.yarnpkg.com/debian/pubkey.gpg | sudo apt-key add -
echo "deb https://dl.yarnpkg.com/debian/ stable main" | sudo tee /etc/apt/sources.list.d/yarn.list
sudo apt-get update
sudo apt-get install yarn
`

More information can be found on the [yarn website](https://yarnpkg.com/en/docs/install).

5. Update Go

NOTE: GitLab 9.2 and higher only supports Go 1.9 and dropped support for Go
1.5.x through 1.8.x. Be sure to upgrade your installation if necessary.

You can check which version you are running with go version.

Download and install Go:

```bash
# Remove former Go installation folder
sudo rm -rf /usr/local/go

curl –remote-name –progress https://storage.googleapis.com/golang/go1.9.linux-amd64.tar.gz
echo ‘d70eadefce8e160638a9a6db97f7192d8463069ab33138893ad3bf31b0650a79  go1.9.linux-amd64.tar.gz’ | shasum -a256 -c - && 


sudo tar -C /usr/local -xzf go1.9.linux-amd64.tar.gz




sudo ln -sf /usr/local/go/bin/{go,godoc,gofmt} /usr/local/bin/
rm go1.9.linux-amd64.tar.gz
```

6. Get latest code

```bash
cd /home/git/gitlab

sudo -u git -H git fetch –all –prune
sudo -u git -H git checkout – db/schema.rb # local changes will be restored automatically
sudo -u git -H git checkout – locale
```

For GitLab Community Edition:

```bash
cd /home/git/gitlab

sudo -u git -H git checkout 10-7-stable
```

OR

For GitLab Enterprise Edition:

```bash
cd /home/git/gitlab

sudo -u git -H git checkout 10-7-stable-ee
```

7. Update gitlab-shell

```bash
cd /home/git/gitlab-shell

sudo -u git -H git fetch –all –tags –prune
sudo -u git -H git checkout v$(</home/git/gitlab/GITLAB_SHELL_VERSION)
sudo -u git -H bin/compile
```

8. Update gitlab-workhorse

Install and compile gitlab-workhorse. GitLab-Workhorse uses
[GNU Make](https://www.gnu.org/software/make/).
If you are not using Linux you may have to run gmake instead of
make below.

```bash
cd /home/git/gitlab-workhorse

sudo -u git -H git fetch –all –tags –prune
sudo -u git -H git checkout v$(</home/git/gitlab/GITLAB_WORKHORSE_VERSION)
sudo -u git -H make
```

9. Update Gitaly

New Gitaly configuration options required

In order to function Gitaly needs some additional configuration information. Below we assume you installed Gitaly in /home/git/gitaly and GitLab Shell in /home/git/gitlab-shell.

```shell
echo ‘
[gitaly-ruby]
dir = “/home/git/gitaly/ruby”

[gitlab-shell]
dir = “/home/git/gitlab-shell”
‘ | sudo -u git tee -a /home/git/gitaly/config.toml
```

Check Gitaly configuration

Due to a bug in the rake gitlab:gitaly:install script your Gitaly
configuration file may contain syntax errors. The block name
[[storages]], which may occur more than once in your config.toml
file, should be [[storage]] instead.

`shell
sudo -u git -H sed -i.pre-10.1 's/\[\[storages\]\]/[[storage]]/' /home/git/gitaly/config.toml
`

Compile Gitaly

`shell
cd /home/git/gitaly
sudo -u git -H git fetch --all --tags --prune
sudo -u git -H git checkout v$(</home/git/gitlab/GITALY_SERVER_VERSION)
sudo -u git -H make
`

10. Update MySQL permissions

If you are using MySQL you need to grant the GitLab user the necessary
permissions on the database:

`bash
mysql -u root -p -e "GRANT TRIGGER ON \`gitlabhq_production\`.* TO 'git'@'localhost';"
`

If you use MySQL with replication, or just have MySQL configured with binary logging,
you will need to also run the following on all of your MySQL servers:

`bash
mysql -u root -p -e "SET GLOBAL log_bin_trust_function_creators = 1;"
`

You can make this setting permanent by adding it to your my.cnf:

`
log_bin_trust_function_creators=1
`

11. Update configuration files

New configuration options for gitlab.yml

There might be configuration options available for [gitlab.yml][yaml]. View them with the command below and apply them manually to your current gitlab.yml:

```sh
cd /home/git/gitlab

git diff origin/10-6-stable:config/gitlab.yml.example origin/10-7-stable:config/gitlab.yml.example
```

Nginx configuration

Ensure you’re still up-to-date with the latest NGINX configuration changes:

```sh
cd /home/git/gitlab

# For HTTPS configurations
git diff origin/10-6-stable:lib/support/nginx/gitlab-ssl origin/10-7-stable:lib/support/nginx/gitlab-ssl

# For HTTP configurations
git diff origin/10-6-stable:lib/support/nginx/gitlab origin/10-7-stable:lib/support/nginx/gitlab
```

If you are using Strict-Transport-Security in your installation to continue using it you must enable it in your Nginx
configuration as GitLab application no longer handles setting it.

If you are using Apache instead of NGINX please see the updated [Apache templates].
Also note that because Apache does not support upstreams behind Unix sockets you
will need to let gitlab-workhorse listen on a TCP port. You can do this
via [/etc/default/gitlab].

[Apache templates]: https://gitlab.com/gitlab-org/gitlab-recipes/tree/master/web-server/apache
[/etc/default/gitlab]: https://gitlab.com/gitlab-org/gitlab-ce/blob/10-7-stable/lib/support/init.d/gitlab.default.example#L38

SMTP configuration

If you’re installing from source and use SMTP to deliver mail, you will need to add the following line
to config/initializers/smtp_settings.rb:

`ruby
ActionMailer::Base.delivery_method = :smtp
`

See [smtp_settings.rb.sample] as an example.

[smtp_settings.rb.sample]: https://gitlab.com/gitlab-org/gitlab-ce/blob/10-7-stable/config/initializers/smtp_settings.rb.sample#L13

Init script

There might be new configuration options available for [gitlab.default.example][gl-example]. View them with the command below and apply them manually to your current /etc/default/gitlab:

```sh
cd /home/git/gitlab

git diff origin/10-6-stable:lib/support/init.d/gitlab.default.example origin/10-7-stable:lib/support/init.d/gitlab.default.example
```

Ensure you’re still up-to-date with the latest init script changes:

```bash
cd /home/git/gitlab

sudo cp lib/support/init.d/gitlab /etc/init.d/gitlab
```

For Ubuntu 16.04.1 LTS:

`bash
sudo systemctl daemon-reload
`

12. Install libs, migrations, etc.

```bash
cd /home/git/gitlab

# MySQL installations (note: the line below states ‘–without postgres’)
sudo -u git -H bundle install –without postgres development test –deployment

# PostgreSQL installations (note: the line below states ‘–without mysql’)
sudo -u git -H bundle install –without mysql development test –deployment

# Optional: clean up old gems
sudo -u git -H bundle clean

# Run database migrations
sudo -u git -H bundle exec rake db:migrate RAILS_ENV=production

# Compile GetText PO files

sudo -u git -H bundle exec rake gettext:compile RAILS_ENV=production

# Update node dependencies and recompile assets
sudo -u git -H bundle exec rake yarn:install gitlab:assets:clean gitlab:assets:compile RAILS_ENV=production NODE_ENV=production

# Clean up cache
sudo -u git -H bundle exec rake cache:clear RAILS_ENV=production
```

MySQL installations: Run through the MySQL strings limits and Tables and data conversion to utf8mb4 [tasks](../install/database_mysql.md).

13. Start application

`bash
sudo service gitlab start
sudo service nginx restart
`

14. Check application status

Check if GitLab and its environment are configured correctly:

```bash
cd /home/git/gitlab

sudo -u git -H bundle exec rake gitlab:env:info RAILS_ENV=production
```

To make sure you didn’t miss anything run a more thorough check:

```bash
cd /home/git/gitlab

sudo -u git -H bundle exec rake gitlab:check RAILS_ENV=production
```

If all items are green, then congratulations, the upgrade is complete!

Things went south? Revert to previous version (10.6)

1. Revert the code to the previous version

Follow the [upgrade guide from 10.5 to 10.6](10.5-to-10.6.md), except for the
database migration (the backup is already migrated to the previous version).

2. Restore from the backup

```bash
cd /home/git/gitlab

sudo -u git -H bundle exec rake gitlab:backup:restore RAILS_ENV=production
```

If you have more than one backup *.tar file(s) please add BACKUP=timestamp_of_backup to the command above.

[yaml]: https://gitlab.com/gitlab-org/gitlab-ce/blob/10-7-stable/config/gitlab.yml.example
[gl-example]: https://gitlab.com/gitlab-org/gitlab-ce/blob/10-7-stable/lib/support/init.d/gitlab.default.example

 —
comments: false
—

From 10.7 to 10.8

Make sure you view this update guide from the tag (version) of GitLab you would
like to install. In most cases this should be the highest numbered production
tag (without rc in it). You can select the tag in the version dropdown at the
top left corner of GitLab (below the menu bar).

If the highest number stable branch is unclear please check the
[GitLab Blog](https://about.gitlab.com/blog/archives.html) for installation
guide links by version.

1. Stop server

`bash
sudo service gitlab stop
`

2. Backup

NOTE: If you installed GitLab from source, make sure rsync is installed.

```bash
cd /home/git/gitlab

sudo -u git -H bundle exec rake gitlab:backup:create RAILS_ENV=production
```

3. Update Ruby

NOTE: GitLab 9.0 and higher only support Ruby 2.3.x and dropped support for Ruby 2.1.x. Be
sure to upgrade your interpreter if necessary.

You can check which version you are running with ruby -v.

Download Ruby and compile it:


	```bash
	mkdir /tmp/ruby && cd /tmp/ruby
curl –remote-name –progress https://cache.ruby-lang.org/pub/ruby/2.3/ruby-2.3.7.tar.gz
echo ‘540996fec64984ab6099e34d2f5820b14904f15a  ruby-2.3.7.tar.gz’ | shasum -c - && tar xzf ruby-2.3.7.tar.gz
cd ruby-2.3.7

./configure –disable-install-rdoc
make
sudo make install





```


Install Bundler:

`bash
sudo gem install bundler --no-ri --no-rdoc
`

4. Update Node

GitLab utilizes [webpack](http://webpack.js.org) to compile frontend assets.
This requires a minimum version of node v6.0.0.

You can check which version you are running with node -v. If you are running
a version older than v6.0.0 you will need to update to a newer version. You
can find instructions to install from community maintained packages or compile
from source at the nodejs.org website.

<https://nodejs.org/en/download/>

GitLab also requires the use of yarn >= v1.2.0 to manage JavaScript
dependencies.

`bash
curl --silent --show-error https://dl.yarnpkg.com/debian/pubkey.gpg | sudo apt-key add -
echo "deb https://dl.yarnpkg.com/debian/ stable main" | sudo tee /etc/apt/sources.list.d/yarn.list
sudo apt-get update
sudo apt-get install yarn
`

More information can be found on the [yarn website](https://yarnpkg.com/en/docs/install).

5. Update Go

NOTE: GitLab 9.2 and higher only supports Go 1.8.3 and dropped support for Go
1.5.x through 1.7.x. Be sure to upgrade your installation if necessary.

You can check which version you are running with go version.

Download and install Go:

```bash
# Remove former Go installation folder
sudo rm -rf /usr/local/go

curl –remote-name –progress https://storage.googleapis.com/golang/go1.8.3.linux-amd64.tar.gz
echo ‘1862f4c3d3907e59b04a757cfda0ea7aa9ef39274af99a784f5be843c80c6772  go1.8.3.linux-amd64.tar.gz’ | shasum -a256 -c - && 


sudo tar -C /usr/local -xzf go1.8.3.linux-amd64.tar.gz




sudo ln -sf /usr/local/go/bin/{go,godoc,gofmt} /usr/local/bin/
rm go1.8.3.linux-amd64.tar.gz
```

6. Get latest code

```bash
cd /home/git/gitlab

sudo -u git -H git fetch –all –prune
sudo -u git -H git checkout – db/schema.rb # local changes will be restored automatically
sudo -u git -H git checkout – locale
```

For GitLab Community Edition:

```bash
cd /home/git/gitlab

sudo -u git -H git checkout 10-8-stable
```

OR

For GitLab Enterprise Edition:

```bash
cd /home/git/gitlab

sudo -u git -H git checkout 10-8-stable-ee
```

7. Update gitlab-shell

```bash
cd /home/git/gitlab-shell

sudo -u git -H git fetch –all –tags –prune
sudo -u git -H git checkout v$(</home/git/gitlab/GITLAB_SHELL_VERSION)
sudo -u git -H bin/compile
```

8. Update gitlab-workhorse

Install and compile gitlab-workhorse. GitLab-Workhorse uses
[GNU Make](https://www.gnu.org/software/make/).
If you are not using Linux you may have to run gmake instead of
make below.

```bash
cd /home/git/gitlab-workhorse

sudo -u git -H git fetch –all –tags –prune
sudo -u git -H git checkout v$(</home/git/gitlab/GITLAB_WORKHORSE_VERSION)
sudo -u git -H make
```

9. Update Gitaly

New Gitaly configuration options required

In order to function Gitaly needs some additional configuration information. Below we assume you installed Gitaly in /home/git/gitaly and GitLab Shell in /home/git/gitlab-shell.

```shell
echo ‘
[gitaly-ruby]
dir = “/home/git/gitaly/ruby”

[gitlab-shell]
dir = “/home/git/gitlab-shell”
‘ | sudo -u git tee -a /home/git/gitaly/config.toml
```

Check Gitaly configuration

Due to a bug in the rake gitlab:gitaly:install script your Gitaly
configuration file may contain syntax errors. The block name
[[storages]], which may occur more than once in your config.toml
file, should be [[storage]] instead.

`shell
sudo -u git -H sed -i.pre-10.1 's/\[\[storages\]\]/[[storage]]/' /home/git/gitaly/config.toml
`

Compile Gitaly

`shell
cd /home/git/gitaly
sudo -u git -H git fetch --all --tags --prune
sudo -u git -H git checkout v$(</home/git/gitlab/GITALY_SERVER_VERSION)
sudo -u git -H make
`

10. Update MySQL permissions

If you are using MySQL you need to grant the GitLab user the necessary
permissions on the database:

`bash
mysql -u root -p -e "GRANT TRIGGER ON \`gitlabhq_production\`.* TO 'git'@'localhost';"
`

If you use MySQL with replication, or just have MySQL configured with binary logging,
you will need to also run the following on all of your MySQL servers:

`bash
mysql -u root -p -e "SET GLOBAL log_bin_trust_function_creators = 1;"
`

You can make this setting permanent by adding it to your my.cnf:

`
log_bin_trust_function_creators=1
`

11. Update configuration files

New configuration options for gitlab.yml

There might be configuration options available for [gitlab.yml][yaml]. View them with the command below and apply them manually to your current gitlab.yml:

```sh
cd /home/git/gitlab

git diff origin/10-7-stable:config/gitlab.yml.example origin/10-8-stable:config/gitlab.yml.example
```

Nginx configuration

Ensure you’re still up-to-date with the latest NGINX configuration changes:

```sh
cd /home/git/gitlab

# For HTTPS configurations
git diff origin/10-7-stable:lib/support/nginx/gitlab-ssl origin/10-8-stable:lib/support/nginx/gitlab-ssl

# For HTTP configurations
git diff origin/10-7-stable:lib/support/nginx/gitlab origin/10-8-stable:lib/support/nginx/gitlab
```

If you are using Strict-Transport-Security in your installation to continue using it you must enable it in your Nginx
configuration as GitLab application no longer handles setting it.

If you are using Apache instead of NGINX please see the updated [Apache templates].
Also note that because Apache does not support upstreams behind Unix sockets you
will need to let gitlab-workhorse listen on a TCP port. You can do this
via [/etc/default/gitlab].

[Apache templates]: https://gitlab.com/gitlab-org/gitlab-recipes/tree/master/web-server/apache
[/etc/default/gitlab]: https://gitlab.com/gitlab-org/gitlab-ce/blob/10-8-stable/lib/support/init.d/gitlab.default.example#L38

SMTP configuration

If you’re installing from source and use SMTP to deliver mail, you will need to add the following line
to config/initializers/smtp_settings.rb:

`ruby
ActionMailer::Base.delivery_method = :smtp
`

See [smtp_settings.rb.sample] as an example.

[smtp_settings.rb.sample]: https://gitlab.com/gitlab-org/gitlab-ce/blob/10-8-stable/config/initializers/smtp_settings.rb.sample#L13

Init script

There might be new configuration options available for [gitlab.default.example][gl-example]. View them with the command below and apply them manually to your current /etc/default/gitlab:

```sh
cd /home/git/gitlab

git diff origin/10-7-stable:lib/support/init.d/gitlab.default.example origin/10-8-stable:lib/support/init.d/gitlab.default.example
```

Ensure you’re still up-to-date with the latest init script changes:

```bash
cd /home/git/gitlab

sudo cp lib/support/init.d/gitlab /etc/init.d/gitlab
```

For Ubuntu 16.04.1 LTS:

`bash
sudo systemctl daemon-reload
`

12. Install libs, migrations, etc.

```bash
cd /home/git/gitlab

# MySQL installations (note: the line below states ‘–without postgres’)
sudo -u git -H bundle install –without postgres development test –deployment

# PostgreSQL installations (note: the line below states ‘–without mysql’)
sudo -u git -H bundle install –without mysql development test –deployment

# Optional: clean up old gems
sudo -u git -H bundle clean

# Run database migrations
sudo -u git -H bundle exec rake db:migrate RAILS_ENV=production

# Compile GetText PO files

sudo -u git -H bundle exec rake gettext:compile RAILS_ENV=production

# Update node dependencies and recompile assets
sudo -u git -H bundle exec rake yarn:install gitlab:assets:clean gitlab:assets:compile RAILS_ENV=production NODE_ENV=production

# Clean up cache
sudo -u git -H bundle exec rake cache:clear RAILS_ENV=production
```

MySQL installations: Run through the MySQL strings limits and Tables and data conversion to utf8mb4 [tasks](../install/database_mysql.md).

13. Start application

`bash
sudo service gitlab start
sudo service nginx restart
`

14. Check application status

Check if GitLab and its environment are configured correctly:

```bash
cd /home/git/gitlab

sudo -u git -H bundle exec rake gitlab:env:info RAILS_ENV=production
```

To make sure you didn’t miss anything run a more thorough check:

```bash
cd /home/git/gitlab

sudo -u git -H bundle exec rake gitlab:check RAILS_ENV=production
```

If all items are green, then congratulations, the upgrade is complete!

Things went south? Revert to previous version (10.7)

1. Revert the code to the previous version

Follow the [upgrade guide from 10.6 to 10.7](10.6-to-10.7.md), except for the
database migration (the backup is already migrated to the previous version).

2. Restore from the backup

```bash
cd /home/git/gitlab

sudo -u git -H bundle exec rake gitlab:backup:restore RAILS_ENV=production
```

If you have more than one backup *.tar file(s) please add BACKUP=timestamp_of_backup to the command above.

[yaml]: https://gitlab.com/gitlab-org/gitlab-ce/blob/10-8-stable/config/gitlab.yml.example
[gl-example]: https://gitlab.com/gitlab-org/gitlab-ce/blob/10-8-stable/lib/support/init.d/gitlab.default.example

 —
comments: false
—

From 10.8 to 11.0

Make sure you view this update guide from the branch (version) of GitLab you would
like to install (e.g., 11-0-stable. You can select the branch in the version
dropdown at the top left corner of GitLab (below the menu bar).

If the highest number stable branch is unclear please check the
[GitLab Blog](https://about.gitlab.com/blog/archives.html) for installation
guide links by version.

1. Stop server

`bash
sudo service gitlab stop
`

2. Backup

NOTE: If you installed GitLab from source, make sure rsync is installed.

```bash
cd /home/git/gitlab

sudo -u git -H bundle exec rake gitlab:backup:create RAILS_ENV=production
```

3. Update Ruby

NOTE: GitLab 11.0 and higher only support Ruby 2.4.x and dropped support for Ruby 2.3.x. Be
sure to upgrade your interpreter if necessary.

You can check which version you are running with ruby -v.

Download Ruby and compile it:

```bash
mkdir /tmp/ruby && cd /tmp/ruby
curl –remote-name –progress https://cache.ruby-lang.org/pub/ruby/2.4/ruby-2.4.4.tar.gz
echo ‘ec82b0d53bd0adad9b19e6b45e44d54e9ec3f10c  ruby-2.4.4.tar.gz’ | shasum -c - && tar xzf ruby-2.4.4.tar.gz
cd ruby-2.4.4

./configure –disable-install-rdoc
make
sudo make install
```

Install Bundler:

`bash
sudo gem install bundler --no-ri --no-rdoc
`

4. Update Node

GitLab utilizes [webpack](http://webpack.js.org) to compile frontend assets.
This requires a minimum version of node v6.0.0.

You can check which version you are running with node -v. If you are running
a version older than v6.0.0 you will need to update to a newer version. You
can find instructions to install from community maintained packages or compile
from source at the nodejs.org website.

<https://nodejs.org/en/download/>

GitLab also requires the use of yarn >= v1.2.0 to manage JavaScript
dependencies.

`bash
curl --silent --show-error https://dl.yarnpkg.com/debian/pubkey.gpg | sudo apt-key add -
echo "deb https://dl.yarnpkg.com/debian/ stable main" | sudo tee /etc/apt/sources.list.d/yarn.list
sudo apt-get update
sudo apt-get install yarn
`

More information can be found on the [yarn website](https://yarnpkg.com/en/docs/install).

5. Update Go

NOTE: GitLab 11.0 and higher only supports Go 1.9.x and newer, and dropped support for Go
1.5.x through 1.8.x. Be sure to upgrade your installation if necessary.

You can check which version you are running with go version.

Download and install Go:

```bash
# Remove former Go installation folder
sudo rm -rf /usr/local/go

curl –remote-name –progress https://dl.google.com/go/go1.10.3.linux-amd64.tar.gz
echo ‘fa1b0e45d3b647c252f51f5e1204aba049cde4af177ef9f2181f43004f901035  go1.10.3.linux-amd64.tar.gz’ | shasum -a256 -c - && 


sudo tar -C /usr/local -xzf go1.10.3.linux-amd64.tar.gz




sudo ln -sf /usr/local/go/bin/{go,godoc,gofmt} /usr/local/bin/
rm go1.10.3.linux-amd64.tar.gz
```

6. Get latest code

```bash
cd /home/git/gitlab

sudo -u git -H git fetch –all –prune
sudo -u git -H git checkout – db/schema.rb # local changes will be restored automatically
sudo -u git -H git checkout – locale
```

For GitLab Community Edition:

```bash
cd /home/git/gitlab

sudo -u git -H git checkout 11-0-stable
```

OR

For GitLab Enterprise Edition:

```bash
cd /home/git/gitlab

sudo -u git -H git checkout 11-0-stable-ee
```

7. Update gitlab-shell

```bash
cd /home/git/gitlab-shell

sudo -u git -H git fetch –all –tags –prune
sudo -u git -H git checkout v$(</home/git/gitlab/GITLAB_SHELL_VERSION)
sudo -u git -H bin/compile
```

8. Update gitlab-workhorse

Install and compile gitlab-workhorse. GitLab-Workhorse uses
[GNU Make](https://www.gnu.org/software/make/).
If you are not using Linux you may have to run gmake instead of
make below.

```bash
cd /home/git/gitlab-workhorse

sudo -u git -H git fetch –all –tags –prune
sudo -u git -H git checkout v$(</home/git/gitlab/GITLAB_WORKHORSE_VERSION)
sudo -u git -H make
```

9. Update Gitaly

New Gitaly configuration options required

In order to function Gitaly needs some additional configuration information. Below we assume you installed Gitaly in /home/git/gitaly and GitLab Shell in /home/git/gitlab-shell.

```shell
echo ‘
[gitaly-ruby]
dir = “/home/git/gitaly/ruby”

[gitlab-shell]
dir = “/home/git/gitlab-shell”
‘ | sudo -u git tee -a /home/git/gitaly/config.toml
```

Check Gitaly configuration

Due to a bug in the rake gitlab:gitaly:install script your Gitaly
configuration file may contain syntax errors. The block name
[[storages]], which may occur more than once in your config.toml
file, should be [[storage]] instead.

`shell
sudo -u git -H sed -i.pre-10.1 's/\[\[storages\]\]/[[storage]]/' /home/git/gitaly/config.toml
`

Compile Gitaly

`shell
cd /home/git/gitaly
sudo -u git -H git fetch --all --tags --prune
sudo -u git -H git checkout v$(</home/git/gitlab/GITALY_SERVER_VERSION)
sudo -u git -H make
`

10. Update MySQL permissions

If you are using MySQL you need to grant the GitLab user the necessary
permissions on the database:

`bash
mysql -u root -p -e "GRANT TRIGGER ON \`gitlabhq_production\`.* TO 'git'@'localhost';"
`

If you use MySQL with replication, or just have MySQL configured with binary logging,
you will need to also run the following on all of your MySQL servers:

`bash
mysql -u root -p -e "SET GLOBAL log_bin_trust_function_creators = 1;"
`

You can make this setting permanent by adding it to your my.cnf:

`
log_bin_trust_function_creators=1
`

11. Update configuration files

New configuration options for gitlab.yml

There might be configuration options available for [gitlab.yml][yaml]. View them with the command below and apply them manually to your current gitlab.yml:

```sh
cd /home/git/gitlab

git diff origin/10-8-stable:config/gitlab.yml.example origin/11-0-stable:config/gitlab.yml.example
```

Nginx configuration

Ensure you’re still up-to-date with the latest NGINX configuration changes:

```sh
cd /home/git/gitlab

# For HTTPS configurations
git diff origin/10-8-stable:lib/support/nginx/gitlab-ssl origin/11-0-stable:lib/support/nginx/gitlab-ssl

# For HTTP configurations
git diff origin/10-8-stable:lib/support/nginx/gitlab origin/11-0-stable:lib/support/nginx/gitlab
```

If you are using Strict-Transport-Security in your installation to continue using it you must enable it in your Nginx
configuration as GitLab application no longer handles setting it.

If you are using Apache instead of NGINX please see the updated [Apache templates].
Also note that because Apache does not support upstreams behind Unix sockets you
will need to let gitlab-workhorse listen on a TCP port. You can do this
via [/etc/default/gitlab].

[Apache templates]: https://gitlab.com/gitlab-org/gitlab-recipes/tree/master/web-server/apache
[/etc/default/gitlab]: https://gitlab.com/gitlab-org/gitlab-ce/blob/11-0-stable/lib/support/init.d/gitlab.default.example#L38

SMTP configuration

If you’re installing from source and use SMTP to deliver mail, you will need to add the following line
to config/initializers/smtp_settings.rb:

`ruby
ActionMailer::Base.delivery_method = :smtp
`

See [smtp_settings.rb.sample] as an example.

[smtp_settings.rb.sample]: https://gitlab.com/gitlab-org/gitlab-ce/blob/11-0-stable/config/initializers/smtp_settings.rb.sample#L13

Init script

There might be new configuration options available for [gitlab.default.example][gl-example]. View them with the command below and apply them manually to your current /etc/default/gitlab:

```sh
cd /home/git/gitlab

git diff origin/10-8-stable:lib/support/init.d/gitlab.default.example origin/11-0-stable:lib/support/init.d/gitlab.default.example
```

Ensure you’re still up-to-date with the latest init script changes:

```bash
cd /home/git/gitlab

sudo cp lib/support/init.d/gitlab /etc/init.d/gitlab
```

For Ubuntu 16.04.1 LTS:

`bash
sudo systemctl daemon-reload
`

12. Install libs, migrations, etc.

```bash
cd /home/git/gitlab

# MySQL installations (note: the line below states ‘–without postgres’)
sudo -u git -H bundle install –without postgres development test –deployment

# PostgreSQL installations (note: the line below states ‘–without mysql’)
sudo -u git -H bundle install –without mysql development test –deployment

# Optional: clean up old gems
sudo -u git -H bundle clean

# Run database migrations
sudo -u git -H bundle exec rake db:migrate RAILS_ENV=production

# Compile GetText PO files

sudo -u git -H bundle exec rake gettext:compile RAILS_ENV=production

# Update node dependencies and recompile assets
sudo -u git -H bundle exec rake yarn:install gitlab:assets:clean gitlab:assets:compile RAILS_ENV=production NODE_ENV=production

# Clean up cache
sudo -u git -H bundle exec rake cache:clear RAILS_ENV=production
```

MySQL installations: Run through the MySQL strings limits and Tables and data conversion to utf8mb4 [tasks](../install/database_mysql.md).

13. Start application

`bash
sudo service gitlab start
sudo service nginx restart
`

14. Check application status

Check if GitLab and its environment are configured correctly:

```bash
cd /home/git/gitlab

sudo -u git -H bundle exec rake gitlab:env:info RAILS_ENV=production
```

To make sure you didn’t miss anything run a more thorough check:

```bash
cd /home/git/gitlab

sudo -u git -H bundle exec rake gitlab:check RAILS_ENV=production
```

If all items are green, then congratulations, the upgrade is complete!

Things went south? Revert to previous version (10.8)

1. Revert the code to the previous version

Follow the [upgrade guide from 10.7 to 10.8](10.7-to-10.8.md), except for the
database migration (the backup is already migrated to the previous version).

2. Restore from the backup

```bash
cd /home/git/gitlab

sudo -u git -H bundle exec rake gitlab:backup:restore RAILS_ENV=production
```

If you have more than one backup *.tar file(s) please add BACKUP=timestamp_of_backup to the command above.

[yaml]: https://gitlab.com/gitlab-org/gitlab-ce/blob/11-0-stable/config/gitlab.yml.example
[gl-example]: https://gitlab.com/gitlab-org/gitlab-ce/blob/11-0-stable/lib/support/init.d/gitlab.default.example

 —
comments: false
—

From 11.0 to 11.1

Make sure you view this update guide from the branch (version) of GitLab you would
like to install (e.g., 11-1-stable. You can select the branch in the version
dropdown at the top left corner of GitLab (below the menu bar).

If the highest number stable branch is unclear please check the
[GitLab Blog](https://about.gitlab.com/blog/archives.html) for installation
guide links by version.

1. Stop server

`bash
sudo service gitlab stop
`

2. Backup

NOTE: If you installed GitLab from source, make sure rsync is installed.

```bash
cd /home/git/gitlab

sudo -u git -H bundle exec rake gitlab:backup:create RAILS_ENV=production
```

3. Update Ruby

NOTE: GitLab 11.0 and higher only support Ruby 2.4.x and dropped support for Ruby 2.3.x. Be
sure to upgrade your interpreter if necessary.

You can check which version you are running with ruby -v.

Download Ruby and compile it:

```bash
mkdir /tmp/ruby && cd /tmp/ruby
curl –remote-name –progress https://cache.ruby-lang.org/pub/ruby/2.4/ruby-2.4.4.tar.gz
echo ‘ec82b0d53bd0adad9b19e6b45e44d54e9ec3f10c  ruby-2.4.4.tar.gz’ | shasum -c - && tar xzf ruby-2.4.4.tar.gz
cd ruby-2.4.4

./configure –disable-install-rdoc
make
sudo make install
```

Install Bundler:

`bash
sudo gem install bundler --no-ri --no-rdoc
`

4. Update Node

GitLab utilizes [webpack](http://webpack.js.org) to compile frontend assets.
This requires a minimum version of node v6.0.0.

You can check which version you are running with node -v. If you are running
a version older than v6.0.0 you will need to update to a newer version. You
can find instructions to install from community maintained packages or compile
from source at the nodejs.org website.

<https://nodejs.org/en/download/>

GitLab also requires the use of yarn >= v1.2.0 to manage JavaScript
dependencies.

`bash
curl --silent --show-error https://dl.yarnpkg.com/debian/pubkey.gpg | sudo apt-key add -
echo "deb https://dl.yarnpkg.com/debian/ stable main" | sudo tee /etc/apt/sources.list.d/yarn.list
sudo apt-get update
sudo apt-get install yarn
`

More information can be found on the [yarn website](https://yarnpkg.com/en/docs/install).

5. Update Go

NOTE: GitLab 11.0 and higher only supports Go 1.9.x and newer, and dropped support for Go
1.5.x through 1.8.x. Be sure to upgrade your installation if necessary.

You can check which version you are running with go version.

Download and install Go:

```bash
# Remove former Go installation folder
sudo rm -rf /usr/local/go

curl –remote-name –progress https://dl.google.com/go/go1.10.3.linux-amd64.tar.gz
echo ‘fa1b0e45d3b647c252f51f5e1204aba049cde4af177ef9f2181f43004f901035  go1.10.3.linux-amd64.tar.gz’ | shasum -a256 -c - && 


sudo tar -C /usr/local -xzf go1.10.3.linux-amd64.tar.gz




sudo ln -sf /usr/local/go/bin/{go,godoc,gofmt} /usr/local/bin/
rm go1.10.3.linux-amd64.tar.gz
```

6. Get latest code

```bash
cd /home/git/gitlab

sudo -u git -H git fetch –all –prune
sudo -u git -H git checkout – db/schema.rb # local changes will be restored automatically
sudo -u git -H git checkout – locale
```

For GitLab Community Edition:

```bash
cd /home/git/gitlab

sudo -u git -H git checkout 11-1-stable
```

OR

For GitLab Enterprise Edition:

```bash
cd /home/git/gitlab

sudo -u git -H git checkout 11-1-stable-ee
```

7. Update gitlab-shell

```bash
cd /home/git/gitlab-shell

sudo -u git -H git fetch –all –tags –prune
sudo -u git -H git checkout v$(</home/git/gitlab/GITLAB_SHELL_VERSION)
sudo -u git -H bin/compile
```

8. Update gitlab-workhorse

Install and compile gitlab-workhorse. GitLab-Workhorse uses
[GNU Make](https://www.gnu.org/software/make/).
If you are not using Linux you may have to run gmake instead of
make below.

```bash
cd /home/git/gitlab-workhorse

sudo -u git -H git fetch –all –tags –prune
sudo -u git -H git checkout v$(</home/git/gitlab/GITLAB_WORKHORSE_VERSION)
sudo -u git -H make
```

9. Update Gitaly

New Gitaly configuration options required

In order to function Gitaly needs some additional configuration information. Below we assume you installed Gitaly in /home/git/gitaly and GitLab Shell in /home/git/gitlab-shell.

```shell
echo ‘
[gitaly-ruby]
dir = “/home/git/gitaly/ruby”

[gitlab-shell]
dir = “/home/git/gitlab-shell”
‘ | sudo -u git tee -a /home/git/gitaly/config.toml
```

Check Gitaly configuration

Due to a bug in the rake gitlab:gitaly:install script your Gitaly
configuration file may contain syntax errors. The block name
[[storages]], which may occur more than once in your config.toml
file, should be [[storage]] instead.

`shell
sudo -u git -H sed -i.pre-10.1 's/\[\[storages\]\]/[[storage]]/' /home/git/gitaly/config.toml
`

Compile Gitaly

`shell
cd /home/git/gitaly
sudo -u git -H git fetch --all --tags --prune
sudo -u git -H git checkout v$(</home/git/gitlab/GITALY_SERVER_VERSION)
sudo -u git -H make
`

10. Update gitlab-pages

Only needed if you use GitLab Pages.

Install and compile gitlab-pages. GitLab-Pages uses
[GNU Make](https://www.gnu.org/software/make/).
If you are not using Linux you may have to run gmake instead of
make below.

```bash
cd /home/git/gitlab-pages

sudo -u git -H git fetch –all –tags –prune
sudo -u git -H git checkout v$(</home/git/gitlab/GITLAB_PAGES_VERSION)
sudo -u git -H make
```

11. Update MySQL permissions

If you are using MySQL you need to grant the GitLab user the necessary
permissions on the database:

`bash
mysql -u root -p -e "GRANT TRIGGER ON \`gitlabhq_production\`.* TO 'git'@'localhost';"
`

If you use MySQL with replication, or just have MySQL configured with binary logging,
you will need to also run the following on all of your MySQL servers:

`bash
mysql -u root -p -e "SET GLOBAL log_bin_trust_function_creators = 1;"
`

You can make this setting permanent by adding it to your my.cnf:

`
log_bin_trust_function_creators=1
`

12. Update configuration files

New configuration options for gitlab.yml

There might be configuration options available for [gitlab.yml][yaml]. View them with the command below and apply them manually to your current gitlab.yml:

```sh
cd /home/git/gitlab

git diff origin/11-0-stable:config/gitlab.yml.example origin/11-1-stable:config/gitlab.yml.example
```

Nginx configuration

Ensure you’re still up-to-date with the latest NGINX configuration changes:

```sh
cd /home/git/gitlab

# For HTTPS configurations
git diff origin/11-0-stable:lib/support/nginx/gitlab-ssl origin/11-1-stable:lib/support/nginx/gitlab-ssl

# For HTTP configurations
git diff origin/11-0-stable:lib/support/nginx/gitlab origin/11-1-stable:lib/support/nginx/gitlab
```

If you are using Strict-Transport-Security in your installation to continue using it you must enable it in your Nginx
configuration as GitLab application no longer handles setting it.

If you are using Apache instead of NGINX please see the updated [Apache templates].
Also note that because Apache does not support upstreams behind Unix sockets you
will need to let gitlab-workhorse listen on a TCP port. You can do this
via [/etc/default/gitlab].

[Apache templates]: https://gitlab.com/gitlab-org/gitlab-recipes/tree/master/web-server/apache
[/etc/default/gitlab]: https://gitlab.com/gitlab-org/gitlab-ce/blob/11-1-stable/lib/support/init.d/gitlab.default.example#L38

SMTP configuration

If you’re installing from source and use SMTP to deliver mail, you will need to add the following line
to config/initializers/smtp_settings.rb:

`ruby
ActionMailer::Base.delivery_method = :smtp
`

See [smtp_settings.rb.sample] as an example.

[smtp_settings.rb.sample]: https://gitlab.com/gitlab-org/gitlab-ce/blob/11-1-stable/config/initializers/smtp_settings.rb.sample#L13

Init script

There might be new configuration options available for [gitlab.default.example][gl-example]. View them with the command below and apply them manually to your current /etc/default/gitlab:

```sh
cd /home/git/gitlab

git diff origin/11-0-stable:lib/support/init.d/gitlab.default.example origin/11-1-stable:lib/support/init.d/gitlab.default.example
```

Ensure you’re still up-to-date with the latest init script changes:

```bash
cd /home/git/gitlab

sudo cp lib/support/init.d/gitlab /etc/init.d/gitlab
```

For Ubuntu 16.04.1 LTS:

`bash
sudo systemctl daemon-reload
`

13. Install libs, migrations, etc.

```bash
cd /home/git/gitlab

# MySQL installations (note: the line below states ‘–without postgres’)
sudo -u git -H bundle install –without postgres development test –deployment

# PostgreSQL installations (note: the line below states ‘–without mysql’)
sudo -u git -H bundle install –without mysql development test –deployment

# Optional: clean up old gems
sudo -u git -H bundle clean

# Run database migrations
sudo -u git -H bundle exec rake db:migrate RAILS_ENV=production

# Compile GetText PO files

sudo -u git -H bundle exec rake gettext:compile RAILS_ENV=production

# Update node dependencies and recompile assets
sudo -u git -H bundle exec rake yarn:install gitlab:assets:clean gitlab:assets:compile RAILS_ENV=production NODE_ENV=production

# Clean up cache
sudo -u git -H bundle exec rake cache:clear RAILS_ENV=production
```

MySQL installations: Run through the MySQL strings limits and Tables and data conversion to utf8mb4 [tasks](../install/database_mysql.md).

14. Start application

`bash
sudo service gitlab start
sudo service nginx restart
`

15. Check application status

Check if GitLab and its environment are configured correctly:

```bash
cd /home/git/gitlab

sudo -u git -H bundle exec rake gitlab:env:info RAILS_ENV=production
```

To make sure you didn’t miss anything run a more thorough check:

```bash
cd /home/git/gitlab

sudo -u git -H bundle exec rake gitlab:check RAILS_ENV=production
```

If all items are green, then congratulations, the upgrade is complete!

Things went south? Revert to previous version (11.0)

1. Revert the code to the previous version

Follow the [upgrade guide from 10.8 to 11.0](10.8-to-11.0.md), except for the
database migration (the backup is already migrated to the previous version).

2. Restore from the backup

```bash
cd /home/git/gitlab

sudo -u git -H bundle exec rake gitlab:backup:restore RAILS_ENV=production
```

If you have more than one backup *.tar file(s) please add BACKUP=timestamp_of_backup to the command above.

[yaml]: https://gitlab.com/gitlab-org/gitlab-ce/blob/11-1-stable/config/gitlab.yml.example
[gl-example]: https://gitlab.com/gitlab-org/gitlab-ce/blob/11-1-stable/lib/support/init.d/gitlab.default.example

 —
comments: false
—

From 11.1 to 11.2

Make sure you view this update guide from the branch (version) of GitLab you would
like to install (e.g., 11-2-stable. You can select the branch in the version
dropdown at the top left corner of GitLab (below the menu bar).

If the highest number stable branch is unclear please check the
[GitLab Blog](https://about.gitlab.com/blog/archives.html) for installation
guide links by version.

1. Stop server

`bash
sudo service gitlab stop
`

2. Backup

NOTE: If you installed GitLab from source, make sure rsync is installed.

```bash
cd /home/git/gitlab

sudo -u git -H bundle exec rake gitlab:backup:create RAILS_ENV=production
```

3. Update Ruby

NOTE: GitLab 11.0 and higher only support Ruby 2.4.x and dropped support for Ruby 2.3.x. Be
sure to upgrade your interpreter if necessary.

You can check which version you are running with ruby -v.

Download Ruby and compile it:

```bash
mkdir /tmp/ruby && cd /tmp/ruby
curl –remote-name –progress https://cache.ruby-lang.org/pub/ruby/2.4/ruby-2.4.4.tar.gz
echo ‘ec82b0d53bd0adad9b19e6b45e44d54e9ec3f10c  ruby-2.4.4.tar.gz’ | shasum -c - && tar xzf ruby-2.4.4.tar.gz
cd ruby-2.4.4

./configure –disable-install-rdoc
make
sudo make install
```

Install Bundler:

`bash
sudo gem install bundler --no-ri --no-rdoc
`

4. Update Node

GitLab utilizes [webpack](http://webpack.js.org) to compile frontend assets.
This requires a minimum version of node v6.0.0.

You can check which version you are running with node -v. If you are running
a version older than v6.0.0 you will need to update to a newer version. You
can find instructions to install from community maintained packages or compile
from source at the nodejs.org website.

<https://nodejs.org/en/download/>

GitLab also requires the use of yarn >= v1.2.0 to manage JavaScript
dependencies.

`bash
curl --silent --show-error https://dl.yarnpkg.com/debian/pubkey.gpg | sudo apt-key add -
echo "deb https://dl.yarnpkg.com/debian/ stable main" | sudo tee /etc/apt/sources.list.d/yarn.list
sudo apt-get update
sudo apt-get install yarn
`

More information can be found on the [yarn website](https://yarnpkg.com/en/docs/install).

5. Update Go

NOTE: GitLab 11.0 and higher only supports Go 1.9.x and newer, and dropped support for Go
1.5.x through 1.8.x. Be sure to upgrade your installation if necessary.

You can check which version you are running with go version.

Download and install Go:

```bash
# Remove former Go installation folder
sudo rm -rf /usr/local/go

curl –remote-name –progress https://dl.google.com/go/go1.10.3.linux-amd64.tar.gz
echo ‘fa1b0e45d3b647c252f51f5e1204aba049cde4af177ef9f2181f43004f901035  go1.10.3.linux-amd64.tar.gz’ | shasum -a256 -c - && 


sudo tar -C /usr/local -xzf go1.10.3.linux-amd64.tar.gz




sudo ln -sf /usr/local/go/bin/{go,godoc,gofmt} /usr/local/bin/
rm go1.10.3.linux-amd64.tar.gz
```

6. Get latest code

```bash
cd /home/git/gitlab

sudo -u git -H git fetch –all –prune
sudo -u git -H git checkout – db/schema.rb # local changes will be restored automatically
sudo -u git -H git checkout – locale
```

For GitLab Community Edition:

```bash
cd /home/git/gitlab

sudo -u git -H git checkout 11-2-stable
```

OR

For GitLab Enterprise Edition:

```bash
cd /home/git/gitlab

sudo -u git -H git checkout 11-2-stable-ee
```

7. Update gitlab-shell

```bash
cd /home/git/gitlab-shell

sudo -u git -H git fetch –all –tags –prune
sudo -u git -H git checkout v$(</home/git/gitlab/GITLAB_SHELL_VERSION)
sudo -u git -H bin/compile
```

8. Update gitlab-workhorse

Install and compile gitlab-workhorse. GitLab-Workhorse uses
[GNU Make](https://www.gnu.org/software/make/).
If you are not using Linux you may have to run gmake instead of
make below.

```bash
cd /home/git/gitlab-workhorse

sudo -u git -H git fetch –all –tags –prune
sudo -u git -H git checkout v$(</home/git/gitlab/GITLAB_WORKHORSE_VERSION)
sudo -u git -H make
```

9. Update Gitaly

New Gitaly configuration options required

In order to function Gitaly needs some additional configuration information. Below we assume you installed Gitaly in /home/git/gitaly and GitLab Shell in /home/git/gitlab-shell.

```shell
echo ‘
[gitaly-ruby]
dir = “/home/git/gitaly/ruby”

[gitlab-shell]
dir = “/home/git/gitlab-shell”
‘ | sudo -u git tee -a /home/git/gitaly/config.toml
```

Check Gitaly configuration

Due to a bug in the rake gitlab:gitaly:install script your Gitaly
configuration file may contain syntax errors. The block name
[[storages]], which may occur more than once in your config.toml
file, should be [[storage]] instead.

`shell
sudo -u git -H sed -i.pre-10.1 's/\[\[storages\]\]/[[storage]]/' /home/git/gitaly/config.toml
`

Compile Gitaly

`shell
cd /home/git/gitaly
sudo -u git -H git fetch --all --tags --prune
sudo -u git -H git checkout v$(</home/git/gitlab/GITALY_SERVER_VERSION)
sudo -u git -H make
`

10. Update gitlab-pages

Only needed if you use GitLab Pages.

Install and compile gitlab-pages. GitLab-Pages uses
[GNU Make](https://www.gnu.org/software/make/).
If you are not using Linux you may have to run gmake instead of
make below.

```bash
cd /home/git/gitlab-pages

sudo -u git -H git fetch –all –tags –prune
sudo -u git -H git checkout v$(</home/git/gitlab/GITLAB_PAGES_VERSION)
sudo -u git -H make
```

11. Update MySQL permissions

If you are using MySQL you need to grant the GitLab user the necessary
permissions on the database:

`bash
mysql -u root -p -e "GRANT TRIGGER ON \`gitlabhq_production\`.* TO 'git'@'localhost';"
`

If you use MySQL with replication, or just have MySQL configured with binary logging,
you will need to also run the following on all of your MySQL servers:

`bash
mysql -u root -p -e "SET GLOBAL log_bin_trust_function_creators = 1;"
`

You can make this setting permanent by adding it to your my.cnf:

`
log_bin_trust_function_creators=1
`

12. Update configuration files

New configuration options for gitlab.yml

There might be configuration options available for [gitlab.yml][yaml]. View them with the command below and apply them manually to your current gitlab.yml:

```sh
cd /home/git/gitlab

git diff origin/11-1-stable:config/gitlab.yml.example origin/11-2-stable:config/gitlab.yml.example
```

Nginx configuration

Ensure you’re still up-to-date with the latest NGINX configuration changes:

```sh
cd /home/git/gitlab

# For HTTPS configurations
git diff origin/11-1-stable:lib/support/nginx/gitlab-ssl origin/11-2-stable:lib/support/nginx/gitlab-ssl

# For HTTP configurations
git diff origin/11-1-stable:lib/support/nginx/gitlab origin/11-2-stable:lib/support/nginx/gitlab
```

If you are using Strict-Transport-Security in your installation to continue using it you must enable it in your Nginx
configuration as GitLab application no longer handles setting it.

If you are using Apache instead of NGINX please see the updated [Apache templates].
Also note that because Apache does not support upstreams behind Unix sockets you
will need to let gitlab-workhorse listen on a TCP port. You can do this
via [/etc/default/gitlab].

[Apache templates]: https://gitlab.com/gitlab-org/gitlab-recipes/tree/master/web-server/apache
[/etc/default/gitlab]: https://gitlab.com/gitlab-org/gitlab-ce/blob/11-2-stable/lib/support/init.d/gitlab.default.example#L38

SMTP configuration

If you’re installing from source and use SMTP to deliver mail, you will need to add the following line
to config/initializers/smtp_settings.rb:

`ruby
ActionMailer::Base.delivery_method = :smtp
`

See [smtp_settings.rb.sample] as an example.

[smtp_settings.rb.sample]: https://gitlab.com/gitlab-org/gitlab-ce/blob/11-2-stable/config/initializers/smtp_settings.rb.sample#L13

Init script

There might be new configuration options available for [gitlab.default.example][gl-example]. View them with the command below and apply them manually to your current /etc/default/gitlab:

```sh
cd /home/git/gitlab

git diff origin/11-1-stable:lib/support/init.d/gitlab.default.example origin/11-2-stable:lib/support/init.d/gitlab.default.example
```

Ensure you’re still up-to-date with the latest init script changes:

```bash
cd /home/git/gitlab

sudo cp lib/support/init.d/gitlab /etc/init.d/gitlab
```

For Ubuntu 16.04.1 LTS:

`bash
sudo systemctl daemon-reload
`

13. Install libs, migrations, etc.

```bash
cd /home/git/gitlab

# MySQL installations (note: the line below states ‘–without postgres’)
sudo -u git -H bundle install –without postgres development test –deployment

# PostgreSQL installations (note: the line below states ‘–without mysql’)
sudo -u git -H bundle install –without mysql development test –deployment

# Optional: clean up old gems
sudo -u git -H bundle clean

# Run database migrations
sudo -u git -H bundle exec rake db:migrate RAILS_ENV=production

# Compile GetText PO files

sudo -u git -H bundle exec rake gettext:compile RAILS_ENV=production

# Update node dependencies and recompile assets
sudo -u git -H bundle exec rake yarn:install gitlab:assets:clean gitlab:assets:compile RAILS_ENV=production NODE_ENV=production

# Clean up cache
sudo -u git -H bundle exec rake cache:clear RAILS_ENV=production
```

MySQL installations: Run through the MySQL strings limits and Tables and data conversion to utf8mb4 [tasks](../install/database_mysql.md).

14. Start application

`bash
sudo service gitlab start
sudo service nginx restart
`

15. Check application status

Check if GitLab and its environment are configured correctly:

```bash
cd /home/git/gitlab

sudo -u git -H bundle exec rake gitlab:env:info RAILS_ENV=production
```

To make sure you didn’t miss anything run a more thorough check:

```bash
cd /home/git/gitlab

sudo -u git -H bundle exec rake gitlab:check RAILS_ENV=production
```

If all items are green, then congratulations, the upgrade is complete!

Things went south? Revert to previous version (11.1)

1. Revert the code to the previous version

Follow the [upgrade guide from 11.0 to 11.1](11.0-to-11.1.md), except for the
database migration (the backup is already migrated to the previous version).

2. Restore from the backup

```bash
cd /home/git/gitlab

sudo -u git -H bundle exec rake gitlab:backup:restore RAILS_ENV=production
```

If you have more than one backup *.tar file(s) please add BACKUP=timestamp_of_backup to the command above.

[yaml]: https://gitlab.com/gitlab-org/gitlab-ce/blob/11-2-stable/config/gitlab.yml.example
[gl-example]: https://gitlab.com/gitlab-org/gitlab-ce/blob/11-2-stable/lib/support/init.d/gitlab.default.example

 —
comments: false
—

From 2.6 to 3.0
Make sure you view this [upgrade guide from the `master` branch](https://gitlab.com/gitlab-org/gitlab-ce/tree/master/doc/update/2.6-to-3.0.md) for the most up to date instructions.

1. Stop server & resque

sudo service gitlab stop

2. Update code & db

```bash
# Get latest code
git fetch origin
git checkout v3.0.3

# The Modernizr gem was yanked from RubyGems. It is required for GitLab >= 2.8.0
# Edit Gemfile and change gem “modernizr”, “2.5.3” to
# gem “modernizr-rails”, “2.7.1”`
sudo -u gitlab -H vim Gemfile

# Install libs
sudo -u gitlab bundle install –without development test postgres

# update db
sudo -u gitlab bundle exec rake db:migrate RAILS_ENV=production

# !!! Config should be replaced with a new one. Check it after replace
cp config/gitlab.yml.example config/gitlab.yml

# update Gitolite hooks

# Gitolite v2:
sudo cp ./lib/hooks/post-receive /home/git/share/gitolite/hooks/common/post-receive
sudo chown git:git /home/git/share/gitolite/hooks/common/post-receive

# Gitolite v3:
sudo cp ./lib/hooks/post-receive /home/git/.gitolite/hooks/common/post-receive
sudo chown git:git /home/git/.gitolite/hooks/common/post-receive

# set valid path to hooks in gitlab.yml in git_host section
# like this
git_host:


# Gitolite 2
hooks_path: /home/git/share/gitolite/hooks
# Gitolite 3
hooks_path: /home/git/.gitolite/hooks/




# Make some changes to Gitolite config
# For more information visit https://github.com/gitlabhq/gitlabhq/pull/1719

# Gitolite v2
sudo -u git -H sed -i ‘s/(GL_GITCONFIG_KEYSs*=>*s*).{2}/\1”.*”/g’ /home/git/.gitolite.rc

# gitlite v3
sudo -u git -H sed -i “s/(GIT_CONFIG_KEYSs*=>*s*).{2}/\1’.*’/g” /home/git/.gitolite.rc

# Check app status
sudo -u gitlab bundle exec rake gitlab:app:status RAILS_ENV=production

```

3. Start all

sudo service gitlab start

 —
comments: false
—

From 2.9 to 3.0
Make sure you view this [upgrade guide from the `master` branch](https://gitlab.com/gitlab-org/gitlab-ce/tree/master/doc/update/2.9-to-3.0.md) for the most up to date instructions.

1. Stop server & resque

sudo service gitlab stop

2. Follow instructions

```bash

# Get latest code
sudo -u gitlab -H git fetch origin
sudo -u gitlab -H git checkout v3.0.3

# The Modernizr gem was yanked from RubyGems. It is required for GitLab >= 2.8.0
# Edit Gemfile and change gem “modernizr”, “2.5.3” to
# gem “modernizr-rails”, “2.7.1”`
sudo -u gitlab -H vim Gemfile

# Install gems
sudo -u gitlab -H bundle install –without development test postgres

# Migrate db
sudo -u gitlab -H bundle exec rake db:migrate RAILS_ENV=production

# Make some changes to gitolite v3 config
# For more information visit https://github.com/gitlabhq/gitlabhq/pull/1719

# Gitolite version 3
sudo -u git -H sed -i “s/(GIT_CONFIG_KEYSs*=>*s*).{2}/\1’.*’/g” /home/git/.gitolite.rc

# If you still use gitolite v2
sudo -u git -H sed -i ‘s/(GL_GITCONFIG_KEYSs*=>*s*).{2}/\1”.*”/g’ /home/git/.gitolite.rc

# Check APP Status
sudo -u gitlab -H bundle exec rake gitlab:app:status RAILS_ENV=production
```

3. Start all

sudo service gitlab start

 —
comments: false
—

From 3.0 to 3.1
Make sure you view this [upgrade guide from the `master` branch](https://gitlab.com/gitlab-org/gitlab-ce/tree/master/doc/update/3.0-to-3.1.md) for the most up to date instructions.

IMPORTANT!

In this release we moved Resque jobs under own gitlab namespace

Despite a lot of advantages it requires from our users to replace gitolite post-receive hook with new one.

Most of projects has post-receive file as symlink to gitolite /home/git/.gitolite/hooks/post-receive. But some of them may have a real file. In this case you should rewrite it with symlink to gitolite hook.

I wrote a bash script which will do it automatically for you. Just make sure all path inside is valid for you

1. Stop server & resque

sudo service gitlab stop

2. Update GitLab

```bash
# Get latest code
sudo -u gitlab -H git fetch
sudo -u gitlab -H git checkout v3.1.0

# Install new charlock_holmes
sudo gem install charlock_holmes –version ‘0.6.9’

# The Modernizr gem was yanked from RubyGems. It is required for GitLab >= 2.8.0
# Edit Gemfile and change gem “modernizr”, “2.5.3” to
# gem “modernizr-rails”, “2.7.1”`
sudo -u gitlab -H vim Gemfile

# Install gems for MySQL
sudo -u gitlab -H bundle install –without development test postgres sqlite

# Migrate db
sudo -u gitlab -H bundle exec rake db:migrate RAILS_ENV=production

```

3. Update post-receive hooks

Gitolite 3

Step 1: Rewrite post-receive hook

`bash
Rewrite hook for gitolite 3
sudo cp ./lib/hooks/post-receive /home/git/.gitolite/hooks/common/post-receive
sudo chown git:git /home/git/.gitolite/hooks/common/post-receive
`

Step 2: Rewrite hooks in all projects to symlink gitolite hook

```bash
# 1. Check for valid path
sudo -u gitlab -H vim lib/support/rewrite-hooks.sh

# 2. Run script
sudo -u git -H lib/support/rewrite-hooks.sh
```

Gitolite v2

Step 1: rewrite post-receive hook for gitolite 2

`
sudo cp ./lib/hooks/post-receive /home/git/share/gitolite/hooks/common/post-receive
sudo chown git:git /home/git/share/gitolite/hooks/common/post-receive
`

Step 2: Replace symlinks in project to valid place

#!/bin/bash
src=”/home/git/repositories”
for dir in ls “$src/”
do

if [-d “$src/$dir”]; then

if [“$dir” = “gitolite-admin.git”]
then

continue

fi

project_hook=”$src/$dir/hooks/post-receive”
gitolite_hook=”/home/git/share/gitolite/hooks/common/post-receive”

ln -s -f $gitolite_hook $project_hook

fi

done

4. Check app status

`bash
Check APP Status
sudo -u gitlab -H bundle exec rake gitlab:app:status RAILS_ENV=production
`

5. Start all

sudo service gitlab start

 —
comments: false
—

From 3.1 to 4.0
Make sure you view this [upgrade guide from the `master` branch](https://gitlab.com/gitlab-org/gitlab-ce/tree/master/doc/update/3.1-to-4.0.md) for the most up to date instructions.

Important changes

	Support for SQLite was dropped

	Support for Gitolite 2 was dropped

	Projects are organized in namespaces

	The GitLab post-receive hook needs to be updated

	The configuration file needs to be updated

	Availability of python2 executable

Most of projects has post-receive file as symlink to Gitolite /home/git/.gitolite/hooks/post-receive. But some of them may have a real file. In this case you should rewrite it with symlink to Gitolite hook.

I wrote a bash script which will do it automatically for you. Just make sure all path inside is valid for you

1. Stop GitLab & Resque

sudo service gitlab stop

2. Update GitLab

```bash

# Get latest code
sudo -u gitlab -H git fetch
sudo -u gitlab -H git checkout 4-0-stable

# The Modernizr gem was yanked from RubyGems. It is required for GitLab >= 2.8.0
# Edit Gemfile and change gem “modernizr”, “2.5.3” to
# gem “modernizr-rails”, “2.7.1”`
sudo -u gitlab -H vim Gemfile

# Install gems for MySQL
sudo -u gitlab -H bundle install –without development test postgres

# Update repos permissions
sudo chmod -R ug+rwXs /home/git/repositories/
sudo chown -R git:git /home/git/repositories/

# Migrate db
sudo -u gitlab -H bundle exec rake db:migrate RAILS_ENV=production

# Enable namespaces (Warning! All projects in groups will be moved to subdirectories)
sudo -u gitlab -H bundle exec rake gitlab:enable_namespaces RAILS_ENV=production

```

3. Update post-receive hooks (Requires Gitolite v3)

Step 1: Rewrite post-receive hook

`bash
sudo cp ./lib/hooks/post-receive /home/git/.gitolite/hooks/common/post-receive
sudo chown git:git /home/git/.gitolite/hooks/common/post-receive
`

Step 2: Update project hooks to be symlinks to the Gitolite hook

```bash
# 1. Check paths in script
sudo -u gitlab -H vim lib/support/rewrite-hooks.sh

# 2. Run script
sudo -u git -H lib/support/rewrite-hooks.sh
```

4. Replace config with new one

backup old one
sudo -u gitlab -H cp config/gitlab.yml config/gitlab.yml.old

copy new one
sudo -u gitlab -H cp config/gitlab.yml.example config/gitlab.yml

edit it
sudo -u gitlab -H vim config/gitlab.yml

5. Disable ssh known_host check for own domain

	echo “Host localhost
	StrictHostKeyChecking no
UserKnownHostsFile=/dev/null” | sudo tee -a /etc/ssh/ssh_config

	echo “Host YOUR_DOMAIN_NAME
	StrictHostKeyChecking no
UserKnownHostsFile=/dev/null” | sudo tee -a /etc/ssh/ssh_config

6. Check GitLab’s status

sudo -u gitlab -H bundle exec rake gitlab:check RAILS_ENV=production

7. Start GitLab & Resque

sudo service gitlab start

 —
comments: false
—

From 4.0 to 4.1
Make sure you view this [upgrade guide from the `master` branch](https://gitlab.com/gitlab-org/gitlab-ce/tree/master/doc/update/4.0-to-4.1.md) for the most up to date instructions.

Important changes

	Resque replaced with Sidekiq

	New options for configuration file added

	Init.d script should be updated

	requires ruby1.9.3-p327

1. Stop GitLab & Resque

sudo service gitlab stop

2. Update GitLab

```bash
# Set the working directory
cd /home/gitlab/gitlab/

# Get latest code
sudo -u gitlab -H git fetch
sudo -u gitlab -H git checkout 4-1-stable

# The Modernizr gem was yanked from RubyGems. It is required for GitLab >= 2.8.0
# Edit Gemfile and change gem “modernizr”, “2.5.3” to
# gem “modernizr-rails”, “2.7.1”`
sudo -u gitlab -H vim Gemfile

# Install gems for MySQL
sudo -u gitlab -H bundle install –without development test postgres

# Migrate db
sudo -u gitlab -H bundle exec rake db:migrate RAILS_ENV=production

```

3. Replace init.d script with a new one

```
# backup old one
sudo mv /etc/init.d/gitlab /etc/init.d/gitlab.old

# get new one using sidekiq
sudo curl –location –output /etc/init.d/gitlab https://raw.github.com/gitlabhq/gitlab-recipes/4-1-stable/init.d/gitlab
sudo chmod +x /etc/init.d/gitlab

```

4. Check GitLab’s status

sudo -u gitlab -H bundle exec rake gitlab:check RAILS_ENV=production

5. Start GitLab & Sidekiq

sudo service gitlab start

6. Remove old init.d script

sudo rm /etc/init.d/gitlab.old

 —
comments: false
—

From 4.1 to 4.2
Make sure you view this [upgrade guide from the `master` branch](https://gitlab.com/gitlab-org/gitlab-ce/tree/master/doc/update/4.1-to-4.2.md) for the most up to date instructions.

1. Stop server & Resque

sudo service gitlab stop

2. Update code & DB

```bash

#Set the working directory
cd /home/gitlab/gitlab/

# Get latest code
sudo -u gitlab -H git fetch

sudo -u gitlab -H git checkout 4-2-stable

# The Modernizr gem was yanked from RubyGems. It is required for GitLab >= 2.8.0
# Edit Gemfile and change gem “modernizr”, “2.5.3” to
# gem “modernizr-rails”, “2.7.1”`
sudo -u gitlab -H vim Gemfile

# Run a bundle install without deployment to generate the new Gemfile
sudo -u gitlab -H bundle install –without development test postgres –no-deployment

# Install libs (with deployment this time)
sudo -u gitlab -H bundle install –without development test postgres –deployment

# update db
sudo -u gitlab -H bundle exec rake db:migrate RAILS_ENV=production

```

3. Check GitLab’s status

`bash
sudo -u gitlab -H bundle exec rake gitlab:check RAILS_ENV=production
`

4. Start all

sudo service gitlab start

 —
comments: false
—

From 4.2 to 5.0
Make sure you view this [upgrade guide from the `master` branch](https://gitlab.com/gitlab-org/gitlab-ce/tree/master/doc/update/4.2-to-5.0.md) for the most up to date instructions.

Warning

GitLab 5.0 is affected by critical security vulnerability CVE-2013-4490.

Important changes

	We don’t use gitlab user any more. Everything will be moved to git user

	Self signed SSL certificates are not supported until GitLab 5.1

	requires ruby1.9.3

0. Stop GitLab

sudo service gitlab stop

1. add bash to git user

`
sudo chsh -s /bin/bash git
`

2. git clone gitlab-shell

`
cd /home/git/
sudo -u git -H git clone https://github.com/gitlabhq/gitlab-shell.git /home/git/gitlab-shell
`

3. setup gitlab-shell

```bash
# chmod all repos and files under git
sudo chown git:git -R /home/git/repositories/

# login as git
sudo su git
cd /home/git/gitlab-shell
git checkout v1.1.0

# copy config
cp config.yml.example config.yml

# change URL to GitLab instance
# ! make sure the URL ends with ‘/’ like ‘https://gitlab.example/’
vim config.yml

# rewrite hooks
./support/rewrite-hooks.sh

# check ruby version for git user ( 1.9 required!! )
# GitLab shell requires system ruby 1.9
ruby -v

# exit from git user
exit
```

4. Copy GitLab instance to git user

```bash
sudo cp -R /home/gitlab/gitlab /home/git/gitlab
sudo chown git:git -R /home/git/gitlab
sudo rm -rf /home/gitlab/gitlab-satellites

# if exists
sudo rm /tmp/gitlab.socket
```

5. Update GitLab to recent version

```bash
cd /home/git/gitlab

# backup current config
sudo -u git -H cp config/gitlab.yml config/gitlab.yml.old

sudo -u git -H git fetch
sudo -u git -H git checkout 5-0-stable

# replace config with recent one
sudo -u git -H cp config/gitlab.yml.example config/gitlab.yml

# edit it
sudo -u git -H vim config/gitlab.yml

# The Modernizr gem was yanked from RubyGems. It is required for GitLab >= 2.8.0
# Edit Gemfile and change gem “modernizr”, “2.5.3” to
# gem “modernizr-rails”, “2.7.1”`
sudo -u git -H vim Gemfile

# Run a bundle install without deployment to generate the new Gemfile
sudo -u git -H bundle install –without development test postgres –no-deployment

# Install libs (with deployment this time)
sudo -u git -H bundle install –without development test postgres –deployment

sudo -u git -H bundle exec rake db:migrate RAILS_ENV=production
sudo -u git -H bundle exec rake gitlab:shell:setup RAILS_ENV=production
sudo -u git -H bundle exec rake gitlab:shell:build_missing_projects RAILS_ENV=production

sudo -u git -H mkdir -p /home/git/gitlab-satellites
sudo -u git -H bundle exec rake gitlab:satellites:create RAILS_ENV=production

# migrate wiki to git
sudo -u git -H bundle exec rake gitlab:wiki:migrate RAILS_ENV=production

# check permissions for /home/git/.ssh/
sudo -u git -H chmod 700 /home/git/.ssh
sudo -u git -H chmod 600 /home/git/.ssh/authorized_keys

# check permissions for /home/git/gitlab/
sudo chown -R git /home/git/gitlab/log/
sudo chown -R git /home/git/gitlab/tmp/
sudo chmod -R u+rwX  /home/git/gitlab/log/
sudo chmod -R u+rwX  /home/git/gitlab/tmp/
sudo -u git -H mkdir -p /home/git/gitlab/tmp/pids/
sudo chmod -R u+rwX  /home/git/gitlab/tmp/pids

```

6. Update init.d script and Nginx config

```bash
# init.d
sudo rm /etc/init.d/gitlab
sudo curl –location –output /etc/init.d/gitlab https://raw.github.com/gitlabhq/gitlab-recipes/5-0-stable/init.d/gitlab
sudo chmod +x /etc/init.d/gitlab

# unicorn
sudo -u git -H cp /home/git/gitlab/config/unicorn.rb /home/git/gitlab/config/unicorn.rb.old
sudo -u git -H cp /home/git/gitlab/config/unicorn.rb.example /home/git/gitlab/config/unicorn.rb

# Nginx
# Replace path from ‘/home/gitlab/’ to ‘/home/git/’
sudo vim /etc/nginx/sites-enabled/gitlab
sudo service nginx restart

```

7. Start GitLab instance

```
sudo service gitlab start

# check if unicorn and sidekiq started
# If not try to logout, also check replaced path from ‘/home/gitlab/’ to ‘/home/git/’
# in Nginx, unicorn, init.d etc
ps aux | grep unicorn
ps aux | grep sidekiq

```

8. Check installation

```bash
# In 5-10 seconds lets check gitlab-shell
sudo -u git -H /home/git/gitlab-shell/bin/check

# Example of success output
# Check GitLab API access: OK
# Check directories and files:
#         /home/git/repositories: OK
#         /home/git/.ssh/authorized_keys: OK

# Now check GitLab instance
sudo -u git -H bundle exec rake gitlab:check RAILS_ENV=production

```

9. Cleanup

If everything works as expected you can cleanup some old things
Recommend you wait a bit and do a backup before completing the following.

```bash
# remove GitLab user from system
sudo userdel -r gitlab

cd /home/git

# cleanup .profile
## remove text from .profile added during gitolite installation:
##   PATH=$PATH:/home/git/bin
##   export PATH
## to see what a clean .profile for new users on your system would look like see /etc/skel/.profile
sudo -u git -H vim .profile

# remove gitolite
sudo rm -R bin
sudo rm -Rf gitolite
sudo rm -R .gitolite
sudo rm .gitolite.rc
sudo rm -f gitlab.pub
sudo rm projects.list

# reset tmp folders
sudo service gitlab stop
cd /home/git/gitlab
sudo rm -R tmp
sudo -u git -H mkdir tmp
sudo chmod -R u+rwX  tmp/

# create directory for pids, make sure GitLab can write to it
sudo -u git -H mkdir tmp/pids/
sudo chmod -R u+rwX  tmp/pids/

# if you are already running a newer version of GitLab check that installation guide for other tmp folders you need to create

# reboot system
sudo reboot

# login, check that GitLab is running fine
cd /home/git/gitlab
sudo -u git -H bundle exec rake gitlab:check RAILS_ENV=production
```


 —
comments: false
—

From 5.0 to 5.1
Make sure you view this [upgrade guide from the `master` branch](https://gitlab.com/gitlab-org/gitlab-ce/tree/master/doc/update/5.0-to-5.1.md) for the most up to date instructions.

Warning

GitLab 5.1 is affected by critical security vulnerability CVE-2013-4490.

Release notes

	unicorn replaced with puma

	merge request cached diff will be truncated

1. Stop server

sudo service gitlab stop

2. Get latest code

`bash
cd /home/git/gitlab
sudo -u git -H git fetch
sudo -u git -H git checkout 5-1-stable
`

3. Update gitlab-shell

`bash
cd /home/git/gitlab-shell
sudo -u git -H git fetch
sudo -u git -H git checkout v1.3.0
replace your old config with the new one
sudo -u git -H mv config.yml config.yml.old
sudo -u git -H cp config.yml.example config.yml
edit options to match old config
sudo -u git -H vi config.yml
`

4. Install libs, migrations etc

```bash
cd /home/git/gitlab
sudo rm tmp/sockets/gitlab.socket
sudo -u git -H cp config/puma.rb.example config/puma.rb

# The Modernizr gem was yanked from RubyGems. It is required for GitLab >= 2.8.0
# Edit Gemfile and change gem “modernizr”, “2.5.3” to
# gem “modernizr-rails”, “2.7.1”`
sudo -u git -H vim Gemfile

# Run a bundle install without deployment to generate the new Gemfile
sudo -u git -H bundle install –without development test postgres –no-deployment

# Install libs (with deployment this time)
sudo -u git -H bundle install –without development test postgres –deployment

sudo -u git -H bundle exec rake db:migrate RAILS_ENV=production
sudo -u git -H bundle exec rake migrate_merge_requests RAILS_ENV=production
sudo -u git -H bundle exec rake assets:precompile RAILS_ENV=production
```

5. Update init.d script with a new one

`bash
init.d
sudo rm /etc/init.d/gitlab
sudo curl --location --output /etc/init.d/gitlab https://raw.github.com/gitlabhq/gitlab-recipes/5-1-stable/init.d/gitlab
sudo chmod +x /etc/init.d/gitlab
`

6. MySQL grant privileges

Only if you are using MySQL:

`bash
mysql -u root -p
mysql> GRANT LOCK TABLES ON `gitlabhq_production`.* TO 'gitlab'@'localhost';
mysql> \q
`

7. Start application

sudo service gitlab start

8. Check installation

```bash
# In 5-10 seconds lets check gitlab-shell
sudo -u git -H /home/git/gitlab-shell/bin/check

# Example of success output
# Check GitLab API access: OK
# Check directories and files:
#         /home/git/repositories: OK
#         /home/git/.ssh/authorized_keys: OK

# Now check gitlab instance
sudo -u git -H bundle exec rake gitlab:check RAILS_ENV=production

```


 —
comments: false
—

From 5.1 to 5.2
Make sure you view this [upgrade guide from the `master` branch](https://gitlab.com/gitlab-org/gitlab-ce/tree/master/doc/update/5.1-to-5.2.md) for the most up to date instructions.

Warning

GitLab 5.2 is affected by critical security vulnerabilities CVE-2013-4490 and CVE-2013-4489.

0. Backup

It’s useful to make a backup just in case things go south:
(With MySQL, this may require granting “LOCK TABLES” privileges to the GitLab user on the database version)

`bash
cd /home/git/gitlab
sudo -u git -H bundle exec rake gitlab:backup:create RAILS_ENV=production
`

1. Stop server

sudo service gitlab stop

2. Get latest code

`bash
cd /home/git/gitlab
sudo -u git -H git fetch
sudo -u git -H git checkout 5-2-stable
`

3. Update gitlab-shell

`bash
cd /home/git/gitlab-shell
sudo -u git -H git fetch
sudo -u git -H git checkout v1.4.0
`

4. Install libs, migrations, etc.

```bash
cd /home/git/gitlab

# The Modernizr gem was yanked from RubyGems. It is required for GitLab >= 2.8.0
# Edit Gemfile and change gem “modernizr”, “2.5.3” to
# gem “modernizr-rails”, “2.7.1”`
sudo -u git -H vim Gemfile

# MySQL

# Run a bundle install without deployment to generate the new Gemfile
sudo -u git -H bundle install –without development test postgres –no-deployment

# Install libs (with deployment this time)
sudo -u git -H bundle install –without development test postgres –deployment

# PostgreSQL

# Run a bundle install without deployment to generate the new Gemfile
sudo -u git -H bundle install –without development test mysql –no-deployment

# Install libs (with deployment this time)
sudo -u git -H bundle install –without development test mysql –deployment

# Both MySQL and PostgreSQL
sudo -u git -H bundle exec rake db:migrate RAILS_ENV=production

sudo -u git -H bundle exec rake assets:precompile RAILS_ENV=production
```

5. Update config files

	Make /home/git/gitlab/config/gitlab.yml same as https://gitlab.com/gitlab-org/gitlab-ce/blob/5-2-stable/config/gitlab.yml.example but with your settings.

	Make /home/git/gitlab/config/puma.rb same as https://gitlab.com/gitlab-org/gitlab-ce/blob/5-2-stable/config/puma.rb.example but with your settings.

6. Update Init script

`bash
cd /home/git/gitlab
sudo rm /etc/init.d/gitlab
sudo cp lib/support/init.d/gitlab /etc/init.d/gitlab
sudo chmod +x /etc/init.d/gitlab
`

7. Create uploads directory

`bash
cd /home/git/gitlab
sudo -u git -H mkdir public/uploads
sudo chmod -R u+rwX public/uploads
`

8. Start application

sudo service gitlab start
sudo service nginx restart

9. Check application status

Check if GitLab and its environment are configured correctly:

sudo -u git -H bundle exec rake gitlab:env:info RAILS_ENV=production

To make sure you didn’t miss anything run a more thorough check with:

sudo -u git -H bundle exec rake gitlab:check RAILS_ENV=production

If all items are green, then congratulations upgrade complete!

Things went south? Revert to previous version (5.1)

1. Revert the code to the previous version

Follow the [upgrade guide from 5.0 to 5.1](5.0-to-5.1.md), except for the database migration (the backup is already migrated to the previous version).

2. Restore from the backup

`bash
cd /home/git/gitlab
sudo -u git -H bundle exec rake gitlab:backup:restore RAILS_ENV=production
`

 —
comments: false
—

From 5.1 to 5.4
Make sure you view this [upgrade guide from the `master` branch](https://gitlab.com/gitlab-org/gitlab-ce/tree/master/doc/update/5.1-to-5.4.md) for the most up to date instructions.

Also works starting from 5.2.

0. Backup

It’s useful to make a backup just in case things go south (with MySQL, this may require granting “LOCK TABLES” privileges to the GitLab user on the database version):

`bash
cd /home/git/gitlab
sudo -u git -H bundle exec rake gitlab:backup:create RAILS_ENV=production
`

1. Stop server

sudo service gitlab stop

2. Get latest code

`bash
cd /home/git/gitlab
sudo -u git -H git fetch
sudo -u git -H git checkout 5-4-stable # Latest version of 5-4-stable addresses CVE-2013-4489
`

3. Update gitlab-shell

`bash
cd /home/git/gitlab-shell
sudo -u git -H git fetch
sudo -u git -H git checkout v1.7.9 # Addresses multiple critical security vulnerabilities
`

4. Install libs, migrations, etc.

```bash
cd /home/git/gitlab

# The Modernizr gem was yanked from RubyGems. It is required for GitLab >= 2.8.0
# Edit Gemfile and change gem “modernizr”, “2.5.3” to
# gem “modernizr-rails”, “2.7.1”`
sudo -u git -H vim Gemfile

# MySQL

# Run a bundle install without deployment to generate the new Gemfile
sudo -u git -H bundle install –without development test postgres –no-deployment

# Install libs (with deployment this time)
sudo -u git -H bundle install –without development test postgres –deployment

# PostgreSQL

# Run a bundle install without deployment to generate the new Gemfile
sudo -u git -H bundle install –without development test mysql –no-deployment

# Install libs (with deployment this time)
sudo -u git -H bundle install –without development test mysql –deployment

# Both MySQL and PostgreSQL
sudo -u git -H bundle exec rake db:migrate RAILS_ENV=production

sudo -u git -H bundle exec rake assets:precompile RAILS_ENV=production
```

5. Update config files

	Make /home/git/gitlab/config/gitlab.yml same as https://gitlab.com/gitlab-org/gitlab-ce/blob/5-4-stable/config/gitlab.yml.example but with your settings.

	Make /home/git/gitlab/config/puma.rb same as https://gitlab.com/gitlab-org/gitlab-ce/blob/5-4-stable/config/puma.rb.example but with your settings.

6. Update Init script

`bash
sudo rm /etc/init.d/gitlab
sudo cp lib/support/init.d/gitlab /etc/init.d/gitlab
sudo chmod +x /etc/init.d/gitlab
`

7. Create uploads directory

`bash
cd /home/git/gitlab
sudo -u git -H mkdir public/uploads
sudo chmod -R u+rwX public/uploads
`

8. Start application

sudo service gitlab start
sudo service nginx restart

9. Check application status

Check if GitLab and its environment are configured correctly:

sudo -u git -H bundle exec rake gitlab:env:info RAILS_ENV=production

To make sure you didn’t miss anything run a more thorough check with:

sudo -u git -H bundle exec rake gitlab:check RAILS_ENV=production

If all items are green, then congratulations upgrade complete!

Things went south? Revert to previous version (5.3)

1. Revert the code to the previous version

Follow the [upgrade guide from 5.2 to 5.3](5.2-to-5.3.md), except for the database migration (the backup is already migrated to the previous version).

2. Restore from the backup:

`bash
cd /home/git/gitlab
sudo -u git -H bundle exec rake gitlab:backup:restore RAILS_ENV=production
`

 —
comments: false
—

From 5.1 to 6.0
Make sure you view this [upgrade guide from the `master` branch](https://gitlab.com/gitlab-org/gitlab-ce/tree/master/doc/update/5.1-to-6.0.md) for the most up to date instructions.

Warning

GitLab 6.0 is affected by critical security vulnerabilities CVE-2013-4490 and CVE-2013-4489.

Deprecations

Global projects

The root (global) namespace for projects is deprecated.

So you need to move all your global projects under groups or users manually before update or they will be automatically moved to the project owner namespace during the update. When a project is moved all its members will receive an email with instructions how to update their git remote URL. Please make sure you disable sending email when you do a test of the upgrade.

Teams

We introduce group membership in 6.0 as a replacement for teams.

The old combination of groups and teams was confusing for a lot of people.

And when the members of a team where changed this wasn’t reflected in the project permissions.

In GitLab 6.0 you will be able to add members to a group with a permission level for each member.

These group members will have access to the projects in that group.

Any changes to group members will immediately be reflected in the project permissions.

You can even have multiple owners for a group, greatly simplifying administration.

0. Backup & prepare for update

It’s useful to make a backup just in case things go south:
(With MySQL, this may require granting “LOCK TABLES” privileges to the GitLab user on the database version)

`bash
cd /home/git/gitlab
sudo -u git -H bundle exec rake gitlab:backup:create RAILS_ENV=production
`

The migrations in this update are very sensitive to incomplete or inconsistent data. If you have a long-running GitLab installation and some of the previous upgrades did not work out 100% correct this may bite you now. The following can help you have a more smooth upgrade.

Find projects with invalid project names

MySQL
Login to MySQL:

mysql -u root -p

Find projects with invalid names:

```bash
mysql> use gitlabhq_production;

# find projects with invalid first char, projects must start with letter
mysql> select name from projects where name REGEXP ‘^[^A-Za-z]’;

# find projects with other invalid chars
## names must only contain alphanumeric chars, underscores, spaces, periods, and dashes
mysql> select name from projects where name REGEXP ‘[^a-zA-Z0-9_ .-]+’;
```

If any projects have invalid names try correcting them from the web interface before starting the upgrade.
If correcting them from the web interface fails you can correct them using MySQL:

`bash
e.g. replace invalid / with allowed _
mysql> update projects set name = REPLACE(name,'/','_');
repeat for all invalid chars found in project names
`

PostgreSQL
Make sure all project names start with a letter and only contain alphanumeric chars, underscores, spaces, periods, and dashes (a-zA-Z0-9_ .-).

Find other common errors

```
cd /home/git/gitlab
# Start rails console
sudo -u git -H bin/rails console production

# Make sure none of the following rails commands return results

# All project owners should have an owner:
Project.all.select { |project| project.owner.blank? }

# Every user should have a namespace:
User.all.select { |u| u.namespace.blank? }

# Projects in the global namespace should not conflict with projects in the owner namespace:
Project.where(namespace_id: nil).select { |p| Project.where(path: p.path, namespace_id: p.owner.try(:namespace).try(:id)).present? }
```

If any of the above rails commands returned results other than => [] try correcting the issue from the web interface.

If you find projects without an owner (first rails command above), correct it. For MySQL setups:

```bash
# get your user id
mysql> select id, name from users order by name;

# set yourself as owner of project
# replace your_user_id with your user id and bad_project_id with the project id from the rails command
mysql> update projects set creator_id=your_user_id where id=bad_project_id;
```

1. Stop server

sudo service gitlab stop

2. Get latest code

`bash
cd /home/git/gitlab
sudo -u git -H git fetch
sudo -u git -H git checkout 6-0-stable
`

3. Update gitlab-shell

`bash
cd /home/git/gitlab-shell
sudo -u git -H git fetch
sudo -u git -H git checkout v1.7.9
`

4. Install additional packages

`bash
For reStructuredText markup language support install required package:
sudo apt-get install python-docutils
`

5. Install libs, migrations, etc.

```bash
cd /home/git/gitlab

# The Modernizr gem was yanked from RubyGems. It is required for GitLab >= 2.8.0
# Edit Gemfile and change gem “modernizr”, “2.5.3” to
# gem “modernizr-rails”, “2.7.1”`
sudo -u git -H vim Gemfile

# MySQL

# Run a bundle install without deployment to generate the new Gemfile
sudo -u git -H bundle install –without development test postgres –no-deployment

# Install libs (with deployment this time)
sudo -u git -H bundle install –without development test postgres –deployment

# PostgreSQL

# Run a bundle install without deployment to generate the new Gemfile
sudo -u git -H bundle install –without development test mysql –no-deployment

# Install libs (with deployment this time)
sudo -u git -H bundle install –without development test mysql –deployment

# Both MySQL and PostgreSQL
sudo -u git -H bundle exec rake db:migrate RAILS_ENV=production
sudo -u git -H bundle exec rake migrate_groups RAILS_ENV=production
sudo -u git -H bundle exec rake migrate_global_projects RAILS_ENV=production
sudo -u git -H bundle exec rake migrate_keys RAILS_ENV=production
sudo -u git -H bundle exec rake migrate_inline_notes RAILS_ENV=production
sudo -u git -H bundle exec rake gitlab:satellites:create RAILS_ENV=production

# Clear redis cache
sudo -u git -H bundle exec rake cache:clear RAILS_ENV=production

# Clear and precompile assets
sudo -u git -H bundle exec rake assets:clean RAILS_ENV=production
sudo -u git -H bundle exec rake assets:precompile RAILS_ENV=production

#Add dealing with newlines for editor
sudo -u git -H git config –global core.autocrlf input
```

6. Update config files

Note: We switched from Puma in GitLab 5.x to unicorn in GitLab 6.0.

	Make /home/git/gitlab/config/gitlab.yml the same as https://gitlab.com/gitlab-org/gitlab-ce/blob/6-0-stable/config/gitlab.yml.example but with your settings.

	Make /home/git/gitlab/config/unicorn.rb the same as https://gitlab.com/gitlab-org/gitlab-ce/blob/6-0-stable/config/unicorn.rb.example but with your settings.

7. Update Init script

`bash
cd /home/git/gitlab
sudo rm /etc/init.d/gitlab
sudo cp lib/support/init.d/gitlab /etc/init.d/gitlab
sudo chmod +x /etc/init.d/gitlab
`

8. Create uploads directory

`bash
cd /home/git/gitlab
sudo -u git -H mkdir -p public/uploads
sudo chmod -R u+rwX public/uploads
`

9. Start application

sudo service gitlab start
sudo service nginx restart

10. Check application status

Check if GitLab and its environment are configured correctly:

sudo -u git -H bundle exec rake gitlab:env:info RAILS_ENV=production

To make sure you didn’t miss anything run a more thorough check with:

sudo -u git -H bundle exec rake gitlab:check RAILS_ENV=production

If all items are green, then congratulations upgrade complete!

Things went south? Revert to previous version (5.1)

1. Revert the code to the previous version

Follow the [upgrade guide from 5.0 to 5.1](5.0-to-5.1.md), except for the database migration (the backup is already migrated to the previous version).

2. Restore from the backup:

`bash
cd /home/git/gitlab
sudo -u git -H bundle exec rake gitlab:backup:restore RAILS_ENV=production
`

 —
comments: false
—

From 5.2 to 5.3
Make sure you view this [upgrade guide from the `master` branch](https://gitlab.com/gitlab-org/gitlab-ce/tree/master/doc/update/5.2-to-5.3.md) for the most up to date instructions.

Warning

GitLab 5.3 is affected by critical security vulnerabilities CVE-2013-4490 and CVE-2013-4489.

0. Backup

It’s useful to make a backup just in case things go south (with MySQL, this may require granting “LOCK TABLES” privileges to the GitLab user on the database version):

`bash
cd /home/git/gitlab
sudo -u git -H bundle exec rake gitlab:backup:create RAILS_ENV=production
`

1. Stop server

sudo service gitlab stop

2. Get latest code

`bash
cd /home/git/gitlab
sudo -u git -H git fetch
sudo -u git -H git checkout 5-3-stable
`

3. Install libs, migrations, etc.

```bash
cd /home/git/gitlab

# The Modernizr gem was yanked from RubyGems. It is required for GitLab >= 2.8.0
# Edit Gemfile and change gem “modernizr”, “2.5.3” to
# gem “modernizr-rails”, “2.7.1”`
sudo -u git -H vim Gemfile

# MySQL

# Run a bundle install without deployment to generate the new Gemfile
sudo -u git -H bundle install –without development test postgres –no-deployment

# Install libs (with deployment this time)
sudo -u git -H bundle install –without development test postgres –deployment

# PostgreSQL

# Run a bundle install without deployment to generate the new Gemfile
sudo -u git -H bundle install –without development test mysql –no-deployment

# Install libs (with deployment this time)
sudo -u git -H bundle install –without development test mysql –deployment

# Both MySQL and PostgreSQL
sudo -u git -H bundle exec rake db:migrate RAILS_ENV=production

sudo -u git -H bundle exec rake assets:precompile RAILS_ENV=production
```

4. Update config files

	Make /home/git/gitlab/config/gitlab.yml same as https://gitlab.com/gitlab-org/gitlab-ce/blob/5-3-stable/config/gitlab.yml.example but with your settings.

	Make /home/git/gitlab/config/puma.rb same as https://gitlab.com/gitlab-org/gitlab-ce/blob/5-3-stable/config/puma.rb.example but with your settings.

5. Update Init script

`bash
sudo rm /etc/init.d/gitlab
sudo curl --location --output /etc/init.d/gitlab https://raw.github.com/gitlabhq/gitlabhq/5-3-stable/lib/support/init.d/gitlab
sudo chmod +x /etc/init.d/gitlab
`

6. Start application

sudo service gitlab start
sudo service nginx restart

7. Check application status

Check if GitLab and its environment are configured correctly:

sudo -u git -H bundle exec rake gitlab:env:info RAILS_ENV=production

To make sure you didn’t miss anything run a more thorough check with:

sudo -u git -H bundle exec rake gitlab:check RAILS_ENV=production

If all items are green, then congratulations upgrade complete!

Things went south? Revert to previous version (5.2)

1. Revert the code to the previous version

Follow the [upgrade guide from 5.1 to 5.2](5.1-to-5.2.md), except for the database migration (the backup is already migrated to the previous version).

2. Restore from the backup:

`bash
cd /home/git/gitlab
sudo -u git -H bundle exec rake gitlab:backup:restore RAILS_ENV=production
`

 —
comments: false
—

From 5.3 to 5.4
Make sure you view this [upgrade guide from the `master` branch](https://gitlab.com/gitlab-org/gitlab-ce/tree/master/doc/update/5.3-to-5.4.md) for the most up to date instructions.

0. Backup

It’s useful to make a backup just in case things go south (with MySQL, this may require granting “LOCK TABLES” privileges to the GitLab user on the database version):

`bash
cd /home/git/gitlab
sudo -u git -H bundle exec rake gitlab:backup:create RAILS_ENV=production
`

1. Stop server

sudo service gitlab stop

2. Get latest code

`bash
cd /home/git/gitlab
sudo -u git -H git fetch
sudo -u git -H git checkout 5-4-stable # Latest version of 5-4-stable addresses CVE-2013-4489
`

3. Update gitlab-shell

`bash
cd /home/git/gitlab-shell
sudo -u git -H git fetch
sudo -u git -H git checkout v1.7.9 # Addresses multiple critical security vulnerabilities
`

4. Install libs, migrations, etc.

```bash
cd /home/git/gitlab

# The Modernizr gem was yanked from RubyGems. It is required for GitLab >= 2.8.0
# Edit Gemfile and change gem “modernizr”, “2.5.3” to
# gem “modernizr-rails”, “2.7.1”`
sudo -u git -H vim Gemfile

# MySQL

# Run a bundle install without deployment to generate the new Gemfile
sudo -u git -H bundle install –without development test postgres –no-deployment

# Install libs (with deployment this time)
sudo -u git -H bundle install –without development test postgres –deployment

# PostgreSQL

# Run a bundle install without deployment to generate the new Gemfile
sudo -u git -H bundle install –without development test mysql –no-deployment

# Install libs (with deployment this time)
sudo -u git -H bundle install –without development test mysql –deployment

# Both MySQL and PostgreSQL
sudo -u git -H bundle exec rake db:migrate RAILS_ENV=production

sudo -u git -H bundle exec rake assets:precompile RAILS_ENV=production
```

5. Update config files

	Make /home/git/gitlab/config/gitlab.yml same as https://gitlab.com/gitlab-org/gitlab-ce/blob/5-4-stable/config/gitlab.yml.example but with your settings.

	Make /home/git/gitlab/config/puma.rb same as https://gitlab.com/gitlab-org/gitlab-ce/blob/5-4-stable/config/puma.rb.example but with your settings.

6. Update Init script

`bash
sudo rm /etc/init.d/gitlab
sudo curl --location --output /etc/init.d/gitlab https://raw.github.com/gitlabhq/gitlabhq/5-4-stable/lib/support/init.d/gitlab
sudo chmod +x /etc/init.d/gitlab
`

7. Start application

sudo service gitlab start
sudo service nginx restart

8. Check application status

Check if GitLab and its environment are configured correctly:

sudo -u git -H bundle exec rake gitlab:env:info RAILS_ENV=production

To make sure you didn’t miss anything run a more thorough check with:

sudo -u git -H bundle exec rake gitlab:check RAILS_ENV=production

If all items are green, then congratulations upgrade complete!

Things went south? Revert to previous version (5.3)

1. Revert the code to the previous version

Follow the [upgrade guide from 5.2 to 5.3](5.2-to-5.3.md), except for the database migration (the backup is already migrated to the previous version).

2. Restore from the backup:

`bash
cd /home/git/gitlab
sudo -u git -H bundle exec rake gitlab:backup:restore RAILS_ENV=production
`

 —
comments: false
—

From 5.4 to 6.0
Make sure you view this [upgrade guide from the `master` branch](https://gitlab.com/gitlab-org/gitlab-ce/tree/master/doc/update/5.4-to-6.0.md) for the most up to date instructions.

Warning

GitLab 6.0 is affected by critical security vulnerabilities CVE-2013-4490 and CVE-2013-4489.

You need to follow this guide first, before updating past 6.0, as it contains critical migration steps that are only present
in the `6-0-stable` branch

Deprecations

Global projects

The root (global) namespace for projects is deprecated.

So you need to move all your global projects under groups or users manually before update or they will be automatically moved to the project owner namespace during the update. When a project is moved all its members will receive an email with instructions how to update their git remote URL. Please make sure you disable sending email when you do a test of the upgrade.

Teams

We introduce group membership in 6.0 as a replacement for teams.

The old combination of groups and teams was confusing for a lot of people.

And when the members of a team where changed this wasn’t reflected in the project permissions.

In GitLab 6.0 you will be able to add members to a group with a permission level for each member.

These group members will have access to the projects in that group.

Any changes to group members will immediately be reflected in the project permissions.

You can even have multiple owners for a group, greatly simplifying administration.

0. Backup

It’s useful to make a backup just in case things go south (with MySQL, this may require granting “LOCK TABLES” privileges to the GitLab user on the database version):

`bash
cd /home/git/gitlab
sudo -u git -H bundle exec rake gitlab:backup:create RAILS_ENV=production
`

1. Stop server

sudo service gitlab stop

2. Get latest code

`bash
cd /home/git/gitlab
sudo -u git -H git fetch
sudo -u git -H git checkout 6-0-stable
`

3. Update gitlab-shell

`bash
cd /home/git/gitlab-shell
sudo -u git -H git fetch
sudo -u git -H git checkout v1.7.9
`

4. Install additional packages

`bash
For reStructuredText markup language support install required package:
sudo apt-get install python-docutils
`

5. Install libs, migrations, etc.

```bash
cd /home/git/gitlab

# The Modernizr gem was yanked from RubyGems. It is required for GitLab >= 2.8.0
# Edit Gemfile and change gem “modernizr”, “2.5.3” to
# gem “modernizr-rails”, “2.7.1”`
sudo -u git -H vim Gemfile

# MySQL

# Run a bundle install without deployment to generate the new Gemfile
sudo -u git -H bundle install –without development test postgres –no-deployment

# Install libs (with deployment this time)
sudo -u git -H bundle install –without development test postgres –deployment

# PostgreSQL

# Run a bundle install without deployment to generate the new Gemfile
sudo -u git -H bundle install –without development test mysql –no-deployment

# Install libs (with deployment this time)
sudo -u git -H bundle install –without development test mysql –deployment

# Both MySQL and PostgreSQL
sudo -u git -H bundle exec rake db:migrate RAILS_ENV=production
sudo -u git -H bundle exec rake migrate_groups RAILS_ENV=production
sudo -u git -H bundle exec rake migrate_global_projects RAILS_ENV=production
sudo -u git -H bundle exec rake migrate_keys RAILS_ENV=production
sudo -u git -H bundle exec rake migrate_inline_notes RAILS_ENV=production
sudo -u git -H bundle exec rake gitlab:satellites:create RAILS_ENV=production

# Clear redis cache
sudo -u git -H bundle exec rake cache:clear RAILS_ENV=production

# Clear and precompile assets
sudo -u git -H bundle exec rake assets:clean RAILS_ENV=production
sudo -u git -H bundle exec rake assets:precompile RAILS_ENV=production
```

6. Update config files

Note: We switched from Puma in GitLab 5.4 to unicorn in GitLab 6.0.

	Make /home/git/gitlab/config/gitlab.yml the same as https://gitlab.com/gitlab-org/gitlab-ce/blob/master/config/gitlab.yml.example but with your settings.

	Make /home/git/gitlab/config/unicorn.rb the same as https://gitlab.com/gitlab-org/gitlab-ce/blob/master/config/unicorn.rb.example but with your settings.

7. Update Init script

`bash
sudo rm /etc/init.d/gitlab
sudo cp lib/support/init.d/gitlab /etc/init.d/gitlab
sudo chmod +x /etc/init.d/gitlab
`

8. Start application

sudo service gitlab start
sudo service nginx restart

9. Check application status

Check if GitLab and its environment are configured correctly:

sudo -u git -H bundle exec rake gitlab:env:info RAILS_ENV=production

To make sure you didn’t miss anything run a more thorough check with:

sudo -u git -H bundle exec rake gitlab:check RAILS_ENV=production

If all items are green, then congratulations upgrade complete!

Troubleshooting

The migrations in this update are very sensitive to incomplete or inconsistent data. If you have a long-running GitLab installation and some of the previous upgrades did not work out 100% correct this may bite you now. The following commands can be run in the rails console to look for ‘bad’ data.

All project owners should have an owner:

`
Project.all.select { |project| project.owner.blank? }
`

Every user should have a namespace:

`
User.all.select { |u| u.namespace.blank? }
`

Projects in the global namespace should not conflict with projects in the owner namespace:

`
Project.where(namespace_id: nil).select { |p| Project.where(path: p.path, namespace_id: p.owner.try(:namespace).try(:id)).present? }
`

 —
comments: false
—

From 6.0 to 6.1
Make sure you view this [upgrade guide from the `master` branch](https://gitlab.com/gitlab-org/gitlab-ce/tree/master/doc/update/6.0-to-6.1.md) for the most up to date instructions.

Warning

GitLab 6.1 is affected by critical security vulnerabilities CVE-2013-4490 and CVE-2013-4489.

In 6.1 we remove a lot of deprecated code.

You should update to 6.0 before installing 6.1 so all the necessary conversions are run.

Deprecations

Global issue numbers

In 6.1 issue numbers are project specific. This means all issues are renumbered and get a new number in their URL. If you use an old issue number URL and the issue number does not exist yet you are redirected to the new one. This conversion does not trigger if the old number already exists for this project, this is unlikely but will happen with old issues and large projects.

0. Backup

It’s useful to make a backup just in case things go south (with MySQL, this may require granting “LOCK TABLES” privileges to the GitLab user on the database version):

`bash
cd /home/git/gitlab
sudo -u git -H bundle exec rake gitlab:backup:create RAILS_ENV=production
`

1. Stop server

sudo service gitlab stop

2. Get latest code

`bash
cd /home/git/gitlab
sudo -u git -H git fetch --all
sudo -u git -H git checkout 6-1-stable
For GitLab Enterprise Edition: sudo -u git -H git checkout 6-1-stable-ee
`

3. Update gitlab-shell

`bash
cd /home/git/gitlab-shell
sudo -u git -H git fetch
sudo -u git -H git checkout v1.7.9
`

4. Install libs, migrations, etc.

```bash
cd /home/git/gitlab

# The Modernizr gem was yanked from RubyGems. It is required for GitLab >= 2.8.0
# Edit Gemfile and change gem “modernizr”, “2.5.3” to
# gem “modernizr-rails”, “2.7.1”`
sudo -u git -H vim Gemfile

# MySQL

# Run a bundle install without deployment to generate the new Gemfile
sudo -u git -H bundle install –without development test postgres –no-deployment

# Install libs (with deployment this time)
sudo -u git -H bundle install –without development test postgres –deployment

# PostgreSQL

# Run a bundle install without deployment to generate the new Gemfile
sudo -u git -H bundle install –without development test mysql –no-deployment

# Install libs (with deployment this time)
sudo -u git -H bundle install –without development test mysql –deployment

# Both MySQL and PostgreSQL
sudo -u git -H bundle exec rake db:migrate RAILS_ENV=production
sudo -u git -H bundle exec rake migrate_iids RAILS_ENV=production
sudo -u git -H bundle exec rake assets:clean RAILS_ENV=production
sudo -u git -H bundle exec rake assets:precompile RAILS_ENV=production
sudo -u git -H bundle exec rake cache:clear RAILS_ENV=production
```

5. Update config files

	Make /home/git/gitlab/config/gitlab.yml same as https://gitlab.com/gitlab-org/gitlab-ce/blob/6-1-stable/config/gitlab.yml.example but with your settings.

	Make /home/git/gitlab/config/unicorn.rb same as https://gitlab.com/gitlab-org/gitlab-ce/blob/6-1-stable/config/unicorn.rb.example but with your settings.

6. Update Init script

`bash
sudo rm /etc/init.d/gitlab
sudo cp lib/support/init.d/gitlab /etc/init.d/gitlab
`

7. Start application

sudo service gitlab start
sudo service nginx restart

8. Check application status

Check if GitLab and its environment are configured correctly:

cd /home/git/gitlab
sudo -u git -H bundle exec rake gitlab:env:info RAILS_ENV=production

To make sure you didn’t miss anything run a more thorough check with:

sudo -u git -H bundle exec rake gitlab:check RAILS_ENV=production

If all items are green, then congratulations upgrade complete!

Things went south? Revert to previous version (6.0)

1. Revert the code to the previous version

Follow the [upgrade guide from 5.4 to 6.0](5.4-to-6.0.md), except for the database migration (the backup is already migrated to the previous version).

2. Restore from the backup:

`bash
cd /home/git/gitlab
sudo -u git -H bundle exec rake gitlab:backup:restore RAILS_ENV=production
`

 —
comments: false
—

From 6.1 to 6.2
Make sure you view this [upgrade guide from the `master` branch](https://gitlab.com/gitlab-org/gitlab-ce/tree/master/doc/update/6.1-to-6.2.md) for the most up to date instructions.

You should update to 6.1 before installing 6.2 so all the necessary conversions are run.

0. Backup

It’s useful to make a backup just in case things go south: (With MySQL, this may require granting “LOCK TABLES” privileges to the GitLab user on the database version).

`bash
cd /home/git/gitlab
sudo -u git -H bundle exec rake gitlab:backup:create RAILS_ENV=production
`

1. Stop server

sudo service gitlab stop

2. Get latest code

`bash
cd /home/git/gitlab
sudo -u git -H git fetch --all
sudo -u git -H git checkout 6-2-stable # Latest version of 6-2-stable addresses CVE-2013-4489
For GitLab Enterprise Edition: sudo -u git -H git checkout 6-2-stable-ee
`

3. Update gitlab-shell

`bash
cd /home/git/gitlab-shell
sudo -u git -H git fetch
sudo -u git -H git checkout v1.7.9 # Addresses multiple critical security vulnerabilities
`

4. Install additional packages

`bash
Add support for logrotate for better log file handling
sudo apt-get install logrotate
`

5. Install libs, migrations, etc.

```bash
cd /home/git/gitlab

# The Modernizr gem was yanked from RubyGems. It is required for GitLab >= 2.8.0
# Edit Gemfile and change gem “modernizr”, “2.5.3” to
# gem “modernizr-rails”, “2.7.1”`
sudo -u git -H vim Gemfile

# MySQL

# Run a bundle install without deployment to generate the new Gemfile
sudo -u git -H bundle install –without development test postgres –no-deployment

# Install libs (with deployment this time)
sudo -u git -H bundle install –without development test postgres –deployment

# PostgreSQL

# Run a bundle install without deployment to generate the new Gemfile
sudo -u git -H bundle install –without development test mysql –no-deployment

# Install libs (with deployment this time)
sudo -u git -H bundle install –without development test mysql –deployment

# Both MySQL and PostgreSQL
sudo -u git -H bundle exec rake db:migrate RAILS_ENV=production
sudo -u git -H bundle exec rake assets:clean RAILS_ENV=production
sudo -u git -H bundle exec rake assets:precompile RAILS_ENV=production
sudo -u git -H bundle exec rake cache:clear RAILS_ENV=production
```

6. Update config files

TIP: to see what changed in gitlab.yml.example in this release use next command:

`
git diff 6-1-stable:config/gitlab.yml.example 6-2-stable:config/gitlab.yml.example
`

	Make /home/git/gitlab/config/gitlab.yml same as https://gitlab.com/gitlab-org/gitlab-ce/blob/6-2-stable/config/gitlab.yml.example but with your settings.

	Make /home/git/gitlab/config/unicorn.rb same as https://gitlab.com/gitlab-org/gitlab-ce/blob/6-2-stable/config/unicorn.rb.example but with your settings.

	Copy rack attack middleware config:

`bash
sudo -u git -H cp config/initializers/rack_attack.rb.example config/initializers/rack_attack.rb
`

	Uncomment config.middleware.use Rack::Attack in /home/git/gitlab/config/application.rb

	Set up logrotate.

`bash
sudo cp lib/support/logrotate/gitlab /etc/logrotate.d/gitlab
`

7. Update Init script

`bash
sudo rm /etc/init.d/gitlab
sudo cp lib/support/init.d/gitlab /etc/init.d/gitlab
`

8. Start application

sudo service gitlab start
sudo service nginx restart

9. Check application status

Check if GitLab and its environment are configured correctly:

sudo -u git -H bundle exec rake gitlab:env:info RAILS_ENV=production

To make sure you didn’t miss anything run a more thorough check with:

sudo -u git -H bundle exec rake gitlab:check RAILS_ENV=production

If all items are green, then congratulations upgrade complete!

Things went south? Revert to previous version (6.1)

1. Revert the code to the previous version

Follow the [upgrade guide from 6.0 to 6.1](6.0-to-6.1.md), except for the database migration (the backup is already migrated to the previous version).

2. Restore from the backup:

`bash
cd /home/git/gitlab
sudo -u git -H bundle exec rake gitlab:backup:restore RAILS_ENV=production
`

 —
comments: false
—

From 6.2 to 6.3
Make sure you view this [upgrade guide from the `master` branch](https://gitlab.com/gitlab-org/gitlab-ce/tree/master/doc/update/6.2-to-6.3.md) for the most up to date instructions.

Requires version: 6.1 or 6.2.

0. Backup

It’s useful to make a backup just in case things go south: (With MySQL, this may require granting “LOCK TABLES” privileges to the GitLab user on the database version)

`bash
cd /home/git/gitlab
sudo -u git -H bundle exec rake gitlab:backup:create RAILS_ENV=production
`

1. Stop server

sudo service gitlab stop

2. Get latest code

`bash
cd /home/git/gitlab
sudo -u git -H git fetch --all
sudo -u git -H git checkout 6-3-stable
For GitLab Enterprise Edition: sudo -u git -H git checkout 6-3-stable-ee
`

3. Update gitlab-shell (and its config)

`bash
cd /home/git/gitlab-shell
sudo -u git -H git fetch
sudo -u git -H git checkout v1.7.9 # Addresses multiple critical security vulnerabilities
`

The gitlab-shell config changed recently, so check for config file changes and make /home/git/gitlab-shell/config.yml the same as <https://github.com/gitlabhq/gitlab-shell/blob/master/config.yml.example>

4. Install libs, migrations, etc.

```bash
cd /home/git/gitlab

# The Modernizr gem was yanked from RubyGems. It is required for GitLab >= 2.8.0
# Edit Gemfile and change gem “modernizr”, “2.5.3” to
# gem “modernizr-rails”, “2.7.1”`
sudo -u git -H vim Gemfile

# MySQL

# Run a bundle install without deployment to generate the new Gemfile
sudo -u git -H bundle install –without development test postgres –no-deployment

# Install libs (with deployment this time)
sudo -u git -H bundle install –without development test postgres –deployment

# PostgreSQL

# Run a bundle install without deployment to generate the new Gemfile
sudo -u git -H bundle install –without development test mysql –no-deployment

# Install libs (with deployment this time)
sudo -u git -H bundle install –without development test mysql –deployment

# Both MySQL and PostgreSQL
# Run database migrations
sudo -u git -H bundle exec rake db:migrate RAILS_ENV=production

# Clean up assets and cache
sudo -u git -H bundle exec rake assets:clean assets:precompile cache:clear RAILS_ENV=production
```

5. Update config files

TIP: to see what changed in gitlab.yml.example in this release use next command:

`
git diff 6-2-stable:config/gitlab.yml.example 6-3-stable:config/gitlab.yml.example
`

	Make /home/git/gitlab/config/gitlab.yml same as https://gitlab.com/gitlab-org/gitlab-ce/blob/6-3-stable/config/gitlab.yml.example but with your settings.

	Make /home/git/gitlab/config/unicorn.rb same as https://gitlab.com/gitlab-org/gitlab-ce/blob/6-3-stable/config/unicorn.rb.example but with your settings.

`bash
Copy rack attack middleware config
cd /home/git/gitlab
sudo -u git -H cp config/initializers/rack_attack.rb.example config/initializers/rack_attack.rb
`

6. Update Init script

`bash
sudo cp lib/support/init.d/gitlab /etc/init.d/gitlab
`

7. Start application

sudo service gitlab start
sudo service nginx restart

8. Check application status

Check if GitLab and its environment are configured correctly:

sudo -u git -H bundle exec rake gitlab:env:info RAILS_ENV=production

To make sure you didn’t miss anything run a more thorough check with:

sudo -u git -H bundle exec rake gitlab:check RAILS_ENV=production

If all items are green, then congratulations upgrade complete!

Things went south? Revert to previous version (6.2)

1. Revert the code to the previous version

Follow the [upgrade guide from 6.1 to 6.2](6.1-to-6.2.md), except for the database migration (the backup is already migrated to the previous version).

2. Restore from the backup:

`bash
cd /home/git/gitlab
sudo -u git -H bundle exec rake gitlab:backup:restore RAILS_ENV=production
`

 —
comments: false
—

From 6.3 to 6.4
Make sure you view this [upgrade guide from the `master` branch](https://gitlab.com/gitlab-org/gitlab-ce/tree/master/doc/update/6.3-to-6.4.md) for the most up to date instructions.

0. Backup

`bash
cd /home/git/gitlab
sudo -u git -H bundle exec rake gitlab:backup:create RAILS_ENV=production
`

1. Stop server

`bash
sudo service gitlab stop
``

2. Get latest code

`bash
cd /home/git/gitlab
sudo -u git -H git fetch --all
sudo -u git -H git checkout 6-4-stable
For GitLab Enterprise Edition: sudo -u git -H git checkout 6-4-stable-ee
`

3. Update gitlab-shell (and its config)

`bash
cd /home/git/gitlab-shell
sudo -u git -H git fetch
sudo -u git -H git checkout v1.8.0
`

4. Install libs, migrations, etc.

```bash
cd /home/git/gitlab

# The Modernizr gem was yanked from RubyGems. It is required for GitLab >= 2.8.0
# Edit Gemfile and change gem “modernizr”, “2.5.3” to
# gem “modernizr-rails”, “2.7.1”`
sudo -u git -H vim Gemfile

# MySQL

# Run a bundle install without deployment to generate the new Gemfile
sudo -u git -H bundle install –without development test postgres –no-deployment

# Install libs (with deployment this time)
sudo -u git -H bundle install –without development test postgres –deployment

# PostgreSQL

# Run a bundle install without deployment to generate the new Gemfile
sudo -u git -H bundle install –without development test mysql –no-deployment

# Install libs (with deployment this time)
sudo -u git -H bundle install –without development test mysql –deployment

# Both MySQL and PostgreSQL
# Run database migrations
sudo -u git -H bundle exec rake db:migrate RAILS_ENV=production

# Clean up assets and cache
sudo -u git -H bundle exec rake assets:clean assets:precompile cache:clear RAILS_ENV=production

# Update init.d script
sudo cp lib/support/init.d/gitlab /etc/init.d/gitlab
```

5. Start application

`bash
sudo service gitlab start
sudo service nginx restart
`

6. Check application status

Check if GitLab and its environment are configured correctly:

`bash
sudo -u git -H bundle exec rake gitlab:env:info RAILS_ENV=production
`

To make sure you didn’t miss anything run a more thorough check with:

`bash
sudo -u git -H bundle exec rake gitlab:check RAILS_ENV=production
`

If all items are green, then congratulations upgrade complete!

Things went south? Revert to previous version (6.3)

1. Revert the code to the previous version

Follow the [upgrade guide from 6.2 to 6.3](6.2-to-6.3.md), except for the database migration (the backup is already migrated to the previous version).

2. Restore from the backup:

`bash
cd /home/git/gitlab
sudo -u git -H bundle exec rake gitlab:backup:restore RAILS_ENV=production
`

 —
comments: false
—

From 6.4 to 6.5
Make sure you view this [upgrade guide from the `master` branch](https://gitlab.com/gitlab-org/gitlab-ce/tree/master/doc/update/6.4-to-6.5.md) for the most up to date instructions.

0. Backup

`bash
cd /home/git/gitlab
sudo -u git -H bundle exec rake gitlab:backup:create RAILS_ENV=production
`

1. Stop server

sudo service gitlab stop

2. Get latest code

`bash
cd /home/git/gitlab
sudo -u git -H git fetch --all
`

For GitLab Community Edition:

`bash
sudo -u git -H git checkout 6-5-stable
`

OR

For GitLab Enterprise Edition:

`bash
sudo -u git -H git checkout 6-5-stable-ee
`

3. Update gitlab-shell (and its config)

`bash
cd /home/git/gitlab-shell
sudo -u git -H git fetch
sudo -u git -H git checkout v1.8.0
`

4. Install libs, migrations, etc.

```bash
cd /home/git/gitlab

# The Modernizr gem was yanked from RubyGems. It is required for GitLab >= 2.8.0
# Edit Gemfile and change gem “modernizr”, “2.5.3” to
# gem “modernizr-rails”, “2.7.1”`
sudo -u git -H vim Gemfile

# MySQL

# Run a bundle install without deployment to generate the new Gemfile
sudo -u git -H bundle install –without development test postgres –no-deployment

# Install libs (with deployment this time)
sudo -u git -H bundle install –without development test postgres –deployment

# PostgreSQL

# Run a bundle install without deployment to generate the new Gemfile
sudo -u git -H bundle install –without development test mysql –no-deployment

# Install libs (with deployment this time)
sudo -u git -H bundle install –without development test mysql –deployment

# Both MySQL and PostgreSQL
# Run database migrations
sudo -u git -H bundle exec rake db:migrate RAILS_ENV=production

# Clean up assets and cache
sudo -u git -H bundle exec rake assets:clean assets:precompile cache:clear RAILS_ENV=production

# Update init.d script
sudo cp lib/support/init.d/gitlab /etc/init.d/gitlab
```

5. Start application

sudo service gitlab start
sudo service nginx restart

6. Check application status

Check if GitLab and its environment are configured correctly:

sudo -u git -H bundle exec rake gitlab:env:info RAILS_ENV=production

To make sure you didn’t miss anything run a more thorough check with:

sudo -u git -H bundle exec rake gitlab:check RAILS_ENV=production

If all items are green, then congratulations upgrade is complete!

Things went south? Revert to previous version (6.4)

1. Revert the code to the previous version

Follow the [upgrade guide from 6.3 to 6.4](6.3-to-6.4.md), except for the database migration (the backup is already migrated to the previous version).

2. Restore from the backup

`bash
cd /home/git/gitlab
sudo -u git -H bundle exec rake gitlab:backup:restore RAILS_ENV=production
`

If you have more than one backup *.tar file(s) please add BACKUP=timestamp_of_backup to the command above.

 —
comments: false
—

From 6.5 to 6.6
Make sure you view this [upgrade guide from the `master` branch](https://gitlab.com/gitlab-org/gitlab-ce/tree/master/doc/update/6.5-to-6.6.md) for the most up to date instructions.

0. Backup

`bash
cd /home/git/gitlab
sudo -u git -H bundle exec rake gitlab:backup:create RAILS_ENV=production
`

1. Stop server

sudo service gitlab stop

2. Get latest code

`bash
cd /home/git/gitlab
sudo -u git -H git fetch --all
`

For GitLab Community Edition:

`bash
sudo -u git -H git checkout 6-6-stable
`

OR

For GitLab Enterprise Edition:

`bash
sudo -u git -H git checkout 6-6-stable-ee
`

3. Update gitlab-shell (and its config)

`bash
cd /home/git/gitlab-shell
sudo -u git -H git fetch
sudo -u git -H git checkout v1.8.0
`

4. Install libs, migrations, etc.

```bash
cd /home/git/gitlab

# The Modernizr gem was yanked from RubyGems. It is required for GitLab >= 2.8.0
# Edit Gemfile and change gem “modernizr”, “2.5.3” to
# gem “modernizr-rails”, “2.7.1”`
sudo -u git -H vim Gemfile

# MySQL

# Run a bundle install without deployment to generate the new Gemfile
sudo -u git -H bundle install –without development test postgres –no-deployment

# Install libs (with deployment this time)
sudo -u git -H bundle install –without development test postgres –deployment

# PostgreSQL

# Run a bundle install without deployment to generate the new Gemfile
sudo -u git -H bundle install –without development test mysql –no-deployment

# Install libs (with deployment this time)
sudo -u git -H bundle install –without development test mysql –deployment

# Both MySQL and PostgreSQL

# Run database migrations
sudo -u git -H bundle exec rake db:migrate RAILS_ENV=production

# Clean up assets and cache
sudo -u git -H bundle exec rake assets:clean assets:precompile cache:clear RAILS_ENV=production

# Update init.d script
sudo cp lib/support/init.d/gitlab /etc/init.d/gitlab
```

5. Start application

sudo service gitlab start
sudo service nginx restart

6. Check application status

Check if GitLab and its environment are configured correctly:

sudo -u git -H bundle exec rake gitlab:env:info RAILS_ENV=production

To make sure you didn’t miss anything run a more thorough check with:

sudo -u git -H bundle exec rake gitlab:check RAILS_ENV=production

If all items are green, then congratulations upgrade is complete!

Things went south? Revert to previous version (6.5)

1. Revert the code to the previous version

Follow the [upgrade guide from 6.4 to 6.5](6.4-to-6.5.md), except for the database migration
(The backup is already migrated to the previous version)

2. Restore from the backup:

`bash
cd /home/git/gitlab
sudo -u git -H bundle exec rake gitlab:backup:restore RAILS_ENV=production
`

If you have more than one backup *.tar file(s) please add BACKUP=timestamp_of_backup to the command above.

 —
comments: false
—

From 6.6 to 6.7
Make sure you view this [upgrade guide from the `master` branch](https://gitlab.com/gitlab-org/gitlab-ce/tree/master/doc/update/6.6-to-6.7.md) for the most up to date instructions.

0. Backup

`bash
cd /home/git/gitlab
sudo -u git -H bundle exec rake gitlab:backup:create RAILS_ENV=production
`

1. Stop server

sudo service gitlab stop

2. Get latest code

`bash
cd /home/git/gitlab
sudo -u git -H git fetch --all
`

For GitLab Community Edition:

`bash
sudo -u git -H git checkout 6-7-stable
`

OR

For GitLab Enterprise Edition:

`bash
sudo -u git -H git checkout 6-7-stable-ee
`

3. Update gitlab-shell (and its config)

`bash
cd /home/git/gitlab-shell
sudo -u git -H git fetch
sudo -u git -H git checkout v1.9.1
`

4. Install libs, migrations, etc.

```bash
cd /home/git/gitlab

# MySQL

# Run a bundle install without deployment to generate the new Gemfile
sudo -u git -H bundle install –without development test postgres –no-deployment

# Install libs (with deployment this time)
sudo -u git -H bundle install –without development test postgres –deployment

# PostgreSQL

# Run a bundle install without deployment to generate the new Gemfile
sudo -u git -H bundle install –without development test mysql –no-deployment

# Install libs (with deployment this time)
sudo -u git -H bundle install –without development test mysql –deployment

# Both MySQL and PostgreSQL
# Run database migrations
sudo -u git -H bundle exec rake db:migrate RAILS_ENV=production

# Clean up assets and cache
sudo -u git -H bundle exec rake assets:clean assets:precompile cache:clear RAILS_ENV=production

# Update init.d script
sudo cp lib/support/init.d/gitlab /etc/init.d/gitlab

# Update the logrotate configuration (keep logs for 90 days instead of 52 weeks)
sudo cp lib/support/logrotate/gitlab /etc/logrotate.d/gitlab

# Compress existing .log.1 files because we turned off delaycompress in logrotate
sudo -u git -H gzip /home/git/gitlab/log/*.log.1
sudo -u git -H gzip /home/git/gitlab-shell/gitlab-shell.log.1

# Close access to gitlab-satellites for others
sudo chmod u+rwx,g=rx,o-rwx /home/git/gitlab-satellites

# Add directory for uploads
sudo -u git -H mkdir -p /home/git/gitlab/public/uploads
```

5. Start application

sudo service gitlab start
sudo service nginx restart

6. Check application status

Check if GitLab and its environment are configured correctly:

sudo -u git -H bundle exec rake gitlab:env:info RAILS_ENV=production

To make sure you didn’t miss anything run a more thorough check with:

sudo -u git -H bundle exec rake gitlab:check RAILS_ENV=production

If all items are green, then congratulations upgrade is complete!

Things went south? Revert to previous version (6.6)

1. Revert the code to the previous version

Follow the [upgrade guide from 6.5 to 6.6](6.5-to-6.6.md), except for the database migration (the backup is already migrated to the previous version).

2. Restore from the backup

`bash
cd /home/git/gitlab
sudo -u git -H bundle exec rake gitlab:backup:restore RAILS_ENV=production
`

If you have more than one backup *.tar file(s) please add BACKUP=timestamp_of_backup to the command above.

 —
comments: false
—

From 6.7 to 6.8
Make sure you view this [upgrade guide from the `master` branch](https://gitlab.com/gitlab-org/gitlab-ce/tree/master/doc/update/6.7-to-6.8.md) for the most up to date instructions.

0. Backup

`bash
cd /home/git/gitlab
sudo -u git -H bundle exec rake gitlab:backup:create RAILS_ENV=production
`

1. Stop server

`bash
sudo service gitlab stop
`

2. Get latest code

`bash
cd /home/git/gitlab
sudo -u git -H git fetch --all
`

For GitLab Community Edition:

`bash
sudo -u git -H git checkout 6-8-stable
`

OR

For GitLab Enterprise Edition:

`bash
sudo -u git -H git checkout 6-8-stable-ee
`

3. Update gitlab-shell (and its config)

`bash
cd /home/git/gitlab-shell
sudo -u git -H git fetch
sudo -u git -H git checkout v1.9.3
`

4. Install libs, migrations, etc.

```bash
cd /home/git/gitlab

# MySQL installations (note: the line below states ‘–without … postgres’)
sudo -u git -H bundle install –without development test postgres –deployment

# PostgreSQL installations (note: the line below states ‘–without … mysql’)
sudo -u git -H bundle install –without development test mysql –deployment

# Run database migrations
sudo -u git -H bundle exec rake db:migrate RAILS_ENV=production

# Clean up assets and cache
sudo -u git -H bundle exec rake assets:clean assets:precompile cache:clear RAILS_ENV=production

# Update init.d script
sudo cp lib/support/init.d/gitlab /etc/init.d/gitlab

# Close access to gitlab-satellites for others
sudo chmod u+rwx,g=rx,o-rwx /home/git/gitlab-satellites
```

5. Update config files

New configuration options for gitlab.yml

There are new configuration options available for gitlab.yml. View them with the command below and apply them to your current gitlab.yml if desired.

`
git diff 6-7-stable:config/gitlab.yml.example 6-8-stable:config/gitlab.yml.example
`

MySQL? Remove reaping frequency

If you are using MySQL as a database, remove reaping_frequency from you database.yml to prevent crashes. [Relevant commit](https://gitlab.com/gitlab-org/gitlab-ce/commit/5163a8fcb9cfd63435560fda00173b76df2ccc93).

HTTPS? Disable gzip

If you are using HTTPS, disable gzip as in [this commit](https://gitlab.com/gitlab-org/gitlab-ce/commit/563fec734912d81cd7caea6fa8ec2b397fb72a9b) to prevent BREACH attacks.

Turn on asset compression

To improve performance, enable gzip asset compression as seen [in this commit](https://gitlab.com/gitlab-org/gitlab-ce/commit/8af94ed75505f0253823b9b2d44320fecea5b5fb).

6. Start application

sudo service gitlab start
sudo service nginx restart

7. Check application status

Check if GitLab and its environment are configured correctly:

sudo -u git -H bundle exec rake gitlab:env:info RAILS_ENV=production

To make sure you didn’t miss anything run a more thorough check with:

sudo -u git -H bundle exec rake gitlab:check RAILS_ENV=production

If all items are green, then congratulations upgrade is complete!

Things went south? Revert to previous version (6.7)

1. Revert the code to the previous version

Follow the [upgrade guide from 6.6 to 6.7](6.6-to-6.7.md), except for the database migration (the backup is already migrated to the previous version).

2. Restore from the backup

`bash
cd /home/git/gitlab
sudo -u git -H bundle exec rake gitlab:backup:restore RAILS_ENV=production
`
If you have more than one backup *.tar file(s) please add BACKUP=timestamp_of_backup to the command above.

 —
comments: false
—

From 6.8 to 6.9
Make sure you view this [upgrade guide from the `master` branch](https://gitlab.com/gitlab-org/gitlab-ce/tree/master/doc/update/6.8-to-6.9.md) for the most up to date instructions.

0. Backup

`bash
cd /home/git/gitlab
sudo -u git -H bundle exec rake gitlab:backup:create RAILS_ENV=production
`

1. Stop server

`bash
sudo service gitlab stop
`

2. Get latest code

`bash
cd /home/git/gitlab
sudo -u git -H git fetch --all
`

For GitLab Community Edition:

`bash
sudo -u git -H git checkout 6-9-stable
`

OR

For GitLab Enterprise Edition:

`bash
sudo -u git -H git checkout 6-9-stable-ee
`

3. Update gitlab-shell (and its config)

`bash
cd /home/git/gitlab-shell
sudo -u git -H git fetch
sudo -u git -H git checkout v1.9.4
`

4. Install libs, migrations, etc.

```bash
cd /home/git/gitlab

# MySQL installations (note: the line below states ‘–without … postgres’)
sudo -u git -H bundle install –without development test postgres –deployment

# PostgreSQL installations (note: the line below states ‘–without … mysql’)
sudo -u git -H bundle install –without development test mysql –deployment

# Run database migrations
sudo -u git -H bundle exec rake db:migrate RAILS_ENV=production

# Clean up assets and cache
sudo -u git -H bundle exec rake assets:clean assets:precompile cache:clear RAILS_ENV=production
```

5. Update config files

New configuration options for gitlab.yml

There are new configuration options available for gitlab.yml. View them with the command below and apply them to your current gitlab.yml if desired.

`
git diff 6-8-stable:config/gitlab.yml.example 6-9-stable:config/gitlab.yml.example
`

6. Start application

sudo service gitlab start
sudo service nginx restart

7. Check application status

Check if GitLab and its environment are configured correctly:

sudo -u git -H bundle exec rake gitlab:env:info RAILS_ENV=production

To make sure you didn’t miss anything run a more thorough check with:

sudo -u git -H bundle exec rake gitlab:check RAILS_ENV=production

If all items are green, then congratulations upgrade is complete!

Things went south? Revert to previous version (6.8)

1. Revert the code to the previous version
Follow the [upgrade guide from 6.7 to 6.8](6.7-to-6.8.md), except for the database migration
(The backup is already migrated to the previous version)

2. Restore from the backup:

`bash
cd /home/git/gitlab
sudo -u git -H bundle exec rake gitlab:backup:restore RAILS_ENV=production
`
If you have more than one backup *.tar file(s) please add BACKUP=timestamp_of_backup to the command above.

 —
comments: false
—

From 6.9 to 7.0
Make sure you view this [upgrade guide from the `master` branch](https://gitlab.com/gitlab-org/gitlab-ce/tree/master/doc/update/6.9-to-7.0.md) for the most up to date instructions.

0. Backup

`bash
cd /home/git/gitlab
sudo -u git -H bundle exec rake gitlab:backup:create RAILS_ENV=production
`

1. Stop server

`bash
sudo service gitlab stop
`

2. Update Ruby

If you are still using Ruby 1.9.3 or below, you will need to update Ruby.
You can check which version you are running with ruby -v.

If you are you running Ruby 2.0.x, you do not need to upgrade ruby, but can consider doing so for performance reasons.

If you are running Ruby 2.1.1 consider upgrading to 2.1.2, because of the high memory usage of Ruby 2.1.1.

Install, update dependencies:

`bash
sudo apt-get install build-essential zlib1g-dev libyaml-dev libssl-dev libgdbm-dev libreadline-dev libncurses5-dev libffi-dev curl
`

Download and compile Ruby:

`bash
mkdir /tmp/ruby && cd /tmp/ruby
curl --location --progress ftp://ftp.ruby-lang.org/pub/ruby/2.1/ruby-2.1.2.tar.gz | tar xz
cd ruby-2.1.2
./configure --disable-install-rdoc
make
sudo make install
`

Install Bundler:

`bash
sudo gem install bundler --no-ri --no-rdoc
`

3. Get latest code

`bash
cd /home/git/gitlab
sudo -u git -H git fetch --all
`

For GitLab Community Edition:

`bash
sudo -u git -H git checkout 7-0-stable
`

OR

For GitLab Enterprise Edition:

`bash
sudo -u git -H git checkout 7-0-stable-ee
`

4. Update gitlab-shell (and its config)

`bash
cd /home/git/gitlab-shell
sudo -u git -H git fetch
sudo -u git -H git checkout v1.9.6
`

5. Install libs, migrations, etc.

```bash
cd /home/git/gitlab

# MySQL installations (note: the line below states ‘–without … postgres’)
sudo -u git -H bundle install –without development test postgres –deployment

# PostgreSQL installations (note: the line below states ‘–without … mysql’)
sudo -u git -H bundle install –without development test mysql –deployment

# Run database migrations
sudo -u git -H bundle exec rake db:migrate RAILS_ENV=production

# Clean up assets and cache
sudo -u git -H bundle exec rake assets:clean assets:precompile cache:clear RAILS_ENV=production

# Update init.d script
sudo cp lib/support/init.d/gitlab /etc/init.d/gitlab
```

6. Update config files

New configuration options for gitlab.yml

There are new configuration options available for gitlab.yml. View them with the command below and apply them to your current gitlab.yml if desired.

`
git diff origin/6-9-stable:config/gitlab.yml.example origin/7-0-stable:config/gitlab.yml.example
`

	HTTP setups: Make /etc/nginx/sites-available/nginx the same as https://gitlab.com/gitlab-org/gitlab-ce/blob/7-0-stable/lib/support/nginx/gitlab but with your settings.

	HTTPS setups: Make /etc/nginx/sites-available/nginx-ssl the same as https://gitlab.com/gitlab-org/gitlab-ce/blob/7-0-stable/lib/support/nginx/gitlab-ssl but with your setting

7. Start application

sudo service gitlab start
sudo service nginx restart

8. Check application status

Check if GitLab and its environment are configured correctly:

sudo -u git -H bundle exec rake gitlab:env:info RAILS_ENV=production

To make sure you didn’t miss anything run a more thorough check with:

sudo -u git -H bundle exec rake gitlab:check RAILS_ENV=production

If all items are green, then congratulations upgrade is complete!

Things went south? Revert to previous version (6.9)

1. Revert the code to the previous version
Follow the [upgrade guide from 6.8 to 6.9](6.8-to-6.9.md), except for the database migration
(The backup is already migrated to the previous version)

2. Restore from the backup:

`bash
cd /home/git/gitlab
sudo -u git -H bundle exec rake gitlab:backup:restore RAILS_ENV=production
`
If you have more than one backup *.tar file(s) please add BACKUP=timestamp_of_backup to the command above.

 —
comments: false
—

From 6.x or 7.x to 7.14
Make sure you view this [upgrade guide from the `master` branch](https://gitlab.com/gitlab-org/gitlab-ce/tree/master/doc/update/6.x-or-7.x-to-7.14.md) for the most up to date instructions.

This allows you to upgrade any version of GitLab from 6.0 and up (including 7.0 and up) to 7.14.

Global issue numbers

As of 6.1 issue numbers are project specific. This means all issues are renumbered and get a new number in their URL. If you use an old issue number URL and the issue number does not exist yet you are redirected to the new one. This conversion does not trigger if the old number already exists for this project, this is unlikely but will happen with old issues and large projects.

Editable labels

In GitLab 7.2 we replace Issue and Merge Request tags with labels, making it
possible to edit the label text and color. The characters ?, & and , are
no longer allowed however so those will be removed from your tags during the
database migrations for GitLab 7.2.

Stash changes

If you [deleted the vendors folder during your original installation](https://github.com/gitlabhq/gitlabhq/issues/4883#issuecomment-31108431), [you will get an error](https://gitlab.com/gitlab-org/gitlab-ce/issues/1494) when you attempt to rebuild the assets in step 7. To avoid this, stash the changes in your GitLab working copy before starting:

git stash

0. Stop server

sudo service gitlab stop

1. Backup

It’s useful to make a backup just in case things go south:
(With MySQL, this may require granting “LOCK TABLES” privileges to the GitLab user on the database version)

`bash
cd /home/git/gitlab
sudo -u git -H bundle exec rake gitlab:backup:create RAILS_ENV=production
`

2. Update Ruby

If you are still using Ruby 1.9.3 or below, you will need to update Ruby.
You can check which version you are running with ruby -v.

If you are you running Ruby 2.0.x, you do not need to upgrade ruby, but can consider doing so for performance reasons.

If you are running Ruby 2.1.1 consider upgrading to 2.1.6, because of the high memory usage of Ruby 2.1.1.

Install, update dependencies:

`bash
sudo apt-get install build-essential zlib1g-dev libyaml-dev libssl-dev libgdbm-dev libreadline-dev libncurses5-dev libffi-dev curl
`

Download and compile Ruby:

`bash
mkdir /tmp/ruby && cd /tmp/ruby
curl --progress https://cache.ruby-lang.org/pub/ruby/2.1/ruby-2.1.6.tar.gz | tar xz
cd ruby-2.1.6
./configure --disable-install-rdoc
make
sudo make install
`

Install Bundler:

`bash
sudo gem install bundler --no-ri --no-rdoc
`

3. Get latest code

`bash
cd /home/git/gitlab
sudo -u git -H git fetch --all
sudo -u git -H git checkout -- db/schema.rb # local changes will be restored automatically
`

For GitLab Community Edition:

`bash
sudo -u git -H git checkout 7-14-stable
`

OR

For GitLab Enterprise Edition:

`bash
sudo -u git -H git checkout 7-14-stable-ee
`

4. Install additional packages

```bash
# Add support for logrotate for better log file handling
sudo apt-get install logrotate

# Install pkg-config and cmake, which is needed for the latest versions of rugged
sudo apt-get install pkg-config cmake

# If you want to use Kerberos with GitLab EE for user authentication, install Kerberos header files
# If you don’t know what Kerberos is, you can assume you don’t need it.
sudo apt-get install libkrb5-dev

# Install nodejs, javascript runtime required for assets
sudo apt-get install nodejs
```

5. Configure Redis to use sockets

Configure redis to use sockets
sudo cp /etc/redis/redis.conf /etc/redis/redis.conf.orig
Disable Redis listening on TCP by setting ‘port’ to 0
sed ‘s/^port .*/port 0/’ /etc/redis/redis.conf.orig | sudo tee /etc/redis/redis.conf
Enable Redis socket for default Debian / Ubuntu path
echo ‘unixsocket /var/run/redis/redis.sock’ | sudo tee -a /etc/redis/redis.conf
Be sure redis group can write to the socket, enable only if supported (>= redis 2.4.0).
sudo sed -i ‘/# unixsocketperm/ s/^# unixsocketperm.*/unixsocketperm 0775/’ /etc/redis/redis.conf
Activate the changes to redis.conf
sudo service redis-server restart
Add git to the redis group
sudo usermod -aG redis git

Configure Redis connection settings
sudo -u git -H cp config/resque.yml.example config/resque.yml
Change the Redis socket path if you are not using the default Debian / Ubuntu configuration
sudo -u git -H editor config/resque.yml

Configure gitlab-shell to use Redis sockets
sudo -u git -H sed -i ‘s|^ # socket.*| socket: /var/run/redis/redis.sock|’ /home/git/gitlab-shell/config.yml

6. Update gitlab-shell

`bash
cd /home/git/gitlab-shell
sudo -u git -H git fetch
sudo -u git -H git checkout v2.6.5
`

7. Install libs, migrations, etc.

```bash
cd /home/git/gitlab

# MySQL installations (note: the line below states ‘–without … postgres’)
sudo -u git -H bundle install –without development test postgres –deployment

# PostgreSQL installations (note: the line below states ‘–without … mysql’)
sudo -u git -H bundle install –without development test mysql –deployment

# Run database migrations from 6.0 to 6.1
sudo -u git -H bundle exec rake db:migrate RAILS_ENV=production VERSION=20130909132950

# Enable internal issue IDs (introduced in GitLab 6.1)
sudo -u git -H bundle exec rake migrate_iids RAILS_ENV=production

# Run left database migrations
sudo -u git -H bundle exec rake db:migrate RAILS_ENV=production

# Clean up assets and cache
sudo -u git -H bundle exec rake assets:clean assets:precompile cache:clear RAILS_ENV=production

# Close access to gitlab-satellites for others
sudo chmod u+rwx,g+rx,o-rwx /home/git/gitlab-satellites

# Update init.d script
sudo cp lib/support/init.d/gitlab /etc/init.d/gitlab
```

8. Update config files

TIP: to see what changed in gitlab.yml.example in this release use next command:

`
git diff 6-0-stable:config/gitlab.yml.example 7-14-stable:config/gitlab.yml.example
`

	Make /home/git/gitlab/config/gitlab.yml the same as https://gitlab.com/gitlab-org/gitlab-ce/blob/7-14-stable/config/gitlab.yml.example but with your settings.

	Make /home/git/gitlab/config/unicorn.rb the same as https://gitlab.com/gitlab-org/gitlab-ce/blob/7-14-stable/config/unicorn.rb.example but with your settings.

	Make /home/git/gitlab-shell/config.yml the same as https://gitlab.com/gitlab-org/gitlab-shell/blob/v2.6.5/config.yml.example but with your settings.

	Copy rack attack middleware config

`bash
sudo -u git -H cp config/initializers/rack_attack.rb.example config/initializers/rack_attack.rb
`

	Set up logrotate

`bash
sudo cp lib/support/logrotate/gitlab /etc/logrotate.d/gitlab
`

Change Nginx settings

	HTTP setups: Make /etc/nginx/sites-available/gitlab the same as https://gitlab.com/gitlab-org/gitlab-ce/blob/7-14-stable/lib/support/nginx/gitlab but with your settings.

	HTTPS setups: Make /etc/nginx/sites-available/gitlab-ssl the same as https://gitlab.com/gitlab-org/gitlab-ce/blob/7-14-stable/lib/support/nginx/gitlab-ssl but with your settings.

	A new location /uploads/ section has been added that needs to have the same content as the existing location @gitlab section.

Check the version of /usr/local/bin/git

If you installed Git from source into /usr/local/bin/git then please [check
your version](7.13-to-7.14.md).

9. Start application

sudo service gitlab start
sudo service nginx restart

10. Check application status

Check if GitLab and its environment are configured correctly:

cd /home/git/gitlab
sudo -u git -H bundle exec rake gitlab:env:info RAILS_ENV=production

To make sure you didn’t miss anything run a more thorough check with:

sudo -u git -H bundle exec rake gitlab:check RAILS_ENV=production

If all items are green, then congratulations upgrade complete!

11. Update OmniAuth configuration

When using Google omniauth login, changes of the Google account required.
Ensure that Contacts API and the Google+ API are enabled in the [Google Developers Console](https://console.developers.google.com/).
More details can be found at the [integration documentation](https://gitlab.com/gitlab-org/gitlab-ce/tree/master/doc/integration/google.md).

12. Optional optimizations for GitLab setups with MySQL databases

Only applies if running MySQL database created with GitLab 6.7 or earlier. If you are not experiencing any issues you may not need the following instructions however following them will bring your database in line with the latest recommended installation configuration and help avoid future issues. Be sure to follow these directions exactly. These directions should be safe for any MySQL instance but to be sure make a current MySQL database backup beforehand.

```
# Stop GitLab
sudo service gitlab stop

# Secure your MySQL installation (added in GitLab 6.2)
sudo mysql_secure_installation

# Login to MySQL
mysql -u root -p

# do not type the ‘mysql>’, this is part of the prompt

# Convert all tables to use the InnoDB storage engine (added in GitLab 6.8)
SELECT CONCAT(‘ALTER TABLE gitlabhq_production.’, table_name, ‘ ENGINE=InnoDB;’) AS ‘Copy & run these SQL statements:’ FROM information_schema.tables WHERE table_schema = ‘gitlabhq_production’ AND ENGINE <> ‘InnoDB’ AND TABLE_TYPE = ‘BASE TABLE’;

# If previous query returned results, copy & run all shown SQL statements

# Convert all tables to correct character set
SET foreign_key_checks = 0;
SELECT CONCAT(‘ALTER TABLE gitlabhq_production.’, table_name, ‘ CONVERT TO CHARACTER SET utf8 COLLATE utf8_general_ci;’) AS ‘Copy & run these SQL statements:’ FROM information_schema.tables WHERE table_schema = ‘gitlabhq_production’ AND TABLE_COLLATION <> ‘utf8_unicode_ci’ AND TABLE_TYPE = ‘BASE TABLE’;

# If previous query returned results, copy & run all shown SQL statements

# turn foreign key checks back on
SET foreign_key_checks = 1;

# Find MySQL users
mysql> SELECT user FROM mysql.user WHERE user LIKE ‘%git%’;

# If git user exists and gitlab user does not exist
# you are done with the database cleanup tasks
mysql> q

# If both users exist skip to Delete gitlab user

# Create new user for GitLab (changed in GitLab 6.4)
# change $password in the command below to a real password you pick
mysql> CREATE USER ‘git’@’localhost’ IDENTIFIED BY ‘$password’;

# Grant the git user necessary permissions on the database
mysql> GRANT SELECT, INSERT, UPDATE, DELETE, CREATE, DROP, INDEX, ALTER, LOCK TABLES ON gitlabhq_production.* TO ‘git’@’localhost’;

# Delete the old gitlab user
mysql> DELETE FROM mysql.user WHERE user=’gitlab’;

# Quit the database session
mysql> q

# Try connecting to the new database with the new user
sudo -u git -H mysql -u git -p -D gitlabhq_production

# Type the password you replaced $password with earlier

# You should now see a ‘mysql>’ prompt

# Quit the database session
mysql> q

# Update database configuration details
# See config/database.yml.mysql for latest recommended configuration details
#   Remove the reaping_frequency setting line if it exists (removed in GitLab 6.8)
#   Set production -> pool: 10 (updated in GitLab 5.3)
#   Set production -> username: git
#   Set production -> password: the password your replaced $password with earlier
sudo -u git -H editor /home/git/gitlab/config/database.yml
```

Things went south? Revert to previous version (7.0)

1. Revert the code to the previous version

Follow the [upgrade guide from 6.9 to 7.0](6.9-to-7.0.md), except for the database migration (the backup is already migrated to the previous version).

2. Restore from the backup:

`bash
cd /home/git/gitlab
sudo -u git -H bundle exec rake gitlab:backup:restore RAILS_ENV=production
`

Login issues after upgrade?

If running in HTTPS mode, be sure to read [Can’t Verify CSRF token authenticity](https://github.com/gitlabhq/gitlab-public-wiki/wiki/Trouble-Shooting-Guide#cant-verify-csrf-token-authenticitycant-get-past-login-pageredirected-to-login-page)

 —
comments: false
—

From 7.0 to 7.1
Make sure you view this [upgrade guide from the `master` branch](https://gitlab.com/gitlab-org/gitlab-ce/tree/master/doc/update/7.0-to-7.1.md) for the most up to date instructions.

0. Backup

`bash
cd /home/git/gitlab
sudo -u git -H bundle exec rake gitlab:backup:create RAILS_ENV=production
`

1. Stop server

`bash
sudo service gitlab stop
`

2. Update Ruby

If you are still using Ruby 1.9.3 or below, you will need to update Ruby.
You can check which version you are running with ruby -v.

If you are you running Ruby 2.0.x, you do not need to upgrade ruby, but can consider doing so for performance reasons.

If you are running Ruby 2.1.1 consider upgrading to 2.1.2, because of the high memory usage of Ruby 2.1.1.

Install, update dependencies:

`bash
sudo apt-get install build-essential zlib1g-dev libyaml-dev libssl-dev libgdbm-dev libreadline-dev libncurses5-dev libffi-dev curl
`

Download and compile Ruby:

`bash
mkdir /tmp/ruby && cd /tmp/ruby
curl --location --progress ftp://ftp.ruby-lang.org/pub/ruby/2.1/ruby-2.1.2.tar.gz | tar xz
cd ruby-2.1.2
./configure --disable-install-rdoc
make
sudo make install
`

Install Bundler:

`bash
sudo gem install bundler --no-ri --no-rdoc
`

3. Get latest code

`bash
cd /home/git/gitlab
sudo -u git -H git fetch --all
`

For GitLab Community Edition:

`bash
sudo -u git -H git checkout 7-1-stable
`

OR

For GitLab Enterprise Edition:

`bash
sudo -u git -H git checkout 7-1-stable-ee
`

4. Update gitlab-shell (and its config)

`bash
cd /home/git/gitlab-shell
sudo -u git -H git fetch
sudo -u git -H git checkout v1.9.6
`

5. Install libs, migrations, etc.

```bash
cd /home/git/gitlab

# MySQL installations (note: the line below states ‘–without … postgres’)
sudo -u git -H bundle install –without development test postgres –deployment

# PostgreSQL installations (note: the line below states ‘–without … mysql’)
sudo -u git -H bundle install –without development test mysql –deployment

# Run database migrations
sudo -u git -H bundle exec rake db:migrate RAILS_ENV=production

# Clean up assets and cache
sudo -u git -H bundle exec rake assets:clean assets:precompile cache:clear RAILS_ENV=production

# Update init.d script
sudo cp lib/support/init.d/gitlab /etc/init.d/gitlab
```

6. Update config files

New configuration options for gitlab.yml

There are new configuration options available for gitlab.yml. View them with the command below and apply them to your current gitlab.yml if desired.

`
git diff 7-0-stable:config/gitlab.yml.example 7-1-stable:config/gitlab.yml.example
`

7. Start application

sudo service gitlab start
sudo service nginx restart

8. Check application status

Check if GitLab and its environment are configured correctly:

sudo -u git -H bundle exec rake gitlab:env:info RAILS_ENV=production

To make sure you didn’t miss anything run a more thorough check with:

sudo -u git -H bundle exec rake gitlab:check RAILS_ENV=production

If all items are green, then congratulations upgrade is complete!

Things went south? Revert to previous version (7.0)

1. Revert the code to the previous version
Follow the [upgrade guide from 6.9 to 7.0](6.9-to-7.0.md), except for the database migration
(The backup is already migrated to the previous version)

2. Restore from the backup:

`bash
cd /home/git/gitlab
sudo -u git -H bundle exec rake gitlab:backup:restore RAILS_ENV=production
`
If you have more than one backup *.tar file(s) please add BACKUP=timestamp_of_backup to the command above.

[yaml]: https://gitlab.com/gitlab-org/gitlab-ce/blob/7-1-stable/config/gitlab.yml.example

 —
comments: false
—

From 7.1 to 7.2
Make sure you view this [upgrade guide from the `master` branch](https://gitlab.com/gitlab-org/gitlab-ce/tree/master/doc/update/7.1-to-7.2.md) for the most up to date instructions.

Editable labels

In GitLab 7.2 we replace Issue and Merge Request tags with labels, making it
possible to edit the label text and color. The characters ?, & and , are
no longer allowed however so those will be removed from your tags during the
database migrations for GitLab 7.2.

0. Backup

`bash
cd /home/git/gitlab
sudo -u git -H bundle exec rake gitlab:backup:create RAILS_ENV=production
`

1. Stop server

`bash
sudo service gitlab stop
`

2. Get latest code

`bash
cd /home/git/gitlab
sudo -u git -H git fetch --all
`

For GitLab Community Edition:

`bash
sudo -u git -H git checkout 7-2-stable
`

OR

For GitLab Enterprise Edition:

`bash
sudo -u git -H git checkout 7-2-stable-ee
`

3. Update gitlab-shell

`bash
cd /home/git/gitlab-shell
sudo -u git -H git fetch
sudo -u git -H git checkout v1.9.8
`

4. Install new system dependencies

The latest version of the ‘rugged’ gem requires pkg-config and cmake to
build its native extensions.

`bash
sudo apt-get install pkg-config cmake
`

5. Install libs, migrations, etc.

```bash
cd /home/git/gitlab

# MySQL installations (note: the line below states ‘–without … postgres’)
sudo -u git -H bundle install –without development test postgres –deployment

# PostgreSQL installations (note: the line below states ‘–without … mysql’)
sudo -u git -H bundle install –without development test mysql –deployment

# Run database migrations
sudo -u git -H bundle exec rake db:migrate RAILS_ENV=production

# Clean up assets and cache
sudo -u git -H bundle exec rake assets:clean assets:precompile cache:clear RAILS_ENV=production

# Update init.d script
sudo cp lib/support/init.d/gitlab /etc/init.d/gitlab
```

6. Update config files

New configuration options for gitlab.yml

There are new configuration options available for gitlab.yml. View them with the command below and apply them to your current gitlab.yml.

`
git diff 7-1-stable:config/gitlab.yml.example 7-2-stable:config/gitlab.yml.example
`

	HTTP setups: Make /etc/nginx/sites-available/nginx the same as https://gitlab.com/gitlab-org/gitlab-ce/blob/7-0-stable/lib/support/nginx/gitlab but with your settings.

	HTTPS setups: Make /etc/nginx/sites-available/nginx-ssl the same as https://gitlab.com/gitlab-org/gitlab-ce/blob/7-0-stable/lib/support/nginx/gitlab-ssl but with your setting

Update rack attack middleware config

`
sudo -u git -H cp config/initializers/rack_attack.rb.example config/initializers/rack_attack.rb
`

7. Start application

sudo service gitlab start
sudo service nginx restart

8. Check application status

Check if GitLab and its environment are configured correctly:

sudo -u git -H bundle exec rake gitlab:env:info RAILS_ENV=production

To make sure you didn’t miss anything run a more thorough check with:

sudo -u git -H bundle exec rake gitlab:check RAILS_ENV=production

If all items are green, then congratulations upgrade is complete!

9. Update OmniAuth configuration

When using Google omniauth login, changes of the Google account required.
Ensure that Contacts API and the Google+ API are enabled in the [Google Developers Console](https://console.developers.google.com/).
More details can be found at the [integration documentation](../integration/google.md).

Things went south? Revert to previous version (7.1)

1. Revert the code to the previous version
Follow the [upgrade guide from 7.0 to 7.1](7.0-to-7.1.md), except for the database migration
(The backup is already migrated to the previous version)

2. Restore from the backup:

`bash
cd /home/git/gitlab
sudo -u git -H bundle exec rake gitlab:backup:restore RAILS_ENV=production
`
If you have more than one backup *.tar file(s) please add BACKUP=timestamp_of_backup to the command above.

[yaml]: https://gitlab.com/gitlab-org/gitlab-ce/blob/7-2-stable/config/gitlab.yml.example

 —
comments: false
—

From 7.10 to 7.11

0. Stop server

sudo service gitlab stop

1. Backup

`bash
cd /home/git/gitlab
sudo -u git -H bundle exec rake gitlab:backup:create RAILS_ENV=production
`

2. Get latest code

`bash
sudo -u git -H git fetch --all
sudo -u git -H git checkout -- db/schema.rb # local changes will be restored automatically
`

For GitLab Community Edition:

`bash
sudo -u git -H git checkout 7-11-stable
`

OR

For GitLab Enterprise Edition:

`bash
sudo -u git -H git checkout 7-11-stable-ee
`

3. Update gitlab-shell

`bash
cd /home/git/gitlab-shell
sudo -u git -H git fetch
sudo -u git -H git checkout v2.6.3
`

4. Install libs, migrations, etc.

```bash
cd /home/git/gitlab

# MySQL installations (note: the line below states ‘–without … postgres’)
sudo -u git -H bundle install –without development test postgres –deployment

# PostgreSQL installations (note: the line below states ‘–without … mysql’)
sudo -u git -H bundle install –without development test mysql –deployment

# Run database migrations
sudo -u git -H bundle exec rake db:migrate RAILS_ENV=production

# Clean up assets and cache
sudo -u git -H bundle exec rake assets:clean assets:precompile cache:clear RAILS_ENV=production

# Update init.d script
sudo cp lib/support/init.d/gitlab /etc/init.d/gitlab
```

5. Update config files

New configuration options for gitlab.yml

There are new configuration options available for [gitlab.yml][yaml]. View them with the command below and apply them to your current gitlab.yml.

`
git diff origin/7-10-stable:config/gitlab.yml.example origin/7-11-stable:config/gitlab.yml.example
````

### 6. Start application


sudo service gitlab start
sudo service nginx restart




### 7. Check application status

Check if GitLab and its environment are configured correctly:


sudo -u git -H bundle exec rake gitlab:env:info RAILS_ENV=production




To make sure you didn’t miss anything run a more thorough check with:


sudo -u git -H bundle exec rake gitlab:check RAILS_ENV=production




If all items are green, then congratulations, the upgrade is complete!

## Things went south? Revert to previous version (7.10)

### 1. Revert the code to the previous version
Follow the [upgrade guide from 7.9 to 7.10](7.9-to-7.10.md), except for the database migration
(The backup is already migrated to the previous version)

### 2. Restore from the backup:

`bash
cd /home/git/gitlab
sudo -u git -H bundle exec rake gitlab:backup:restore RAILS_ENV=production
`
If you have more than one backup *.tar file(s) please add BACKUP=timestamp_of_backup to the command above.

[yaml]: https://gitlab.com/gitlab-org/gitlab-ce/blob/7-11-stable/config/gitlab.yml.example



            

          

      

      

    

  

    
      
          
            
  —
comments: false
—

# From 7.11 to 7.12

### 0. Double-check your Git version

This notice applies only to /usr/local/bin/git

If you compiled Git from source on your GitLab server then please double-check
that you are using a version that protects against CVE-2014-9390. For six
months after this vulnerability became known the GitLab installation guide
still contained instructions that would install the outdated, ‘vulnerable’ Git
version 2.1.2.

Run the following command to get your current Git version.

`
/usr/local/bin/git --version
`

If you see ‘No such file or directory’ then you did not install Git according
to the outdated instructions from the GitLab installation guide and you can go
to the next step ‘Stop server’ below.

If you see a version string then it should be v1.8.5.6, v1.9.5, v2.0.5, v2.1.4,
v2.2.1 or newer. You can use the [instructions in the GitLab source
installation
guide](https://gitlab.com/gitlab-org/gitlab-ce/blob/master/doc/install/installation.md#1-packages-dependencies)
to install a newer version of Git.

### 1. Stop server


sudo service gitlab stop




### 2. Backup

`bash
cd /home/git/gitlab
sudo -u git -H bundle exec rake gitlab:backup:create RAILS_ENV=production
`

### 3. Get latest code

`bash
sudo -u git -H git fetch --all
sudo -u git -H git checkout -- db/schema.rb # local changes will be restored automatically
`

For GitLab Community Edition:

`bash
sudo -u git -H git checkout 7-12-stable
`

OR

For GitLab Enterprise Edition:

`bash
sudo -u git -H git checkout 7-12-stable-ee
`

### 4. Update gitlab-shell

`bash
cd /home/git/gitlab-shell
sudo -u git -H git fetch
sudo -u git -H git checkout v2.6.3
`

### 5. Install libs, migrations, etc.

```bash
cd /home/git/gitlab

MySQL installations (note: the line below states ‘–without … postgres’)
sudo -u git -H bundle install –without development test postgres –deployment

PostgreSQL installations (note: the line below states ‘–without … mysql’)
sudo -u git -H bundle install –without development test mysql –deployment

Run database migrations
sudo -u git -H bundle exec rake db:migrate RAILS_ENV=production

Clean up assets and cache
sudo -u git -H bundle exec rake assets:clean assets:precompile cache:clear RAILS_ENV=production

Update init.d script
sudo cp lib/support/init.d/gitlab /etc/init.d/gitlab
```

### 6. Update config files

#### New configuration options for gitlab.yml

There are new configuration options available for [gitlab.yml][yaml]. View them with the command below and apply them to your current gitlab.yml.

`
git diff origin/7-11-stable:config/gitlab.yml.example origin/7-12-stable:config/gitlab.yml.example
````

7. Start application

sudo service gitlab start
sudo service nginx restart

8. Check application status

Check if GitLab and its environment are configured correctly:

sudo -u git -H bundle exec rake gitlab:env:info RAILS_ENV=production

To make sure you didn’t miss anything run a more thorough check with:

sudo -u git -H bundle exec rake gitlab:check RAILS_ENV=production

If all items are green, then congratulations, the upgrade is complete!

Things went south? Revert to previous version (7.11)

1. Revert the code to the previous version
Follow the [upgrade guide from 7.10 to 7.11](7.10-to-7.11.md), except for the database migration
(The backup is already migrated to the previous version)

2. Restore from the backup:

`bash
cd /home/git/gitlab
sudo -u git -H bundle exec rake gitlab:backup:restore RAILS_ENV=production
`
If you have more than one backup *.tar file(s) please add BACKUP=timestamp_of_backup to the command above.

[yaml]: https://gitlab.com/gitlab-org/gitlab-ce/blob/7-12-stable/config/gitlab.yml.example

 —
comments: false
—

From 7.12 to 7.13

0. Double-check your Git version

This notice applies only to /usr/local/bin/git

If you compiled Git from source on your GitLab server then please double-check
that you are using a version that protects against CVE-2014-9390. For six
months after this vulnerability became known the GitLab installation guide
still contained instructions that would install the outdated, ‘vulnerable’ Git
version 2.1.2.

Run the following command to get your current Git version.

`
/usr/local/bin/git --version
`

If you see ‘No such file or directory’ then you did not install Git according
to the outdated instructions from the GitLab installation guide and you can go
to the next step ‘Stop server’ below.

If you see a version string then it should be v1.8.5.6, v1.9.5, v2.0.5, v2.1.4,
v2.2.1 or newer. You can use the [instructions in the GitLab source
installation
guide](https://gitlab.com/gitlab-org/gitlab-ce/blob/master/doc/install/installation.md#1-packages-dependencies)
to install a newer version of Git.

1. Stop server

sudo service gitlab stop

2. Backup

`bash
cd /home/git/gitlab
sudo -u git -H bundle exec rake gitlab:backup:create RAILS_ENV=production
`

3. Get latest code

`bash
sudo -u git -H git fetch --all
sudo -u git -H git checkout -- db/schema.rb # local changes will be restored automatically
`

For GitLab Community Edition:

`bash
sudo -u git -H git checkout 7-13-stable
`

OR

For GitLab Enterprise Edition:

`bash
sudo -u git -H git checkout 7-13-stable-ee
`

4. Update gitlab-shell

`bash
cd /home/git/gitlab-shell
sudo -u git -H git fetch
sudo -u git -H git checkout v2.6.3
`

5. Install libs, migrations, etc.

```bash
cd /home/git/gitlab

# MySQL installations (note: the line below states ‘–without … postgres’)
sudo -u git -H bundle install –without development test postgres –deployment

# PostgreSQL installations (note: the line below states ‘–without … mysql’)
sudo -u git -H bundle install –without development test mysql –deployment

# Run database migrations
sudo -u git -H bundle exec rake db:migrate RAILS_ENV=production

# Clean up assets and cache
sudo -u git -H bundle exec rake assets:clean assets:precompile cache:clear RAILS_ENV=production

# Update init.d script
sudo cp lib/support/init.d/gitlab /etc/init.d/gitlab
```

6. Update config files

New configuration options for gitlab.yml

There are new configuration options available for [gitlab.yml][yaml]. View them with the command below and apply them to your current gitlab.yml.

`
git diff origin/7-12-stable:config/gitlab.yml.example origin/7-13-stable:config/gitlab.yml.example
````

### 7. Start application


sudo service gitlab start
sudo service nginx restart




### 8. Check application status

Check if GitLab and its environment are configured correctly:


sudo -u git -H bundle exec rake gitlab:env:info RAILS_ENV=production




To make sure you didn’t miss anything run a more thorough check with:


sudo -u git -H bundle exec rake gitlab:check RAILS_ENV=production




If all items are green, then congratulations, the upgrade is complete!

## Things went south? Revert to previous version (7.12)

### 1. Revert the code to the previous version
Follow the [upgrade guide from 7.11 to 7.12](7.11-to-7.12.md), except for the database migration
(The backup is already migrated to the previous version)

### 2. Restore from the backup:

`bash
cd /home/git/gitlab
sudo -u git -H bundle exec rake gitlab:backup:restore RAILS_ENV=production
`
If you have more than one backup *.tar file(s) please add BACKUP=timestamp_of_backup to the command above.

[yaml]: https://gitlab.com/gitlab-org/gitlab-ce/blob/7-13-stable/config/gitlab.yml.example



            

          

      

      

    

  

    
      
          
            
  —
comments: false
—

# From 7.13 to 7.14

### 0. Double-check your Git version

This notice applies only to /usr/local/bin/git

If you compiled Git from source on your GitLab server then please double-check
that you are using a version that protects against CVE-2014-9390. For six
months after this vulnerability became known the GitLab installation guide
still contained instructions that would install the outdated, ‘vulnerable’ Git
version 2.1.2.

Run the following command to get your current Git version.

`
/usr/local/bin/git --version
`

If you see ‘No such file or directory’ then you did not install Git according
to the outdated instructions from the GitLab installation guide and you can go
to the next step ‘Stop server’ below.

If you see a version string then it should be v1.8.5.6, v1.9.5, v2.0.5, v2.1.4,
v2.2.1 or newer. You can use the [instructions in the GitLab source
installation
guide](https://gitlab.com/gitlab-org/gitlab-ce/blob/master/doc/install/installation.md#1-packages-dependencies)
to install a newer version of Git.

### 1. Stop server


sudo service gitlab stop




### 2. Backup

`bash
cd /home/git/gitlab
sudo -u git -H bundle exec rake gitlab:backup:create RAILS_ENV=production
`

### 3. Get latest code

`bash
sudo -u git -H git fetch --all
sudo -u git -H git checkout -- db/schema.rb # local changes will be restored automatically
`

For GitLab Community Edition:

`bash
sudo -u git -H git checkout 7-14-stable
`

OR

For GitLab Enterprise Edition:

`bash
sudo -u git -H git checkout 7-14-stable-ee
`

### 4. Update gitlab-shell

`bash
cd /home/git/gitlab-shell
sudo -u git -H git fetch
sudo -u git -H git checkout v2.6.5
`

### 5. Install libs, migrations, etc.

```bash
cd /home/git/gitlab

MySQL installations (note: the line below states ‘–without … postgres’)
sudo -u git -H bundle install –without development test postgres –deployment

PostgreSQL installations (note: the line below states ‘–without … mysql’)
sudo -u git -H bundle install –without development test mysql –deployment

Run database migrations
sudo -u git -H bundle exec rake db:migrate RAILS_ENV=production

Clean up assets and cache
sudo -u git -H bundle exec rake assets:clean assets:precompile cache:clear RAILS_ENV=production

Update init.d script
sudo cp lib/support/init.d/gitlab /etc/init.d/gitlab
```

### 6. Update config files

#### New configuration options for gitlab.yml

There are new configuration options available for [gitlab.yml][yaml]. View them with the command below and apply them to your current gitlab.yml.

`
git diff origin/7-13-stable:config/gitlab.yml.example origin/7-14-stable:config/gitlab.yml.example
````

7. Start application

sudo service gitlab start
sudo service nginx restart

8. Check application status

Check if GitLab and its environment are configured correctly:

sudo -u git -H bundle exec rake gitlab:env:info RAILS_ENV=production

To make sure you didn’t miss anything run a more thorough check with:

sudo -u git -H bundle exec rake gitlab:check RAILS_ENV=production

If all items are green, then congratulations, the upgrade is complete!

Things went south? Revert to previous version (7.13)

1. Revert the code to the previous version
Follow the [upgrade guide from 7.12 to 7.13](7.12-to-7.13.md), except for the database migration
(The backup is already migrated to the previous version)

2. Restore from the backup:

`bash
cd /home/git/gitlab
sudo -u git -H bundle exec rake gitlab:backup:restore RAILS_ENV=production
`
If you have more than one backup *.tar file(s) please add BACKUP=timestamp_of_backup to the command above.

[yaml]: https://gitlab.com/gitlab-org/gitlab-ce/blob/7-14-stable/config/gitlab.yml.example

 —
comments: false
—

From 7.14 to 8.0

0. Double-check your Git version

This notice applies only to /usr/local/bin/git

If you compiled Git from source on your GitLab server then please double-check
that you are using a version that protects against CVE-2014-9390. For six
months after this vulnerability became known the GitLab installation guide
still contained instructions that would install the outdated, ‘vulnerable’ Git
version 2.1.2.

Run the following command to get your current Git version:

`sh
/usr/local/bin/git --version
`

If you see ‘No such file or directory’ then you did not install Git according
to the outdated instructions from the GitLab installation guide and you can go
to the next step ‘Stop server’ below.

If you see a version string then it should be v1.8.5.6, v1.9.5, v2.0.5, v2.1.4,
v2.2.1 or newer. You can use the [instructions in the GitLab source
installation
guide](https://gitlab.com/gitlab-org/gitlab-ce/blob/master/doc/install/installation.md#1-packages-dependencies)
to install a newer version of Git.

1. Stop server

sudo service gitlab stop

2. Backup

`bash
cd /home/git/gitlab
sudo -u git -H bundle exec rake gitlab:backup:create RAILS_ENV=production
`

3. Get latest code

`bash
sudo -u git -H git fetch --all
sudo -u git -H git checkout -- db/schema.rb # local changes will be restored automatically
`

For GitLab Community Edition:

`bash
sudo -u git -H git checkout 8-0-stable
`

OR

For GitLab Enterprise Edition:

`bash
sudo -u git -H git checkout 8-0-stable-ee
`

4. Update gitlab-shell

`bash
cd /home/git/gitlab-shell
sudo -u git -H git fetch
sudo -u git -H git checkout v2.6.5
`

5. Install gitlab-git-http-server

First we download Go 1.5 and install it into /usr/local/go:

```bash
curl –remote-name –progress https://storage.googleapis.com/golang/go1.5.linux-amd64.tar.gz
echo ‘5817fa4b2252afdb02e11e8b9dc1d9173ef3bd5a  go1.5.linux-amd64.tar.gz’ | shasum -c - && 


sudo tar -C /usr/local -xzf go1.5.linux-amd64.tar.gz




sudo ln -sf /usr/local/go/bin/{go,godoc,gofmt} /usr/local/bin/
rm go1.5.linux-amd64.tar.gz
```

Now we download gitlab-git-http-server and install it in /home/git/gitlab-git-http-server:

`bash
cd /home/git
sudo -u git -H git clone https://gitlab.com/gitlab-org/gitlab-git-http-server.git
cd gitlab-git-http-server
sudo -u git -H git checkout 0.2.14
sudo -u git -H make
`

Make sure your unicorn.rb file contains a ‘listen’ line for
‘127.0.0.1:8080’ and that this line is not commented out.

```
cd /home/git/gitlab
grep ^listen config/unicorn.rb

# If there is no ‘listen’ line for 127.0.0.1:8080, add it:
sudo -u git tee -a config/unicorn.rb <<EOF
listen “127.0.0.1:8080”, :tcp_nopush => true
EOF
```

If your Git repositories are in a directory other than /home/git/repositories,
you need to tell gitlab-git-http-server about it via /etc/default/gitlab.
See lib/support/init.d/gitlab.default.example for the options.

6. Copy secrets

The secrets.yml file is used to store keys to encrypt sessions and encrypt secure variables.
When you run migrations make sure to store it someplace safe.
Don’t store it in the same place as your database backups,
otherwise your secrets are exposed if one of your backups is compromised.

`
cd /home/git/gitlab
sudo -u git -H cp config/secrets.yml.example config/secrets.yml
sudo -u git -H chmod 0600 config/secrets.yml
`

7. Install libs, migrations, etc.

```bash
cd /home/git/gitlab

# MySQL installations (note: the line below states ‘–without postgres’)
sudo -u git -H bundle install –without postgres development test –deployment

# PostgreSQL installations (note: the line below states ‘–without mysql’)
sudo -u git -H bundle install –without mysql development test –deployment

# Run database migrations
sudo -u git -H bundle exec rake db:migrate RAILS_ENV=production

# Clean up assets and cache
sudo -u git -H bundle exec rake assets:clean assets:precompile cache:clear RAILS_ENV=production

# Update init.d script
sudo cp lib/support/init.d/gitlab /etc/init.d/gitlab
```

8. Update config files

New configuration options for gitlab.yml

There are new configuration options available for [gitlab.yml][yaml]. View them with the command below and apply them manually to your current gitlab.yml:

`sh
git diff origin/7-14-stable:config/gitlab.yml.example origin/8-0-stable:config/gitlab.yml.example
`

The new options include configuration of GitLab CI that are now being part of GitLab CE and EE.

New Nginx configuration

Because of the new gitlab-git-http-server you need to update your Nginx
configuration. If you skip this step ‘git clone’ and ‘git push’ over HTTP(S)
will stop working.

View changes between the previous recommended Nginx configuration and the
current one:

```sh
# For HTTPS configurations
git diff origin/7-14-stable:lib/support/nginx/gitlab-ssl origin/8-0-stable:lib/support/nginx/gitlab-ssl

# For HTTP configurations
git diff origin/7-14-stable:lib/support/nginx/gitlab origin/8-0-stable:lib/support/nginx/gitlab
```

If you are using Apache instead of NGINX please see the updated [Apache templates](https://gitlab.com/gitlab-org/gitlab-recipes/tree/master/web-server/apache).
Also note that because Apache does not support upstreams behind Unix sockets you will need to let gitlab-git-http-server listen on a TCP port. You can do this via [/etc/default/gitlab](https://gitlab.com/gitlab-org/gitlab-ce/blob/8-0-stable/lib/support/init.d/gitlab.default.example#L34).

9. Migrate GitLab CI to GitLab CE/EE

Now, GitLab CE and EE has CI integrated. However, migrations don’t happen automatically and you need to do it manually.
Please follow the following guide [to migrate](../migrate_ci_to_ce/README.md) your GitLab CI instance to GitLab CE/EE.

10. Use Redis v2.4.0+

Previous versions of GitLab allowed Redis versions >= 2.0 to be used, but
Sidekiq jobs could fail due to lack of support for the SREM command. GitLab
8.0 now checks that Redis >= 2.4.0 is used. You can check your Redis version
with the following command:

redis-cli info | grep redis_version

11. Start application

sudo service gitlab start
sudo service nginx restart

12. Check application status

Check if GitLab and its environment are configured correctly:

sudo -u git -H bundle exec rake gitlab:env:info RAILS_ENV=production

To make sure you didn’t miss anything run a more thorough check:

sudo -u git -H bundle exec rake gitlab:check RAILS_ENV=production

If all items are green, then congratulations, the upgrade is complete!

Things went south? Revert to previous version (7.14)

1. Revert the code to the previous version

Follow the [upgrade guide from 7.13 to 7.14](7.13-to-7.14.md), except for the database migration
(The backup is already migrated to the previous version)

2. Restore from the backup

`bash
cd /home/git/gitlab
sudo -u git -H bundle exec rake gitlab:backup:restore RAILS_ENV=production
`

If you have more than one backup *.tar file(s) please add BACKUP=timestamp_of_backup to the command above.

Troubleshooting

“You appear to have cloned an empty repository.”

If you see this message when attempting to clone a repository hosted by GitLab,
this is likely due to an outdated Nginx or Apache configuration, or a missing or
misconfigured gitlab-git-http-server instance. Double-check that you correctly
completed [Step 5](#5-install-gitlab-git-http-server) to install the daemon and
[Step 8](#new-nginx-configuration) to reconfigure Nginx.

[yaml]: https://gitlab.com/gitlab-org/gitlab-ce/blob/8-0-stable/config/gitlab.yml.example

 —
comments: false
—

From 7.2 to 7.3
Make sure you view this [upgrade guide from the `master` branch](https://gitlab.com/gitlab-org/gitlab-ce/tree/master/doc/update/7.2-to-7.3.md) for the most up to date instructions.

0. Backup

`bash
cd /home/git/gitlab
sudo -u git -H bundle exec rake gitlab:backup:create RAILS_ENV=production
`

1. Stop server

`bash
sudo service gitlab stop
`

2. Get latest code

`bash
cd /home/git/gitlab
sudo -u git -H git fetch --all
sudo -u git -H git checkout -- db/schema.rb # local changes will be restored automatically
`

For GitLab Community Edition:

`bash
sudo -u git -H git checkout 7-3-stable
`

OR

For GitLab Enterprise Edition:

`bash
sudo -u git -H git checkout 7-3-stable-ee
`

3. Update gitlab-shell

`bash
cd /home/git/gitlab-shell
sudo -u git -H git fetch
sudo -u git -H git checkout v2.0.1
`

4. Install libs, migrations, etc.

```bash
cd /home/git/gitlab

# MySQL installations (note: the line below states ‘–without … postgres’)
sudo -u git -H bundle install –without development test postgres –deployment

# PostgreSQL installations (note: the line below states ‘–without … mysql’)
sudo -u git -H bundle install –without development test mysql –deployment

# Run database migrations
sudo -u git -H bundle exec rake db:migrate RAILS_ENV=production

# Clean up assets and cache
sudo -u git -H bundle exec rake assets:clean assets:precompile cache:clear RAILS_ENV=production

# Update init.d script
sudo cp lib/support/init.d/gitlab /etc/init.d/gitlab
```

5. Configure Redis to use sockets

Configure redis to use sockets
sudo cp /etc/redis/redis.conf /etc/redis/redis.conf.orig
Disable Redis listening on TCP by setting ‘port’ to 0
sed ‘s/^port .*/port 0/’ /etc/redis/redis.conf.orig | sudo tee /etc/redis/redis.conf
Enable Redis socket for default Debian / Ubuntu path
echo ‘unixsocket /var/run/redis/redis.sock’ | sudo tee -a /etc/redis/redis.conf
Be sure redis group can write to the socket, enable only if supported (>= redis 2.4.0).
sudo sed -i ‘/# unixsocketperm/ s/^# unixsocketperm.*/unixsocketperm 0775/’ /etc/redis/redis.conf
Activate the changes to redis.conf
sudo service redis-server restart
Add git to the redis group
sudo usermod -aG redis git

Configure Redis connection settings
sudo -u git -H cp config/resque.yml.example config/resque.yml
Change the Redis socket path if you are not using the default Debian / Ubuntu configuration
sudo -u git -H editor config/resque.yml

Configure gitlab-shell to use Redis sockets
sudo -u git -H sed -i ‘s|^ # socket.*| socket: /var/run/redis/redis.sock|’ /home/git/gitlab-shell/config.yml

6. Update config files

New configuration options for gitlab.yml

There are new configuration options available for gitlab.yml. View them with the command below and apply them to your current gitlab.yml.

`
git diff origin/7-2-stable:config/gitlab.yml.example origin/7-3-stable:config/gitlab.yml.example
`

`
Use the default Unicorn socket backlog value of 1024
sudo -u git -H sed -i 's/:backlog => 64/:backlog => 1024/' config/unicorn.rb
`

	HTTP setups: Make /etc/nginx/sites-available/nginx the same as https://gitlab.com/gitlab-org/gitlab-ce/blob/7-3-stable/lib/support/nginx/gitlab but with your settings.

	HTTPS setups: Make /etc/nginx/sites-available/nginx-ssl the same as https://gitlab.com/gitlab-org/gitlab-ce/blob/7-3-stable/lib/support/nginx/gitlab-ssl but with your setting

7. Start application

sudo service gitlab start
sudo service nginx restart

8. Check application status

Check if GitLab and its environment are configured correctly:

sudo -u git -H bundle exec rake gitlab:env:info RAILS_ENV=production

To make sure you didn’t miss anything run a more thorough check with:

sudo -u git -H bundle exec rake gitlab:check RAILS_ENV=production

If all items are green, then congratulations upgrade is complete!

9. Update OmniAuth configuration

When using Google omniauth login, changes of the Google account required.
Ensure that Contacts API and the Google+ API are enabled in the [Google Developers Console](https://console.developers.google.com/).
More details can be found at the [integration documentation](../integration/google.md).

Things went south? Revert to previous version (7.2)

1. Revert the code to the previous version
Follow the [upgrade guide from 7.1 to 7.2](7.1-to-7.2.md), except for the database migration
(The backup is already migrated to the previous version)

2. Restore from the backup:

`bash
cd /home/git/gitlab
sudo -u git -H bundle exec rake gitlab:backup:restore RAILS_ENV=production
`
If you have more than one backup *.tar file(s) please add BACKUP=timestamp_of_backup to the command above.

[yaml]: https://gitlab.com/gitlab-org/gitlab-ce/blob/7-3-stable/config/gitlab.yml.example

 —
comments: false
—

From 7.3 to 7.4
Make sure you view this [upgrade guide from the `master` branch](https://gitlab.com/gitlab-org/gitlab-ce/tree/master/doc/update/7.3-to-7.4.md) for the most up to date instructions.

0. Stop server

sudo service gitlab stop

1. Backup

`bash
cd /home/git/gitlab
sudo -u git -H bundle exec rake gitlab:backup:create RAILS_ENV=production
`

2. Get latest code

`bash
sudo -u git -H git fetch --all
sudo -u git -H git checkout -- db/schema.rb # local changes will be restored automatically
`

For GitLab Community Edition:

`bash
sudo -u git -H git checkout 7-4-stable
`

OR

For GitLab Enterprise Edition:

`bash
sudo -u git -H git checkout 7-4-stable-ee
`

3. Install libs, migrations, etc.

```bash
# MySQL installations (note: the line below states ‘–without … postgres’)
sudo -u git -H bundle install –without development test postgres –deployment

# PostgreSQL installations (note: the line below states ‘–without … mysql’)
sudo -u git -H bundle install –without development test mysql –deployment

# Run database migrations
sudo -u git -H bundle exec rake db:migrate RAILS_ENV=production

# Clean up assets and cache
sudo -u git -H bundle exec rake assets:clean assets:precompile cache:clear RAILS_ENV=production

# Update init.d script
sudo cp lib/support/init.d/gitlab /etc/init.d/gitlab
```

4. Update config files

New configuration options for gitlab.yml

There are new configuration options available for gitlab.yml. View them with the command below and apply them to your current gitlab.yml.

`
git diff origin/7-3-stable:config/gitlab.yml.example origin/7-4-stable:config/gitlab.yml.example
`

Change timeout for unicorn

`
set timeout to 60
sudo -u git -H editor config/unicorn.rb
`

Change Nginx HTTPS settings

	HTTPS setups: Make /etc/nginx/sites-available/gitlab-ssl the same as https://gitlab.com/gitlab-org/gitlab-ce/blob/7-4-stable/lib/support/nginx/gitlab-ssl but with your setting

MySQL Databases: Update database.yml config file

	Add collation: utf8_general_ci to config/database.yml as seen in [config/database.yml.mysql][mysql]:

`
sudo -u git -H editor config/database.yml
`

5. Start application

sudo service gitlab start
sudo service nginx restart

6. Check application status

Check if GitLab and its environment are configured correctly:

sudo -u git -H bundle exec rake gitlab:env:info RAILS_ENV=production

To make sure you didn’t miss anything run a more thorough check with:

sudo -u git -H bundle exec rake gitlab:check RAILS_ENV=production

If all items are green, then congratulations upgrade is complete!

7. Optional optimizations for GitLab setups with MySQL databases

Only applies if running MySQL database created with GitLab 6.7 or earlier. If you are not experiencing any issues you may not need the following instructions however following them will bring your database in line with the latest recommended installation configuration and help avoid future issues. Be sure to follow these directions exactly. These directions should be safe for any MySQL instance but to be sure make a current MySQL database backup beforehand.

```
# Stop GitLab
sudo service gitlab stop

# Secure your MySQL installation (added in GitLab 6.2)
sudo mysql_secure_installation

# Login to MySQL
mysql -u root -p

# do not type the ‘mysql>’, this is part of the prompt

# Convert all tables to use the InnoDB storage engine (added in GitLab 6.8)
SELECT CONCAT(‘ALTER TABLE gitlabhq_production.’, table_name, ‘ ENGINE=InnoDB;’) AS ‘Copy & run these SQL statements:’ FROM information_schema.tables WHERE table_schema = ‘gitlabhq_production’ AND ENGINE <> ‘InnoDB’ AND TABLE_TYPE = ‘BASE TABLE’;

# If previous query returned results, copy & run all shown SQL statements

# Convert all tables to correct character set
SET foreign_key_checks = 0;
SELECT CONCAT(‘ALTER TABLE gitlabhq_production.’, table_name, ‘ CONVERT TO CHARACTER SET utf8 COLLATE utf8_general_ci;’) AS ‘Copy & run these SQL statements:’ FROM information_schema.tables WHERE table_schema = ‘gitlabhq_production’ AND TABLE_COLLATION <> ‘utf8_unicode_ci’ AND TABLE_TYPE = ‘BASE TABLE’;

# If previous query returned results, copy & run all shown SQL statements

# turn foreign key checks back on
SET foreign_key_checks = 1;

# Find MySQL users
mysql> SELECT user FROM mysql.user WHERE user LIKE ‘%git%’;

# If git user exists and gitlab user does not exist
# you are done with the database cleanup tasks
mysql> q

# If both users exist skip to Delete gitlab user

# Create new user for GitLab (changed in GitLab 6.4)
# change $password in the command below to a real password you pick
mysql> CREATE USER ‘git’@’localhost’ IDENTIFIED BY ‘$password’;

# Grant the git user necessary permissions on the database
mysql> GRANT SELECT, INSERT, UPDATE, DELETE, CREATE, DROP, INDEX, ALTER, LOCK TABLES ON gitlabhq_production.* TO ‘git’@’localhost’;

# Delete the old gitlab user
mysql> DELETE FROM mysql.user WHERE user=’gitlab’;

# Quit the database session
mysql> q

# Try connecting to the new database with the new user
sudo -u git -H mysql -u git -p -D gitlabhq_production

# Type the password you replaced $password with earlier

# You should now see a ‘mysql>’ prompt

# Quit the database session
mysql> q

# Update database configuration details
# See config/database.yml.mysql for latest recommended configuration details
#   Remove the reaping_frequency setting line if it exists (removed in GitLab 6.8)
#   Set production -> pool: 10 (updated in GitLab 5.3)
#   Set production -> username: git
#   Set production -> password: the password your replaced $password with earlier
sudo -u git -H editor /home/git/gitlab/config/database.yml

# Start GitLab
sudo service gitlab start
sudo service nginx restart

# Run thorough check
sudo -u git -H bundle exec rake gitlab:check RAILS_ENV=production
```

Things went south? Revert to previous version (7.3)

1. Revert the code to the previous version
Follow the [upgrade guide from 7.2 to 7.3](7.2-to-7.3.md), except for the database migration
(The backup is already migrated to the previous version)

2. Restore from the backup:

`bash
cd /home/git/gitlab
sudo -u git -H bundle exec rake gitlab:backup:restore RAILS_ENV=production
`
If you have more than one backup *.tar file(s) please add BACKUP=timestamp_of_backup to the command above.

[yaml]: https://gitlab.com/gitlab-org/gitlab-ce/blob/7-4-stable/config/gitlab.yml.example
[mysql]: https://gitlab.com/gitlab-org/gitlab-ce/blob/7-4-stable/config/database.yml.mysql

 —
comments: false
—

From 7.4 to 7.5

0. Stop server

sudo service gitlab stop

1. Backup

`bash
cd /home/git/gitlab
sudo -u git -H bundle exec rake gitlab:backup:create RAILS_ENV=production
`

2. Get latest code

`bash
sudo -u git -H git fetch --all
sudo -u git -H git checkout -- db/schema.rb # local changes will be restored automatically
`

For GitLab Community Edition:

`bash
sudo -u git -H git checkout 7-5-stable
`

OR

For GitLab Enterprise Edition:

`bash
sudo -u git -H git checkout 7-5-stable-ee
`

3. Update gitlab-shell

`bash
cd /home/git/gitlab-shell
sudo -u git -H git fetch
sudo -u git -H git checkout v2.2.0
`

4. Install libs, migrations, etc.

```bash
cd /home/git/gitlab

# MySQL installations (note: the line below states ‘–without … postgres’)
sudo -u git -H bundle install –without development test postgres –deployment

# PostgreSQL installations (note: the line below states ‘–without … mysql’)
sudo -u git -H bundle install –without development test mysql –deployment

# Run database migrations
sudo -u git -H bundle exec rake db:migrate RAILS_ENV=production

# Clean up assets and cache
sudo -u git -H bundle exec rake assets:clean assets:precompile cache:clear RAILS_ENV=production

# Update init.d script
sudo cp lib/support/init.d/gitlab /etc/init.d/gitlab
```

5. Update config files

New configuration options for gitlab.yml

There are new configuration options available for gitlab.yml. View them with the command below and apply them to your current gitlab.yml.

`
git diff origin/7-4-stable:config/gitlab.yml.example origin/7-5-stable:config/gitlab.yml.example
`

Change Nginx settings

	HTTP setups: Make /etc/nginx/sites-available/gitlab the same as [lib/support/nginx/gitlab][nginx] but with your settings

	HTTPS setups: Make /etc/nginx/sites-available/gitlab-ssl the same as [lib/support/nginx/gitlab-ssl][nginx-ssl] but with your setting

6. Start application

sudo service gitlab start
sudo service nginx restart

7. Check application status

Check if GitLab and its environment are configured correctly:

sudo -u git -H bundle exec rake gitlab:env:info RAILS_ENV=production

To make sure you didn’t miss anything run a more thorough check with:

sudo -u git -H bundle exec rake gitlab:check RAILS_ENV=production

If all items are green, then congratulations upgrade is complete!

Things went south? Revert to previous version (7.4)

1. Revert the code to the previous version
Follow the [upgrade guide from 7.3 to 7.4](7.3-to-7.4.md), except for the database migration
(The backup is already migrated to the previous version)

2. Restore from the backup:

`bash
cd /home/git/gitlab
sudo -u git -H bundle exec rake gitlab:backup:restore RAILS_ENV=production
`
If you have more than one backup *.tar file(s) please add BACKUP=timestamp_of_backup to the command above.

[yaml]: https://gitlab.com/gitlab-org/gitlab-ce/blob/7-5-stable/config/gitlab.yml.example
[nginx]: https://gitlab.com/gitlab-org/gitlab-ce/blob/7-5-stable/lib/support/nginx/gitlab
[nginx-ssl]: https://gitlab.com/gitlab-org/gitlab-ce/blob/7-5-stable/lib/support/nginx/gitlab-ssl

 —
comments: false
—

From 7.5 to 7.6

0. Stop server

sudo service gitlab stop

1. Backup

`bash
cd /home/git/gitlab
sudo -u git -H bundle exec rake gitlab:backup:create RAILS_ENV=production
`

2. Get latest code

`bash
sudo -u git -H git fetch --all
sudo -u git -H git checkout -- db/schema.rb # local changes will be restored automatically
`

For GitLab Community Edition:

`bash
sudo -u git -H git checkout 7-6-stable
`

OR

For GitLab Enterprise Edition:

`bash
sudo -u git -H git checkout 7-6-stable-ee
`

3. Update gitlab-shell

`bash
cd /home/git/gitlab-shell
sudo -u git -H git fetch
sudo -u git -H git checkout v2.4.0
`

4. Install libs, migrations, etc.

```bash
sudo apt-get install libkrb5-dev

cd /home/git/gitlab

# MySQL installations (note: the line below states ‘–without … postgres’)
sudo -u git -H bundle install –without development test postgres –deployment

# PostgreSQL installations (note: the line below states ‘–without … mysql’)
sudo -u git -H bundle install –without development test mysql –deployment

# Run database migrations
sudo -u git -H bundle exec rake db:migrate RAILS_ENV=production

# Clean up assets and cache
sudo -u git -H bundle exec rake assets:clean assets:precompile cache:clear RAILS_ENV=production

# Update init.d script
sudo cp lib/support/init.d/gitlab /etc/init.d/gitlab
```

5. Update config files

New configuration options for gitlab.yml

There are new configuration options available for [gitlab.yml][yaml]. View them with the command below and apply them to your current gitlab.yml.

`
git diff origin/7-5-stable:config/gitlab.yml.example origin/7-6-stable:config/gitlab.yml.example
`

Change Nginx settings

	HTTP setups: Make /etc/nginx/sites-available/gitlab the same as [lib/support/nginx/gitlab][nginx] but with your settings

	HTTPS setups: Make /etc/nginx/sites-available/gitlab-ssl the same as [lib/support/nginx/gitlab-ssl][nginx-ssl] but with your setting

Setup time zone (optional)

Consider setting the time zone in gitlab.yml otherwise GitLab will default to UTC. If you set a time zone previously in [application.rb][app] (unlikely), unset it.

6. Start application

sudo service gitlab start
sudo service nginx restart

7. Check application status

Check if GitLab and its environment are configured correctly:

sudo -u git -H bundle exec rake gitlab:env:info RAILS_ENV=production

To make sure you didn’t miss anything run a more thorough check with:

sudo -u git -H bundle exec rake gitlab:check RAILS_ENV=production

If all items are green, then congratulations upgrade is complete!

Things went south? Revert to previous version (7.5)

1. Revert the code to the previous version
Follow the [upgrade guide from 7.4 to 7.5](7.4-to-7.5.md), except for the database migration
(The backup is already migrated to the previous version)

2. Restore from the backup:

`bash
cd /home/git/gitlab
sudo -u git -H bundle exec rake gitlab:backup:restore RAILS_ENV=production
`
If you have more than one backup *.tar file(s) please add BACKUP=timestamp_of_backup to the command above.

[yaml]: https://gitlab.com/gitlab-org/gitlab-ce/blob/7-6-stable/config/gitlab.yml.example
[app]: https://gitlab.com/gitlab-org/gitlab-ce/blob/7-6-stable/config/application.rb
[nginx]: https://gitlab.com/gitlab-org/gitlab-ce/blob/7-6-stable/lib/support/nginx/gitlab
[nginx-ssl]: https://gitlab.com/gitlab-org/gitlab-ce/blob/7-6-stable/lib/support/nginx/gitlab-ssl

 —
comments: false
—

From 7.6 to 7.7

0. Stop server

sudo service gitlab stop

1. Backup

`bash
cd /home/git/gitlab
sudo -u git -H bundle exec rake gitlab:backup:create RAILS_ENV=production
`

2. Get latest code

`bash
sudo -u git -H git fetch --all
sudo -u git -H git checkout -- db/schema.rb # local changes will be restored automatically
`

For GitLab Community Edition:

`bash
sudo -u git -H git checkout 7-7-stable
`

OR

For GitLab Enterprise Edition:

`bash
sudo -u git -H git checkout 7-7-stable-ee
`

3. Update gitlab-shell

`bash
cd /home/git/gitlab-shell
sudo -u git -H git fetch
sudo -u git -H git checkout v2.4.2
`

4. Install libs, migrations, etc.

```bash
sudo apt-get install libkrb5-dev

cd /home/git/gitlab

# MySQL installations (note: the line below states ‘–without … postgres’)
sudo -u git -H bundle install –without development test postgres –deployment

# PostgreSQL installations (note: the line below states ‘–without … mysql’)
sudo -u git -H bundle install –without development test mysql –deployment

# Run database migrations
sudo -u git -H bundle exec rake db:migrate RAILS_ENV=production

# Clean up assets and cache
sudo -u git -H bundle exec rake assets:clean assets:precompile cache:clear RAILS_ENV=production

# Update init.d script
sudo cp lib/support/init.d/gitlab /etc/init.d/gitlab
```

5. Update config files

New configuration options for gitlab.yml

There are new configuration options available for [gitlab.yml][yaml]. View them with the command below and apply them to your current gitlab.yml.

`
git diff origin/7-6-stable:config/gitlab.yml.example origin/7-7-stable:config/gitlab.yml.example
`

Change Nginx settings

	HTTP setups: Make /etc/nginx/sites-available/gitlab the same as [lib/support/nginx/gitlab][nginx] but with your settings

	HTTPS setups: Make /etc/nginx/sites-available/gitlab-ssl the same as [lib/support/nginx/gitlab-ssl][nginx-ssl] but with your setting

Setup time zone (optional)

Consider setting the time zone in gitlab.yml otherwise GitLab will default to UTC. If you set a time zone previously in [application.rb][app] (unlikely), unset it.

6. Start application

sudo service gitlab start
sudo service nginx restart

7. Check application status

Check if GitLab and its environment are configured correctly:

sudo -u git -H bundle exec rake gitlab:env:info RAILS_ENV=production

To make sure you didn’t miss anything run a more thorough check with:

sudo -u git -H bundle exec rake gitlab:check RAILS_ENV=production

If all items are green, then congratulations upgrade is complete!

8. GitHub settings (if applicable)

If you are using GitHub as an OAuth provider for authentication, you should change the callback URL so that it
only contains a root URL (ex. https://gitlab.example.com/)

Things went south? Revert to previous version (7.6)

1. Revert the code to the previous version
Follow the [upgrade guide from 7.5 to 7.6](7.5-to-7.6.md), except for the database migration
(The backup is already migrated to the previous version)

2. Restore from the backup:

`bash
cd /home/git/gitlab
sudo -u git -H bundle exec rake gitlab:backup:restore RAILS_ENV=production
`
If you have more than one backup *.tar file(s) please add BACKUP=timestamp_of_backup to the command above.

[yaml]: https://gitlab.com/gitlab-org/gitlab-ce/blob/7-7-stable/config/gitlab.yml.example
[app]: https://gitlab.com/gitlab-org/gitlab-ce/blob/7-7-stable/config/application.rb
[nginx]: https://gitlab.com/gitlab-org/gitlab-ce/blob/7-7-stable/lib/support/nginx/gitlab
[nginx-ssl]: https://gitlab.com/gitlab-org/gitlab-ce/blob/7-7-stable/lib/support/nginx/gitlab-ssl

 —
comments: false
—

From 7.7 to 7.8

0. Stop server

sudo service gitlab stop

1. Backup

`bash
cd /home/git/gitlab
sudo -u git -H bundle exec rake gitlab:backup:create RAILS_ENV=production
`

2. Get latest code

`bash
sudo -u git -H git fetch --all
sudo -u git -H git checkout -- db/schema.rb # local changes will be restored automatically
`

For GitLab Community Edition:

`bash
sudo -u git -H git checkout 7-8-stable
`

OR

For GitLab Enterprise Edition:

`bash
sudo -u git -H git checkout 7-8-stable-ee
`

3. Update gitlab-shell

`bash
cd /home/git/gitlab-shell
sudo -u git -H git fetch
sudo -u git -H git checkout v2.5.4
`

4. Install libs, migrations, etc.

```bash
sudo apt-get install libkrb5-dev

cd /home/git/gitlab

# MySQL installations (note: the line below states ‘–without … postgres’)
sudo -u git -H bundle install –without development test postgres –deployment

# PostgreSQL installations (note: the line below states ‘–without … mysql’)
sudo -u git -H bundle install –without development test mysql –deployment

# Run database migrations
sudo -u git -H bundle exec rake db:migrate RAILS_ENV=production

# Clean up assets and cache
sudo -u git -H bundle exec rake assets:clean assets:precompile cache:clear RAILS_ENV=production

# Update init.d script
sudo cp lib/support/init.d/gitlab /etc/init.d/gitlab
```

5. Update config files

New configuration options for gitlab.yml

There are new configuration options available for [gitlab.yml][yaml]. View them with the command below and apply them to your current gitlab.yml.

`
git diff origin/7-7-stable:config/gitlab.yml.example origin/7-8-stable:config/gitlab.yml.example
`

Change Nginx settings

	HTTP setups: Make /etc/nginx/sites-available/gitlab the same as [lib/support/nginx/gitlab][nginx] but with your settings.

	HTTPS setups: Make /etc/nginx/sites-available/gitlab-ssl the same as [lib/support/nginx/gitlab-ssl][nginx-ssl] but with your settings.

	A new location /uploads/ section has been added that needs to have the same content as the existing location @gitlab section.

Setup time zone (optional)

Consider setting the time zone in gitlab.yml otherwise GitLab will default to UTC. If you set a time zone previously in [application.rb][app] (unlikely), unset it.

6. Start application

sudo service gitlab start
sudo service nginx restart

7. Check application status

Check if GitLab and its environment are configured correctly:

sudo -u git -H bundle exec rake gitlab:env:info RAILS_ENV=production

To make sure you didn’t miss anything run a more thorough check with:

sudo -u git -H bundle exec rake gitlab:check RAILS_ENV=production

If all items are green, then congratulations upgrade is complete!

8. GitHub settings (if applicable)

If you are using GitHub as an OAuth provider for authentication, you should change the callback URL so that it
only contains a root URL (ex. https://gitlab.example.com/)

Things went south? Revert to previous version (7.7)

1. Revert the code to the previous version
Follow the [upgrade guide from 7.6 to 7.7](7.6-to-7.7.md), except for the database migration
(The backup is already migrated to the previous version)

2. Restore from the backup:

`bash
cd /home/git/gitlab
sudo -u git -H bundle exec rake gitlab:backup:restore RAILS_ENV=production
`
If you have more than one backup *.tar file(s) please add BACKUP=timestamp_of_backup to the command above.

[yaml]: https://gitlab.com/gitlab-org/gitlab-ce/blob/7-8-stable/config/gitlab.yml.example
[app]: https://gitlab.com/gitlab-org/gitlab-ce/blob/7-8-stable/config/application.rb
[nginx]: https://gitlab.com/gitlab-org/gitlab-ce/blob/7-8-stable/lib/support/nginx/gitlab
[nginx-ssl]: https://gitlab.com/gitlab-org/gitlab-ce/blob/7-8-stable/lib/support/nginx/gitlab-ssl

 —
comments: false
—

From 7.8 to 7.9

0. Stop server

sudo service gitlab stop

1. Backup

`bash
cd /home/git/gitlab
sudo -u git -H bundle exec rake gitlab:backup:create RAILS_ENV=production
`

2. Get latest code

`bash
sudo -u git -H git fetch --all
sudo -u git -H git checkout -- db/schema.rb # local changes will be restored automatically
`

For GitLab Community Edition:

`bash
sudo -u git -H git checkout 7-9-stable
`

OR

For GitLab Enterprise Edition:

`bash
sudo -u git -H git checkout 7-9-stable-ee
`

3. Update gitlab-shell

`bash
cd /home/git/gitlab-shell
sudo -u git -H git fetch
sudo -u git -H git checkout v2.6.0
`

4. Install libs, migrations, etc.

Please refer to the [Node.js setup documentation](https://github.com/joyent/node/wiki/installing-node.js-via-package-manager#debian-and-ubuntu-based-linux-distributions) if you aren’t running default GitLab server setup.

```bash
sudo apt-get install nodejs

cd /home/git/gitlab

# MySQL installations (note: the line below states ‘–without … postgres’)
sudo -u git -H bundle install –without development test postgres –deployment

# PostgreSQL installations (note: the line below states ‘–without … mysql’)
sudo -u git -H bundle install –without development test mysql –deployment

# Run database migrations
sudo -u git -H bundle exec rake db:migrate RAILS_ENV=production

# Clean up assets and cache
sudo -u git -H bundle exec rake assets:clean assets:precompile cache:clear RAILS_ENV=production

# Update init.d script
sudo cp lib/support/init.d/gitlab /etc/init.d/gitlab
```

5. Update config files

New configuration options for gitlab.yml

There are new configuration options available for [gitlab.yml][yaml]. View them with the command below and apply them to your current gitlab.yml.

`
git diff origin/7-8-stable:config/gitlab.yml.example origin/7-9-stable:config/gitlab.yml.example
`

Change Nginx settings

	HTTP setups: Make /etc/nginx/sites-available/gitlab the same as [lib/support/nginx/gitlab][nginx] but with your settings.

	HTTPS setups: Make /etc/nginx/sites-available/gitlab-ssl the same as [lib/support/nginx/gitlab-ssl][nginx-ssl] but with your settings.

	A new location /uploads/ section has been added that needs to have the same content as the existing location @gitlab section.

Setup time zone (optional)

Consider setting the time zone in gitlab.yml otherwise GitLab will default to UTC. If you set a time zone previously in [application.rb][app] (unlikely), unset it.

6. Start application

sudo service gitlab start
sudo service nginx restart

7. Check application status

Check if GitLab and its environment are configured correctly:

sudo -u git -H bundle exec rake gitlab:env:info RAILS_ENV=production

To make sure you didn’t miss anything run a more thorough check with:

sudo -u git -H bundle exec rake gitlab:check RAILS_ENV=production

If all items are green, then congratulations upgrade is complete!

8. GitHub settings (if applicable)

If you are using GitHub as an OAuth provider for authentication, you should change the callback URL so that it
only contains a root URL (ex. https://gitlab.example.com/)

Things went south? Revert to previous version (7.8)

1. Revert the code to the previous version
Follow the [upgrade guide from 7.7 to 7.8](7.7-to-7.8.md), except for the database migration
(The backup is already migrated to the previous version)

2. Restore from the backup:

`bash
cd /home/git/gitlab
sudo -u git -H bundle exec rake gitlab:backup:restore RAILS_ENV=production
`
If you have more than one backup *.tar file(s) please add BACKUP=timestamp_of_backup to the command above.

[yaml]: https://gitlab.com/gitlab-org/gitlab-ce/blob/7-9-stable/config/gitlab.yml.example
[app]: https://gitlab.com/gitlab-org/gitlab-ce/blob/7-9-stable/config/application.rb
[nginx]: https://gitlab.com/gitlab-org/gitlab-ce/blob/7-9-stable/lib/support/nginx/gitlab
[nginx-ssl]: https://gitlab.com/gitlab-org/gitlab-ce/blob/7-9-stable/lib/support/nginx/gitlab-ssl

 —
comments: false
—

From 7.9 to 7.10

0. Stop server

sudo service gitlab stop

1. Backup

`bash
cd /home/git/gitlab
sudo -u git -H bundle exec rake gitlab:backup:create RAILS_ENV=production
`

2. Get latest code

`bash
sudo -u git -H git fetch --all
sudo -u git -H git checkout -- db/schema.rb # local changes will be restored automatically
`

For GitLab Community Edition:

`bash
sudo -u git -H git checkout 7-10-stable
`

OR

For GitLab Enterprise Edition:

`bash
sudo -u git -H git checkout 7-10-stable-ee
`

3. Update gitlab-shell

`bash
cd /home/git/gitlab-shell
sudo -u git -H git fetch
sudo -u git -H git checkout v2.6.2
`

4. Install libs, migrations, etc.

```bash
cd /home/git/gitlab

# MySQL installations (note: the line below states ‘–without … postgres’)
sudo -u git -H bundle install –without development test postgres –deployment

# PostgreSQL installations (note: the line below states ‘–without … mysql’)
sudo -u git -H bundle install –without development test mysql –deployment

# Run database migrations
sudo -u git -H bundle exec rake db:migrate RAILS_ENV=production

# Clean up assets and cache
sudo -u git -H bundle exec rake assets:clean assets:precompile cache:clear RAILS_ENV=production

# Update init.d script
sudo cp lib/support/init.d/gitlab /etc/init.d/gitlab
```

5. Update config files

New configuration options for gitlab.yml

There are new configuration options available for [gitlab.yml][yaml]. View them with the command below and apply them to your current gitlab.yml.

`
git diff origin/7-9-stable:config/gitlab.yml.example origin/7-10-stable:config/gitlab.yml.example
`

Change Nginx settings

	HTTP setups: Make /etc/nginx/sites-available/gitlab the same as [lib/support/nginx/gitlab][nginx] but with your settings.

	HTTPS setups: Make /etc/nginx/sites-available/gitlab-ssl the same as [lib/support/nginx/gitlab-ssl][nginx-ssl] but with your settings.

	A new location /uploads/ section has been added that needs to have the same content as the existing location @gitlab section.

Setup time zone (optional)

Consider setting the time zone in gitlab.yml otherwise GitLab will default to UTC. If you set a time zone previously in [application.rb][app] (unlikely), unset it.

6. Start application

sudo service gitlab start
sudo service nginx restart

7. Check application status

Check if GitLab and its environment are configured correctly:

sudo -u git -H bundle exec rake gitlab:env:info RAILS_ENV=production

To make sure you didn’t miss anything run a more thorough check with:

sudo -u git -H bundle exec rake gitlab:check RAILS_ENV=production

If all items are green, then congratulations upgrade is complete!

8. GitHub settings (if applicable)

If you are using GitHub as an OAuth provider for authentication, you should change the callback URL so that it
only contains a root URL (ex. https://gitlab.example.com/)

Things went south? Revert to previous version (7.9)

1. Revert the code to the previous version
Follow the [upgrade guide from 7.8 to 7.9](7.8-to-7.9.md), except for the database migration
(The backup is already migrated to the previous version)

2. Restore from the backup:

`bash
cd /home/git/gitlab
sudo -u git -H bundle exec rake gitlab:backup:restore RAILS_ENV=production
`
If you have more than one backup *.tar file(s) please add BACKUP=timestamp_of_backup to the command above.

[yaml]: https://gitlab.com/gitlab-org/gitlab-ce/blob/7-10-stable/config/gitlab.yml.example
[app]: https://gitlab.com/gitlab-org/gitlab-ce/blob/7-10-stable/config/application.rb
[nginx]: https://gitlab.com/gitlab-org/gitlab-ce/blob/7-10-stable/lib/support/nginx/gitlab
[nginx-ssl]: https://gitlab.com/gitlab-org/gitlab-ce/blob/7-10-stable/lib/support/nginx/gitlab-ssl

 —
comments: false
—

From 8.0 to 8.1

NOTE: GitLab 8.0 introduced several significant changes related to
installation and configuration which are not duplicated here. Be sure you’re
already running a working version of 8.0 before proceeding with this guide.

0. Double-check your Git version

This notice applies only to /usr/local/bin/git

If you compiled Git from source on your GitLab server then please double-check
that you are using a version that protects against CVE-2014-9390. For six
months after this vulnerability became known the GitLab installation guide
still contained instructions that would install the outdated, ‘vulnerable’ Git
version 2.1.2.

Run the following command to get your current Git version:

`sh
/usr/local/bin/git --version
`

If you see ‘No such file or directory’ then you did not install Git according
to the outdated instructions from the GitLab installation guide and you can go
to the next step ‘Stop server’ below.

If you see a version string then it should be v1.8.5.6, v1.9.5, v2.0.5, v2.1.4,
v2.2.1 or newer. You can use the [instructions in the GitLab source
installation
guide](https://gitlab.com/gitlab-org/gitlab-ce/blob/master/doc/install/installation.md#1-packages-dependencies)
to install a newer version of Git.

1. Stop server

sudo service gitlab stop

2. Backup

`bash
cd /home/git/gitlab
sudo -u git -H bundle exec rake gitlab:backup:create RAILS_ENV=production
`

3. Get latest code

`bash
sudo -u git -H git fetch --all
sudo -u git -H git checkout -- db/schema.rb # local changes will be restored automatically
`

For GitLab Community Edition:

`bash
sudo -u git -H git checkout 8-1-stable
`

OR

For GitLab Enterprise Edition:

`bash
sudo -u git -H git checkout 8-1-stable-ee
`

4. Update gitlab-shell

`bash
cd /home/git/gitlab-shell
sudo -u git -H git fetch
sudo -u git -H git checkout v2.6.5
`

5. Update gitlab-git-http-server

`bash
cd /home/git/gitlab-git-http-server
sudo -u git -H git fetch origin
sudo -u git -H git checkout 0.3.0
sudo -u git -H make
`

6. Install libs, migrations, etc.

```bash
cd /home/git/gitlab

# MySQL installations (note: the line below states ‘–without postgres’)
sudo -u git -H bundle install –without postgres development test –deployment

# PostgreSQL installations (note: the line below states ‘–without mysql’)
sudo -u git -H bundle install –without mysql development test –deployment

# Run database migrations
sudo -u git -H bundle exec rake db:migrate RAILS_ENV=production

# Clean up assets and cache
sudo -u git -H bundle exec rake assets:clean assets:precompile cache:clear RAILS_ENV=production

# Update init.d script
sudo cp lib/support/init.d/gitlab /etc/init.d/gitlab
```

For Ubuntu 16.04.1 LTS:

sudo systemctl daemon-reload

7. Update configuration files

New configuration options for gitlab.yml

There are new configuration options available for [gitlab.yml][yaml]. View them with the command below and apply them manually to your current gitlab.yml:

`sh
git diff origin/8-0-stable:config/gitlab.yml.example origin/8-1-stable:config/gitlab.yml.example
`

Nginx configuration

View changes between the previous recommended Nginx configuration and the
current one:

```sh
# For HTTPS configurations
git diff origin/8-0-stable:lib/support/nginx/gitlab-ssl origin/8-1-stable:lib/support/nginx/gitlab-ssl

# For HTTP configurations
git diff origin/8-0-stable:lib/support/nginx/gitlab origin/8-1-stable:lib/support/nginx/gitlab
```

If you are using Apache instead of NGINX please see the updated [Apache templates].
Also note that because Apache does not support upstreams behind Unix sockets you
will need to let gitlab-git-http-server listen on a TCP port. You can do this
via [/etc/default/gitlab].

[Apache templates]: https://gitlab.com/gitlab-org/gitlab-recipes/tree/master/web-server/apache
[/etc/default/gitlab]: https://gitlab.com/gitlab-org/gitlab-ce/blob/8-1-stable/lib/support/init.d/gitlab.default.example#L34

8. Start application

sudo service gitlab start
sudo service nginx restart

9. Check application status

Check if GitLab and its environment are configured correctly:

sudo -u git -H bundle exec rake gitlab:env:info RAILS_ENV=production

To make sure you didn’t miss anything run a more thorough check:

sudo -u git -H bundle exec rake gitlab:check RAILS_ENV=production

If all items are green, then congratulations, the upgrade is complete!

Things went south? Revert to previous version (8.0)

1. Revert the code to the previous version

Follow the [upgrade guide from 7.14 to 8.0](7.14-to-8.0.md), except for the database migration
(The backup is already migrated to the previous version)

2. Restore from the backup

`bash
cd /home/git/gitlab
sudo -u git -H bundle exec rake gitlab:backup:restore RAILS_ENV=production
`

If you have more than one backup *.tar file(s) please add BACKUP=timestamp_of_backup to the command above.

Troubleshooting

“You appear to have cloned an empty repository.”

See the [7.14 to 8.0 update guide](7.14-to-8.0.md#troubleshooting).

[yaml]: https://gitlab.com/gitlab-org/gitlab-ce/blob/8-1-stable/config/gitlab.yml.example

 —
comments: false
—

From 8.1 to 8.2

NOTE: GitLab 8.0 introduced several significant changes related to
installation and configuration which are not duplicated here. Be sure you’re
already running a working version of at least 8.0 before proceeding with this
guide.

0. Double-check your Git version

This notice applies only to /usr/local/bin/git

If you compiled Git from source on your GitLab server then please double-check
that you are using a version that protects against CVE-2014-9390. For six
months after this vulnerability became known the GitLab installation guide
still contained instructions that would install the outdated, ‘vulnerable’ Git
version 2.1.2.

Run the following command to get your current Git version:

`sh
/usr/local/bin/git --version
`

If you see ‘No such file or directory’ then you did not install Git according
to the outdated instructions from the GitLab installation guide and you can go
to the next step ‘Stop server’ below.

If you see a version string then it should be v1.8.5.6, v1.9.5, v2.0.5, v2.1.4,
v2.2.1 or newer. You can use the [instructions in the GitLab source
installation
guide](https://gitlab.com/gitlab-org/gitlab-ce/blob/master/doc/install/installation.md#1-packages-dependencies)
to install a newer version of Git.

1. Stop server

sudo service gitlab stop

2. Backup

`bash
cd /home/git/gitlab
sudo -u git -H bundle exec rake gitlab:backup:create RAILS_ENV=production
`

3. Get latest code

`bash
sudo -u git -H git fetch --all
sudo -u git -H git checkout -- db/schema.rb # local changes will be restored automatically
`

For GitLab Community Edition:

`bash
sudo -u git -H git checkout 8-2-stable
`

OR

For GitLab Enterprise Edition:

`bash
sudo -u git -H git checkout 8-2-stable-ee
`

4. Update gitlab-shell

`bash
cd /home/git/gitlab-shell
sudo -u git -H git fetch
sudo -u git -H git checkout v2.6.8
`

5. Replace gitlab-git-http-server with gitlab-workhorse

Install and compile gitlab-workhorse. This requires [Go
1.5](https://golang.org/dl) which should already be on your system
from GitLab 8.1.

`bash
cd /home/git
sudo -u git -H git clone https://gitlab.com/gitlab-org/gitlab-workhorse.git
cd gitlab-workhorse
sudo -u git -H git checkout 0.4.2
sudo -u git -H make
`

Update the GitLab ‘default’ file.

```
cd /home/git/gitlab
test -e /etc/default/gitlab && 


sudo sed -i.pre-8.2 ‘s/^([^=]*)gitlab_git_http_server/1gitlab_workhorse/’ /etc/default/gitlab




```

Make sure that you also update your NGINX configuration to use
the new gitlab-workhorse.socket file.

6. Install libs, migrations, etc.

```bash
cd /home/git/gitlab

# MySQL installations (note: the line below states ‘–without postgres’)
sudo -u git -H bundle install –without postgres development test –deployment

# PostgreSQL installations (note: the line below states ‘–without mysql’)
sudo -u git -H bundle install –without mysql development test –deployment

# Run database migrations
sudo -u git -H bundle exec rake db:migrate RAILS_ENV=production

# Clean up assets and cache
sudo -u git -H bundle exec rake assets:clean assets:precompile cache:clear RAILS_ENV=production

# Update init.d script
sudo cp lib/support/init.d/gitlab /etc/init.d/gitlab
```

For Ubuntu 16.04.1 LTS:

sudo systemctl daemon-reload

7. Update configuration files

New configuration options for gitlab.yml

There are new configuration options available for [gitlab.yml][yaml]. View them with the command below and apply them manually to your current gitlab.yml:

`sh
git diff origin/8-1-stable:config/gitlab.yml.example origin/8-2-stable:config/gitlab.yml.example
`

Nginx configuration

View changes between the previous recommended Nginx configuration and the
current one:

```sh
# For HTTPS configurations
git diff origin/8-1-stable:lib/support/nginx/gitlab-ssl origin/8-2-stable:lib/support/nginx/gitlab-ssl

# For HTTP configurations
git diff origin/8-1-stable:lib/support/nginx/gitlab origin/8-2-stable:lib/support/nginx/gitlab
```

If you are using Apache instead of NGINX please see the updated [Apache templates].
Also note that because Apache does not support upstreams behind Unix sockets you
will need to let gitlab-workhorse listen on a TCP port. You can do this
via [/etc/default/gitlab].

[Apache templates]: https://gitlab.com/gitlab-org/gitlab-recipes/tree/master/web-server/apache
[/etc/default/gitlab]: https://gitlab.com/gitlab-org/gitlab-ce/blob/8-2-stable/lib/support/init.d/gitlab.default.example#L34

8. Start application

sudo service gitlab start
sudo service nginx restart

9. Check application status

Check if GitLab and its environment are configured correctly:

sudo -u git -H bundle exec rake gitlab:env:info RAILS_ENV=production

To make sure you didn’t miss anything run a more thorough check:

sudo -u git -H bundle exec rake gitlab:check RAILS_ENV=production

If all items are green, then congratulations, the upgrade is complete!

Things went south? Revert to previous version (8.1)

1. Revert the code to the previous version

Follow the [upgrade guide from 8.0 to 8.1](8.0-to-8.1.md), except for the
database migration (the backup is already migrated to the previous version).

2. Restore from the backup

`bash
cd /home/git/gitlab
sudo -u git -H bundle exec rake gitlab:backup:restore RAILS_ENV=production
`

If you have more than one backup *.tar file(s) please add BACKUP=timestamp_of_backup to the command above.

Troubleshooting

“You appear to have cloned an empty repository.”

See the [7.14 to 8.0 update guide](7.14-to-8.0.md#troubleshooting).

[yaml]: https://gitlab.com/gitlab-org/gitlab-ce/blob/8-2-stable/config/gitlab.yml.example

 —
comments: false
—

From 8.10 to 8.11

Make sure you view this update guide from the tag (version) of GitLab you would
like to install. In most cases this should be the highest numbered production
tag (without rc in it). You can select the tag in the version dropdown at the
top left corner of GitLab (below the menu bar).

If the highest number stable branch is unclear please check the
[GitLab Blog](https://about.gitlab.com/blog/archives.html) for installation
guide links by version.

1. Stop server

sudo service gitlab stop

2. Backup

`bash
cd /home/git/gitlab
sudo -u git -H bundle exec rake gitlab:backup:create RAILS_ENV=production
`

3. Update Ruby

We will continue supporting Ruby < 2.3 for the time being but we recommend you
upgrade to Ruby 2.3 if you’re running a source installation, as this is the same
version that ships with our Omnibus package.

You can check which version you are running with ruby -v.

Download and compile Ruby:

`bash
mkdir /tmp/ruby && cd /tmp/ruby
curl --remote-name --progress https://cache.ruby-lang.org/pub/ruby/2.3/ruby-2.3.1.tar.gz
echo 'c39b4001f7acb4e334cb60a0f4df72d434bef711 ruby-2.3.1.tar.gz' | shasum --check - && tar xzf ruby-2.3.1.tar.gz
cd ruby-2.3.1
./configure --disable-install-rdoc
make
sudo make install
`

Install Bundler:

`bash
sudo gem install bundler --no-ri --no-rdoc
`

4. Get latest code

```bash
cd /home/git/gitlab

sudo -u git -H git fetch –all
sudo -u git -H git checkout – db/schema.rb # local changes will be restored automatically
```

For GitLab Community Edition:

`bash
sudo -u git -H git checkout 8-11-stable
`

OR

For GitLab Enterprise Edition:

`bash
sudo -u git -H git checkout 8-11-stable-ee
`

5. Update gitlab-shell

`bash
cd /home/git/gitlab-shell
sudo -u git -H git fetch --all --tags
sudo -u git -H git checkout v3.4.0
`

6. Update gitlab-workhorse

Install and compile gitlab-workhorse. This requires
[Go 1.5](https://golang.org/dl) which should already be on your system from
GitLab 8.1.

`bash
cd /home/git/gitlab-workhorse
sudo -u git -H git fetch --all
sudo -u git -H git checkout v0.7.11
sudo -u git -H make
`

7. Install libs, migrations, etc.

```bash
cd /home/git/gitlab

# MySQL installations (note: the line below states ‘–without postgres’)
sudo -u git -H bundle install –without postgres development test –deployment

# PostgreSQL installations (note: the line below states ‘–without mysql’)
sudo -u git -H bundle install –without mysql development test –deployment

# Optional: clean up old gems
sudo -u git -H bundle clean

# Run database migrations
sudo -u git -H bundle exec rake db:migrate RAILS_ENV=production

# Clean up assets and cache
sudo -u git -H bundle exec rake assets:clean assets:precompile cache:clear RAILS_ENV=production

```

8. Update configuration files

New configuration options for gitlab.yml

There are new configuration options available for [gitlab.yml][yaml]. View them with the command below and apply them manually to your current gitlab.yml:

`sh
git diff origin/8-10-stable:config/gitlab.yml.example origin/8-11-stable:config/gitlab.yml.example
`

Nginx configuration

Ensure you’re still up-to-date with the latest NGINX configuration changes:

```sh
# For HTTPS configurations
git diff origin/8-10-stable:lib/support/nginx/gitlab-ssl origin/8-11-stable:lib/support/nginx/gitlab-ssl

# For HTTP configurations
git diff origin/8-10-stable:lib/support/nginx/gitlab origin/8-11-stable:lib/support/nginx/gitlab
```

If you are using Apache instead of NGINX please see the updated [Apache templates].
Also note that because Apache does not support upstreams behind Unix sockets you
will need to let gitlab-workhorse listen on a TCP port. You can do this
via [/etc/default/gitlab].

[Apache templates]: https://gitlab.com/gitlab-org/gitlab-recipes/tree/master/web-server/apache
[/etc/default/gitlab]: https://gitlab.com/gitlab-org/gitlab-ce/blob/8-11-stable/lib/support/init.d/gitlab.default.example#L38

SMTP configuration

If you’re installing from source and use SMTP to deliver mail, you will need to add the following line
to config/initializers/smtp_settings.rb:

`ruby
ActionMailer::Base.delivery_method = :smtp
`

See [smtp_settings.rb.sample] as an example.

[smtp_settings.rb.sample]: https://gitlab.com/gitlab-org/gitlab-ce/blob/8-11-stable/config/initializers/smtp_settings.rb.sample#L13?

Init script

Ensure you’re still up-to-date with the latest init script changes:

sudo cp lib/support/init.d/gitlab /etc/init.d/gitlab

For Ubuntu 16.04.1 LTS:

sudo systemctl daemon-reload

9. Start application

sudo service gitlab start
sudo service nginx restart

10. Check application status

Check if GitLab and its environment are configured correctly:

sudo -u git -H bundle exec rake gitlab:env:info RAILS_ENV=production

To make sure you didn’t miss anything run a more thorough check:

sudo -u git -H bundle exec rake gitlab:check RAILS_ENV=production

If all items are green, then congratulations, the upgrade is complete!

Things went south? Revert to previous version (8.10)

1. Revert the code to the previous version

Follow the [upgrade guide from 8.9 to 8.10](8.9-to-8.10.md), except for the
database migration (the backup is already migrated to the previous version).

2. Restore from the backup

`bash
cd /home/git/gitlab
sudo -u git -H bundle exec rake gitlab:backup:restore RAILS_ENV=production
`

If you have more than one backup *.tar file(s) please add BACKUP=timestamp_of_backup to the command above.

[yaml]: https://gitlab.com/gitlab-org/gitlab-ce/blob/8-11-stable/config/gitlab.yml.example

 —
comments: false
—

From 8.11 to 8.12

Make sure you view this update guide from the tag (version) of GitLab you would
like to install. In most cases this should be the highest numbered production
tag (without rc in it). You can select the tag in the version dropdown at the
top left corner of GitLab (below the menu bar).

If the highest number stable branch is unclear please check the
[GitLab Blog](https://about.gitlab.com/blog/archives.html) for installation
guide links by version.

1. Stop server

sudo service gitlab stop

2. Backup

`bash
cd /home/git/gitlab
sudo -u git -H bundle exec rake gitlab:backup:create RAILS_ENV=production
`

3. Update Ruby

We will continue supporting Ruby < 2.3 for the time being but we recommend you
upgrade to Ruby 2.3 if you’re running a source installation, as this is the same
version that ships with our Omnibus package.

You can check which version you are running with ruby -v.

Download and compile Ruby:

`bash
mkdir /tmp/ruby && cd /tmp/ruby
curl --remote-name --progress https://cache.ruby-lang.org/pub/ruby/2.3/ruby-2.3.1.tar.gz
echo 'c39b4001f7acb4e334cb60a0f4df72d434bef711 ruby-2.3.1.tar.gz' | shasum --check - && tar xzf ruby-2.3.1.tar.gz
cd ruby-2.3.1
./configure --disable-install-rdoc
make
sudo make install
`

Install Bundler:

`bash
sudo gem install bundler --no-ri --no-rdoc
`

4. Get latest code

```bash
cd /home/git/gitlab

sudo -u git -H git fetch –all
sudo -u git -H git checkout – db/schema.rb # local changes will be restored automatically
```

For GitLab Community Edition:

`bash
sudo -u git -H git checkout 8-12-stable
`

OR

For GitLab Enterprise Edition:

`bash
sudo -u git -H git checkout 8-12-stable-ee
`

5. Update gitlab-shell

`bash
cd /home/git/gitlab-shell
sudo -u git -H git fetch --all --tags
sudo -u git -H git checkout v3.6.1
`

6. Update gitlab-workhorse

Install and compile gitlab-workhorse. This requires
[Go 1.5](https://golang.org/dl) which should already be on your system from
GitLab 8.1.

`bash
cd /home/git/gitlab-workhorse
sudo -u git -H git fetch --all
sudo -u git -H git checkout v0.8.2
sudo -u git -H make
`

7. Install libs, migrations, etc.

```bash
cd /home/git/gitlab

# MySQL installations (note: the line below states ‘–without postgres’)
sudo -u git -H bundle install –without postgres development test –deployment

# PostgreSQL installations (note: the line below states ‘–without mysql’)
sudo -u git -H bundle install –without mysql development test –deployment

# Optional: clean up old gems
sudo -u git -H bundle clean

# Run database migrations
sudo -u git -H bundle exec rake db:migrate RAILS_ENV=production

# Clean up assets and cache
sudo -u git -H bundle exec rake assets:clean assets:precompile cache:clear RAILS_ENV=production
```

8. Update configuration files

New configuration options for gitlab.yml

There are new configuration options available for [gitlab.yml][yaml]. View them with the command below and apply them manually to your current gitlab.yml:

`sh
git diff origin/8-11-stable:config/gitlab.yml.example origin/8-12-stable:config/gitlab.yml.example
`

Git configuration

Configure Git to generate packfile bitmaps (introduced in Git 2.0) on
the GitLab server during git gc.

`sh
sudo -u git -H git config --global repack.writeBitmaps true
`

Nginx configuration

Ensure you’re still up-to-date with the latest NGINX configuration changes:

```sh
# For HTTPS configurations
git diff origin/8-11-stable:lib/support/nginx/gitlab-ssl origin/8-12-stable:lib/support/nginx/gitlab-ssl

# For HTTP configurations
git diff origin/8-11-stable:lib/support/nginx/gitlab origin/8-12-stable:lib/support/nginx/gitlab
```

If you are using Apache instead of NGINX please see the updated [Apache templates].
Also note that because Apache does not support upstreams behind Unix sockets you
will need to let gitlab-workhorse listen on a TCP port. You can do this
via [/etc/default/gitlab].

[Apache templates]: https://gitlab.com/gitlab-org/gitlab-recipes/tree/master/web-server/apache
[/etc/default/gitlab]: https://gitlab.com/gitlab-org/gitlab-ce/blob/8-12-stable/lib/support/init.d/gitlab.default.example#L38

SMTP configuration

If you’re installing from source and use SMTP to deliver mail, you will need to add the following line
to config/initializers/smtp_settings.rb:

`ruby
ActionMailer::Base.delivery_method = :smtp
`

See [smtp_settings.rb.sample] as an example.

[smtp_settings.rb.sample]: https://gitlab.com/gitlab-org/gitlab-ce/blob/8-12-stable/config/initializers/smtp_settings.rb.sample#L13?

Init script

Ensure you’re still up-to-date with the latest init script changes:

sudo cp lib/support/init.d/gitlab /etc/init.d/gitlab

For Ubuntu 16.04.1 LTS:

sudo systemctl daemon-reload

9. Start application

sudo service gitlab start
sudo service nginx restart

10. Check application status

Check if GitLab and its environment are configured correctly:

sudo -u git -H bundle exec rake gitlab:env:info RAILS_ENV=production

To make sure you didn’t miss anything run a more thorough check:

sudo -u git -H bundle exec rake gitlab:check RAILS_ENV=production

If all items are green, then congratulations, the upgrade is complete!

Things went south? Revert to previous version (8.11)

1. Revert the code to the previous version

Follow the [upgrade guide from 8.10 to 8.11](8.10-to-8.11.md), except for the
database migration (the backup is already migrated to the previous version).

2. Restore from the backup

`bash
cd /home/git/gitlab
sudo -u git -H bundle exec rake gitlab:backup:restore RAILS_ENV=production
`

If you have more than one backup *.tar file(s) please add BACKUP=timestamp_of_backup to the command above.

[yaml]: https://gitlab.com/gitlab-org/gitlab-ce/blob/8-12-stable/config/gitlab.yml.example

 —
comments: false
—

From 8.12 to 8.13

Make sure you view this update guide from the tag (version) of GitLab you would
like to install. In most cases this should be the highest numbered production
tag (without rc in it). You can select the tag in the version dropdown at the
top left corner of GitLab (below the menu bar).

If the highest number stable branch is unclear please check the
[GitLab Blog](https://about.gitlab.com/blog/archives.html) for installation
guide links by version.

1. Stop server

sudo service gitlab stop

2. Backup

`bash
cd /home/git/gitlab
sudo -u git -H bundle exec rake gitlab:backup:create RAILS_ENV=production
`

3. Update Ruby

We will continue supporting Ruby < 2.3 for the time being but we recommend you
upgrade to Ruby 2.3 if you’re running a source installation, as this is the same
version that ships with our Omnibus package.

You can check which version you are running with ruby -v.

Download and compile Ruby:

`bash
mkdir /tmp/ruby && cd /tmp/ruby
curl --remote-name --progress https://cache.ruby-lang.org/pub/ruby/2.3/ruby-2.3.1.tar.gz
echo 'c39b4001f7acb4e334cb60a0f4df72d434bef711 ruby-2.3.1.tar.gz' | shasum --check - && tar xzf ruby-2.3.1.tar.gz
cd ruby-2.3.1
./configure --disable-install-rdoc
make
sudo make install
`

Install Bundler:

`bash
sudo gem install bundler --no-ri --no-rdoc
`

4. Get latest code

```bash
cd /home/git/gitlab

sudo -u git -H git fetch –all
sudo -u git -H git checkout – db/schema.rb # local changes will be restored automatically
```

For GitLab Community Edition:

`bash
sudo -u git -H git checkout 8-13-stable
`

OR

For GitLab Enterprise Edition:

`bash
sudo -u git -H git checkout 8-13-stable-ee
`

5. Update gitlab-shell

`bash
cd /home/git/gitlab-shell
sudo -u git -H git fetch --all --tags
sudo -u git -H git checkout v3.6.7
`

6. Update gitlab-workhorse

Install and compile gitlab-workhorse. This requires
[Go 1.5](https://golang.org/dl) which should already be on your system from
GitLab 8.1.

`bash
cd /home/git/gitlab-workhorse
sudo -u git -H git fetch --all
sudo -u git -H git checkout v0.8.5
sudo -u git -H make
`

7. Install libs, migrations, etc.

```bash
cd /home/git/gitlab

# MySQL installations (note: the line below states ‘–without postgres’)
sudo -u git -H bundle install –without postgres development test –deployment

# PostgreSQL installations (note: the line below states ‘–without mysql’)
sudo -u git -H bundle install –without mysql development test –deployment

# Optional: clean up old gems
sudo -u git -H bundle clean

# Run database migrations
sudo -u git -H bundle exec rake db:migrate RAILS_ENV=production

# Clean up assets and cache
sudo -u git -H bundle exec rake assets:clean assets:precompile cache:clear RAILS_ENV=production
```

8. Update configuration files

New configuration options for gitlab.yml

There are new configuration options available for [gitlab.yml][yaml]. View them with the command below and apply them manually to your current gitlab.yml:

`sh
git diff origin/8-12-stable:config/gitlab.yml.example origin/8-13-stable:config/gitlab.yml.example
`

Git configuration

Configure Git to generate packfile bitmaps (introduced in Git 2.0) on
the GitLab server during git gc.

`sh
sudo -u git -H git config --global repack.writeBitmaps true
`

Nginx configuration

Ensure you’re still up-to-date with the latest NGINX configuration changes:

```sh
# For HTTPS configurations
git diff origin/8-12-stable:lib/support/nginx/gitlab-ssl origin/8-13-stable:lib/support/nginx/gitlab-ssl

# For HTTP configurations
git diff origin/8-12-stable:lib/support/nginx/gitlab origin/8-13-stable:lib/support/nginx/gitlab
```

If you are using Apache instead of NGINX please see the updated [Apache templates].
Also note that because Apache does not support upstreams behind Unix sockets you
will need to let gitlab-workhorse listen on a TCP port. You can do this
via [/etc/default/gitlab].

[Apache templates]: https://gitlab.com/gitlab-org/gitlab-recipes/tree/master/web-server/apache
[/etc/default/gitlab]: https://gitlab.com/gitlab-org/gitlab-ce/blob/8-13-stable/lib/support/init.d/gitlab.default.example#L38

SMTP configuration

If you’re installing from source and use SMTP to deliver mail, you will need to add the following line
to config/initializers/smtp_settings.rb:

`ruby
ActionMailer::Base.delivery_method = :smtp
`

See [smtp_settings.rb.sample] as an example.

[smtp_settings.rb.sample]: https://gitlab.com/gitlab-org/gitlab-ce/blob/8-13-stable/config/initializers/smtp_settings.rb.sample#L13

Init script

Ensure you’re still up-to-date with the latest init script changes:

sudo cp lib/support/init.d/gitlab /etc/init.d/gitlab

For Ubuntu 16.04.1 LTS:

sudo systemctl daemon-reload

9. Start application

sudo service gitlab start
sudo service nginx restart

10. Check application status

Check if GitLab and its environment are configured correctly:

sudo -u git -H bundle exec rake gitlab:env:info RAILS_ENV=production

To make sure you didn’t miss anything run a more thorough check:

sudo -u git -H bundle exec rake gitlab:check RAILS_ENV=production

If all items are green, then congratulations, the upgrade is complete!

Things went south? Revert to previous version (8.12)

1. Revert the code to the previous version

Follow the [upgrade guide from 8.11 to 8.12](8.11-to-8.12.md), except for the
database migration (the backup is already migrated to the previous version).

2. Restore from the backup

`bash
cd /home/git/gitlab
sudo -u git -H bundle exec rake gitlab:backup:restore RAILS_ENV=production
`

If you have more than one backup *.tar file(s) please add BACKUP=timestamp_of_backup to the command above.

[yaml]: https://gitlab.com/gitlab-org/gitlab-ce/blob/8-13-stable/config/gitlab.yml.example

 —
comments: false
—

From 8.13 to 8.14

Make sure you view this update guide from the tag (version) of GitLab you would
like to install. In most cases this should be the highest numbered production
tag (without rc in it). You can select the tag in the version dropdown at the
top left corner of GitLab (below the menu bar).

If the highest number stable branch is unclear please check the
[GitLab Blog](https://about.gitlab.com/blog/archives.html) for installation
guide links by version.

1. Stop server

sudo service gitlab stop

2. Backup

`bash
cd /home/git/gitlab
sudo -u git -H bundle exec rake gitlab:backup:create RAILS_ENV=production
`

3. Update Ruby

We will continue supporting Ruby < 2.3 for the time being but we recommend you
upgrade to Ruby 2.3 if you’re running a source installation, as this is the same
version that ships with our Omnibus package.

You can check which version you are running with ruby -v.

Download and compile Ruby:

`bash
mkdir /tmp/ruby && cd /tmp/ruby
curl --remote-name --progress https://cache.ruby-lang.org/pub/ruby/2.3/ruby-2.3.1.tar.gz
echo 'c39b4001f7acb4e334cb60a0f4df72d434bef711 ruby-2.3.1.tar.gz' | shasum --check - && tar xzf ruby-2.3.1.tar.gz
cd ruby-2.3.1
./configure --disable-install-rdoc
make
sudo make install
`

Install Bundler:

`bash
sudo gem install bundler --no-ri --no-rdoc
`

4. Get latest code

```bash
cd /home/git/gitlab

sudo -u git -H git fetch –all
sudo -u git -H git checkout – db/schema.rb # local changes will be restored automatically
```

For GitLab Community Edition:

`bash
sudo -u git -H git checkout 8-14-stable
`

OR

For GitLab Enterprise Edition:

`bash
sudo -u git -H git checkout 8-14-stable-ee
`

5. Update gitlab-shell

`bash
cd /home/git/gitlab-shell
sudo -u git -H git fetch --all --tags
sudo -u git -H git checkout v4.1.1
`

6. Update gitlab-workhorse

Install and compile gitlab-workhorse. This requires
[Go 1.5](https://golang.org/dl) which should already be on your system from
GitLab 8.1.

`bash
cd /home/git/gitlab-workhorse
sudo -u git -H git fetch --all
sudo -u git -H git checkout v1.0.1
sudo -u git -H make
`

7. Install libs, migrations, etc.

```bash
cd /home/git/gitlab

# MySQL installations (note: the line below states ‘–without postgres’)
sudo -u git -H bundle install –without postgres development test –deployment

# PostgreSQL installations (note: the line below states ‘–without mysql’)
sudo -u git -H bundle install –without mysql development test –deployment

# Optional: clean up old gems
sudo -u git -H bundle clean

# Run database migrations
sudo -u git -H bundle exec rake db:migrate RAILS_ENV=production

# Clean up assets and cache
sudo -u git -H bundle exec rake assets:clean assets:precompile cache:clear RAILS_ENV=production
```

8. Update configuration files

New configuration options for gitlab.yml

There are new configuration options available for [gitlab.yml][yaml]. View them with the command below and apply them manually to your current gitlab.yml:

`sh
git diff origin/8-13-stable:config/gitlab.yml.example origin/8-14-stable:config/gitlab.yml.example
`

Git configuration

Configure Git to generate packfile bitmaps (introduced in Git 2.0) on
the GitLab server during git gc.

`sh
sudo -u git -H git config --global repack.writeBitmaps true
`

Nginx configuration

Ensure you’re still up-to-date with the latest NGINX configuration changes:

```sh
# For HTTPS configurations
git diff origin/8-13-stable:lib/support/nginx/gitlab-ssl origin/8-14-stable:lib/support/nginx/gitlab-ssl

# For HTTP configurations
git diff origin/8-13-stable:lib/support/nginx/gitlab origin/8-14-stable:lib/support/nginx/gitlab
```

If you are using Apache instead of NGINX please see the updated [Apache templates].
Also note that because Apache does not support upstreams behind Unix sockets you
will need to let gitlab-workhorse listen on a TCP port. You can do this
via [/etc/default/gitlab].

[Apache templates]: https://gitlab.com/gitlab-org/gitlab-recipes/tree/master/web-server/apache
[/etc/default/gitlab]: https://gitlab.com/gitlab-org/gitlab-ce/blob/8-14-stable/lib/support/init.d/gitlab.default.example#L38

SMTP configuration

If you’re installing from source and use SMTP to deliver mail, you will need to add the following line
to config/initializers/smtp_settings.rb:

`ruby
ActionMailer::Base.delivery_method = :smtp
`

See [smtp_settings.rb.sample] as an example.

[smtp_settings.rb.sample]: https://gitlab.com/gitlab-org/gitlab-ce/blob/8-14-stable/config/initializers/smtp_settings.rb.sample#L13

Init script

Ensure you’re still up-to-date with the latest init script changes:

sudo cp lib/support/init.d/gitlab /etc/init.d/gitlab

For Ubuntu 16.04.1 LTS:

sudo systemctl daemon-reload

9. Start application

sudo service gitlab start
sudo service nginx restart

10. Check application status

Check if GitLab and its environment are configured correctly:

sudo -u git -H bundle exec rake gitlab:env:info RAILS_ENV=production

To make sure you didn’t miss anything run a more thorough check:

sudo -u git -H bundle exec rake gitlab:check RAILS_ENV=production

If all items are green, then congratulations, the upgrade is complete!

Things went south? Revert to previous version (8.13)

1. Revert the code to the previous version

Follow the [upgrade guide from 8.12 to 8.13](8.12-to-8.13.md), except for the
database migration (the backup is already migrated to the previous version).

2. Restore from the backup

`bash
cd /home/git/gitlab
sudo -u git -H bundle exec rake gitlab:backup:restore RAILS_ENV=production
`

If you have more than one backup *.tar file(s) please add BACKUP=timestamp_of_backup to the command above.

[yaml]: https://gitlab.com/gitlab-org/gitlab-ce/blob/8-14-stable/config/gitlab.yml.example

 —
comments: false
—

From 8.14 to 8.15

Make sure you view this update guide from the tag (version) of GitLab you would
like to install. In most cases this should be the highest numbered production
tag (without rc in it). You can select the tag in the version dropdown at the
top left corner of GitLab (below the menu bar).

If the highest number stable branch is unclear please check the
[GitLab Blog](https://about.gitlab.com/blog/archives.html) for installation
guide links by version.

1. Stop server

`bash
sudo service gitlab stop
`

2. Backup

```bash
cd /home/git/gitlab

sudo -u git -H bundle exec rake gitlab:backup:create RAILS_ENV=production
```

3. Update Ruby

We will continue supporting Ruby < 2.3 for the time being but we recommend you
upgrade to Ruby 2.3 if you’re running a source installation, as this is the same
version that ships with our Omnibus package.

You can check which version you are running with ruby -v.

Download and compile Ruby:

`bash
mkdir /tmp/ruby && cd /tmp/ruby
curl --remote-name --progress https://cache.ruby-lang.org/pub/ruby/2.3/ruby-2.3.1.tar.gz
echo 'c39b4001f7acb4e334cb60a0f4df72d434bef711 ruby-2.3.1.tar.gz' | shasum --check - && tar xzf ruby-2.3.1.tar.gz
cd ruby-2.3.1
./configure --disable-install-rdoc
make
sudo make install
`

Install Bundler:

`bash
sudo gem install bundler --no-ri --no-rdoc
`

4. Get latest code

```bash
cd /home/git/gitlab

sudo -u git -H git fetch –all
sudo -u git -H git checkout – db/schema.rb # local changes will be restored automatically
```

For GitLab Community Edition:

```bash
cd /home/git/gitlab

sudo -u git -H git checkout 8-15-stable
```

OR

For GitLab Enterprise Edition:

```bash
cd /home/git/gitlab

sudo -u git -H git checkout 8-15-stable-ee
```

5. Install libs, migrations, etc.

```bash
cd /home/git/gitlab

# MySQL installations (note: the line below states ‘–without postgres’)
sudo -u git -H bundle install –without postgres development test –deployment

# PostgreSQL installations (note: the line below states ‘–without mysql’)
sudo -u git -H bundle install –without mysql development test –deployment

# Optional: clean up old gems
sudo -u git -H bundle clean

# Run database migrations
sudo -u git -H bundle exec rake db:migrate RAILS_ENV=production

# Clean up assets and cache
sudo -u git -H bundle exec rake assets:clean assets:precompile cache:clear RAILS_ENV=production
```

6. Update gitlab-workhorse

Install and compile gitlab-workhorse. This requires
[Go 1.5](https://golang.org/dl) which should already be on your system from
GitLab 8.1.

```bash
cd /home/git/gitlab

sudo -u git -H bundle exec rake “gitlab:workhorse:install[/home/git/gitlab-workhorse]” RAILS_ENV=production
```

7. Update gitlab-shell

```bash
cd /home/git/gitlab-shell

sudo -u git -H git fetch –all –tags
sudo -u git -H git checkout v4.1.1
```

8. Update configuration files

New configuration options for gitlab.yml

There are new configuration options available for [gitlab.yml][yaml]. View them with the command below and apply them manually to your current gitlab.yml:

```sh
cd /home/git/gitlab

git diff origin/8-14-stable:config/gitlab.yml.example origin/8-15-stable:config/gitlab.yml.example
```

Git configuration

Configure Git to generate packfile bitmaps (introduced in Git 2.0) on
the GitLab server during git gc.

```sh
cd /home/git/gitlab

sudo -u git -H git config –global repack.writeBitmaps true
```

Nginx configuration

Ensure you’re still up-to-date with the latest NGINX configuration changes:

```sh
cd /home/git/gitlab

# For HTTPS configurations
git diff origin/8-14-stable:lib/support/nginx/gitlab-ssl origin/8-15-stable:lib/support/nginx/gitlab-ssl

# For HTTP configurations
git diff origin/8-14-stable:lib/support/nginx/gitlab origin/8-15-stable:lib/support/nginx/gitlab
```

If you are using Apache instead of NGINX please see the updated [Apache templates].
Also note that because Apache does not support upstreams behind Unix sockets you
will need to let gitlab-workhorse listen on a TCP port. You can do this
via [/etc/default/gitlab].

[Apache templates]: https://gitlab.com/gitlab-org/gitlab-recipes/tree/master/web-server/apache
[/etc/default/gitlab]: https://gitlab.com/gitlab-org/gitlab-ce/blob/8-15-stable/lib/support/init.d/gitlab.default.example#L38

SMTP configuration

If you’re installing from source and use SMTP to deliver mail, you will need to add the following line
to config/initializers/smtp_settings.rb:

`ruby
ActionMailer::Base.delivery_method = :smtp
`

See [smtp_settings.rb.sample] as an example.

[smtp_settings.rb.sample]: https://gitlab.com/gitlab-org/gitlab-ce/blob/8-15-stable/config/initializers/smtp_settings.rb.sample#L13

Init script

Ensure you’re still up-to-date with the latest init script changes:

```bash
cd /home/git/gitlab

sudo cp lib/support/init.d/gitlab /etc/init.d/gitlab
```

For Ubuntu 16.04.1 LTS:

`bash
sudo systemctl daemon-reload
`

9. Start application

`bash
sudo service gitlab start
sudo service nginx restart
`

10. Check application status

Check if GitLab and its environment are configured correctly:

```bash
cd /home/git/gitlab

sudo -u git -H bundle exec rake gitlab:env:info RAILS_ENV=production
```

To make sure you didn’t miss anything run a more thorough check:

```bash
cd /home/git/gitlab

sudo -u git -H bundle exec rake gitlab:check RAILS_ENV=production
```

If all items are green, then congratulations, the upgrade is complete!

Things went south? Revert to previous version (8.14)

1. Revert the code to the previous version

Follow the [upgrade guide from 8.13 to 8.14](8.13-to-8.14.md), except for the
database migration (the backup is already migrated to the previous version).

2. Restore from the backup

```bash
cd /home/git/gitlab

sudo -u git -H bundle exec rake gitlab:backup:restore RAILS_ENV=production
```

If you have more than one backup *.tar file(s) please add BACKUP=timestamp_of_backup to the command above.

[yaml]: https://gitlab.com/gitlab-org/gitlab-ce/blob/8-15-stable/config/gitlab.yml.example

 —
comments: false
—

From 8.15 to 8.16

Make sure you view this update guide from the tag (version) of GitLab you would
like to install. In most cases this should be the highest numbered production
tag (without rc in it). You can select the tag in the version dropdown at the
top left corner of GitLab (below the menu bar).

If the highest number stable branch is unclear please check the
[GitLab Blog](https://about.gitlab.com/blog/archives.html) for installation
guide links by version.

1. Stop server

`bash
sudo service gitlab stop
`

2. Backup

```bash
cd /home/git/gitlab

sudo -u git -H bundle exec rake gitlab:backup:create RAILS_ENV=production
```

3. Update Ruby

We will continue supporting Ruby < 2.3 for the time being but we recommend you
upgrade to Ruby 2.3 if you’re running a source installation, as this is the same
version that ships with our Omnibus package.

You can check which version you are running with ruby -v.

Download and compile Ruby:

`bash
mkdir /tmp/ruby && cd /tmp/ruby
curl --remote-name --progress https://cache.ruby-lang.org/pub/ruby/2.3/ruby-2.3.3.tar.gz
echo '1014ee699071aa2ddd501907d18cbe15399c997d ruby-2.3.3.tar.gz' | shasum -c - && tar xzf ruby-2.3.3.tar.gz
cd ruby-2.3.3
./configure --disable-install-rdoc
make
sudo make install
`

Install Bundler:

`bash
sudo gem install bundler --no-ri --no-rdoc
`

4. Get latest code

```bash
cd /home/git/gitlab

sudo -u git -H git fetch –all
sudo -u git -H git checkout – db/schema.rb # local changes will be restored automatically
```

For GitLab Community Edition:

```bash
cd /home/git/gitlab

sudo -u git -H git checkout 8-16-stable
```

OR

For GitLab Enterprise Edition:

```bash
cd /home/git/gitlab

sudo -u git -H git checkout 8-16-stable-ee
```

5. Install libs, migrations, etc.

```bash
cd /home/git/gitlab

# MySQL installations (note: the line below states ‘–without postgres’)
sudo -u git -H bundle install –without postgres development test –deployment

# PostgreSQL installations (note: the line below states ‘–without mysql’)
sudo -u git -H bundle install –without mysql development test –deployment

# Optional: clean up old gems
sudo -u git -H bundle clean

# Run database migrations
sudo -u git -H bundle exec rake db:migrate RAILS_ENV=production

# Clean up assets and cache
sudo -u git -H bundle exec rake assets:clean assets:precompile cache:clear RAILS_ENV=production
```

MySQL installations: Run through the MySQL strings limits and Tables and data conversion to utf8mb4 [tasks](../install/database_mysql.md).

6. Update gitlab-workhorse

Install and compile gitlab-workhorse. This requires
[Go 1.5](https://golang.org/dl) which should already be on your system from
GitLab 8.1.

```bash
cd /home/git/gitlab

sudo -u git -H bundle exec rake “gitlab:workhorse:install[/home/git/gitlab-workhorse]” RAILS_ENV=production
```

7. Update gitlab-shell

```bash
cd /home/git/gitlab-shell

sudo -u git -H git fetch –all –tags
sudo -u git -H git checkout v4.1.1
```

8. Update configuration files

New configuration options for gitlab.yml

There are new configuration options available for [gitlab.yml][yaml]. View them with the command below and apply them manually to your current gitlab.yml:

```sh
cd /home/git/gitlab

git diff origin/8-15-stable:config/gitlab.yml.example origin/8-16-stable:config/gitlab.yml.example
```

Git configuration

Configure Git to generate packfile bitmaps (introduced in Git 2.0) on
the GitLab server during git gc.

```sh
cd /home/git/gitlab

sudo -u git -H git config –global repack.writeBitmaps true
```

Nginx configuration

Ensure you’re still up-to-date with the latest NGINX configuration changes:

```sh
cd /home/git/gitlab

# For HTTPS configurations
git diff origin/8-15-stable:lib/support/nginx/gitlab-ssl origin/8-16-stable:lib/support/nginx/gitlab-ssl

# For HTTP configurations
git diff origin/8-15-stable:lib/support/nginx/gitlab origin/8-16-stable:lib/support/nginx/gitlab
```

If you are using Apache instead of NGINX please see the updated [Apache templates].
Also note that because Apache does not support upstreams behind Unix sockets you
will need to let gitlab-workhorse listen on a TCP port. You can do this
via [/etc/default/gitlab].

[Apache templates]: https://gitlab.com/gitlab-org/gitlab-recipes/tree/master/web-server/apache
[/etc/default/gitlab]: https://gitlab.com/gitlab-org/gitlab-ce/blob/8-16-stable/lib/support/init.d/gitlab.default.example#L38

SMTP configuration

If you’re installing from source and use SMTP to deliver mail, you will need to add the following line
to config/initializers/smtp_settings.rb:

`ruby
ActionMailer::Base.delivery_method = :smtp
`

See [smtp_settings.rb.sample] as an example.

[smtp_settings.rb.sample]: https://gitlab.com/gitlab-org/gitlab-ce/blob/8-16-stable/config/initializers/smtp_settings.rb.sample#L13

Init script

Ensure you’re still up-to-date with the latest init script changes:

```bash
cd /home/git/gitlab

sudo cp lib/support/init.d/gitlab /etc/init.d/gitlab
```

For Ubuntu 16.04.1 LTS:

`bash
sudo systemctl daemon-reload
`

9. Start application

`bash
sudo service gitlab start
sudo service nginx restart
`

10. Check application status

Check if GitLab and its environment are configured correctly:

```bash
cd /home/git/gitlab

sudo -u git -H bundle exec rake gitlab:env:info RAILS_ENV=production
```

To make sure you didn’t miss anything run a more thorough check:

```bash
cd /home/git/gitlab

sudo -u git -H bundle exec rake gitlab:check RAILS_ENV=production
```

If all items are green, then congratulations, the upgrade is complete!

Things went south? Revert to previous version (8.15)

1. Revert the code to the previous version

Follow the [upgrade guide from 8.14 to 8.15](8.14-to-8.15.md), except for the
database migration (the backup is already migrated to the previous version).

2. Restore from the backup

```bash
cd /home/git/gitlab

sudo -u git -H bundle exec rake gitlab:backup:restore RAILS_ENV=production
```

If you have more than one backup *.tar file(s) please add BACKUP=timestamp_of_backup to the command above.

[yaml]: https://gitlab.com/gitlab-org/gitlab-ce/blob/8-16-stable/config/gitlab.yml.example

 —
comments: false
—

From 8.16 to 8.17

Make sure you view this update guide from the tag (version) of GitLab you would
like to install. In most cases this should be the highest numbered production
tag (without rc in it). You can select the tag in the version dropdown at the
top left corner of GitLab (below the menu bar).

If the highest number stable branch is unclear please check the
[GitLab Blog](https://about.gitlab.com/blog/archives.html) for installation
guide links by version.

1. Stop server

`bash
sudo service gitlab stop
`

2. Backup

```bash
cd /home/git/gitlab

sudo -u git -H bundle exec rake gitlab:backup:create RAILS_ENV=production
```

3. Update Ruby

We will continue supporting Ruby < 2.3 for the time being but we recommend you
upgrade to Ruby 2.3 if you’re running a source installation, as this is the same
version that ships with our Omnibus package.

You can check which version you are running with ruby -v.

Download and compile Ruby:

`bash
mkdir /tmp/ruby && cd /tmp/ruby
curl --remote-name --progress https://cache.ruby-lang.org/pub/ruby/2.3/ruby-2.3.3.tar.gz
echo '1014ee699071aa2ddd501907d18cbe15399c997d ruby-2.3.3.tar.gz' | shasum -c - && tar xzf ruby-2.3.3.tar.gz
cd ruby-2.3.3
./configure --disable-install-rdoc
make
sudo make install
`

Install Bundler:

`bash
sudo gem install bundler --no-ri --no-rdoc
`

4. Update Node

GitLab now runs [webpack](http://webpack.js.org) to compile frontend assets and
it has a minimum requirement of node v4.3.0.

You can check which version you are running with node -v. If you are running
a version older than v4.3.0 you will need to update to a newer version. You
can find instructions to install from community maintained packages or compile
from source at the nodejs.org website.

<https://nodejs.org/en/download/>

5. Get latest code

```bash
cd /home/git/gitlab

sudo -u git -H git fetch –all
sudo -u git -H git checkout – db/schema.rb # local changes will be restored automatically
```

For GitLab Community Edition:

```bash
cd /home/git/gitlab

sudo -u git -H git checkout 8-17-stable
```

OR

For GitLab Enterprise Edition:

```bash
cd /home/git/gitlab

sudo -u git -H git checkout 8-17-stable-ee
```

6. Install libs, migrations, etc.

```bash
cd /home/git/gitlab

# MySQL installations (note: the line below states ‘–without postgres’)
sudo -u git -H bundle install –without postgres development test –deployment

# PostgreSQL installations (note: the line below states ‘–without mysql’)
sudo -u git -H bundle install –without mysql development test –deployment

# Optional: clean up old gems
sudo -u git -H bundle clean

# Run database migrations
sudo -u git -H bundle exec rake db:migrate RAILS_ENV=production

# Install/update frontend asset dependencies
sudo -u git -H npm install –production

# Clean up assets and cache
sudo -u git -H bundle exec rake gitlab:assets:clean gitlab:assets:compile cache:clear RAILS_ENV=production
```

MySQL installations: Run through the MySQL strings limits and Tables and data conversion to utf8mb4 [tasks](../install/database_mysql.md).

7. Update gitlab-workhorse

Install and compile gitlab-workhorse. This requires
[Go 1.5](https://golang.org/dl) which should already be on your system from
GitLab 8.1.

```bash
cd /home/git/gitlab

sudo -u git -H bundle exec rake “gitlab:workhorse:install[/home/git/gitlab-workhorse]” RAILS_ENV=production
```

8. Update gitlab-shell

```bash
cd /home/git/gitlab-shell

sudo -u git -H git fetch –all –tags
sudo -u git -H git checkout v4.1.1
```

9. Update configuration files

New configuration options for gitlab.yml

There might be new configuration options available for [gitlab.yml][yaml]. View them with the command below and apply them manually to your current gitlab.yml:

```sh
cd /home/git/gitlab

git diff origin/8-16-stable:config/gitlab.yml.example origin/8-17-stable:config/gitlab.yml.example
```

Git configuration

Configure Git to generate packfile bitmaps (introduced in Git 2.0) on
the GitLab server during git gc.

```sh
cd /home/git/gitlab

sudo -u git -H git config –global repack.writeBitmaps true
```

Nginx configuration

Ensure you’re still up-to-date with the latest NGINX configuration changes:

```sh
cd /home/git/gitlab

# For HTTPS configurations
git diff origin/8-16-stable:lib/support/nginx/gitlab-ssl origin/8-17-stable:lib/support/nginx/gitlab-ssl

# For HTTP configurations
git diff origin/8-16-stable:lib/support/nginx/gitlab origin/8-17-stable:lib/support/nginx/gitlab
```

If you are using Apache instead of NGINX please see the updated [Apache templates].
Also note that because Apache does not support upstreams behind Unix sockets you
will need to let gitlab-workhorse listen on a TCP port. You can do this
via [/etc/default/gitlab].

[Apache templates]: https://gitlab.com/gitlab-org/gitlab-recipes/tree/master/web-server/apache
[/etc/default/gitlab]: https://gitlab.com/gitlab-org/gitlab-ce/blob/8-17-stable/lib/support/init.d/gitlab.default.example#L38

SMTP configuration

If you’re installing from source and use SMTP to deliver mail, you will need to add the following line
to config/initializers/smtp_settings.rb:

`ruby
ActionMailer::Base.delivery_method = :smtp
`

See [smtp_settings.rb.sample] as an example.

[smtp_settings.rb.sample]: https://gitlab.com/gitlab-org/gitlab-ce/blob/8-17-stable/config/initializers/smtp_settings.rb.sample#L13

Init script

There might be new configuration options available for [gitlab.default.example][gl-example].
You need to update this file if you want to [enable GitLab Pages][pages-admin].
View them with the command below and apply them manually to your current /etc/default/gitlab:

```sh
cd /home/git/gitlab

git diff origin/8-16-stable:lib/support/init.d/gitlab.default.example origin/8-17-stable:lib/support/init.d/gitlab.default.example
```

Ensure you’re still up-to-date with the latest init script changes:

```bash
cd /home/git/gitlab

sudo cp lib/support/init.d/gitlab /etc/init.d/gitlab
```

For Ubuntu 16.04.1 LTS:

`bash
sudo systemctl daemon-reload
`

10. Start application

`bash
sudo service gitlab start
sudo service nginx restart
`

11. Check application status

Check if GitLab and its environment are configured correctly:

```bash
cd /home/git/gitlab

sudo -u git -H bundle exec rake gitlab:env:info RAILS_ENV=production
```

To make sure you didn’t miss anything run a more thorough check:

```bash
cd /home/git/gitlab

sudo -u git -H bundle exec rake gitlab:check RAILS_ENV=production
```

If all items are green, then congratulations, the upgrade is complete!

Things went south? Revert to previous version (8.16)

1. Revert the code to the previous version

Follow the [upgrade guide from 8.15 to 8.16](8.15-to-8.16.md), except for the
database migration (the backup is already migrated to the previous version).

2. Restore from the backup

```bash
cd /home/git/gitlab

sudo -u git -H bundle exec rake gitlab:backup:restore RAILS_ENV=production
```

If you have more than one backup *.tar file(s) please add BACKUP=timestamp_of_backup to the command above.

[yaml]: https://gitlab.com/gitlab-org/gitlab-ce/blob/8-17-stable/config/gitlab.yml.example
[gl-example]: https://gitlab.com/gitlab-org/gitlab-ce/blob/8-17-stable/lib/support/init.d/gitlab.default.example
[pages-admin]: ../administration/pages/source.md

 —
comments: false
—

From 8.17 to 9.0

Make sure you view this update guide from the tag (version) of GitLab you would
like to install. In most cases this should be the highest numbered production
tag (without rc in it). You can select the tag in the version dropdown at the
top left corner of GitLab (below the menu bar).

If the highest number stable branch is unclear please check the
[GitLab Blog](https://about.gitlab.com/blog/archives.html) for installation
guide links by version.

1. Stop server

`bash
sudo service gitlab stop
`

2. Backup

```bash
cd /home/git/gitlab

sudo -u git -H bundle exec rake gitlab:backup:create RAILS_ENV=production
```

3. Update Ruby

NOTE: GitLab 9.0 only supports Ruby 2.3.x and dropped support for Ruby 2.1.x. Be
sure to upgrade your interpreter if necessary.

You can check which version you are running with ruby -v.

Download and compile Ruby:

`bash
mkdir /tmp/ruby && cd /tmp/ruby
curl --remote-name --progress https://cache.ruby-lang.org/pub/ruby/2.3/ruby-2.3.3.tar.gz
echo '1014ee699071aa2ddd501907d18cbe15399c997d ruby-2.3.3.tar.gz' | shasum -c - && tar xzf ruby-2.3.3.tar.gz
cd ruby-2.3.3
./configure --disable-install-rdoc
make
sudo make install
`

Install Bundler:

`bash
sudo gem install bundler --no-ri --no-rdoc
`

4. Update Node

GitLab now runs [webpack](http://webpack.js.org) to compile frontend assets and
it has a minimum requirement of node v4.3.0.

You can check which version you are running with node -v. If you are running
a version older than v4.3.0 you will need to update to a newer version. You
can find instructions to install from community maintained packages or compile
from source at the nodejs.org website.

<https://nodejs.org/en/download/>

Since 8.17, GitLab requires the use of yarn >= v0.17.0 to manage
JavaScript dependencies.

`bash
curl --silent --show-error https://dl.yarnpkg.com/debian/pubkey.gpg | sudo apt-key add -
echo "deb https://dl.yarnpkg.com/debian/ stable main" | sudo tee /etc/apt/sources.list.d/yarn.list
sudo apt-get update
sudo apt-get install yarn
`

More information can be found on the [yarn website](https://yarnpkg.com/en/docs/install).

5. Get latest code

```bash
cd /home/git/gitlab

sudo -u git -H git fetch –all
sudo -u git -H git checkout – db/schema.rb # local changes will be restored automatically
```

For GitLab Community Edition:

```bash
cd /home/git/gitlab

sudo -u git -H git checkout 9-0-stable
```

OR

For GitLab Enterprise Edition:

```bash
cd /home/git/gitlab

sudo -u git -H git checkout 9-0-stable-ee
```

6. Update gitlab-shell

```bash
cd /home/git/gitlab-shell

sudo -u git -H git fetch –all –tags
sudo -u git -H git checkout v$(</home/git/gitlab/GITLAB_SHELL_VERSION)
```

7. Update gitlab-workhorse

Install and compile gitlab-workhorse. This requires
[Go 1.5](https://golang.org/dl) which should already be on your system from
GitLab 8.1. GitLab-Workhorse uses [GNU Make](https://www.gnu.org/software/make/).
If you are not using Linux you may have to run gmake instead of
make below.

```bash
cd /home/git/gitlab-workhorse

sudo -u git -H git fetch –all –tags
sudo -u git -H git checkout v$(</home/git/gitlab/GITLAB_WORKHORSE_VERSION)
sudo -u git -H make
```

8. Update configuration files

New configuration options for gitlab.yml

There might be configuration options available for [gitlab.yml][yaml]. View them with the command below and apply them manually to your current gitlab.yml:

```sh
cd /home/git/gitlab

git diff origin/8-17-stable:config/gitlab.yml.example origin/9-0-stable:config/gitlab.yml.example
```

Configuration changes for repository storages

This version introduces a new configuration structure for repository storages.
Update your current configuration as follows, replacing with your storages names and paths:

For installations from source

	Update your gitlab.yml, from


```yaml
repositories:



	storages: # You must have at least a ‘default’ storage path.
	default: /home/git/repositories
nfs: /mnt/nfs/repositories
cephfs: /mnt/cephfs/repositories








```

to

```yaml
repositories:



	storages: # You must have at least a ‘default’ storage path.
	
	default:
	path: /home/git/repositories



	nfs:
	path: /mnt/nfs/repositories



	cephfs:
	path: /mnt/cephfs/repositories












```


For Omnibus installations

	Update your /etc/gitlab/gitlab.rb, from


```ruby
git_data_dirs({


“default” => “/var/opt/gitlab/git-data”,
“nfs” => “/mnt/nfs/git-data”,
“cephfs” => “/mnt/cephfs/git-data”




to

```ruby
git_data_dirs({

“default” => { “path” => “/var/opt/gitlab/git-data” },
“nfs” => { “path” => “/mnt/nfs/git-data” },
“cephfs” => { “path” => “/mnt/cephfs/git-data” }

Git configuration

Configure Git to generate packfile bitmaps (introduced in Git 2.0) on
the GitLab server during git gc.

```sh
cd /home/git/gitlab

sudo -u git -H git config –global repack.writeBitmaps true
```

Nginx configuration

Ensure you’re still up-to-date with the latest NGINX configuration changes:

```sh
cd /home/git/gitlab

# For HTTPS configurations
git diff origin/8-17-stable:lib/support/nginx/gitlab-ssl origin/9-0-stable:lib/support/nginx/gitlab-ssl

# For HTTP configurations
git diff origin/8-17-stable:lib/support/nginx/gitlab origin/9-0-stable:lib/support/nginx/gitlab
```

If you are using Strict-Transport-Security in your installation to continue using it you must enable it in your Nginx
configuration as GitLab application no longer handles setting it.

If you are using Apache instead of NGINX please see the updated [Apache templates].
Also note that because Apache does not support upstreams behind Unix sockets you
will need to let gitlab-workhorse listen on a TCP port. You can do this
via [/etc/default/gitlab].

[Apache templates]: https://gitlab.com/gitlab-org/gitlab-recipes/tree/master/web-server/apache
[/etc/default/gitlab]: https://gitlab.com/gitlab-org/gitlab-ce/blob/9-0-stable/lib/support/init.d/gitlab.default.example#L38

SMTP configuration

If you’re installing from source and use SMTP to deliver mail, you will need to add the following line
to config/initializers/smtp_settings.rb:

`ruby
ActionMailer::Base.delivery_method = :smtp
`

See [smtp_settings.rb.sample] as an example.

[smtp_settings.rb.sample]: https://gitlab.com/gitlab-org/gitlab-ce/blob/9-0-stable/config/initializers/smtp_settings.rb.sample#L13

Init script

There might be new configuration options available for [gitlab.default.example][gl-example]. View them with the command below and apply them manually to your current /etc/default/gitlab:

```sh
cd /home/git/gitlab

git diff origin/8-17-stable:lib/support/init.d/gitlab.default.example origin/9-0-stable:lib/support/init.d/gitlab.default.example
```

Ensure you’re still up-to-date with the latest init script changes:

```bash
cd /home/git/gitlab

sudo cp lib/support/init.d/gitlab /etc/init.d/gitlab
```

For Ubuntu 16.04.1 LTS:

`bash
sudo systemctl daemon-reload
`

9. Install libs, migrations, etc.

GitLab 9.0.11 [introduced](https://gitlab.com/gitlab-org/gitlab-ce/issues/24570)
a dependency on on the re2 regular expression library. To install this dependency:

`bash
sudo apt-get install libre2-dev
`

Ubuntu 14.04 (Trusty Tahr) doesn’t have the libre2-dev package available, but
you can [install re2 manually](https://github.com/google/re2/wiki/Install).

```bash
cd /home/git/gitlab

# MySQL installations (note: the line below states ‘–without postgres’)
sudo -u git -H bundle install –without postgres development test –deployment

# PostgreSQL installations (note: the line below states ‘–without mysql’)
sudo -u git -H bundle install –without mysql development test –deployment

# Optional: clean up old gems
sudo -u git -H bundle clean

# Run database migrations
sudo -u git -H bundle exec rake db:migrate RAILS_ENV=production

# Update node dependencies and recompile assets
sudo -u git -H bundle exec rake yarn:install gitlab:assets:clean gitlab:assets:compile RAILS_ENV=production NODE_ENV=production

# Clean up cache
sudo -u git -H bundle exec rake cache:clear RAILS_ENV=production
```

MySQL installations: Run through the MySQL strings limits and Tables and data conversion to utf8mb4 [tasks](../install/database_mysql.md).

10. Optional: install Gitaly

Gitaly is still an optional component of GitLab. If you want to save time
during your 9.0 upgrade you can skip this step.

If you do want to set up Gitaly in GitLab 9.0 then follow [Gitaly section of the installation
guide](../install/installation.md#install-gitaly).

11. Start application

`bash
sudo service gitlab start
sudo service nginx restart
`

12. Check application status

Check if GitLab and its environment are configured correctly:

```bash
cd /home/git/gitlab

sudo -u git -H bundle exec rake gitlab:env:info RAILS_ENV=production
```

To make sure you didn’t miss anything run a more thorough check:

```bash
cd /home/git/gitlab

sudo -u git -H bundle exec rake gitlab:check RAILS_ENV=production
```

If all items are green, then congratulations, the upgrade is complete!

Things went south? Revert to previous version (8.17)

1. Revert the code to the previous version

Follow the [upgrade guide from 8.16 to 8.17](8.16-to-8.17.md), except for the
database migration (the backup is already migrated to the previous version).

2. Restore from the backup

```bash
cd /home/git/gitlab

sudo -u git -H bundle exec rake gitlab:backup:restore RAILS_ENV=production
```

If you have more than one backup *.tar file(s) please add BACKUP=timestamp_of_backup to the command above.

[yaml]: https://gitlab.com/gitlab-org/gitlab-ce/blob/9-0-stable/config/gitlab.yml.example
[gl-example]: https://gitlab.com/gitlab-org/gitlab-ce/blob/9-0-stable/lib/support/init.d/gitlab.default.example

 —
comments: false
—

From 8.2 to 8.3

Make sure you view this update guide from the tag (version) of GitLab you would
like to install. In most cases this should be the highest numbered production
tag (without rc in it). You can select the tag in the version dropdown at the
top left corner of GitLab (below the menu bar).

If the highest number stable branch is unclear please check the
[GitLab Blog](https://about.gitlab.com/blog/archives.html) for installation
guide links by version.

NOTE: GitLab 8.0 introduced several significant changes related to
installation and configuration which are not duplicated here. Be sure you’re
already running a working version of at least 8.0 before proceeding with this
guide.

0. Double-check your Git version

This notice applies only to /usr/local/bin/git

If you compiled Git from source on your GitLab server then please double-check
that you are using a version that protects against CVE-2014-9390. For six
months after this vulnerability became known the GitLab installation guide
still contained instructions that would install the outdated, ‘vulnerable’ Git
version 2.1.2.

Run the following command to get your current Git version:

`sh
/usr/local/bin/git --version
`

If you see ‘No such file or directory’ then you did not install Git according
to the outdated instructions from the GitLab installation guide and you can go
to the next step ‘Stop server’ below.

If you see a version string then it should be v1.8.5.6, v1.9.5, v2.0.5, v2.1.4,
v2.2.1 or newer. You can use the [instructions in the GitLab source installation
guide](https://gitlab.com/gitlab-org/gitlab-ce/blob/master/doc/install/installation.md#1-packages-dependencies)
to install a newer version of Git.

1. Stop server

sudo service gitlab stop

2. Backup

`bash
cd /home/git/gitlab
sudo -u git -H bundle exec rake gitlab:backup:create RAILS_ENV=production
`

3. Get latest code

`bash
sudo -u git -H git fetch --all
sudo -u git -H git checkout -- db/schema.rb # local changes will be restored automatically
`

For GitLab Community Edition:

`bash
sudo -u git -H git checkout 8-3-stable
`

OR

For GitLab Enterprise Edition:

`bash
sudo -u git -H git checkout 8-3-stable-ee
`

4. Update gitlab-shell

`bash
cd /home/git/gitlab-shell
sudo -u git -H git fetch --all
sudo -u git -H git checkout v2.6.9
`

5. Update gitlab-workhorse

Install and compile gitlab-workhorse. This requires [Go 1.5](https://golang.org/dl)
which should already be on your system from GitLab 8.1.

`bash
cd /home/git/gitlab-workhorse
sudo -u git -H git fetch --all
sudo -u git -H git checkout 0.5.4
sudo -u git -H make
`

6. Install libs, migrations, etc.

```bash
cd /home/git/gitlab

# MySQL installations (note: the line below states ‘–without postgres’)
sudo -u git -H bundle install –without postgres development test –deployment

# PostgreSQL installations (note: the line below states ‘–without mysql’)
sudo -u git -H bundle install –without mysql development test –deployment

# Run database migrations
sudo -u git -H bundle exec rake db:migrate RAILS_ENV=production

# Clean up assets and cache
sudo -u git -H bundle exec rake assets:clean assets:precompile cache:clear RAILS_ENV=production

```

7. Update configuration files

New configuration options for gitlab.yml

There are new configuration options available for [gitlab.yml][yaml]. View them with the command below and apply them manually to your current gitlab.yml:

`sh
git diff origin/8-2-stable:config/gitlab.yml.example origin/8-3-stable:config/gitlab.yml.example
`

GitLab default file

The value of the gitlab_workhorse_options variable should be updated within the default gitlab file (/etc/default/gitlab) according to the following diff:

`sh
git diff origin/8-2-stable:lib/support/init.d/gitlab.default.example origin/8-3-stable:lib/support/init.d/gitlab.default.example
`

Nginx configuration

GitLab 8.3 introduces major changes in the NGINX configuration.
Because all HTTP requests pass through gitlab-workhorse now a lot of
directives need to be removed from NGINX. During future upgrades there
should be much less changes in the NGINX configuration because of
this.

View changes between the previous recommended Nginx configuration and the
current one:

```sh
# For HTTPS configurations
git diff origin/8-2-stable:lib/support/nginx/gitlab-ssl origin/8-3-stable:lib/support/nginx/gitlab-ssl

# For HTTP configurations
git diff origin/8-2-stable:lib/support/nginx/gitlab origin/8-3-stable:lib/support/nginx/gitlab
```

If you are using Apache instead of NGINX please see the updated [Apache templates].
Also note that because Apache does not support upstreams behind Unix sockets you
will need to let gitlab-workhorse listen on a TCP port. You can do this
via [/etc/default/gitlab].

[Apache templates]: https://gitlab.com/gitlab-org/gitlab-recipes/tree/master/web-server/apache
[/etc/default/gitlab]: https://gitlab.com/gitlab-org/gitlab-ce/blob/8-3-stable/lib/support/init.d/gitlab.default.example#L34

Init script

We updated the init script for GitLab in order to pass new
configuration options to gitlab-workhorse. We let gitlab-workhorse
connect to the Rails application via a Unix domain socket and we tell
it where the ‘public’ directory of GitLab is.

`
cd /home/git/gitlab
sudo cp lib/support/init.d/gitlab /etc/init.d/gitlab
`

For Ubuntu 16.04.1 LTS:

sudo systemctl daemon-reload

8. Use Redis v2.8.0+

Previous versions of GitLab allowed Redis versions >= 2.0 to be used, but
GitLab 8.3 uses Sidekiq 4.0, which requires Redis 2.8. You can check your Redis version
with the following command:

redis-cli info | grep redis_version

If you need to upgrade, see the [installation guide for Redis](https://gitlab.com/gitlab-org/gitlab-ce/blob/8-3-stable/doc/install/installation.md#6-redis).

9. Start application

sudo service gitlab start
sudo service nginx restart

10. Check application status

Check if GitLab and its environment are configured correctly:

sudo -u git -H bundle exec rake gitlab:env:info RAILS_ENV=production

To make sure you didn’t miss anything run a more thorough check:

sudo -u git -H bundle exec rake gitlab:check RAILS_ENV=production

If all items are green, then congratulations, the upgrade is complete!

Things went south? Revert to previous version (8.2)

1. Revert the code to the previous version

Follow the [upgrade guide from 8.1 to 8.2](8.1-to-8.2.md), except for the
database migration (the backup is already migrated to the previous version).

2. Restore from the backup

`bash
cd /home/git/gitlab
sudo -u git -H bundle exec rake gitlab:backup:restore RAILS_ENV=production
`

If you have more than one backup *.tar file(s) please add BACKUP=timestamp_of_backup to the command above.

Troubleshooting

“You appear to have cloned an empty repository.”

See the [7.14 to 8.0 update guide](7.14-to-8.0.md#troubleshooting).

[yaml]: https://gitlab.com/gitlab-org/gitlab-ce/blob/8-3-stable/config/gitlab.yml.example

 —
comments: false
—

From 8.3 to 8.4

Make sure you view this update guide from the tag (version) of GitLab you would
like to install. In most cases this should be the highest numbered production
tag (without rc in it). You can select the tag in the version dropdown at the
top left corner of GitLab (below the menu bar).

If the highest number stable branch is unclear please check the
[GitLab Blog](https://about.gitlab.com/blog/archives.html) for installation
guide links by version.

1. Stop server

sudo service gitlab stop

2. Backup

`bash
cd /home/git/gitlab
sudo -u git -H bundle exec rake gitlab:backup:create RAILS_ENV=production
`

3. Get latest code

`bash
sudo -u git -H git fetch --all
sudo -u git -H git checkout -- db/schema.rb # local changes will be restored automatically
`

For GitLab Community Edition:

`bash
sudo -u git -H git checkout 8-4-stable
`

OR

For GitLab Enterprise Edition:

`bash
sudo -u git -H git checkout 8-4-stable-ee
`

4. Update gitlab-shell

`bash
cd /home/git/gitlab-shell
sudo -u git -H git fetch --all
sudo -u git -H git checkout v2.6.10
`

5. Update gitlab-workhorse

Install and compile gitlab-workhorse. This requires [Go 1.5](https://golang.org/dl)
which should already be on your system from GitLab 8.1.

`bash
cd /home/git/gitlab-workhorse
sudo -u git -H git fetch --all
sudo -u git -H git checkout 0.6.2
sudo -u git -H make
`

6. Install libs, migrations, etc.

```bash
cd /home/git/gitlab

# MySQL installations (note: the line below states ‘–without postgres’)
sudo -u git -H bundle install –without postgres development test –deployment

# PostgreSQL installations (note: the line below states ‘–without mysql’)
sudo -u git -H bundle install –without mysql development test –deployment

# Run database migrations
sudo -u git -H bundle exec rake db:migrate RAILS_ENV=production

# Clean up assets and cache
sudo -u git -H bundle exec rake assets:clean assets:precompile cache:clear RAILS_ENV=production

```

7. Update configuration files

New configuration options for gitlab.yml

There are new configuration options available for [gitlab.yml][yaml]. View them with the command below and apply them manually to your current gitlab.yml:

`sh
git diff origin/8-3-stable:config/gitlab.yml.example origin/8-4-stable:config/gitlab.yml.example
`

Init script

We updated the init script for GitLab in order to set a specific PATH for gitlab-workhorse.

`
cd /home/git/gitlab
sudo cp lib/support/init.d/gitlab /etc/init.d/gitlab
`

For Ubuntu 16.04.1 LTS:

sudo systemctl daemon-reload

8. Start application

sudo service gitlab start
sudo service nginx restart

9. Check application status

Check if GitLab and its environment are configured correctly:

sudo -u git -H bundle exec rake gitlab:env:info RAILS_ENV=production

To make sure you didn’t miss anything run a more thorough check:

sudo -u git -H bundle exec rake gitlab:check RAILS_ENV=production

If all items are green, then congratulations, the upgrade is complete!

Things went south? Revert to previous version (8.3)

1. Revert the code to the previous version

Follow the [upgrade guide from 8.2 to 8.3](8.2-to-8.3.md), except for the
database migration (the backup is already migrated to the previous version).

2. Restore from the backup

`bash
cd /home/git/gitlab
sudo -u git -H bundle exec rake gitlab:backup:restore RAILS_ENV=production
`

If you have more than one backup *.tar file(s) please add BACKUP=timestamp_of_backup to the command above.

[yaml]: https://gitlab.com/gitlab-org/gitlab-ce/blob/8-4-stable/config/gitlab.yml.example

 —
comments: false
—

From 8.4 to 8.5

Make sure you view this update guide from the tag (version) of GitLab you would
like to install. In most cases this should be the highest numbered production
tag (without rc in it). You can select the tag in the version dropdown at the
top left corner of GitLab (below the menu bar).

If the highest number stable branch is unclear please check the
[GitLab Blog](https://about.gitlab.com/blog/archives.html) for installation
guide links by version.

1. Stop server

sudo service gitlab stop

2. Backup

`bash
cd /home/git/gitlab
sudo -u git -H bundle exec rake gitlab:backup:create RAILS_ENV=production
`

3. Get latest code

`bash
sudo -u git -H git fetch --all
sudo -u git -H git checkout -- db/schema.rb # local changes will be restored automatically
`

For GitLab Community Edition:

`bash
sudo -u git -H git checkout 8-5-stable
`

OR

For GitLab Enterprise Edition:

`bash
sudo -u git -H git checkout 8-5-stable-ee
`

4. Update gitlab-shell

`bash
cd /home/git/gitlab-shell
sudo -u git -H git fetch --all
sudo -u git -H git checkout v2.6.10
`

5. Update gitlab-workhorse

Install and compile gitlab-workhorse. This requires
[Go 1.5](https://golang.org/dl) which should already be on your system from
GitLab 8.1.

`bash
cd /home/git/gitlab-workhorse
sudo -u git -H git fetch --all
sudo -u git -H git checkout 0.6.4
sudo -u git -H make
`

6. Install libs, migrations, etc.

```bash
cd /home/git/gitlab

# MySQL installations (note: the line below states ‘–without postgres’)
sudo -u git -H bundle install –without postgres development test –deployment

# PostgreSQL installations (note: the line below states ‘–without mysql’)
sudo -u git -H bundle install –without mysql development test –deployment

# Optional: clean up old gems
sudo -u git -H bundle clean

# Run database migrations
sudo -u git -H bundle exec rake db:migrate RAILS_ENV=production

# Clean up assets and cache
sudo -u git -H bundle exec rake assets:clean assets:precompile cache:clear RAILS_ENV=production

```

7. Update configuration files

New configuration options for gitlab.yml

There are new configuration options available for [gitlab.yml][yaml]. View them with the command below and apply them manually to your current gitlab.yml:

`sh
git diff origin/8-4-stable:config/gitlab.yml.example origin/8-5-stable:config/gitlab.yml.example
`

Nginx configuration

Ensure you’re still up-to-date with the latest NGINX configuration changes:

```sh
# For HTTPS configurations
git diff origin/8-4-stable:lib/support/nginx/gitlab-ssl origin/8-5-stable:lib/support/nginx/gitlab-ssl

# For HTTP configurations
git diff origin/8-4-stable:lib/support/nginx/gitlab origin/8-5-stable:lib/support/nginx/gitlab
```

If you are using Apache instead of NGINX please see the updated [Apache templates].
Also note that because Apache does not support upstreams behind Unix sockets you
will need to let gitlab-workhorse listen on a TCP port. You can do this
via [/etc/default/gitlab].

[Apache templates]: https://gitlab.com/gitlab-org/gitlab-recipes/tree/master/web-server/apache
[/etc/default/gitlab]: https://gitlab.com/gitlab-org/gitlab-ce/blob/8-5-stable/lib/support/init.d/gitlab.default.example#L37

Init script

Ensure you’re still up-to-date with the latest init script changes:

sudo cp lib/support/init.d/gitlab /etc/init.d/gitlab

For Ubuntu 16.04.1 LTS:

sudo systemctl daemon-reload

8. Start application

sudo service gitlab start
sudo service nginx restart

9. Check application status

Check if GitLab and its environment are configured correctly:

sudo -u git -H bundle exec rake gitlab:env:info RAILS_ENV=production

To make sure you didn’t miss anything run a more thorough check:

sudo -u git -H bundle exec rake gitlab:check RAILS_ENV=production

If all items are green, then congratulations, the upgrade is complete!

Things went south? Revert to previous version (8.4)

1. Revert the code to the previous version

Follow the [upgrade guide from 8.3 to 8.4](8.3-to-8.4.md), except for the
database migration (the backup is already migrated to the previous version).

2. Restore from the backup

`bash
cd /home/git/gitlab
sudo -u git -H bundle exec rake gitlab:backup:restore RAILS_ENV=production
`

If you have more than one backup *.tar file(s) please add BACKUP=timestamp_of_backup to the command above.

[yaml]: https://gitlab.com/gitlab-org/gitlab-ce/blob/8-5-stable/config/gitlab.yml.example

 —
comments: false
—

From 8.5 to 8.6

Make sure you view this update guide from the tag (version) of GitLab you would
like to install. In most cases this should be the highest numbered production
tag (without rc in it). You can select the tag in the version dropdown at the
top left corner of GitLab (below the menu bar).

If the highest number stable branch is unclear please check the
[GitLab Blog](https://about.gitlab.com/blog/archives.html) for installation
guide links by version.

1. Stop server

sudo service gitlab stop

2. Backup

`bash
cd /home/git/gitlab
sudo -u git -H bundle exec rake gitlab:backup:create RAILS_ENV=production
`

3. Get latest code

`bash
sudo -u git -H git fetch --all
sudo -u git -H git checkout -- db/schema.rb # local changes will be restored automatically
`

For GitLab Community Edition:

`bash
sudo -u git -H git checkout 8-6-stable
`

OR

For GitLab Enterprise Edition:

`bash
sudo -u git -H git checkout 8-6-stable-ee
`

4. Update gitlab-shell

`bash
cd /home/git/gitlab-shell
sudo -u git -H git fetch --all
sudo -u git -H git checkout v2.6.12
`

5. Update gitlab-workhorse

Install and compile gitlab-workhorse. This requires
[Go 1.5](https://golang.org/dl) which should already be on your system from
GitLab 8.1.

`bash
cd /home/git/gitlab-workhorse
sudo -u git -H git fetch --all
sudo -u git -H git checkout v0.7.1
sudo -u git -H make
`

6. Updates for PostgreSQL Users

Starting with 8.6 users using GitLab in combination with PostgreSQL are required
to have the pg_trgm extension enabled for all GitLab databases. If you’re
using GitLab’s Omnibus packages there’s nothing you’ll need to do manually as
this extension is enabled automatically. Users who install GitLab without using
Omnibus (e.g. by building from source) have to enable this extension manually.
To enable this extension run the following SQL command as a PostgreSQL super
user for _every_ GitLab database:

`sql
CREATE EXTENSION IF NOT EXISTS pg_trgm;
`

Certain operating systems might require the installation of extra packages for
this extension to be available. For example, users using Ubuntu will have to
install the postgresql-contrib package in order for this extension to be
available.

7. Install libs, migrations, etc.

```bash
cd /home/git/gitlab

# MySQL installations (note: the line below states ‘–without postgres’)
sudo -u git -H bundle install –without postgres development test –deployment

# PostgreSQL installations (note: the line below states ‘–without mysql’)
sudo -u git -H bundle install –without mysql development test –deployment

# Optional: clean up old gems
sudo -u git -H bundle clean

# Run database migrations
sudo -u git -H bundle exec rake db:migrate RAILS_ENV=production

# Clean up assets and cache
sudo -u git -H bundle exec rake assets:clean assets:precompile cache:clear RAILS_ENV=production

```

8. Update configuration files

New configuration options for gitlab.yml

There are new configuration options available for [gitlab.yml][yaml]. View them with the command below and apply them manually to your current gitlab.yml:

`sh
git diff origin/8-5-stable:config/gitlab.yml.example origin/8-6-stable:config/gitlab.yml.example
`

Nginx configuration

Ensure you’re still up-to-date with the latest NGINX configuration changes:

```sh
# For HTTPS configurations
git diff origin/8-5-stable:lib/support/nginx/gitlab-ssl origin/8-6-stable:lib/support/nginx/gitlab-ssl

# For HTTP configurations
git diff origin/8-5-stable:lib/support/nginx/gitlab origin/8-6-stable:lib/support/nginx/gitlab
```

If you are using Apache instead of NGINX please see the updated [Apache templates].
Also note that because Apache does not support upstreams behind Unix sockets you
will need to let gitlab-workhorse listen on a TCP port. You can do this
via [/etc/default/gitlab].

[Apache templates]: https://gitlab.com/gitlab-org/gitlab-recipes/tree/master/web-server/apache
[/etc/default/gitlab]: https://gitlab.com/gitlab-org/gitlab-ce/blob/8-6-stable/lib/support/init.d/gitlab.default.example#L37

Init script

Ensure you’re still up-to-date with the latest init script changes:

sudo cp lib/support/init.d/gitlab /etc/init.d/gitlab

For Ubuntu 16.04.1 LTS:

sudo systemctl daemon-reload

9. Start application

sudo service gitlab start
sudo service nginx restart

10. Check application status

Check if GitLab and its environment are configured correctly:

sudo -u git -H bundle exec rake gitlab:env:info RAILS_ENV=production

To make sure you didn’t miss anything run a more thorough check:

sudo -u git -H bundle exec rake gitlab:check RAILS_ENV=production

If all items are green, then congratulations, the upgrade is complete!

Things went south? Revert to previous version (8.5)

1. Revert the code to the previous version

Follow the [upgrade guide from 8.4 to 8.5](8.4-to-8.5.md), except for the
database migration (the backup is already migrated to the previous version).

2. Restore from the backup

`bash
cd /home/git/gitlab
sudo -u git -H bundle exec rake gitlab:backup:restore RAILS_ENV=production
`

If you have more than one backup *.tar file(s) please add BACKUP=timestamp_of_backup to the command above.

[yaml]: https://gitlab.com/gitlab-org/gitlab-ce/blob/8-6-stable/config/gitlab.yml.example

 —
comments: false
—

From 8.6 to 8.7

Make sure you view this update guide from the tag (version) of GitLab you would
like to install. In most cases this should be the highest numbered production
tag (without rc in it). You can select the tag in the version dropdown at the
top left corner of GitLab (below the menu bar).

If the highest number stable branch is unclear please check the
[GitLab Blog](https://about.gitlab.com/blog/archives.html) for installation
guide links by version.

1. Stop server

sudo service gitlab stop

2. Backup

`bash
cd /home/git/gitlab
sudo -u git -H bundle exec rake gitlab:backup:create RAILS_ENV=production
`

3. Get latest code

`bash
sudo -u git -H git fetch --all
sudo -u git -H git checkout -- db/schema.rb # local changes will be restored automatically
`

For GitLab Community Edition:

`bash
sudo -u git -H git checkout 8-7-stable
`

OR

For GitLab Enterprise Edition:

`bash
sudo -u git -H git checkout 8-7-stable-ee
`

4. Update gitlab-shell

`bash
cd /home/git/gitlab-shell
sudo -u git -H git fetch --tags
sudo -u git -H git checkout v2.7.2
`

5. Update gitlab-workhorse

Install and compile gitlab-workhorse. This requires
[Go 1.5](https://golang.org/dl) which should already be on your system from
GitLab 8.1.

`bash
cd /home/git/gitlab-workhorse
sudo -u git -H git fetch --all
sudo -u git -H git checkout v0.7.1
sudo -u git -H make
`

6. Install libs, migrations, etc.

```bash
cd /home/git/gitlab

# MySQL installations (note: the line below states ‘–without postgres’)
sudo -u git -H bundle install –without postgres development test –deployment

# PostgreSQL installations (note: the line below states ‘–without mysql’)
sudo -u git -H bundle install –without mysql development test –deployment

# Optional: clean up old gems
sudo -u git -H bundle clean

# Run database migrations
sudo -u git -H bundle exec rake db:migrate RAILS_ENV=production

# Clean up assets and cache
sudo -u git -H bundle exec rake assets:clean assets:precompile cache:clear RAILS_ENV=production

```

7. Update configuration files

New configuration options for gitlab.yml

There are new configuration options available for [gitlab.yml][yaml]. View them with the command below and apply them manually to your current gitlab.yml:

`sh
git diff origin/8-6-stable:config/gitlab.yml.example origin/8-7-stable:config/gitlab.yml.example
`

Git configuration

Disable git gc –auto because GitLab runs git gc for us already.

`sh
sudo -u git -H git config --global gc.auto 0
`

Nginx configuration

Ensure you’re still up-to-date with the latest NGINX configuration changes:

```sh
# For HTTPS configurations
git diff origin/8-6-stable:lib/support/nginx/gitlab-ssl origin/8-7-stable:lib/support/nginx/gitlab-ssl

# For HTTP configurations
git diff origin/8-6-stable:lib/support/nginx/gitlab origin/8-7-stable:lib/support/nginx/gitlab
```

If you are using Apache instead of NGINX please see the updated [Apache templates].
Also note that because Apache does not support upstreams behind Unix sockets you
will need to let gitlab-workhorse listen on a TCP port. You can do this
via [/etc/default/gitlab].

[Apache templates]: https://gitlab.com/gitlab-org/gitlab-recipes/tree/master/web-server/apache
[/etc/default/gitlab]: https://gitlab.com/gitlab-org/gitlab-ce/blob/8-7-stable/lib/support/init.d/gitlab.default.example#L37

Init script

Ensure you’re still up-to-date with the latest init script changes:

sudo cp lib/support/init.d/gitlab /etc/init.d/gitlab

For Ubuntu 16.04.1 LTS:

sudo systemctl daemon-reload

8. Start application

sudo service gitlab start
sudo service nginx restart

9. Check application status

Check if GitLab and its environment are configured correctly:

sudo -u git -H bundle exec rake gitlab:env:info RAILS_ENV=production

To make sure you didn’t miss anything run a more thorough check:

sudo -u git -H bundle exec rake gitlab:check RAILS_ENV=production

If all items are green, then congratulations, the upgrade is complete!

Things went south? Revert to previous version (8.6)

1. Revert the code to the previous version

Follow the [upgrade guide from 8.5 to 8.6](8.5-to-8.6.md), except for the
database migration (the backup is already migrated to the previous version).

2. Restore from the backup

`bash
cd /home/git/gitlab
sudo -u git -H bundle exec rake gitlab:backup:restore RAILS_ENV=production
`

If you have more than one backup *.tar file(s) please add BACKUP=timestamp_of_backup to the command above.

[yaml]: https://gitlab.com/gitlab-org/gitlab-ce/blob/8-7-stable/config/gitlab.yml.example

 —
comments: false
—

From 8.7 to 8.8

Make sure you view this update guide from the tag (version) of GitLab you would
like to install. In most cases this should be the highest numbered production
tag (without rc in it). You can select the tag in the version dropdown at the
top left corner of GitLab (below the menu bar).

If the highest number stable branch is unclear please check the
[GitLab Blog](https://about.gitlab.com/blog/archives.html) for installation
guide links by version.

1. Stop server

sudo service gitlab stop

2. Backup

`bash
cd /home/git/gitlab
sudo -u git -H bundle exec rake gitlab:backup:create RAILS_ENV=production
`

3. Get latest code

`bash
sudo -u git -H git fetch --all
sudo -u git -H git checkout -- db/schema.rb # local changes will be restored automatically
`

For GitLab Community Edition:

`bash
sudo -u git -H git checkout 8-8-stable
`

OR

For GitLab Enterprise Edition:

`bash
sudo -u git -H git checkout 8-8-stable-ee
`

4. Update gitlab-shell

`bash
cd /home/git/gitlab-shell
sudo -u git -H git fetch --all --tags
sudo -u git -H git checkout v2.7.2
`

5. Update gitlab-workhorse

Install and compile gitlab-workhorse. This requires
[Go 1.5](https://golang.org/dl) which should already be on your system from
GitLab 8.1.

`bash
cd /home/git/gitlab-workhorse
sudo -u git -H git fetch --all
sudo -u git -H git checkout v0.7.1
sudo -u git -H make
`

6. Install libs, migrations, etc.

```bash
cd /home/git/gitlab

# MySQL installations (note: the line below states ‘–without postgres’)
sudo -u git -H bundle install –without postgres development test –deployment

# PostgreSQL installations (note: the line below states ‘–without mysql’)
sudo -u git -H bundle install –without mysql development test –deployment

# Optional: clean up old gems
sudo -u git -H bundle clean

# Run database migrations
sudo -u git -H bundle exec rake db:migrate RAILS_ENV=production

# Clean up assets and cache
sudo -u git -H bundle exec rake assets:clean assets:precompile cache:clear RAILS_ENV=production

```

7. Update configuration files

New configuration options for gitlab.yml

There are new configuration options available for [gitlab.yml][yaml]. View them with the command below and apply them manually to your current gitlab.yml:

`sh
git diff origin/8-7-stable:config/gitlab.yml.example origin/8-8-stable:config/gitlab.yml.example
`

Git configuration

Disable git gc –auto because GitLab runs git gc for us already.

`sh
sudo -u git -H git config --global gc.auto 0
`

Nginx configuration

Ensure you’re still up-to-date with the latest NGINX configuration changes:

```sh
# For HTTPS configurations
git diff origin/8-7-stable:lib/support/nginx/gitlab-ssl origin/8-8-stable:lib/support/nginx/gitlab-ssl

# For HTTP configurations
git diff origin/8-7-stable:lib/support/nginx/gitlab origin/8-8-stable:lib/support/nginx/gitlab
```

If you are using Apache instead of NGINX please see the updated [Apache templates].
Also note that because Apache does not support upstreams behind Unix sockets you
will need to let gitlab-workhorse listen on a TCP port. You can do this
via [/etc/default/gitlab].

[Apache templates]: https://gitlab.com/gitlab-org/gitlab-recipes/tree/master/web-server/apache
[/etc/default/gitlab]: https://gitlab.com/gitlab-org/gitlab-ce/blob/8-8-stable/lib/support/init.d/gitlab.default.example#L37

Init script

Ensure you’re still up-to-date with the latest init script changes:

sudo cp lib/support/init.d/gitlab /etc/init.d/gitlab

For Ubuntu 16.04.1 LTS:

sudo systemctl daemon-reload

8. Start application

sudo service gitlab start
sudo service nginx restart

9. Check application status

Check if GitLab and its environment are configured correctly:

sudo -u git -H bundle exec rake gitlab:env:info RAILS_ENV=production

To make sure you didn’t miss anything run a more thorough check:

sudo -u git -H bundle exec rake gitlab:check RAILS_ENV=production

If all items are green, then congratulations, the upgrade is complete!

Things went south? Revert to previous version (8.7)

1. Revert the code to the previous version

Follow the [upgrade guide from 8.6 to 8.7](8.6-to-8.7.md), except for the
database migration (the backup is already migrated to the previous version).

2. Restore from the backup

`bash
cd /home/git/gitlab
sudo -u git -H bundle exec rake gitlab:backup:restore RAILS_ENV=production
`

If you have more than one backup *.tar file(s) please add BACKUP=timestamp_of_backup to the command above.

[yaml]: https://gitlab.com/gitlab-org/gitlab-ce/blob/8-8-stable/config/gitlab.yml.example

 —
comments: false
—

From 8.8 to 8.9

Make sure you view this update guide from the tag (version) of GitLab you would
like to install. In most cases this should be the highest numbered production
tag (without rc in it). You can select the tag in the version dropdown at the
top left corner of GitLab (below the menu bar).

If the highest number stable branch is unclear please check the
[GitLab Blog](https://about.gitlab.com/blog/archives.html) for installation
guide links by version.

1. Stop server

sudo service gitlab stop

2. Backup

`bash
cd /home/git/gitlab
sudo -u git -H bundle exec rake gitlab:backup:create RAILS_ENV=production
`

3. Get latest code

`bash
sudo -u git -H git fetch --all
sudo -u git -H git checkout -- db/schema.rb # local changes will be restored automatically
`

For GitLab Community Edition:

`bash
sudo -u git -H git checkout 8-9-stable
`

OR

For GitLab Enterprise Edition:

`bash
sudo -u git -H git checkout 8-9-stable-ee
`

4. Update gitlab-shell

`bash
cd /home/git/gitlab-shell
sudo -u git -H git fetch --all --tags
sudo -u git -H git checkout v3.0.0
`

5. Update gitlab-workhorse

Install and compile gitlab-workhorse. This requires
[Go 1.5](https://golang.org/dl) which should already be on your system from
GitLab 8.1.

`bash
cd /home/git/gitlab-workhorse
sudo -u git -H git fetch --all
sudo -u git -H git checkout v0.7.5
sudo -u git -H make
`

6. Update MySQL permissions

If you are using MySQL you need to grant the GitLab user the necessary
permissions on the database:

```bash
# Login to MySQL
mysql -u root -p

# Grant the GitLab user the REFERENCES permission on the database
GRANT REFERENCES ON gitlabhq_production.* TO ‘git’@’localhost’;

# Quit the database session
mysql> q
```

7. Install libs, migrations, etc.

```bash
cd /home/git/gitlab

# MySQL installations (note: the line below states ‘–without postgres’)
sudo -u git -H bundle install –without postgres development test –deployment

# PostgreSQL installations (note: the line below states ‘–without mysql’)
sudo -u git -H bundle install –without mysql development test –deployment

# Optional: clean up old gems
sudo -u git -H bundle clean

# Run database migrations
sudo -u git -H bundle exec rake db:migrate RAILS_ENV=production

# Clean up assets and cache
sudo -u git -H bundle exec rake assets:clean assets:precompile cache:clear RAILS_ENV=production

```

8. Update configuration files

New configuration options for gitlab.yml

There are new configuration options available for [gitlab.yml][yaml]. View them with the command below and apply them manually to your current gitlab.yml:

`sh
git diff origin/8-8-stable:config/gitlab.yml.example origin/8-9-stable:config/gitlab.yml.example
`

Git configuration

Disable git gc –auto because GitLab runs git gc for us already.

`sh
sudo -u git -H git config --global gc.auto 0
`

Nginx configuration

Ensure you’re still up-to-date with the latest NGINX configuration changes:

```sh
# For HTTPS configurations
git diff origin/8-8-stable:lib/support/nginx/gitlab-ssl origin/8-9-stable:lib/support/nginx/gitlab-ssl

# For HTTP configurations
git diff origin/8-8-stable:lib/support/nginx/gitlab origin/8-9-stable:lib/support/nginx/gitlab
```

If you are using Apache instead of NGINX please see the updated [Apache templates].
Also note that because Apache does not support upstreams behind Unix sockets you
will need to let gitlab-workhorse listen on a TCP port. You can do this
via [/etc/default/gitlab].

[Apache templates]: https://gitlab.com/gitlab-org/gitlab-recipes/tree/master/web-server/apache
[/etc/default/gitlab]: https://gitlab.com/gitlab-org/gitlab-ce/blob/8-9-stable/lib/support/init.d/gitlab.default.example#L37

SMTP configuration

If you’re installing from source and use SMTP to deliver mail, you will need to add the following line
to config/initializers/smtp_settings.rb:

`ruby
ActionMailer::Base.delivery_method = :smtp
`

See [smtp_settings.rb.sample] as an example.

[smtp_settings.rb.sample]: https://gitlab.com/gitlab-org/gitlab-ce/blob/v8.9.0/config/initializers/smtp_settings.rb.sample#L13

Init script

Ensure you’re still up-to-date with the latest init script changes:

sudo cp lib/support/init.d/gitlab /etc/init.d/gitlab

For Ubuntu 16.04.1 LTS:

sudo systemctl daemon-reload

9. Start application

sudo service gitlab start
sudo service nginx restart

10. Check application status

Check if GitLab and its environment are configured correctly:

sudo -u git -H bundle exec rake gitlab:env:info RAILS_ENV=production

To make sure you didn’t miss anything run a more thorough check:

sudo -u git -H bundle exec rake gitlab:check RAILS_ENV=production

If all items are green, then congratulations, the upgrade is complete!

Things went south? Revert to previous version (8.8)

1. Revert the code to the previous version

Follow the [upgrade guide from 8.7 to 8.8](8.7-to-8.8.md), except for the
database migration (the backup is already migrated to the previous version).

2. Restore from the backup

`bash
cd /home/git/gitlab
sudo -u git -H bundle exec rake gitlab:backup:restore RAILS_ENV=production
`

If you have more than one backup *.tar file(s) please add BACKUP=timestamp_of_backup to the command above.

[yaml]: https://gitlab.com/gitlab-org/gitlab-ce/blob/8-9-stable/config/gitlab.yml.example

 —
comments: false
—

From 8.9 to 8.10

Make sure you view this update guide from the tag (version) of GitLab you would
like to install. In most cases this should be the highest numbered production
tag (without rc in it). You can select the tag in the version dropdown at the
top left corner of GitLab (below the menu bar).

If the highest number stable branch is unclear please check the
[GitLab Blog](https://about.gitlab.com/blog/archives.html) for installation
guide links by version.

1. Stop server

sudo service gitlab stop

2. Backup

`bash
cd /home/git/gitlab
sudo -u git -H bundle exec rake gitlab:backup:create RAILS_ENV=production
`

3. Get latest code

`bash
sudo -u git -H git fetch --all
sudo -u git -H git checkout -- db/schema.rb # local changes will be restored automatically
`

For GitLab Community Edition:

`bash
sudo -u git -H git checkout 8-10-stable
`

OR

For GitLab Enterprise Edition:

`bash
sudo -u git -H git checkout 8-10-stable-ee
`

4. Update gitlab-shell

`bash
cd /home/git/gitlab-shell
sudo -u git -H git fetch --all --tags
sudo -u git -H git checkout v3.2.1
`

5. Update gitlab-workhorse

Install and compile gitlab-workhorse. This requires
[Go 1.5](https://golang.org/dl) which should already be on your system from
GitLab 8.1.

`bash
cd /home/git/gitlab-workhorse
sudo -u git -H git fetch --all
sudo -u git -H git checkout v0.7.8
sudo -u git -H make
`

6. Update MySQL permissions

If you are using MySQL you need to grant the GitLab user the necessary
permissions on the database:

```bash
# Login to MySQL
mysql -u root -p

# Grant the GitLab user the REFERENCES permission on the database
GRANT REFERENCES ON gitlabhq_production.* TO ‘git’@’localhost’;

# Quit the database session
mysql> q
```

7. Install libs, migrations, etc.

```bash
cd /home/git/gitlab

# MySQL installations (note: the line below states ‘–without postgres’)
sudo -u git -H bundle install –without postgres development test –deployment

# PostgreSQL installations (note: the line below states ‘–without mysql’)
sudo -u git -H bundle install –without mysql development test –deployment

# Optional: clean up old gems
sudo -u git -H bundle clean

# Run database migrations
sudo -u git -H bundle exec rake db:migrate RAILS_ENV=production

# Clean up assets and cache
sudo -u git -H bundle exec rake assets:clean assets:precompile cache:clear RAILS_ENV=production

```

8. Update configuration files

New configuration options for gitlab.yml

There are new configuration options available for [gitlab.yml][yaml]. View them with the command below and apply them manually to your current gitlab.yml:

`sh
git diff origin/8-9-stable:config/gitlab.yml.example origin/8-10-stable:config/gitlab.yml.example
`

Git configuration

Disable git gc –auto because GitLab runs git gc for us already.

`sh
sudo -u git -H git config --global gc.auto 0
`

Nginx configuration

Ensure you’re still up-to-date with the latest NGINX configuration changes:

```sh
# For HTTPS configurations
git diff origin/8-9-stable:lib/support/nginx/gitlab-ssl origin/8-10-stable:lib/support/nginx/gitlab-ssl

# For HTTP configurations
git diff origin/8-9-stable:lib/support/nginx/gitlab origin/8-10-stable:lib/support/nginx/gitlab
```

If you are using Apache instead of NGINX please see the updated [Apache templates].
Also note that because Apache does not support upstreams behind Unix sockets you
will need to let gitlab-workhorse listen on a TCP port. You can do this
via [/etc/default/gitlab].

[Apache templates]: https://gitlab.com/gitlab-org/gitlab-recipes/tree/master/web-server/apache
[/etc/default/gitlab]: https://gitlab.com/gitlab-org/gitlab-ce/blob/8-10-stable/lib/support/init.d/gitlab.default.example#L37

SMTP configuration

If you’re installing from source and use SMTP to deliver mail, you will need to add the following line
to config/initializers/smtp_settings.rb:

`ruby
ActionMailer::Base.delivery_method = :smtp
`

See [smtp_settings.rb.sample] as an example.

[smtp_settings.rb.sample]: https://gitlab.com/gitlab-org/gitlab-ce/blob/v8.9.0/config/initializers/smtp_settings.rb.sample#L13

Init script

Ensure you’re still up-to-date with the latest init script changes:

sudo cp lib/support/init.d/gitlab /etc/init.d/gitlab

For Ubuntu 16.04.1 LTS:

sudo systemctl daemon-reload

9. Start application

sudo service gitlab start
sudo service nginx restart

10. Check application status

Check if GitLab and its environment are configured correctly:

sudo -u git -H bundle exec rake gitlab:env:info RAILS_ENV=production

To make sure you didn’t miss anything run a more thorough check:

sudo -u git -H bundle exec rake gitlab:check RAILS_ENV=production

If all items are green, then congratulations, the upgrade is complete!

Things went south? Revert to previous version (8.9)

1. Revert the code to the previous version

Follow the [upgrade guide from 8.8 to 8.9](8.8-to-8.9.md), except for the
database migration (the backup is already migrated to the previous version).

2. Restore from the backup

`bash
cd /home/git/gitlab
sudo -u git -H bundle exec rake gitlab:backup:restore RAILS_ENV=production
`

If you have more than one backup *.tar file(s) please add BACKUP=timestamp_of_backup to the command above.

[yaml]: https://gitlab.com/gitlab-org/gitlab-ce/blob/8-10-stable/config/gitlab.yml.example

 —
comments: false
—

From 9.0 to 9.1

Make sure you view this update guide from the tag (version) of GitLab you would
like to install. In most cases this should be the highest numbered production
tag (without rc in it). You can select the tag in the version dropdown at the
top left corner of GitLab (below the menu bar).

If the highest number stable branch is unclear please check the
[GitLab Blog](https://about.gitlab.com/blog/archives.html) for installation
guide links by version.

1. Stop server

`bash
sudo service gitlab stop
`

2. Backup

```bash
cd /home/git/gitlab

sudo -u git -H bundle exec rake gitlab:backup:create RAILS_ENV=production
```

3. Update Ruby

NOTE: GitLab 9.0 and higher only support Ruby 2.3.x and dropped support for Ruby 2.1.x. Be
sure to upgrade your interpreter if necessary.

You can check which version you are running with ruby -v.

Download and compile Ruby:

`bash
mkdir /tmp/ruby && cd /tmp/ruby
curl --remote-name --progress https://cache.ruby-lang.org/pub/ruby/2.3/ruby-2.3.3.tar.gz
echo '1014ee699071aa2ddd501907d18cbe15399c997d ruby-2.3.3.tar.gz' | shasum -c - && tar xzf ruby-2.3.3.tar.gz
cd ruby-2.3.3
./configure --disable-install-rdoc
make
sudo make install
`

Install Bundler:

`bash
sudo gem install bundler --no-ri --no-rdoc
`

4. Update Node

GitLab now runs [webpack](http://webpack.js.org) to compile frontend assets and
it has a minimum requirement of node v4.3.0.

You can check which version you are running with node -v. If you are running
a version older than v4.3.0 you will need to update to a newer version. You
can find instructions to install from community maintained packages or compile
from source at the nodejs.org website.

<https://nodejs.org/en/download/>

Since 8.17, GitLab requires the use of yarn >= v0.17.0 to manage
JavaScript dependencies.

`bash
curl --silent --show-error https://dl.yarnpkg.com/debian/pubkey.gpg | sudo apt-key add -
echo "deb https://dl.yarnpkg.com/debian/ stable main" | sudo tee /etc/apt/sources.list.d/yarn.list
sudo apt-get update
sudo apt-get install yarn
`

More information can be found on the [yarn website](https://yarnpkg.com/en/docs/install).

5. Get latest code

```bash
cd /home/git/gitlab

sudo -u git -H git fetch –all
sudo -u git -H git checkout – db/schema.rb # local changes will be restored automatically
```

For GitLab Community Edition:

```bash
cd /home/git/gitlab

sudo -u git -H git checkout 9-1-stable
```

OR

For GitLab Enterprise Edition:

```bash
cd /home/git/gitlab

sudo -u git -H git checkout 9-1-stable-ee
```

6. Update gitlab-shell

```bash
cd /home/git/gitlab-shell

sudo -u git -H git fetch –all –tags
sudo -u git -H git checkout v$(</home/git/gitlab/GITLAB_SHELL_VERSION)
```

7. Update gitlab-workhorse

Install and compile gitlab-workhorse. This requires
[Go 1.5](https://golang.org/dl) which should already be on your system from
GitLab 8.1. GitLab-Workhorse uses [GNU Make](https://www.gnu.org/software/make/).
If you are not using Linux you may have to run gmake instead of
make below.

```bash
cd /home/git/gitlab-workhorse

sudo -u git -H git fetch –all –tags
sudo -u git -H git checkout v$(</home/git/gitlab/GITLAB_WORKHORSE_VERSION)
sudo -u git -H make
```

8. Update configuration files

New configuration options for gitlab.yml

There might be configuration options available for [gitlab.yml][yaml]. View them with the command below and apply them manually to your current gitlab.yml:

```sh
cd /home/git/gitlab

git diff origin/9-0-stable:config/gitlab.yml.example origin/9-1-stable:config/gitlab.yml.example
```

Configuration changes for repository storages

This version introduces a new configuration structure for repository storages.
Update your current configuration as follows, replacing with your storages names and paths:

For installations from source

	Update your gitlab.yml, from


```yaml
repositories:



	storages: # You must have at least a ‘default’ storage path.
	default: /home/git/repositories
nfs: /mnt/nfs/repositories
cephfs: /mnt/cephfs/repositories








```

to

```yaml
repositories:



	storages: # You must have at least a ‘default’ storage path.
	
	default:
	path: /home/git/repositories



	nfs:
	path: /mnt/nfs/repositories



	cephfs:
	path: /mnt/cephfs/repositories












```


For Omnibus installations

	Update your /etc/gitlab/gitlab.rb, from


```ruby
git_data_dirs({


“default” => “/var/opt/gitlab/git-data”,
“nfs” => “/mnt/nfs/git-data”,
“cephfs” => “/mnt/cephfs/git-data”




to

```ruby
git_data_dirs({

“default” => { “path” => “/var/opt/gitlab/git-data” },
“nfs” => { “path” => “/mnt/nfs/git-data” },
“cephfs” => { “path” => “/mnt/cephfs/git-data” }

Git configuration

Configure Git to generate packfile bitmaps (introduced in Git 2.0) on
the GitLab server during git gc.

```sh
cd /home/git/gitlab

sudo -u git -H git config –global repack.writeBitmaps true
```

Nginx configuration

Ensure you’re still up-to-date with the latest NGINX configuration changes:

```sh
cd /home/git/gitlab

# For HTTPS configurations
git diff origin/9-0-stable:lib/support/nginx/gitlab-ssl origin/9-1-stable:lib/support/nginx/gitlab-ssl

# For HTTP configurations
git diff origin/9-0-stable:lib/support/nginx/gitlab origin/9-1-stable:lib/support/nginx/gitlab
```

If you are using Strict-Transport-Security in your installation to continue using it you must enable it in your Nginx
configuration as GitLab application no longer handles setting it.

If you are using Apache instead of NGINX please see the updated [Apache templates].
Also note that because Apache does not support upstreams behind Unix sockets you
will need to let gitlab-workhorse listen on a TCP port. You can do this
via [/etc/default/gitlab].

[Apache templates]: https://gitlab.com/gitlab-org/gitlab-recipes/tree/master/web-server/apache
[/etc/default/gitlab]: https://gitlab.com/gitlab-org/gitlab-ce/blob/9-1-stable/lib/support/init.d/gitlab.default.example#L38

SMTP configuration

If you’re installing from source and use SMTP to deliver mail, you will need to add the following line
to config/initializers/smtp_settings.rb:

`ruby
ActionMailer::Base.delivery_method = :smtp
`

See [smtp_settings.rb.sample] as an example.

[smtp_settings.rb.sample]: https://gitlab.com/gitlab-org/gitlab-ce/blob/9-1-stable/config/initializers/smtp_settings.rb.sample#L13

Init script

There might be new configuration options available for [gitlab.default.example][gl-example]. View them with the command below and apply them manually to your current /etc/default/gitlab:

```sh
cd /home/git/gitlab

git diff origin/9-0-stable:lib/support/init.d/gitlab.default.example origin/9-1-stable:lib/support/init.d/gitlab.default.example
```

Ensure you’re still up-to-date with the latest init script changes:

```bash
cd /home/git/gitlab

sudo cp lib/support/init.d/gitlab /etc/init.d/gitlab
```

For Ubuntu 16.04.1 LTS:

`bash
sudo systemctl daemon-reload
`

9. Install libs, migrations, etc.

GitLab 9.1.8 [introduced](https://gitlab.com/gitlab-org/gitlab-ce/issues/24570)
a dependency on on the re2 regular expression library. To install this dependency:

`bash
sudo apt-get install libre2-dev
`

Ubuntu 14.04 (Trusty Tahr) doesn’t have the libre2-dev package available, but
you can [install re2 manually](https://github.com/google/re2/wiki/Install).

```bash
cd /home/git/gitlab

# MySQL installations (note: the line below states ‘–without postgres’)
sudo -u git -H bundle install –without postgres development test –deployment

# PostgreSQL installations (note: the line below states ‘–without mysql’)
sudo -u git -H bundle install –without mysql development test –deployment

# Optional: clean up old gems
sudo -u git -H bundle clean

# Run database migrations
sudo -u git -H bundle exec rake db:migrate RAILS_ENV=production

# Update node dependencies and recompile assets
sudo -u git -H bundle exec rake yarn:install gitlab:assets:clean gitlab:assets:compile RAILS_ENV=production NODE_ENV=production

# Clean up cache
sudo -u git -H bundle exec rake cache:clear RAILS_ENV=production
```

MySQL installations: Run through the MySQL strings limits and Tables and data conversion to utf8mb4 [tasks](../install/database_mysql.md).

10. Optional: install Gitaly

Gitaly is still an optional component of GitLab. If you want to save time
during your 9.1 upgrade you can skip this step.

If you have not yet set up Gitaly then follow [Gitaly section of the installation
guide](../install/installation.md#install-gitaly).

If you installed Gitaly in GitLab 9.0 you need to make some changes in
gitlab.yml, and create a new config.toml file.

Gitaly gitlab.yml changes

Look for socket_path: the gitaly: section. Its value is usually
/home/git/gitlab/tmp/sockets/private/gitaly.socket. Note what socket
path your gitlab.yml is using. Now go to the repositories: section,
and for each entry under storages:, add a gitaly_address: based on
the socket path, but with unix: in front.


	```yaml
	
	repositories:
	
	storages:
	
	default:
	path: /home/git/repositories
gitaly_address: unix:/home/git/gitlab/tmp/sockets/private/gitaly.socket



	other_storage:
	path: /home/git/other-repositories
gitaly_address: unix:/home/git/gitlab/tmp/sockets/private/gitaly.socket

















```

Each entry under storages: should use the same gitaly_address.

Compile Gitaly

This step will also create config.toml.example which you need below.

`shell
cd /home/git/gitaly
sudo -u git -H git fetch --all --tags
sudo -u git -H git checkout v$(</home/git/gitlab/GITALY_SERVER_VERSION)
sudo -u git -H make
`

Gitaly config.toml

In GitLab 9.1 we are replacing environment variables in Gitaly with a
TOML configuration file.

```shell
cd /home/git/gitaly

sudo mv env env.old
sudo -u git cp config.toml.example config.toml
# If you are using custom repository storage paths they need to be in config.toml
sudo -u git -H editor config.toml
```

11. Start application

`bash
sudo service gitlab start
sudo service nginx restart
`

12. Check application status

Check if GitLab and its environment are configured correctly:

```bash
cd /home/git/gitlab

sudo -u git -H bundle exec rake gitlab:env:info RAILS_ENV=production
```

To make sure you didn’t miss anything run a more thorough check:

```bash
cd /home/git/gitlab

sudo -u git -H bundle exec rake gitlab:check RAILS_ENV=production
```

If all items are green, then congratulations, the upgrade is complete!

Things went south? Revert to previous version (9.0)

1. Revert the code to the previous version

Follow the [upgrade guide from 8.17 to 9.0](8.17-to-9.0.md), except for the
database migration (the backup is already migrated to the previous version).

2. Restore from the backup

```bash
cd /home/git/gitlab

sudo -u git -H bundle exec rake gitlab:backup:restore RAILS_ENV=production
```

If you have more than one backup *.tar file(s) please add BACKUP=timestamp_of_backup to the command above.

[yaml]: https://gitlab.com/gitlab-org/gitlab-ce/blob/9-1-stable/config/gitlab.yml.example
[gl-example]: https://gitlab.com/gitlab-org/gitlab-ce/blob/9-1-stable/lib/support/init.d/gitlab.default.example

 —
comments: false
—

From 9.1 to 9.2

Make sure you view this update guide from the tag (version) of GitLab you would
like to install. In most cases this should be the highest numbered production
tag (without rc in it). You can select the tag in the version dropdown at the
top left corner of GitLab (below the menu bar).

If the highest number stable branch is unclear please check the
[GitLab Blog](https://about.gitlab.com/blog/archives.html) for installation
guide links by version.

1. Stop server

`bash
sudo service gitlab stop
`

2. Backup

```bash
cd /home/git/gitlab

sudo -u git -H bundle exec rake gitlab:backup:create RAILS_ENV=production
```

3. Update Ruby

NOTE: GitLab 9.0 and higher only support Ruby 2.3.x and dropped support for Ruby 2.1.x. Be
sure to upgrade your interpreter if necessary.

You can check which version you are running with ruby -v.

Download and compile Ruby:

`bash
mkdir /tmp/ruby && cd /tmp/ruby
curl --remote-name --progress https://cache.ruby-lang.org/pub/ruby/2.3/ruby-2.3.3.tar.gz
echo '1014ee699071aa2ddd501907d18cbe15399c997d ruby-2.3.3.tar.gz' | shasum -c - && tar xzf ruby-2.3.3.tar.gz
cd ruby-2.3.3
./configure --disable-install-rdoc
make
sudo make install
`

Install Bundler:

`bash
sudo gem install bundler --no-ri --no-rdoc
`

4. Update Node

GitLab now runs [webpack](http://webpack.js.org) to compile frontend assets and
it has a minimum requirement of node v4.3.0.

You can check which version you are running with node -v. If you are running
a version older than v4.3.0 you will need to update to a newer version. You
can find instructions to install from community maintained packages or compile
from source at the nodejs.org website.

<https://nodejs.org/en/download/>

Since 8.17, GitLab requires the use of yarn >= v0.17.0 to manage
JavaScript dependencies.

`bash
curl --silent --show-error https://dl.yarnpkg.com/debian/pubkey.gpg | sudo apt-key add -
echo "deb https://dl.yarnpkg.com/debian/ stable main" | sudo tee /etc/apt/sources.list.d/yarn.list
sudo apt-get update
sudo apt-get install yarn
`

More information can be found on the [yarn website](https://yarnpkg.com/en/docs/install).

5. Update Go

NOTE: GitLab 9.2 and higher only supports Go 1.8.3 and dropped support for Go
1.5.x through 1.7.x. Be sure to upgrade your installation if necessary.

You can check which version you are running with go version.

Download and install Go:

```bash
# Remove former Go installation folder
sudo rm -rf /usr/local/go

curl –remote-name –progress https://storage.googleapis.com/golang/go1.8.3.linux-amd64.tar.gz
echo ‘1862f4c3d3907e59b04a757cfda0ea7aa9ef39274af99a784f5be843c80c6772  go1.8.3.linux-amd64.tar.gz’ | shasum -a256 -c - && 


sudo tar -C /usr/local -xzf go1.8.3.linux-amd64.tar.gz




sudo ln -sf /usr/local/go/bin/{go,godoc,gofmt} /usr/local/bin/
rm go1.8.3.linux-amd64.tar.gz
```

6. Get latest code

```bash
cd /home/git/gitlab

sudo -u git -H git fetch –all
sudo -u git -H git checkout – db/schema.rb # local changes will be restored automatically
sudo -u git -H git checkout – locale
```

For GitLab Community Edition:

```bash
cd /home/git/gitlab

sudo -u git -H git checkout 9-2-stable
```

OR

For GitLab Enterprise Edition:

```bash
cd /home/git/gitlab

sudo -u git -H git checkout 9-2-stable-ee
```

7. Update gitlab-shell

```bash
cd /home/git/gitlab-shell

sudo -u git -H git fetch –all –tags
sudo -u git -H git checkout v$(</home/git/gitlab/GITLAB_SHELL_VERSION)
sudo -u git -H bin/compile
```

8. Update gitlab-workhorse

Install and compile gitlab-workhorse. GitLab-Workhorse uses
[GNU Make](https://www.gnu.org/software/make/).
If you are not using Linux you may have to run gmake instead of
make below.

```bash
cd /home/git/gitlab-workhorse

sudo -u git -H git fetch –all –tags
sudo -u git -H git checkout v$(</home/git/gitlab/GITLAB_WORKHORSE_VERSION)
sudo -u git -H make
```

9. Update configuration files

New configuration options for gitlab.yml

There might be configuration options available for [gitlab.yml][yaml]. View them with the command below and apply them manually to your current gitlab.yml:

```sh
cd /home/git/gitlab

git diff origin/9-1-stable:config/gitlab.yml.example origin/9-2-stable:config/gitlab.yml.example
```

Nginx configuration

Ensure you’re still up-to-date with the latest NGINX configuration changes:

```sh
cd /home/git/gitlab

# For HTTPS configurations
git diff origin/9-1-stable:lib/support/nginx/gitlab-ssl origin/9-2-stable:lib/support/nginx/gitlab-ssl

# For HTTP configurations
git diff origin/9-1-stable:lib/support/nginx/gitlab origin/9-2-stable:lib/support/nginx/gitlab
```

If you are using Strict-Transport-Security in your installation to continue using it you must enable it in your Nginx
configuration as GitLab application no longer handles setting it.

If you are using Apache instead of NGINX please see the updated [Apache templates].
Also note that because Apache does not support upstreams behind Unix sockets you
will need to let gitlab-workhorse listen on a TCP port. You can do this
via [/etc/default/gitlab].

[Apache templates]: https://gitlab.com/gitlab-org/gitlab-recipes/tree/master/web-server/apache
[/etc/default/gitlab]: https://gitlab.com/gitlab-org/gitlab-ce/blob/9-2-stable/lib/support/init.d/gitlab.default.example#L38

SMTP configuration

If you’re installing from source and use SMTP to deliver mail, you will need to add the following line
to config/initializers/smtp_settings.rb:

`ruby
ActionMailer::Base.delivery_method = :smtp
`

See [smtp_settings.rb.sample] as an example.

[smtp_settings.rb.sample]: https://gitlab.com/gitlab-org/gitlab-ce/blob/9-2-stable/config/initializers/smtp_settings.rb.sample#L13

Init script

There might be new configuration options available for [gitlab.default.example][gl-example]. View them with the command below and apply them manually to your current /etc/default/gitlab:

```sh
cd /home/git/gitlab

git diff origin/9-1-stable:lib/support/init.d/gitlab.default.example origin/9-2-stable:lib/support/init.d/gitlab.default.example
```

Ensure you’re still up-to-date with the latest init script changes:

```bash
cd /home/git/gitlab

sudo cp lib/support/init.d/gitlab /etc/init.d/gitlab
```

For Ubuntu 16.04.1 LTS:

`bash
sudo systemctl daemon-reload
`

10. Install libs, migrations, etc.

GitLab 9.2.8 [introduced](https://gitlab.com/gitlab-org/gitlab-ce/issues/24570)
a dependency on on the re2 regular expression library. To install this dependency:

`bash
sudo apt-get install libre2-dev
`

Ubuntu 14.04 (Trusty Tahr) doesn’t have the libre2-dev package available, but
you can [install re2 manually](https://github.com/google/re2/wiki/Install).

```bash
cd /home/git/gitlab

# MySQL installations (note: the line below states ‘–without postgres’)
sudo -u git -H bundle install –without postgres development test –deployment

# PostgreSQL installations (note: the line below states ‘–without mysql’)
sudo -u git -H bundle install –without mysql development test –deployment

# Optional: clean up old gems
sudo -u git -H bundle clean

# Run database migrations
sudo -u git -H bundle exec rake db:migrate RAILS_ENV=production

# Compile GetText PO files

sudo -u git -H bundle exec rake gettext:pack RAILS_ENV=production
sudo -u git -H bundle exec rake gettext:po_to_json RAILS_ENV=production

# Update node dependencies and recompile assets
sudo -u git -H bundle exec rake yarn:install gitlab:assets:clean gitlab:assets:compile RAILS_ENV=production NODE_ENV=production

# Clean up cache
sudo -u git -H bundle exec rake cache:clear RAILS_ENV=production
```

MySQL installations: Run through the MySQL strings limits and Tables and data conversion to utf8mb4 [tasks](../install/database_mysql.md).

11. Optional: install Gitaly

Gitaly is still an optional component of GitLab. If you want to save time
during your 9.2 upgrade you can skip this step.

If you have not yet set up Gitaly then follow [Gitaly section of the installation
guide](../install/installation.md#install-gitaly).

Compile Gitaly

`shell
cd /home/git/gitaly
sudo -u git -H git fetch --all --tags
sudo -u git -H git checkout v$(</home/git/gitlab/GITALY_SERVER_VERSION)
sudo -u git -H make
`

12. Start application

`bash
sudo service gitlab start
sudo service nginx restart
`

13. Check application status

Check if GitLab and its environment are configured correctly:

```bash
cd /home/git/gitlab

sudo -u git -H bundle exec rake gitlab:env:info RAILS_ENV=production
```

To make sure you didn’t miss anything run a more thorough check:

```bash
cd /home/git/gitlab

sudo -u git -H bundle exec rake gitlab:check RAILS_ENV=production
```

If all items are green, then congratulations, the upgrade is complete!

Things went south? Revert to previous version (9.1)

1. Revert the code to the previous version

Follow the [upgrade guide from 9.0 to 9.1](9.0-to-9.1.md), except for the
database migration (the backup is already migrated to the previous version).

2. Restore from the backup

```bash
cd /home/git/gitlab

sudo -u git -H bundle exec rake gitlab:backup:restore RAILS_ENV=production
```

If you have more than one backup *.tar file(s) please add BACKUP=timestamp_of_backup to the command above.

[yaml]: https://gitlab.com/gitlab-org/gitlab-ce/blob/9-2-stable/config/gitlab.yml.example
[gl-example]: https://gitlab.com/gitlab-org/gitlab-ce/blob/9-2-stable/lib/support/init.d/gitlab.default.example

 —
comments: false
—

From 9.2 to 9.3

Make sure you view this update guide from the tag (version) of GitLab you would
like to install. In most cases this should be the highest numbered production
tag (without rc in it). You can select the tag in the version dropdown at the
top left corner of GitLab (below the menu bar).

If the highest number stable branch is unclear please check the
[GitLab Blog](https://about.gitlab.com/blog/archives.html) for installation
guide links by version.

1. Stop server

`bash
sudo service gitlab stop
`

2. Backup

```bash
cd /home/git/gitlab

sudo -u git -H bundle exec rake gitlab:backup:create RAILS_ENV=production
```

3. Update Ruby

NOTE: GitLab 9.0 and higher only support Ruby 2.3.x and dropped support for Ruby 2.1.x. Be
sure to upgrade your interpreter if necessary.

You can check which version you are running with ruby -v.

Download and compile Ruby:

`bash
mkdir /tmp/ruby && cd /tmp/ruby
curl --remote-name --progress https://cache.ruby-lang.org/pub/ruby/2.3/ruby-2.3.3.tar.gz
echo '1014ee699071aa2ddd501907d18cbe15399c997d ruby-2.3.3.tar.gz' | shasum -c - && tar xzf ruby-2.3.3.tar.gz
cd ruby-2.3.3
./configure --disable-install-rdoc
make
sudo make install
`

Install Bundler:

`bash
sudo gem install bundler --no-ri --no-rdoc
`

4. Update Node

GitLab now runs [webpack](http://webpack.js.org) to compile frontend assets and
it has a minimum requirement of node v4.3.0.

You can check which version you are running with node -v. If you are running
a version older than v4.3.0 you will need to update to a newer version. You
can find instructions to install from community maintained packages or compile
from source at the nodejs.org website.

<https://nodejs.org/en/download/>

Since 8.17, GitLab requires the use of yarn >= v0.17.0 to manage
JavaScript dependencies.

`bash
curl --silent --show-error https://dl.yarnpkg.com/debian/pubkey.gpg | sudo apt-key add -
echo "deb https://dl.yarnpkg.com/debian/ stable main" | sudo tee /etc/apt/sources.list.d/yarn.list
sudo apt-get update
sudo apt-get install yarn
`

More information can be found on the [yarn website](https://yarnpkg.com/en/docs/install).

5. Update Go

NOTE: GitLab 9.2 and higher only supports Go 1.8.3 and dropped support for Go
1.5.x through 1.7.x. Be sure to upgrade your installation if necessary.

You can check which version you are running with go version.

Download and install Go:

```bash
# Remove former Go installation folder
sudo rm -rf /usr/local/go

curl –remote-name –progress https://storage.googleapis.com/golang/go1.8.3.linux-amd64.tar.gz
echo ‘1862f4c3d3907e59b04a757cfda0ea7aa9ef39274af99a784f5be843c80c6772  go1.8.3.linux-amd64.tar.gz’ | shasum -a256 -c - && 


sudo tar -C /usr/local -xzf go1.8.3.linux-amd64.tar.gz




sudo ln -sf /usr/local/go/bin/{go,godoc,gofmt} /usr/local/bin/
rm go1.8.3.linux-amd64.tar.gz
```

6. Get latest code

```bash
cd /home/git/gitlab

sudo -u git -H git fetch –all
sudo -u git -H git checkout – db/schema.rb # local changes will be restored automatically
sudo -u git -H git checkout – locale
```

For GitLab Community Edition:

```bash
cd /home/git/gitlab

sudo -u git -H git checkout 9-3-stable
```

OR

For GitLab Enterprise Edition:

```bash
cd /home/git/gitlab

sudo -u git -H git checkout 9-3-stable-ee
```

7. Update gitlab-shell

```bash
cd /home/git/gitlab-shell

sudo -u git -H git fetch –all –tags
sudo -u git -H git checkout v$(</home/git/gitlab/GITLAB_SHELL_VERSION)
sudo -u git -H bin/compile
```

8. Update gitlab-workhorse

Install and compile gitlab-workhorse. GitLab-Workhorse uses
[GNU Make](https://www.gnu.org/software/make/).
If you are not using Linux you may have to run gmake instead of
make below.

```bash
cd /home/git/gitlab-workhorse

sudo -u git -H git fetch –all –tags
sudo -u git -H git checkout v$(</home/git/gitlab/GITLAB_WORKHORSE_VERSION)
sudo -u git -H make
```

9. Update Gitaly

If you have not yet set up Gitaly then follow [Gitaly section of the installation
guide](../install/installation.md#install-gitaly).

Compile Gitaly

`shell
cd /home/git/gitaly
sudo -u git -H git fetch --all --tags
sudo -u git -H git checkout v$(</home/git/gitlab/GITALY_SERVER_VERSION)
sudo -u git -H make
`

10. Update MySQL permissions

If you are using MySQL you need to grant the GitLab user the necessary
permissions on the database:

`bash
mysql -u root -p -e "GRANT TRIGGER ON \`gitlabhq_production\`.* TO 'git'@'localhost';"
`

If you use MySQL with replication, or just have MySQL configured with binary logging,
you will need to also run the following on all of your MySQL servers:

`bash
mysql -u root -p -e "SET GLOBAL log_bin_trust_function_creators = 1;"
`

You can make this setting permanent by adding it to your my.cnf:

`
log_bin_trust_function_creators=1
`

11. Update configuration files

New configuration options for gitlab.yml

There might be configuration options available for [gitlab.yml][yaml]. View them with the command below and apply them manually to your current gitlab.yml:

```sh
cd /home/git/gitlab

git diff origin/9-2-stable:config/gitlab.yml.example origin/9-3-stable:config/gitlab.yml.example
```

Nginx configuration

Ensure you’re still up-to-date with the latest NGINX configuration changes:

```sh
cd /home/git/gitlab

# For HTTPS configurations
git diff origin/9-2-stable:lib/support/nginx/gitlab-ssl origin/9-3-stable:lib/support/nginx/gitlab-ssl

# For HTTP configurations
git diff origin/9-2-stable:lib/support/nginx/gitlab origin/9-3-stable:lib/support/nginx/gitlab
```

If you are using Strict-Transport-Security in your installation to continue using it you must enable it in your Nginx
configuration as GitLab application no longer handles setting it.

If you are using Apache instead of NGINX please see the updated [Apache templates].
Also note that because Apache does not support upstreams behind Unix sockets you
will need to let gitlab-workhorse listen on a TCP port. You can do this
via [/etc/default/gitlab].

[Apache templates]: https://gitlab.com/gitlab-org/gitlab-recipes/tree/master/web-server/apache
[/etc/default/gitlab]: https://gitlab.com/gitlab-org/gitlab-ce/blob/9-3-stable/lib/support/init.d/gitlab.default.example#L38

SMTP configuration

If you’re installing from source and use SMTP to deliver mail, you will need to add the following line
to config/initializers/smtp_settings.rb:

`ruby
ActionMailer::Base.delivery_method = :smtp
`

See [smtp_settings.rb.sample] as an example.

[smtp_settings.rb.sample]: https://gitlab.com/gitlab-org/gitlab-ce/blob/9-3-stable/config/initializers/smtp_settings.rb.sample#L13

Init script

There might be new configuration options available for [gitlab.default.example][gl-example]. View them with the command below and apply them manually to your current /etc/default/gitlab:

```sh
cd /home/git/gitlab

git diff origin/9-2-stable:lib/support/init.d/gitlab.default.example origin/9-3-stable:lib/support/init.d/gitlab.default.example
```

Ensure you’re still up-to-date with the latest init script changes:

```bash
cd /home/git/gitlab

sudo cp lib/support/init.d/gitlab /etc/init.d/gitlab
```

For Ubuntu 16.04.1 LTS:

`bash
sudo systemctl daemon-reload
`

12. Install libs, migrations, etc.

GitLab 9.3.8 [introduced](https://gitlab.com/gitlab-org/gitlab-ce/issues/24570)
a dependency on on the re2 regular expression library. To install this dependency:

`bash
sudo apt-get install libre2-dev
`

Ubuntu 14.04 (Trusty Tahr) doesn’t have the libre2-dev package available, but
you can [install re2 manually](https://github.com/google/re2/wiki/Install).

```bash
cd /home/git/gitlab

# MySQL installations (note: the line below states ‘–without postgres’)
sudo -u git -H bundle install –without postgres development test –deployment

# PostgreSQL installations (note: the line below states ‘–without mysql’)
sudo -u git -H bundle install –without mysql development test –deployment

# Optional: clean up old gems
sudo -u git -H bundle clean

# Run database migrations
sudo -u git -H bundle exec rake db:migrate RAILS_ENV=production

# Compile GetText PO files

sudo -u git -H bundle exec rake gettext:compile RAILS_ENV=production

# Update node dependencies and recompile assets
sudo -u git -H bundle exec rake yarn:install gitlab:assets:clean gitlab:assets:compile RAILS_ENV=production NODE_ENV=production

# Clean up cache
sudo -u git -H bundle exec rake cache:clear RAILS_ENV=production
```

MySQL installations: Run through the MySQL strings limits and Tables and data conversion to utf8mb4 [tasks](../install/database_mysql.md).

13. Start application

`bash
sudo service gitlab start
sudo service nginx restart
`

14. Check application status

Check if GitLab and its environment are configured correctly:

```bash
cd /home/git/gitlab

sudo -u git -H bundle exec rake gitlab:env:info RAILS_ENV=production
```

To make sure you didn’t miss anything run a more thorough check:

```bash
cd /home/git/gitlab

sudo -u git -H bundle exec rake gitlab:check RAILS_ENV=production
```

If all items are green, then congratulations, the upgrade is complete!

Things went south? Revert to previous version (9.2)

1. Revert the code to the previous version

Follow the [upgrade guide from 9.1 to 9.2](9.1-to-9.2.md), except for the
database migration (the backup is already migrated to the previous version).

2. Restore from the backup

```bash
cd /home/git/gitlab

sudo -u git -H bundle exec rake gitlab:backup:restore RAILS_ENV=production
```

If you have more than one backup *.tar file(s) please add BACKUP=timestamp_of_backup to the command above.

[yaml]: https://gitlab.com/gitlab-org/gitlab-ce/blob/9-3-stable/config/gitlab.yml.example
[gl-example]: https://gitlab.com/gitlab-org/gitlab-ce/blob/9-3-stable/lib/support/init.d/gitlab.default.example

 —
comments: false
—

From 9.3 to 9.4

Make sure you view this update guide from the tag (version) of GitLab you would
like to install. In most cases this should be the highest numbered production
tag (without rc in it). You can select the tag in the version dropdown at the
top left corner of GitLab (below the menu bar).

If the highest number stable branch is unclear please check the
[GitLab Blog](https://about.gitlab.com/blog/archives.html) for installation
guide links by version.

1. Stop server

`bash
sudo service gitlab stop
`

2. Backup

```bash
cd /home/git/gitlab

sudo -u git -H bundle exec rake gitlab:backup:create RAILS_ENV=production
```

3. Update Ruby

NOTE: GitLab 9.0 and higher only support Ruby 2.3.x and dropped support for Ruby 2.1.x. Be
sure to upgrade your interpreter if necessary.

You can check which version you are running with ruby -v.

Download and compile Ruby:

`bash
mkdir /tmp/ruby && cd /tmp/ruby
curl --remote-name --progress https://cache.ruby-lang.org/pub/ruby/2.3/ruby-2.3.3.tar.gz
echo '1014ee699071aa2ddd501907d18cbe15399c997d ruby-2.3.3.tar.gz' | shasum -c - && tar xzf ruby-2.3.3.tar.gz
cd ruby-2.3.3
./configure --disable-install-rdoc
make
sudo make install
`

Install Bundler:

`bash
sudo gem install bundler --no-ri --no-rdoc
`

4. Update Node

GitLab now runs [webpack](http://webpack.js.org) to compile frontend assets and
it has a minimum requirement of node v4.3.0.

You can check which version you are running with node -v. If you are running
a version older than v4.3.0 you will need to update to a newer version. You
can find instructions to install from community maintained packages or compile
from source at the nodejs.org website.

<https://nodejs.org/en/download/>

Since 8.17, GitLab requires the use of yarn >= v0.17.0 to manage
JavaScript dependencies.

`bash
curl --silent --show-error https://dl.yarnpkg.com/debian/pubkey.gpg | sudo apt-key add -
echo "deb https://dl.yarnpkg.com/debian/ stable main" | sudo tee /etc/apt/sources.list.d/yarn.list
sudo apt-get update
sudo apt-get install yarn
`

More information can be found on the [yarn website](https://yarnpkg.com/en/docs/install).

5. Update Go

NOTE: GitLab 9.2 and higher only supports Go 1.8.3 and dropped support for Go
1.5.x through 1.7.x. Be sure to upgrade your installation if necessary.

You can check which version you are running with go version.

Download and install Go:

```bash
# Remove former Go installation folder
sudo rm -rf /usr/local/go

curl –remote-name –progress https://storage.googleapis.com/golang/go1.8.3.linux-amd64.tar.gz
echo ‘1862f4c3d3907e59b04a757cfda0ea7aa9ef39274af99a784f5be843c80c6772  go1.8.3.linux-amd64.tar.gz’ | shasum -a256 -c - && 


sudo tar -C /usr/local -xzf go1.8.3.linux-amd64.tar.gz




sudo ln -sf /usr/local/go/bin/{go,godoc,gofmt} /usr/local/bin/
rm go1.8.3.linux-amd64.tar.gz
```

6. Get latest code

```bash
cd /home/git/gitlab

sudo -u git -H git fetch –all
sudo -u git -H git checkout – db/schema.rb # local changes will be restored automatically
sudo -u git -H git checkout – locale
```

For GitLab Community Edition:

```bash
cd /home/git/gitlab

sudo -u git -H git checkout 9-4-stable
```

OR

For GitLab Enterprise Edition:

```bash
cd /home/git/gitlab

sudo -u git -H git checkout 9-4-stable-ee
```

7. Update gitlab-shell

```bash
cd /home/git/gitlab-shell

sudo -u git -H git fetch –all –tags
sudo -u git -H git checkout v$(</home/git/gitlab/GITLAB_SHELL_VERSION)
sudo -u git -H bin/compile
```

8. Update gitlab-workhorse

Install and compile gitlab-workhorse. GitLab-Workhorse uses
[GNU Make](https://www.gnu.org/software/make/).
If you are not using Linux you may have to run gmake instead of
make below.

```bash
cd /home/git/gitlab-workhorse

sudo -u git -H git fetch –all –tags
sudo -u git -H git checkout v$(</home/git/gitlab/GITLAB_WORKHORSE_VERSION)
sudo -u git -H make
```

9. Update Gitaly

If you have not yet set up Gitaly then follow [Gitaly section of the installation
guide](../install/installation.md#install-gitaly).

As of GitLab 9.4, Gitaly is a mandatory component of GitLab.

Check Gitaly configuration

Due to a bug in the rake gitlab:gitaly:install script your Gitaly
configuration file may contain syntax errors. The block name
[[storages]], which may occur more than once in your config.toml
file, should be [[storage]] instead.

`shell
sudo -u git -H sed -i.pre-9.4 's/\[\[storages\]\]/[[storage]]/' /home/git/gitaly/config.toml
`

Compile Gitaly

`shell
cd /home/git/gitaly
sudo -u git -H git fetch --all --tags
sudo -u git -H git checkout v$(</home/git/gitlab/GITALY_SERVER_VERSION)
sudo -u git -H make
`

10. Update MySQL permissions

If you are using MySQL you need to grant the GitLab user the necessary
permissions on the database:

`bash
mysql -u root -p -e "GRANT TRIGGER ON \`gitlabhq_production\`.* TO 'git'@'localhost';"
`

If you use MySQL with replication, or just have MySQL configured with binary logging,
you will need to also run the following on all of your MySQL servers:

`bash
mysql -u root -p -e "SET GLOBAL log_bin_trust_function_creators = 1;"
`

You can make this setting permanent by adding it to your my.cnf:

`
log_bin_trust_function_creators=1
`

11. Update configuration files

New configuration options for gitlab.yml

There might be configuration options available for [gitlab.yml][yaml]. View them with the command below and apply them manually to your current gitlab.yml:

```sh
cd /home/git/gitlab

git diff origin/9-3-stable:config/gitlab.yml.example origin/9-4-stable:config/gitlab.yml.example
```

Nginx configuration

Ensure you’re still up-to-date with the latest NGINX configuration changes:

```sh
cd /home/git/gitlab

# For HTTPS configurations
git diff origin/9-3-stable:lib/support/nginx/gitlab-ssl origin/9-4-stable:lib/support/nginx/gitlab-ssl

# For HTTP configurations
git diff origin/9-3-stable:lib/support/nginx/gitlab origin/9-4-stable:lib/support/nginx/gitlab
```

If you are using Strict-Transport-Security in your installation to continue using it you must enable it in your Nginx
configuration as GitLab application no longer handles setting it.

If you are using Apache instead of NGINX please see the updated [Apache templates].
Also note that because Apache does not support upstreams behind Unix sockets you
will need to let gitlab-workhorse listen on a TCP port. You can do this
via [/etc/default/gitlab].

[Apache templates]: https://gitlab.com/gitlab-org/gitlab-recipes/tree/master/web-server/apache
[/etc/default/gitlab]: https://gitlab.com/gitlab-org/gitlab-ce/blob/9-4-stable/lib/support/init.d/gitlab.default.example#L38

SMTP configuration

If you’re installing from source and use SMTP to deliver mail, you will need to add the following line
to config/initializers/smtp_settings.rb:

`ruby
ActionMailer::Base.delivery_method = :smtp
`

See [smtp_settings.rb.sample] as an example.

[smtp_settings.rb.sample]: https://gitlab.com/gitlab-org/gitlab-ce/blob/9-4-stable/config/initializers/smtp_settings.rb.sample#L13

Init script

There might be new configuration options available for [gitlab.default.example][gl-example]. View them with the command below and apply them manually to your current /etc/default/gitlab:

```sh
cd /home/git/gitlab

git diff origin/9-3-stable:lib/support/init.d/gitlab.default.example origin/9-4-stable:lib/support/init.d/gitlab.default.example
```

Ensure you’re still up-to-date with the latest init script changes:

```bash
cd /home/git/gitlab

sudo cp lib/support/init.d/gitlab /etc/init.d/gitlab
```

For Ubuntu 16.04.1 LTS:

`bash
sudo systemctl daemon-reload
`

12. Install libs, migrations, etc.

GitLab 9.4 [introduced](https://gitlab.com/gitlab-org/gitlab-ce/issues/24570)
a dependency on on the re2 regular expression library. To install this dependency:

`bash
sudo apt-get install libre2-dev
`

Ubuntu 14.04 (Trusty Tahr) doesn’t have the libre2-dev package available, but
you can [install re2 manually](https://github.com/google/re2/wiki/Install).

```bash
cd /home/git/gitlab

# MySQL installations (note: the line below states ‘–without postgres’)
sudo -u git -H bundle install –without postgres development test –deployment

# PostgreSQL installations (note: the line below states ‘–without mysql’)
sudo -u git -H bundle install –without mysql development test –deployment

# Optional: clean up old gems
sudo -u git -H bundle clean

# Run database migrations
sudo -u git -H bundle exec rake db:migrate RAILS_ENV=production

# Compile GetText PO files

sudo -u git -H bundle exec rake gettext:compile RAILS_ENV=production

# Update node dependencies and recompile assets
sudo -u git -H bundle exec rake yarn:install gitlab:assets:clean gitlab:assets:compile RAILS_ENV=production NODE_ENV=production

# Clean up cache
sudo -u git -H bundle exec rake cache:clear RAILS_ENV=production
```

MySQL installations: Run through the MySQL strings limits and Tables and data conversion to utf8mb4 [tasks](../install/database_mysql.md).

13. Start application

`bash
sudo service gitlab start
sudo service nginx restart
`

14. Check application status

Check if GitLab and its environment are configured correctly:

```bash
cd /home/git/gitlab

sudo -u git -H bundle exec rake gitlab:env:info RAILS_ENV=production
```

To make sure you didn’t miss anything run a more thorough check:

```bash
cd /home/git/gitlab

sudo -u git -H bundle exec rake gitlab:check RAILS_ENV=production
```

If all items are green, then congratulations, the upgrade is complete!

Things went south? Revert to previous version (9.3)

1. Revert the code to the previous version

Follow the [upgrade guide from 9.2 to 9.3](9.2-to-9.3.md), except for the
database migration (the backup is already migrated to the previous version).

2. Restore from the backup

```bash
cd /home/git/gitlab

sudo -u git -H bundle exec rake gitlab:backup:restore RAILS_ENV=production
```

If you have more than one backup *.tar file(s) please add BACKUP=timestamp_of_backup to the command above.

[yaml]: https://gitlab.com/gitlab-org/gitlab-ce/blob/9-4-stable/config/gitlab.yml.example
[gl-example]: https://gitlab.com/gitlab-org/gitlab-ce/blob/9-4-stable/lib/support/init.d/gitlab.default.example

 —
comments: false
—

From 9.4 to 9.5

Make sure you view this update guide from the tag (version) of GitLab you would
like to install. In most cases this should be the highest numbered production
tag (without rc in it). You can select the tag in the version dropdown at the
top left corner of GitLab (below the menu bar).

If the highest number stable branch is unclear please check the
[GitLab Blog](https://about.gitlab.com/blog/archives.html) for installation
guide links by version.

1. Stop server

`bash
sudo service gitlab stop
`

2. Backup

```bash
cd /home/git/gitlab

sudo -u git -H bundle exec rake gitlab:backup:create RAILS_ENV=production
```

3. Update Ruby

NOTE: GitLab 9.0 and higher only support Ruby 2.3.x and dropped support for Ruby 2.1.x. Be
sure to upgrade your interpreter if necessary.

You can check which version you are running with ruby -v.

Download and compile Ruby:

`bash
mkdir /tmp/ruby && cd /tmp/ruby
curl --remote-name --progress https://cache.ruby-lang.org/pub/ruby/2.3/ruby-2.3.3.tar.gz
echo '1014ee699071aa2ddd501907d18cbe15399c997d ruby-2.3.3.tar.gz' | shasum -c - && tar xzf ruby-2.3.3.tar.gz
cd ruby-2.3.3
./configure --disable-install-rdoc
make
sudo make install
`

Install Bundler:

`bash
sudo gem install bundler --no-ri --no-rdoc
`

4. Update Node

GitLab now runs [webpack](http://webpack.js.org) to compile frontend assets and
it has a minimum requirement of node v4.3.0.

You can check which version you are running with node -v. If you are running
a version older than v4.3.0 you will need to update to a newer version. You
can find instructions to install from community maintained packages or compile
from source at the nodejs.org website.

<https://nodejs.org/en/download/>

Since 8.17, GitLab requires the use of yarn >= v0.17.0 to manage
JavaScript dependencies.

`bash
curl --silent --show-error https://dl.yarnpkg.com/debian/pubkey.gpg | sudo apt-key add -
echo "deb https://dl.yarnpkg.com/debian/ stable main" | sudo tee /etc/apt/sources.list.d/yarn.list
sudo apt-get update
sudo apt-get install yarn
`

More information can be found on the [yarn website](https://yarnpkg.com/en/docs/install).

5. Update Go

NOTE: GitLab 9.2 and higher only supports Go 1.8.3 and dropped support for Go
1.5.x through 1.7.x. Be sure to upgrade your installation if necessary.

You can check which version you are running with go version.

Download and install Go:

```bash
# Remove former Go installation folder
sudo rm -rf /usr/local/go

curl –remote-name –progress https://storage.googleapis.com/golang/go1.8.3.linux-amd64.tar.gz
echo ‘1862f4c3d3907e59b04a757cfda0ea7aa9ef39274af99a784f5be843c80c6772  go1.8.3.linux-amd64.tar.gz’ | shasum -a256 -c - && 


sudo tar -C /usr/local -xzf go1.8.3.linux-amd64.tar.gz




sudo ln -sf /usr/local/go/bin/{go,godoc,gofmt} /usr/local/bin/
rm go1.8.3.linux-amd64.tar.gz
```

6. Get latest code

```bash
cd /home/git/gitlab

sudo -u git -H git fetch –all
sudo -u git -H git checkout – db/schema.rb # local changes will be restored automatically
sudo -u git -H git checkout – locale
```

For GitLab Community Edition:

```bash
cd /home/git/gitlab

sudo -u git -H git checkout 9-5-stable
```

OR

For GitLab Enterprise Edition:

```bash
cd /home/git/gitlab

sudo -u git -H git checkout 9-5-stable-ee
```

7. Update gitlab-shell

```bash
cd /home/git/gitlab-shell

sudo -u git -H git fetch –all –tags
sudo -u git -H git checkout v$(</home/git/gitlab/GITLAB_SHELL_VERSION)
sudo -u git -H bin/compile
```

8. Update gitlab-workhorse

Install and compile gitlab-workhorse. GitLab-Workhorse uses
[GNU Make](https://www.gnu.org/software/make/).
If you are not using Linux you may have to run gmake instead of
make below.

```bash
cd /home/git/gitlab-workhorse

sudo -u git -H git fetch –all –tags
sudo -u git -H git checkout v$(</home/git/gitlab/GITLAB_WORKHORSE_VERSION)
sudo -u git -H make
```

9. Update Gitaly

New Gitaly configuration options required

In order to function Gitaly needs some additional configuration information. Below we assume you installed Gitaly in /home/git/gitaly and GitLab Shell in `/home/git/gitlab-shell’.

```shell
echo ‘
[gitaly-ruby]
dir = “/home/git/gitaly/ruby”

[gitlab-shell]
dir = “/home/git/gitlab-shell”
‘ | sudo -u git tee -a /home/git/gitaly/config.toml
```

Check Gitaly configuration

Due to a bug in the rake gitlab:gitaly:install script your Gitaly
configuration file may contain syntax errors. The block name
[[storages]], which may occur more than once in your config.toml
file, should be [[storage]] instead.

`shell
sudo -u git -H sed -i.pre-9.5 's/\[\[storages\]\]/[[storage]]/' /home/git/gitaly/config.toml
`

Compile Gitaly

`shell
cd /home/git/gitaly
sudo -u git -H git fetch --all --tags
sudo -u git -H git checkout v$(</home/git/gitlab/GITALY_SERVER_VERSION)
sudo -u git -H make
`

10. Update MySQL permissions

If you are using MySQL you need to grant the GitLab user the necessary
permissions on the database:

`bash
mysql -u root -p -e "GRANT TRIGGER ON \`gitlabhq_production\`.* TO 'git'@'localhost';"
`

If you use MySQL with replication, or just have MySQL configured with binary logging,
you will need to also run the following on all of your MySQL servers:

`bash
mysql -u root -p -e "SET GLOBAL log_bin_trust_function_creators = 1;"
`

You can make this setting permanent by adding it to your my.cnf:

`
log_bin_trust_function_creators=1
`

11. Update configuration files

New configuration options for gitlab.yml

There might be configuration options available for [gitlab.yml][yaml]. View them with the command below and apply them manually to your current gitlab.yml:

```sh
cd /home/git/gitlab

git diff origin/9-4-stable:config/gitlab.yml.example origin/9-5-stable:config/gitlab.yml.example
```

Nginx configuration

Ensure you’re still up-to-date with the latest NGINX configuration changes:

```sh
cd /home/git/gitlab

# For HTTPS configurations
git diff origin/9-4-stable:lib/support/nginx/gitlab-ssl origin/9-5-stable:lib/support/nginx/gitlab-ssl

# For HTTP configurations
git diff origin/9-4-stable:lib/support/nginx/gitlab origin/9-5-stable:lib/support/nginx/gitlab
```

If you are using Strict-Transport-Security in your installation to continue using it you must enable it in your Nginx
configuration as GitLab application no longer handles setting it.

If you are using Apache instead of NGINX please see the updated [Apache templates].
Also note that because Apache does not support upstreams behind Unix sockets you
will need to let gitlab-workhorse listen on a TCP port. You can do this
via [/etc/default/gitlab].

[Apache templates]: https://gitlab.com/gitlab-org/gitlab-recipes/tree/master/web-server/apache
[/etc/default/gitlab]: https://gitlab.com/gitlab-org/gitlab-ce/blob/9-5-stable/lib/support/init.d/gitlab.default.example#L38

SMTP configuration

If you’re installing from source and use SMTP to deliver mail, you will need to add the following line
to config/initializers/smtp_settings.rb:

`ruby
ActionMailer::Base.delivery_method = :smtp
`

See [smtp_settings.rb.sample] as an example.

[smtp_settings.rb.sample]: https://gitlab.com/gitlab-org/gitlab-ce/blob/9-5-stable/config/initializers/smtp_settings.rb.sample#L13

Init script

There might be new configuration options available for [gitlab.default.example][gl-example]. View them with the command below and apply them manually to your current /etc/default/gitlab:

```sh
cd /home/git/gitlab

git diff origin/9-4-stable:lib/support/init.d/gitlab.default.example origin/9-5-stable:lib/support/init.d/gitlab.default.example
```

Ensure you’re still up-to-date with the latest init script changes:

```bash
cd /home/git/gitlab

sudo cp lib/support/init.d/gitlab /etc/init.d/gitlab
```

For Ubuntu 16.04.1 LTS:

`bash
sudo systemctl daemon-reload
`

12. Install libs, migrations, etc.

```bash
cd /home/git/gitlab

# MySQL installations (note: the line below states ‘–without postgres’)
sudo -u git -H bundle install –without postgres development test –deployment

# PostgreSQL installations (note: the line below states ‘–without mysql’)
sudo -u git -H bundle install –without mysql development test –deployment

# Optional: clean up old gems
sudo -u git -H bundle clean

# Run database migrations
sudo -u git -H bundle exec rake db:migrate RAILS_ENV=production

# Compile GetText PO files

sudo -u git -H bundle exec rake gettext:compile RAILS_ENV=production

# Update node dependencies and recompile assets
sudo -u git -H bundle exec rake yarn:install gitlab:assets:clean gitlab:assets:compile RAILS_ENV=production NODE_ENV=production

# Clean up cache
sudo -u git -H bundle exec rake cache:clear RAILS_ENV=production
```

MySQL installations: Run through the MySQL strings limits and Tables and data conversion to utf8mb4 [tasks](../install/database_mysql.md).

13. Start application

`bash
sudo service gitlab start
sudo service nginx restart
`

14. Check application status

Check if GitLab and its environment are configured correctly:

```bash
cd /home/git/gitlab

sudo -u git -H bundle exec rake gitlab:env:info RAILS_ENV=production
```

To make sure you didn’t miss anything run a more thorough check:

```bash
cd /home/git/gitlab

sudo -u git -H bundle exec rake gitlab:check RAILS_ENV=production
```

If all items are green, then congratulations, the upgrade is complete!

Things went south? Revert to previous version (9.4)

1. Revert the code to the previous version

Follow the [upgrade guide from 9.3 to 9.4](9.3-to-9.4.md), except for the
database migration (the backup is already migrated to the previous version).

2. Restore from the backup

```bash
cd /home/git/gitlab

sudo -u git -H bundle exec rake gitlab:backup:restore RAILS_ENV=production
```

If you have more than one backup *.tar file(s) please add BACKUP=timestamp_of_backup to the command above.

[yaml]: https://gitlab.com/gitlab-org/gitlab-ce/blob/9-5-stable/config/gitlab.yml.example
[gl-example]: https://gitlab.com/gitlab-org/gitlab-ce/blob/9-5-stable/lib/support/init.d/gitlab.default.example

 —
comments: false
—

From 9.5 to 10.0

Make sure you view this update guide from the tag (version) of GitLab you would
like to install. In most cases this should be the highest numbered production
tag (without rc in it). You can select the tag in the version dropdown at the
top left corner of GitLab (below the menu bar).

If the highest number stable branch is unclear please check the
[GitLab Blog](https://about.gitlab.com/blog/archives.html) for installation
guide links by version.

1. Stop server

`bash
sudo service gitlab stop
`

2. Backup

```bash
cd /home/git/gitlab

sudo -u git -H bundle exec rake gitlab:backup:create RAILS_ENV=production
```

3. Update Ruby

NOTE: GitLab 9.0 and higher only support Ruby 2.3.x and dropped support for Ruby 2.1.x. Be
sure to upgrade your interpreter if necessary.

You can check which version you are running with ruby -v.

Download and compile Ruby:

`bash
mkdir /tmp/ruby && cd /tmp/ruby
curl --remote-name --progress https://cache.ruby-lang.org/pub/ruby/2.3/ruby-2.3.3.tar.gz
echo '1014ee699071aa2ddd501907d18cbe15399c997d ruby-2.3.3.tar.gz' | shasum -c - && tar xzf ruby-2.3.3.tar.gz
cd ruby-2.3.3
./configure --disable-install-rdoc
make
sudo make install
`

Install Bundler:

`bash
sudo gem install bundler --no-ri --no-rdoc
`

4. Update Node

GitLab now runs [webpack](http://webpack.js.org) to compile frontend assets and
it has a minimum requirement of node v4.3.0.

You can check which version you are running with node -v. If you are running
a version older than v4.3.0 you will need to update to a newer version. You
can find instructions to install from community maintained packages or compile
from source at the nodejs.org website.

<https://nodejs.org/en/download/>

Since 8.17, GitLab requires the use of yarn >= v0.17.0 to manage
JavaScript dependencies.

`bash
curl --silent --show-error https://dl.yarnpkg.com/debian/pubkey.gpg | sudo apt-key add -
echo "deb https://dl.yarnpkg.com/debian/ stable main" | sudo tee /etc/apt/sources.list.d/yarn.list
sudo apt-get update
sudo apt-get install yarn
`

More information can be found on the [yarn website](https://yarnpkg.com/en/docs/install).

5. Update Go

NOTE: GitLab 9.2 and higher only supports Go 1.8.3 and dropped support for Go
1.5.x through 1.7.x. Be sure to upgrade your installation if necessary.

You can check which version you are running with go version.

Download and install Go:

```bash
# Remove former Go installation folder
sudo rm -rf /usr/local/go

curl –remote-name –progress https://storage.googleapis.com/golang/go1.8.3.linux-amd64.tar.gz
echo ‘1862f4c3d3907e59b04a757cfda0ea7aa9ef39274af99a784f5be843c80c6772  go1.8.3.linux-amd64.tar.gz’ | shasum -a256 -c - && 


sudo tar -C /usr/local -xzf go1.8.3.linux-amd64.tar.gz




sudo ln -sf /usr/local/go/bin/{go,godoc,gofmt} /usr/local/bin/
rm go1.8.3.linux-amd64.tar.gz
```

6. Get latest code

```bash
cd /home/git/gitlab

sudo -u git -H git fetch –all
sudo -u git -H git checkout – db/schema.rb # local changes will be restored automatically
sudo -u git -H git checkout – locale
```

For GitLab Community Edition:

```bash
cd /home/git/gitlab

sudo -u git -H git checkout 10-0-stable
```

OR

For GitLab Enterprise Edition:

```bash
cd /home/git/gitlab

sudo -u git -H git checkout 10-0-stable-ee
```

7. Update gitlab-shell

```bash
cd /home/git/gitlab-shell

sudo -u git -H git fetch –all –tags
sudo -u git -H git checkout v$(</home/git/gitlab/GITLAB_SHELL_VERSION)
sudo -u git -H bin/compile
```

8. Update gitlab-workhorse

Install and compile gitlab-workhorse. GitLab-Workhorse uses
[GNU Make](https://www.gnu.org/software/make/).
If you are not using Linux you may have to run gmake instead of
make below.

```bash
cd /home/git/gitlab-workhorse

sudo -u git -H git fetch –all –tags
sudo -u git -H git checkout v$(</home/git/gitlab/GITLAB_WORKHORSE_VERSION)
sudo -u git -H make
```

9. Update Gitaly

New Gitaly configuration options required

In order to function Gitaly needs some additional configuration information. Below we assume you installed Gitaly in /home/git/gitaly and GitLab Shell in `/home/git/gitlab-shell’.

```shell
echo ‘
[gitaly-ruby]
dir = “/home/git/gitaly/ruby”

[gitlab-shell]
dir = “/home/git/gitlab-shell”
‘ | sudo -u git tee -a /home/git/gitaly/config.toml
```

Check Gitaly configuration

Due to a bug in the rake gitlab:gitaly:install script your Gitaly
configuration file may contain syntax errors. The block name
[[storages]], which may occur more than once in your config.toml
file, should be [[storage]] instead.

`shell
sudo -u git -H sed -i.pre-10.0 's/\[\[storages\]\]/[[storage]]/' /home/git/gitaly/config.toml
`

Compile Gitaly

`shell
cd /home/git/gitaly
sudo -u git -H git fetch --all --tags
sudo -u git -H git checkout v$(</home/git/gitlab/GITALY_SERVER_VERSION)
sudo -u git -H make
`

10. Update MySQL permissions

If you are using MySQL you need to grant the GitLab user the necessary
permissions on the database:

`bash
mysql -u root -p -e "GRANT TRIGGER ON \`gitlabhq_production\`.* TO 'git'@'localhost';"
`

If you use MySQL with replication, or just have MySQL configured with binary logging,
you will need to also run the following on all of your MySQL servers:

`bash
mysql -u root -p -e "SET GLOBAL log_bin_trust_function_creators = 1;"
`

You can make this setting permanent by adding it to your my.cnf:

`
log_bin_trust_function_creators=1
`

11. Update configuration files

New configuration options for gitlab.yml

There might be configuration options available for [gitlab.yml][yaml]. View them with the command below and apply them manually to your current gitlab.yml:

```sh
cd /home/git/gitlab

git diff origin/9-5-stable:config/gitlab.yml.example origin/10-0-stable:config/gitlab.yml.example
```

Nginx configuration

Ensure you’re still up-to-date with the latest NGINX configuration changes:

```sh
cd /home/git/gitlab

# For HTTPS configurations
git diff origin/9-5-stable:lib/support/nginx/gitlab-ssl origin/10-0-stable:lib/support/nginx/gitlab-ssl

# For HTTP configurations
git diff origin/9-5-stable:lib/support/nginx/gitlab origin/10-0-stable:lib/support/nginx/gitlab
```

If you are using Strict-Transport-Security in your installation to continue using it you must enable it in your Nginx
configuration as GitLab application no longer handles setting it.

If you are using Apache instead of NGINX please see the updated [Apache templates].
Also note that because Apache does not support upstreams behind Unix sockets you
will need to let gitlab-workhorse listen on a TCP port. You can do this
via [/etc/default/gitlab].

[Apache templates]: https://gitlab.com/gitlab-org/gitlab-recipes/tree/master/web-server/apache
[/etc/default/gitlab]: https://gitlab.com/gitlab-org/gitlab-ce/blob/10-0-stable/lib/support/init.d/gitlab.default.example#L38

SMTP configuration

If you’re installing from source and use SMTP to deliver mail, you will need to add the following line
to config/initializers/smtp_settings.rb:

`ruby
ActionMailer::Base.delivery_method = :smtp
`

See [smtp_settings.rb.sample] as an example.

[smtp_settings.rb.sample]: https://gitlab.com/gitlab-org/gitlab-ce/blob/10-0-stable/config/initializers/smtp_settings.rb.sample#L13

Init script

There might be new configuration options available for [gitlab.default.example][gl-example]. View them with the command below and apply them manually to your current /etc/default/gitlab:

```sh
cd /home/git/gitlab

git diff origin/9-5-stable:lib/support/init.d/gitlab.default.example origin/10-0-stable:lib/support/init.d/gitlab.default.example
```

Ensure you’re still up-to-date with the latest init script changes:

```bash
cd /home/git/gitlab

sudo cp lib/support/init.d/gitlab /etc/init.d/gitlab
```

For Ubuntu 16.04.1 LTS:

`bash
sudo systemctl daemon-reload
`

12. Install libs, migrations, etc.

```bash
cd /home/git/gitlab

# MySQL installations (note: the line below states ‘–without postgres’)
sudo -u git -H bundle install –without postgres development test –deployment

# PostgreSQL installations (note: the line below states ‘–without mysql’)
sudo -u git -H bundle install –without mysql development test –deployment

# Optional: clean up old gems
sudo -u git -H bundle clean

# Run database migrations
sudo -u git -H bundle exec rake db:migrate RAILS_ENV=production

# Compile GetText PO files

sudo -u git -H bundle exec rake gettext:compile RAILS_ENV=production

# Update node dependencies and recompile assets
sudo -u git -H bundle exec rake yarn:install gitlab:assets:clean gitlab:assets:compile RAILS_ENV=production NODE_ENV=production

# Clean up cache
sudo -u git -H bundle exec rake cache:clear RAILS_ENV=production
```

MySQL installations: Run through the MySQL strings limits and Tables and data conversion to utf8mb4 [tasks](../install/database_mysql.md).

13. Start application

`bash
sudo service gitlab start
sudo service nginx restart
`

14. Check application status

Check if GitLab and its environment are configured correctly:

```bash
cd /home/git/gitlab

sudo -u git -H bundle exec rake gitlab:env:info RAILS_ENV=production
```

To make sure you didn’t miss anything run a more thorough check:

```bash
cd /home/git/gitlab

sudo -u git -H bundle exec rake gitlab:check RAILS_ENV=production
```

If all items are green, then congratulations, the upgrade is complete!

Things went south? Revert to previous version (9.5)

1. Revert the code to the previous version

Follow the [upgrade guide from 9.4 to 9.5](9.4-to-9.5.md), except for the
database migration (the backup is already migrated to the previous version).

2. Restore from the backup

```bash
cd /home/git/gitlab

sudo -u git -H bundle exec rake gitlab:backup:restore RAILS_ENV=production
```

If you have more than one backup *.tar file(s) please add BACKUP=timestamp_of_backup to the command above.

[yaml]: https://gitlab.com/gitlab-org/gitlab-ce/blob/10-0-stable/config/gitlab.yml.example
[gl-example]: https://gitlab.com/gitlab-org/gitlab-ce/blob/10-0-stable/lib/support/init.d/gitlab.default.example

 # Updating GitLab

Depending on the installation method and your GitLab version, there are multiple
update guides.

There are currently 3 official ways to install GitLab:

	Omnibus packages

	Source installation

	Docker installation

Based on your installation, choose a section below that fits your needs.

Omnibus Packages

	The [Omnibus update guide](http://docs.gitlab.com/omnibus/update/README.html)
contains the steps needed to update an Omnibus GitLab package.

Installation from source

	[Upgrading Community Edition from source][source-ce] - The individual
upgrade guides are for those who have installed GitLab CE from source.

	[Upgrading Enterprise Edition from source][source-ee] - The individual
upgrade guides are for those who have installed GitLab EE from source.

	[Patch versions](patch_versions.md) guide includes the steps needed for a
patch version, eg. 6.2.0 to 6.2.1, and apply to both Community and Enterprise
Editions.

Installation using Docker

GitLab provides official Docker images for both Community and Enterprise
editions. They are based on the Omnibus package and instructions on how to
update them are in [a separate document][omnidocker].

Upgrading without downtime

Starting with GitLab 9.1.0 it’s possible to upgrade to a newer major, minor, or
patch version of GitLab without having to take your GitLab instance offline.
However, for this to work there are the following requirements:

	You can only upgrade 1 minor release at a time. So from 9.1 to 9.2, not to
9.3.

	You have to use [post-deployment
migrations](../development/post_deployment_migrations.md).

	You are using PostgreSQL. If you are using MySQL please look at the release
post to see if downtime is required.

Most of the time you can safely upgrade from a patch release to the next minor
release if the patch release is not the latest. For example, upgrading from
9.1.1 to 9.2.0 should be safe even if 9.1.2 has been released. We do recommend
you check the release posts of any releases between your current and target
version just in case they include any migrations that may require you to upgrade
1 release at a time.

Some releases may also include so called “background migrations”. These
migrations are performed in the background by Sidekiq and are often used for
migrating data. Background migrations are only added in the monthly releases.

Certain major/minor releases may require a set of background migrations to be
finished. To guarantee this such a release will process any remaining jobs
before continuing the upgrading procedure. While this won’t require downtime
(if the above conditions are met) we recommend users to keep at least 1 week
between upgrading major/minor releases, allowing the background migrations to
finish. The time necessary to complete these migrations can be reduced by
increasing the number of Sidekiq workers that can process jobs in the
background_migration queue.

As a rule of thumb, any database smaller than 10 GB won’t take too much time to
upgrade; perhaps an hour at most per minor release. Larger databases however may
require more time, but this is highly dependent on the size of the database and
the migrations that are being performed.

Examples

To help explain this, let’s look at some examples.

Example 1: You are running a large GitLab installation using version 9.4.2,
which is the latest patch release of 9.4. When GitLab 9.5.0 is released this
installation can be safely upgraded to 9.5.0 without requiring downtime if the
requirements mentioned above are met. You can also skip 9.5.0 and upgrade to
9.5.1 once it’s released, but you can not upgrade straight to 9.6.0; you
have to first upgrade to a 9.5.x release.

Example 2: You are running a large GitLab installation using version 9.4.2,
which is the latest patch release of 9.4. GitLab 9.5 includes some background
migrations, and 10.0 will require these to be completed (processing any
remaining jobs for you). Skipping 9.5 is not possible without downtime, and due
to the background migrations would require potentially hours of downtime
depending on how long it takes for the background migrations to complete. To
work around this you will have to upgrade to 9.5.x first, then wait at least a
week before upgrading to 10.0.

Example 3: You use MySQL as the database for GitLab. Any upgrade to a new
major/minor release will require downtime. If a release includes any background
migrations this could potentially lead to hours of downtime, depending on the
size of your database. To work around this you will have to use PostgreSQL and
meet the other online upgrade requirements mentioned above.

Upgrading between editions

GitLab comes in two flavors: [Community Edition][ce] which is MIT licensed,
and [Enterprise Edition][ee] which builds on top of the Community Edition and
includes extra features mainly aimed at organizations with more than 100 users.

Below you can find some guides to help you change editions easily.

Community to Enterprise Edition

>**Note:**
The following guides are for subscribers of the Enterprise Edition only.

If you wish to upgrade your GitLab installation from Community to Enterprise
Edition, follow the guides below based on the installation method:

	[Source CE to EE update guides][source-ee] - Find your version, and follow the
-ce-to-ee.md guide. The steps are very similar to a version upgrade: stop
the server, get the code, update config files for the new functionality,
install libraries and do migrations, update the init script, start the
application and check its status.

	[Omnibus CE to EE][omni-ce-ee] - Follow this guide to update your Omnibus
GitLab Community Edition to the Enterprise Edition.

Enterprise to Community Edition

If you need to downgrade your Enterprise Edition installation back to Community
Edition, you can follow [this guide][ee-ce] to make the process as smooth as
possible.

Miscellaneous

	[MySQL to PostgreSQL](mysql_to_postgresql.md) guides you through migrating
your database from MySQL to PostgreSQL.

	[MySQL installation guide](../install/database_mysql.md) contains additional
information about configuring GitLab to work with a MySQL database.

	[Restoring from backup after a failed upgrade](restore_after_failure.md)

	[Upgrading PostgreSQL Using Slony](upgrading_postgresql_using_slony.md), for
upgrading a PostgreSQL database with minimal downtime.

[omnidocker]: http://docs.gitlab.com/omnibus/docker/README.html
[source-ee]: https://gitlab.com/gitlab-org/gitlab-ee/tree/master/doc/update
[source-ce]: https://gitlab.com/gitlab-org/gitlab-ce/tree/master/doc/update
[ee-ce]: ../downgrade_ee_to_ce/README.md
[ce]: https://about.gitlab.com/features/#community
[ee]: https://about.gitlab.com/features/#enterprise
[omni-ce-ee]: http://docs.gitlab.com/omnibus/update/README.html#from-community-edition-to-enterprise-edition

 —
last_updated: 2018-02-07
—

Migrating from MySQL to PostgreSQL

> Note: This guide assumes you have a working GitLab instance with
> MySQL and want to migrate to bundled PostgreSQL database.

Omnibus installation

Prerequisites

First, we’ll need to enable the bundled PostgreSQL database with up-to-date
schema. Next, we’ll use [pgloader](http://pgloader.io) to migrate the data
from the old MySQL database to the new PostgreSQL one.

Here’s what you’ll need to have installed:

	pgloader 3.4.1+

	Omnibus GitLab

	MySQL

Enable bundled PostgreSQL database

	Stop GitLab:

` bash
sudo gitlab-ctl stop
`

	Edit /etc/gitlab/gitlab.rb to enable bundled PostgreSQL:

`
postgresql['enable'] = true
`

	Edit /etc/gitlab/gitlab.rb to use the bundled PostgreSQL. Please check
all the settings beginning with db_, such as gitlab_rails[‘db_adapter’]
and alike. You could just comment all of them out so that we’ll just use
the defaults.

	[Reconfigure GitLab] for the changes to take effect:

` bash
sudo gitlab-ctl reconfigure
`

	Start Unicorn and PostgreSQL so that we can prepare the schema:

` bash
sudo gitlab-ctl start unicorn
sudo gitlab-ctl start postgresql
`

	Run the following commands to prepare the schema:

` bash
sudo gitlab-rake db:create db:migrate
`

	Stop Unicorn to prevent other database access from interfering with the loading of data:

` bash
sudo gitlab-ctl stop unicorn
`

After these steps, you’ll have a fresh PostgreSQL database with up-to-date schema.

Migrate data from MySQL to PostgreSQL

Now, you can use pgloader to migrate the data from MySQL to PostgreSQL:

	Save the following snippet in a commands.load file, and edit with your
database username, password and host:


```
LOAD DATABASE


FROM mysql://username:password@host/gitlabhq_production
INTO postgresql://gitlab-psql@unix://var/opt/gitlab/postgresql:/gitlabhq_production





	WITH include no drop, truncate, disable triggers, create no tables,
	create no indexes, preserve index names, no foreign keys,
data only





ALTER SCHEMA ‘gitlabhq_production’ RENAME TO ‘public’









	Start the migration:


` bash
sudo -u gitlab-psql pgloader commands.load
`








1. Once the migration finishes, you should see a summary table that looks like
the following:



	```
	table name read imported errors total time

	———————————————– ——— ——— ——— ————–
	
	fetch meta data 119 119 0 0.388s
	Truncate 119 119 0 1.134s

	———————————————– ——— ——— ——— ————–
	
	public.abuse_reports 0 0 0 0.490s
	
	public.appearances 0 0 0 0.488s
	.

public.web_hook_logs 0 0 0 1.080s

	———————————————– ——— ——— ——— ————–
	
	COPY Threads Completion 4 4 0 2.008s
	
Reset Sequences 113 113 0 0.304s

Install Comments 0 0 0 0.000s

	———————————————– ——— ——— ——— ————–
	Total import time 1894 1894 0 12.497s


```

If there is no output for more than 30 minutes, it’s possible pgloader encountered an error. See
the [troubleshooting guide](#Troubleshooting) for more details.





	Start GitLab:


` bash
sudo gitlab-ctl start
`








Now, you can verify that everything worked by visiting GitLab.

### Troubleshooting

#### Permissions

Note that the PostgreSQL user that you use for the above MUST have superuser privileges. Otherwise, you may see
a similar message to the following:

```
debugger invoked on a CL-POSTGRES-ERROR:INSUFFICIENT-PRIVILEGE in thread

	#<THREAD “lparallel” RUNNING {10078A3513}>:
	Database error 42501: permission denied: “RI_ConstraintTrigger_a_20937” is a system trigger

QUERY: ALTER TABLE ci_builds DISABLE TRIGGER ALL;
2017-08-23T00:36:56.782000Z ERROR Database error 42501: permission denied: “RI_ConstraintTrigger_c_20864” is a system trigger
QUERY: ALTER TABLE approver_groups DISABLE TRIGGER ALL;


```

#### Experiencing 500 errors after the migration

If you experience 500 errors after the migration, try to clear the cache:

` bash
sudo gitlab-rake cache:clear
`

[reconfigure GitLab]: ../administration/restart_gitlab.md#omnibus-gitlab-reconfigure

## Source installation

### Prerequisites

#### Install PostgreSQL and create database

See [installation guide](../install/installation.md#6-database).

#### Install [pgloader](http://pgloader.io) 3.4.1+

Install directly from your distro:
` bash
sudo apt-get install pgloader
`

If this version is too old, use PostgreSQL’s repository:
``` bash
add repository
sudo sh -c ‘echo “deb http://apt.postgresql.org/pub/repos/apt/ $(lsb_release -cs)-pgdg main” > /etc/apt/sources.list.d/pgdg.list’

add key
sudo apt-get install wget ca-certificates
wget –quiet -O - https://www.postgresql.org/media/keys/ACCC4CF8.asc | sudo apt-key add -

install package
sudo apt-get update
sudo apt-get install pgloader
```

### Enable bundled PostgreSQL database


	Stop GitLab:


` bash
sudo service gitlab stop
`









	Switch database from MySQL to PostgreSQL


` bash
cd /home/git/gitlab
sudo -u git mv config/database.yml config/database.yml.bak
sudo -u git cp config/database.yml.postgresql config/database.yml
sudo -u git -H chmod o-rwx config/database.yml
`









	Install Gems related to Postgresql


` bash
sudo -u git -H rm .bundle/config
sudo -u git -H bundle install --deployment --without development test mysql aws kerberos
`









	Run the following commands to prepare the schema:


` bash
sudo -u git -H bundle exec rake db:create db:migrate RAILS_ENV=production
`








After these steps, you’ll have a fresh PostgreSQL database with up-to-date schema.

### Migrate data from MySQL to PostgreSQL

Now, you can use pgloader to migrate the data from MySQL to PostgreSQL:


	Save the following snippet in a commands.load file, and edit with your
MySQL username, password and host:


```
LOAD DATABASE

FROM mysql://username:password@host/gitlabhq_production
INTO postgresql://postgres@unix://var/run/postgresql:/gitlabhq_production

	WITH include no drop, truncate, disable triggers, create no tables,
	create no indexes, preserve index names, no foreign keys,
data only

ALTER SCHEMA ‘gitlabhq_production’ RENAME TO ‘public’

	Start the migration:

` bash
sudo -u postgres pgloader commands.load
`

1. Once the migration finishes, you should see a summary table that looks like
the following:


	```
	table name       read   imported     errors      total time



	———————————————–  ———  ———  ———  ————–
	
	fetch meta data        119        119          0          0.388s
	Truncate        119        119          0          1.134s







	———————————————–  ———  ———  ———  ————–
	
	public.abuse_reports          0          0          0          0.490s
	
	public.appearances          0          0          0          0.488s
	.









public.web_hook_logs          0          0          0          1.080s



	———————————————–  ———  ———  ———  ————–
	
	COPY Threads Completion          4          4          0          2.008s
	
Reset Sequences        113        113          0          0.304s




Install Comments          0          0          0          0.000s







	———————————————–  ———  ———  ———  ————–
	Total import time       1894       1894          0         12.497s





```

If there is no output for more than 30 minutes, it’s possible pgloader encountered an error. See
the [troubleshooting guide](#Troubleshooting) for more details.

	Start GitLab:

` bash
sudo service gitlab start
`

Now, you can verify that everything worked by visiting GitLab.

Troubleshooting

Experiencing 500 errors after the migration

If you experience 500 errors after the migration, try to clear the cache:

` bash
sudo -u git -H bundle exec rake cache:clear RAILS_ENV=production
`

 —
comments: false
—

Universal update guide for patch versions

Select Version to Install

Make sure you view [this update guide](https://gitlab.com/gitlab-org/gitlab-ce/blob/master/doc/update/patch_versions.md) from the tag (version) of GitLab you would like to install.
In most cases this should be the highest numbered production tag (without rc in it).
You can select the tag in the version dropdown in the top left corner of GitLab (below the menu bar).

0. Backup

It’s useful to make a backup just in case things go south:
(With MySQL, this may require granting “LOCK TABLES” privileges to the GitLab
user on the database version)

```bash
cd /home/git/gitlab

sudo -u git -H bundle exec rake gitlab:backup:create RAILS_ENV=production
```

1. Stop server

`bash
sudo service gitlab stop
`

2. Get latest code for the stable branch

In the commands below, replace LATEST_TAG with the latest GitLab tag you want
to update to, for example v8.0.3. Use git tag -l ‘v*.[0-9]’ –sort=’v:refname’
to see a list of all tags. Make sure to update patch versions only (check your
current version with cat VERSION).

```bash
cd /home/git/gitlab

sudo -u git -H git fetch –all
sudo -u git -H git checkout – Gemfile.lock db/schema.rb locale
sudo -u git -H git checkout LATEST_TAG -b LATEST_TAG
```

3. Install libs, migrations, etc.

```bash
cd /home/git/gitlab

# PostgreSQL
sudo -u git -H bundle install –without development test mysql –deployment

# MySQL
sudo -u git -H bundle install –without development test postgres –deployment

# Optional: clean up old gems
sudo -u git -H bundle clean

# Run database migrations
sudo -u git -H bundle exec rake db:migrate RAILS_ENV=production

# Compile GetText PO files
# Internationalization was added in v9.2.0 so these commands are only
# required for versions equal or major to it.
sudo -u git -H bundle exec rake gettext:pack RAILS_ENV=production
sudo -u git -H bundle exec rake gettext:po_to_json RAILS_ENV=production

# Clean up assets and cache
sudo -u git -H bundle exec rake yarn:install gitlab:assets:clean gitlab:assets:compile cache:clear RAILS_ENV=production NODE_ENV=production
```

4. Update gitlab-workhorse to the corresponding version

```bash
cd /home/git/gitlab

sudo -u git -H bundle exec rake “gitlab:workhorse:install[/home/git/gitlab-workhorse]” RAILS_ENV=production
```

5. Update gitaly to the corresponding version

```bash
cd /home/git/gitlab

sudo -u git -H bundle exec rake “gitlab:gitaly:install[/home/git/gitaly]” RAILS_ENV=production
```

6. Update gitlab-shell to the corresponding version

```bash
cd /home/git/gitlab-shell

sudo -u git -H git fetch –all –tags
sudo -u git -H git checkout v$(</home/git/gitlab/GITLAB_SHELL_VERSION) -b v$(</home/git/gitlab/GITLAB_SHELL_VERSION)
sudo -u git -H sh -c ‘if [ -x bin/compile ]; then bin/compile; fi’
```

7. Update gitlab-pages to the corresponding version (skip if not using pages)

```bash
cd /home/git/gitlab-pages

sudo -u git -H git fetch –all –tags
sudo -u git -H git checkout v$(</home/git/gitlab/GITLAB_PAGES_VERSION)
sudo -u git -H make
```

8. Start application

`bash
sudo service gitlab start
sudo service nginx restart
`

9. Check application status

Check if GitLab and its environment are configured correctly:

```bash
cd /home/git/gitlab

sudo -u git -H bundle exec rake gitlab:env:info RAILS_ENV=production
```

To make sure you didn’t miss anything run a more thorough check with:

`bash
sudo -u git -H bundle exec rake gitlab:check RAILS_ENV=production
`

If all items are green, then congratulations upgrade complete!

 # Restoring from backup after a failed upgrade

Upgrades are usually smooth and restoring from backup is a rare occurrence.
However, it’s important to know how to recover when problems do arise.

Roll back to an earlier version and restore a backup

In some cases after a failed upgrade, the fastest solution is to roll back to
the previous version you were using.

First, roll back the code or package. For source installations this involves
checking out the older version (branch or tag). For Omnibus installations this
means installing the older .deb or .rpm package. Then, restore from a backup.
Follow the instructions in the
[Backup and Restore](../raketasks/backup_restore.md#restore-a-previously-created-backup)
documentation.

Potential problems on the next upgrade

When a rollback is necessary it can produce problems on subsequent upgrade
attempts. This is because some tables may have been added during the failed
upgrade. If these tables are still present after you restore from the
older backup it can lead to migration failures on future upgrades.

Starting in GitLab 8.6 we drop all tables prior to importing the backup to
prevent this problem. If you’ve restored a backup to a version prior to 8.6 you
may need to manually correct the problem next time you upgrade.

Example error:

```
== 20151103134857 CreateLfsObjects: migrating =================================
– create_table(:lfs_objects)
rake aborted!
StandardError: An error has occurred, this and all later migrations canceled:

PG::DuplicateTable: ERROR:  relation “lfs_objects” already exists
```

Copy the version from the error. In this case the version number is
20151103134857.

>**WARNING:** Use the following steps only if you are certain this is what you
need to do.

GitLab 8.6+

Pass the version to a database rake task to manually mark the migration as
complete.

```
# Source install
sudo -u git -H bundle exec rake gitlab:db:mark_migration_complete[20151103134857] RAILS_ENV=production

# Omnibus install
sudo gitlab-rake gitlab:db:mark_migration_complete[20151103134857]
```

Once the migration is successfully marked, run the rake db:migrate task again.
You will likely have to repeat this process several times until all failed
migrations are marked complete.

GitLab < 8.6

```
# Source install
sudo -u git -H bundle exec rails console production

# Omnibus install
sudo gitlab-rails console
```

At the Rails console, type the following commands:

`
ActiveRecord::Base.connection.execute("INSERT INTO schema_migrations (version) VALUES('20151103134857')")
exit
`

Once the migration is successfully marked, run the rake db:migrate task again.
You will likely have to repeat this process several times until all failed
migrations are marked complete.

 —
comments: false
—

GitLab Upgrader (deprecated)

DEPRECATED We recommend to [switch to the Omnibus package and repository server](https://about.gitlab.com/update/) instead of using this script.

Although deprecated, if someone wants to make this script into a gem or otherwise improve it merge requests are welcome.

Make sure you view this [upgrade guide from the ‘master’ branch](https://gitlab.com/gitlab-org/gitlab-ce/blob/master/doc/update/upgrader.md) for the most up to date instructions.

GitLab Upgrader - a ruby script that allows you easily upgrade GitLab to latest minor version.

For example it can update your application from 6.4 to latest GitLab 6 version (like 6.6.1).

You still need to create a backup and manually restart GitLab after running the script but all other operations are done by this upgrade script.

If you have local changes to your GitLab repository the script will stash them and you need to use git stash pop after running the script.

GitLab Upgrader is available only for GitLab version 6.4.2 or higher.

This script does NOT update gitlab-shell, it needs manual update. See step 5 below.

0. Backup

cd /home/git/gitlab
sudo -u git -H bundle exec rake gitlab:backup:create RAILS_ENV=production

1. Stop server

sudo service gitlab stop

2. Run GitLab upgrade tool

Please replace X.X.X with the [latest GitLab release](https://packages.gitlab.com/gitlab/gitlab-ce).

GitLab 7.9 adds nodejs as a dependency. GitLab 7.6 adds libkrb5-dev as a dependency (installed by default on Ubuntu and OSX). GitLab 7.2 adds pkg-config and cmake as dependency. Please check the dependencies in the [installation guide.](https://gitlab.com/gitlab-org/gitlab-ce/blob/master/doc/install/installation.md#1-packages-dependencies)

cd /home/git/gitlab
sudo -u git -H ruby -Ilib -e ‘require “gitlab/upgrader”’ -e ‘class Gitlab::Upgrader’ -e ‘def latest_version_raw’ -e ‘“vX.X.X”’ -e ‘end’ -e ‘end’ -e ‘Gitlab::Upgrader.new.execute’

to perform a non-interactive install (no user input required) you can add -y
sudo -u git -H ruby -Ilib -e ‘require “gitlab/upgrader”’ -e ‘class Gitlab::Upgrader’ -e ‘def latest_version_raw’ -e ‘“vX.X.X”’ -e ‘end’ -e ‘end’ -e ‘Gitlab::Upgrader.new.execute’ – -y

3. Start application

sudo service gitlab start
sudo service nginx restart

4. Check application status

Check if GitLab and its dependencies are configured correctly:

sudo -u git -H bundle exec rake gitlab:check RAILS_ENV=production

If all items are green, then congratulations upgrade is complete!

5. Upgrade GitLab Shell

GitLab Shell might be outdated, running the commands below ensures you’re using a compatible version:

`
cd /home/git/gitlab-shell
sudo -u git -H git fetch
sudo -u git -H git checkout v`cat /home/git/gitlab/GITLAB_SHELL_VERSION`
sudo -u git -H sh -c 'if [-x bin/compile] ; then bin/compile ; fi'
`

One line upgrade command

You’ve read through the entire guide and probably already did all the steps one by one.

Below is a one line command with step 1 to 5 for the next time you upgrade.

Please replace X.X.X with the [latest GitLab release](https://packages.gitlab.com/gitlab/gitlab-ce).

```bash
cd /home/git/gitlab; 


sudo -u git -H bundle exec rake gitlab:backup:create RAILS_ENV=production; sudo service gitlab stop; sudo -u git -H ruby -Ilib -e ‘require “gitlab/upgrader”’ -e ‘class Gitlab::Upgrader’ -e ‘def latest_version_raw’ -e ‘“vX.X.X”’ -e ‘end’ -e ‘end’ -e ‘Gitlab::Upgrader.new.execute’ – -y; cd /home/git/gitlab-shell; sudo -u git -H git fetch; sudo -u git -H git checkout v`cat /home/git/gitlab/GITLAB_SHELL_VERSION`; sudo -u git -H sh -c ‘if [ -x bin/compile ] ; then bin/compile ; fi’; cd /home/git/gitlab; sudo service gitlab start; sudo service nginx restart; sudo -u git -H bundle exec rake gitlab:check RAILS_ENV=production




```


 # Upgrading PostgreSQL Using Slony

This guide describes the steps one can take to upgrade their PostgreSQL database
to the latest version without the need for hours of downtime. This guide assumes
you have two database servers: one database server running an older version of
PostgreSQL (e.g. 9.2.18) and one server running a newer version (e.g. 9.6.0).

For this process we’ll use a PostgreSQL replication tool called
[“Slony”](http://www.slony.info/). Slony allows replication between different
PostgreSQL versions and as such can be used to upgrade a cluster with a minimal
amount of downtime.

In various places we’ll refer to the user gitlab-psql. This user should be the
user used to run the various PostgreSQL OS processes. If you’re using a
different user (e.g. postgres) you should replace gitlab-psql with the name
of said user. This guide also assumes your database is called
gitlabhq_production. If you happen to use a different database name you should
change this accordingly.

Database Dumps

Slony only replicates data and not any schema changes. As a result we must
ensure that all databases have the same database structure.

To do so we’ll generate a dump of our current database. This dump will only
contain the structure, not any data. To generate this dump run the following
command on your active database server:

`bash
sudo -u gitlab-psql /opt/gitlab/embedded/bin/pg_dump -h /var/opt/gitlab/postgresql -p 5432 -U gitlab-psql -s -f /tmp/structure.sql gitlabhq_production
`

If you’re not using GitLab’s Omnibus package you may have to adjust the paths to
pg_dump and the PostgreSQL installation directory to match the paths of your
configuration.

Once the structure dump is generated we also need to generate a dump for the
schema_migrations table. This table doesn’t have any primary keys and as such
can’t be replicated easily by Slony. To generate this dump run the following
command on your active database server:

`bash
sudo -u gitlab-psql /opt/gitlab/embedded/bin/pg_dump -h /var/opt/gitlab/postgresql/ -p 5432 -U gitlab-psql -a -t schema_migrations -f /tmp/migrations.sql gitlabhq_production
`

Next we’ll need to move these files somewhere accessible by the new database
server. The easiest way is to simply download these files to your local system:

`bash
scp your-user@production-database-host:/tmp/*.sql /tmp
`

This will copy all the SQL files located in /tmp to your local system’s
/tmp directory. Once copied you can safely remove the files from the database
server.

Installing Slony

Slony will be used to upgrade the database without requiring long downtimes.
Slony can be downloaded from http://www.slony.info/. If you have installed
PostgreSQL using your operating system’s package manager you may also be able to
install Slony using said package manager.

When compiling Slony from source you must use the following commands to do so:

`bash
./configure --prefix=/path/to/installation/directory --with-perltools --with-pgconfigdir=/path/to/directory/containing/pg_config/bin
make
make install
`

Omnibus users can use the following commands:

`bash
./configure --prefix=/opt/gitlab/embedded --with-perltools --with-pgconfigdir=/opt/gitlab/embedded/bin
make
make install
`

This assumes you have installed GitLab into /opt/gitlab.

To test if Slony is installed properly, run the following commands:

`bash
test -f /opt/gitlab/embedded/bin/slonik && echo 'Slony installed' || echo 'Slony not installed'
test -f /opt/gitlab/embedded/bin/slonik_init_cluster && echo 'Slony Perl tools are available' || echo 'Slony Perl tools are not available'
/opt/gitlab/embedded/bin/slonik -v
`

This assumes Slony was installed to /opt/gitlab/embedded. If Slony was
installed properly the output of these commands will be (the mentioned “slonik”
version may be different):

`
Slony installed
Slony Perl tools are available
slonik version 2.2.5
`

Slony User

Next we must set up a PostgreSQL user that Slony can use to replicate your
database. To do so, log in to your production database using psql using a
super user account. Once done run the following SQL queries:

`sql
CREATE ROLE slony WITH SUPERUSER LOGIN REPLICATION ENCRYPTED PASSWORD 'password string here';
ALTER ROLE slony SET statement_timeout TO 0;
`

Make sure you replace “password string here” with the actual password for the
user. A password is required. This user must be created on _both_ the old and
new database server using the same password.

Once the user has been created make sure you note down the password as we will
need it later on.

Configuring Slony

Now we can finally start configuring Slony. Slony uses a configuration file for
most of the work so we’ll need to set this one up. This configuration file
specifies where to put log files, how Slony should connect to the databases,
etc.

First we’ll need to create some required directories and set the correct
permissions. To do so, run the following commands on both the old and new
database server:

`bash
sudo mkdir -p /var/log/gitlab/slony /var/run/slony1 /var/opt/gitlab/postgresql/slony
sudo chown gitlab-psql:root /var/log/gitlab/slony /var/run/slony1 /var/opt/gitlab/postgresql/slony
`

Here gitlab-psql is the user used to run the PostgreSQL database processes. If
you’re using a different user you should replace this with the name of said
user.

Now that the directories are in place we can create the configuration file. For
this we can use the following template:

```perl
if ($ENV{“SLONYNODES”}) {


require $ENV{“SLONYNODES”};





	} else {
	$CLUSTER_NAME = ‘slony_replication’;
$LOGDIR = ‘/var/log/gitlab/slony’;
$MASTERNODE = 1;
$DEBUGLEVEL = 2;


	add_node(host => ‘OLD_HOST’, dbname => ‘gitlabhq_production’, port =>5432,
	user=>’slony’, password=>’SLONY_PASSWORD’, node=>1);



	add_node(host => ‘NEW_HOST’, dbname => ‘gitlabhq_production’, port =>5432,
	user=>’slony’, password=>’SLONY_PASSWORD’, node=>2, parent=>1 );









}


	$SLONY_SETS = {
	
	“set1” => {
	“set_id”       => 1,
“table_id”     => 1,
“sequence_id”  => 1,
“pkeyedtables” => [


TABLES




],





},





};


	if ($ENV{“SLONYSET”}) {
	require $ENV{“SLONYSET”};





}

# Please do not add or change anything below this point.
1;
```

In this configuration file you should replace a few placeholders before you can
use it. The following placeholders should be replaced:

	OLD_HOST: the address of the old database server.

	NEW_HOST: the address of the new database server.

	SLONY_PASSWORD: the password of the Slony user created earlier.

	TABLES: the tables to replicate.

The list of tables to replicate can be generated by running the following
command on your old PostgreSQL database:

`
sudo gitlab-psql gitlabhq_production -c "select concat('\"', schemaname, '.', tablename, '\",') from pg_catalog.pg_tables where schemaname = 'public' and tableowner = 'gitlab' and tablename != 'schema_migrations' order by tablename asc;" -t
`

If you’re not using Omnibus you should replace gitlab-psql with the
appropriate path to the psql executable.

The above command outputs a list of tables in a format that can be copy-pasted
directly into the above configuration file. Make sure to _replace_ TABLES with
this output, don’t just append it below it. Once done you’ll end up with
something like this:

```perl
“pkeyedtables” => [


“public.abuse_reports”,
“public.appearances”,
“public.application_settings”,
… more rows here …





]

Once you have the configuration file generated you must install it on both the
old and new database. To do so, place it in
/var/opt/gitlab/postgresql/slony/slon_tools.conf (for which we created the
directory earlier on).

Now that the configuration file is in place we can _finally_ start replicating
our database. First we must set up the schema in our new database. To do so make
sure that the SQL files we generated earlier can be found in the /tmp
directory of the new server. Once these files are in place start a psql
session on this server:

`
sudo gitlab-psql gitlabhq_production
`

Now run the following commands:

`
\i /tmp/structure.sql
\i /tmp/migrations.sql
`

To verify if the structure is in place close the session, start it again, then
run d. If all went well you should see output along the lines of the
following:


	```
	
List of relations

Schema | Name | Type | Owner

	——–+———————————————+———-+————-
	public | abuse_reports | table | gitlab
public | abuse_reports_id_seq | sequence | gitlab
public | appearances | table | gitlab
public | appearances_id_seq | sequence | gitlab
public | application_settings | table | gitlab
public | application_settings_id_seq | sequence | gitlab
public | approvals | table | gitlab
… more rows here …


```

Now we can initialize the required tables and what not that Slony will use for
its replication process. To do so, run the following on the old database:

`
sudo -u gitlab-psql /opt/gitlab/embedded/bin/slonik_init_cluster --conf /var/opt/gitlab/postgresql/slony/slon_tools.conf | /opt/gitlab/embedded/bin/slonik
`

If all went well this will produce something along the lines of:

`
<stdin>:10: Set up replication nodes
<stdin>:13: Next: configure paths for each node/origin
<stdin>:16: Replication nodes prepared
<stdin>:17: Please start a slon replication daemon for each node
`

Next we need to start a replication node on every server. To do so, run the
following on the old database:

`
sudo -u gitlab-psql /opt/gitlab/embedded/bin/slon_start 1 --conf /var/opt/gitlab/postgresql/slony/slon_tools.conf
`

If all went well this will produce output such as:

`
Invoke slon for node 1 - /opt/gitlab/embedded/bin/slon -p /var/run/slony1/slony_replication_node1.pid -s 1000 -d2  slony_replication 'host=192.168.0.7 dbname=gitlabhq_production user=slony port=5432 password=hieng8ezohHuCeiqu0leeghai4aeyahp' > /var/log/gitlab/slony/node1/gitlabhq_production-2016-10-06.log 2>&1 &
Slon successfully started for cluster slony_replication, node node1
PID [26740]
Start the watchdog process as well...
`

Next we need to run the following command on the _new_ database server:

`
sudo -u gitlab-psql /opt/gitlab/embedded/bin/slon_start 2 --conf /var/opt/gitlab/postgresql/slony/slon_tools.conf
`

This will produce similar output if all went well.

Next we need to tell the new database server what it should replicate. This can
be done by running the following command on the _new_ database server:

`
sudo -u gitlab-psql /opt/gitlab/embedded/bin/slonik_create_set 1 --conf /var/opt/gitlab/postgresql/slony/slon_tools.conf | /opt/gitlab/embedded/bin/slonik
`

This should produce output along the lines of the following:

`
<stdin>:11: Subscription set 1 (set1) created
<stdin>:12: Adding tables to the subscription set
<stdin>:16: Add primary keyed table public.abuse_reports
<stdin>:20: Add primary keyed table public.appearances
<stdin>:24: Add primary keyed table public.application_settings
... more rows here ...
<stdin>:327: Adding sequences to the subscription set
<stdin>:328: All tables added
`

Finally we can start the replication process by running the following on the
_new_ database server:

`
sudo -u gitlab-psql /opt/gitlab/embedded/bin/slonik_subscribe_set 1 2 --conf /var/opt/gitlab/postgresql/slony/slon_tools.conf | /opt/gitlab/embedded/bin/slonik
`

This should produce the following output:

`
<stdin>:6: Subscribed nodes to set 1
`

At this point the new database server will start replicating the data of the old
database server. This process can take anywhere from a few minutes to hours, if
not days. Unfortunately Slony itself doesn’t really provide a way of knowing
when the two databases are in sync. To get an estimate of the progress you can
use the following shell script:

```
#!/usr/bin/env bash

set -e

user=’slony’
pass=’SLONY_PASSWORD’

	function main {
	while :
do

local source
local target

source=$(PGUSER=”${user}” PGPASSWORD=”${pass}” /opt/gitlab/embedded/bin/psql -h OLD_HOST gitlabhq_production -c “select pg_size_pretty(pg_database_size(‘gitlabhq_production’));” -t -A)
target=$(PGUSER=”${user}” PGPASSWORD=”${pass}” /opt/gitlab/embedded/bin/psql -h NEW_HOST gitlabhq_production -c “select pg_size_pretty(pg_database_size(‘gitlabhq_production’));” -t -A)

echo “$(date): ${target} of ${source}” >> progress.log
echo “$(date): ${target} of ${source}”

sleep 60

done

}

main
```

This script will compare the sizes of the old and new database every minute and
print the result to STDOUT as well as logging it to a file. Make sure to replace
SLONY_PASSWORD, OLD_HOST, and NEW_HOST with the correct values.

## Stopping Replication

At some point the two databases are in sync. Once this is the case you’ll need
to plan for a few minutes of downtime. This small downtime window is used to
stop the replication process, remove any Slony data from both databases, restart
GitLab so it can use the new database, etc.

First, let’s stop all of GitLab. Omnibus users can do so by running the
following on their GitLab server(s):

`
sudo gitlab-ctl stop unicorn
sudo gitlab-ctl stop sidekiq
sudo gitlab-ctl stop mailroom
`

If you have any other processes that use PostgreSQL you should also stop those.

Once everything has been stopped you should update any configuration settings,
DNS records, etc so they all point to the new database.

Once the settings have been taken care of we need to stop the replication
process. It’s crucial that no new data is written to the databases at this point
as this data will be lost.

To stop replication, run the following on both database servers:

`bash
sudo -u gitlab-psql /opt/gitlab/embedded/bin/slon_kill --conf /var/opt/gitlab/postgresql/slony/slon_tools.conf
`

This will stop all the Slony processes on the host the command was executed on.

## Resetting Sequences

The above setup does not replicate database sequences, as such these must be
reset manually in the target database. You can use the following script for
this:

```bash
#!/usr/bin/env bash
set -e

	function main {
	local fix_sequences
local fix_owners

fix_sequences=’/tmp/fix_sequences.sql’
fix_owners=’/tmp/fix_owners.sql’

The SQL queries were taken from
https://wiki.postgresql.org/wiki/Fixing_Sequences
sudo gitlab-psql gitlabhq_production -t -c ”
SELECT ‘ALTER SEQUENCE ‘|| quote_ident(MIN(schema_name)) ||’.’|| quote_ident(MIN(seq_name))

||’ OWNED BY ‘|| quote_ident(MIN(TABLE_NAME)) ||’.’|| quote_ident(MIN(column_name)) ||’;’

	FROM (
	
	SELECT
	n.nspname AS schema_name,
c.relname AS TABLE_NAME,
a.attname AS column_name,
SUBSTRING(d.adsrc FROM E’^nextval\(‘’([^’’]*)’’(?:::text|::regclass)?\)’) AS seq_name

FROM pg_class c
JOIN pg_attribute a ON (c.oid=a.attrelid)
JOIN pg_attrdef d ON (a.attrelid=d.adrelid AND a.attnum=d.adnum)
JOIN pg_namespace n ON (c.relnamespace=n.oid)
WHERE has_schema_privilege(n.oid,’USAGE’)

AND n.nspname NOT LIKE ‘pg!_%’ escape ‘!’
AND has_table_privilege(c.oid,’SELECT’)
AND (NOT a.attisdropped)
AND d.adsrc ~ ‘^nextval’

) seq
GROUP BY seq_name HAVING COUNT(*)=1;
” > “${fix_owners}”

sudo gitlab-psql gitlabhq_production -t -c ”
SELECT ‘SELECT SETVAL(‘ ||

quote_literal(quote_ident(PGT.schemaname) || ‘.’ || quote_ident(S.relname)) ||
‘, COALESCE(MAX(‘ ||quote_ident(C.attname)|| ‘), 1)) FROM ‘ ||
quote_ident(PGT.schemaname)|| ‘.’||quote_ident(T.relname)|| ‘;’

	FROM pg_class AS S,
	pg_depend AS D,
pg_class AS T,
pg_attribute AS C,
pg_tables AS PGT

	WHERE S.relkind = ‘S’
	AND S.oid = D.objid
AND D.refobjid = T.oid
AND D.refobjid = C.attrelid
AND D.refobjsubid = C.attnum
AND T.relname = PGT.tablename

ORDER BY S.relname;
” > “${fix_sequences}”

sudo gitlab-psql gitlabhq_production -f “${fix_owners}”
sudo gitlab-psql gitlabhq_production -f “${fix_sequences}”

rm “${fix_owners}” “${fix_sequences}”

}

main
```

Upload this script to the _target_ server and execute it as follows:

`bash
bash path/to/the/script/above.sh
`

This will correct the ownership of sequences and reset the next value for the
id column to the next available value.

## Removing Slony

Next we need to remove all Slony related data. To do so, run the following
command on the _target_ server:

`bash
sudo gitlab-psql gitlabhq_production -c "DROP SCHEMA _slony_replication CASCADE;"
`

Once done you can safely remove any Slony related files (e.g. the log
directory), and uninstall Slony if desired. At this point you can start your
GitLab instance again and if all went well it should be using your new database
server.





            

          

      

      

    

  

    
      
          
            
  # Award emoji

>**Notes:**
- First [introduced][1825] in GitLab 8.2.
- GitLab 9.0 [introduced][ce-9570] the usage of native emojis if the platform


supports them and falls back to images or CSS sprites. This change greatly
improved the award emoji performance overall.




When you’re collaborating online, you get fewer opportunities for high-fives
and thumbs-ups. Emoji can be awarded to issues, merge requests, snippets, and
virtually everywhere where you can have a discussion.

![Award emoji](img/award_emoji_select.png)

Award emoji make it much easier to give and receive feedback without a long
comment thread. Comments that are only emoji will automatically become
award emoji.

## Sort issues and merge requests on vote count

> [Introduced][2871] in GitLab 8.5.

You can quickly sort issues and merge requests by the number of votes they
have received. The sort options can be found in the dropdown menu as “Most
popular” and “Least popular”.

![Votes sort options](img/award_emoji_votes_sort_options.png)

The total number of votes is not summed up. An issue with 18 upvotes and 5
downvotes is considered more popular than an issue with 17 upvotes and no
downvotes.

## Award emoji for comments

> [Introduced][4291] in GitLab 8.9.

Award emoji can also be applied to individual comments when you want to
celebrate an accomplishment or agree with an opinion.

To add an award emoji, click the smile in the top right of the comment and pick
an emoji from the dropdown. If you want to remove an award emoji, just click
the emoji again and the vote will be removed.

![Picking an emoji for a comment](img/award_emoji_comment_picker.png)

![An award emoji has been applied to a comment](img/award_emoji_comment_awarded.png)

[2871]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/2781
[1825]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/1825
[4291]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/4291
[ce-9570]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/9570



            

          

      

      

    

  

    
      
          
            
  # Feature highlight

> [Introduced][ce-16379] in GitLab 10.5

Feature highlights are represented by a pulsing blue dot. Hovering over the dot
will open up callout with more information.
They are used to emphasize a certain feature and make something more visible to the user.

You can dismiss any feature highlight permanently by clicking the “Got it” link
at the bottom of the callout. There isn’t a way to restore the feature highlight
after it has been dismissed.

![Clusters feature highlight](img/feature_highlight_example.png)

[ce-16379]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/16379



            

          

      

      

    

  

    
      
          
            
  —
description: ‘Read through the GitLab User documentation to learn how to use, configure, and customize GitLab and GitLab.com to your own needs.’
—

# User documentation

Welcome to GitLab! We’re glad to have you here!

As a GitLab user you’ll have access to all the features
your [subscription](https://about.gitlab.com/pricing/)
includes, except [GitLab administrator](../README.md#administrator-documentation)
settings, unless you have admin privileges to install, configure,
and upgrade your GitLab instance.

For GitLab.com, admin privileges are restricted to the GitLab team.

If you run your own GitLab instance and are looking for the administration settings,
please refer to the [administration](../README.md#administrator-documentation)
documentation.

## Overview

GitLab is a fully integrated software development platform that enables you
and your team to work cohesively, faster, transparently, and effectively,
since the discussion of a new idea until taking that idea to production all
the way through, from within the same platform.

Please check this page for an overview on [GitLab’s features](https://about.gitlab.com/features/).

### Concepts

For an overview on concepts involved when developing code on GitLab,
read the articles on:


	[Mastering Code Review With GitLab](https://about.gitlab.com/2017/03/17/demo-mastering-code-review-with-gitlab/).


	[GitLab Workflow, an Overview](https://about.gitlab.com/2016/10/25/gitlab-workflow-an-overview/#gitlab-workflow-use-case-scenario).


	[Tutorial: It’s all connected in GitLab](https://about.gitlab.com/2016/03/08/gitlab-tutorial-its-all-connected/): an overview on code collaboration with GitLab.


	[Trends in Version Control Land: Microservices](https://about.gitlab.com/2016/08/16/trends-in-version-control-land-microservices/).


	[Trends in Version Control Land: Innersourcing](https://about.gitlab.com/2016/07/07/trends-version-control-innersourcing/).




## Use cases

GitLab is a Git-based platform that integrates a great number of essential tools for software development and deployment, and project management:


	Code hosting in repositories with version control


	Track proposals for new implementations, bug reports, and feedback with a




fully featured [Issue Tracker](project/issues/index.md#issue-tracker)
- Organize and prioritize with [Issue Boards](project/issues/index.md#issue-boards)
- Code review in [Merge Requests](project/merge_requests/index.md) with live-preview changes per
branch with [Review Apps](../ci/review_apps/index.md)
- Build, test and deploy with built-in [Continuous Integration](../ci/README.md)
- Deploy your personal and professional static websites with [GitLab Pages](project/pages/index.md)
- Integrate with Docker with [GitLab Container Registry](project/container_registry.md)
- Track the development lifecycle with [GitLab Cycle Analytics](project/cycle_analytics.md)

With GitLab Enterprise Edition, you can also:


	Provide support with [Service Desk](https://docs.gitlab.com/ee/user/project/service_desk.html)


	Improve collaboration with




[Merge Request Approvals](https://docs.gitlab.com/ee/user/project/merge_requests/index.html#merge-request-approvals),
[Multiple Assignees for Issues](https://docs.gitlab.com/ee/user/project/issues/multiple_assignees_for_issues.html),
and [Multiple Issue Boards](https://docs.gitlab.com/ee/user/project/issue_board.html#multiple-issue-boards)
- Create formal relationships between issues with [Related Issues](https://docs.gitlab.com/ee/user/project/issues/related_issues.html)
- Use [Burndown Charts](https://docs.gitlab.com/ee/user/project/milestones/burndown_charts.html) to track progress during a sprint or while working on a new version of their software.
- Leverage [Elasticsearch](https://docs.gitlab.com/ee/integration/elasticsearch.html) with [Advanced Global Search](https://docs.gitlab.com/ee/user/search/advanced_global_search.html) and [Advanced Syntax Search](https://docs.gitlab.com/ee/user/search/advanced_search_syntax.html) for faster, more advanced code search across your entire GitLab instance
- [Authenticate users with Kerberos](https://docs.gitlab.com/ee/integration/kerberos.html)
- [Mirror a repository](https://docs.gitlab.com/ee/workflow/repository_mirroring.html) from elsewhere on your local server.
- [Export issues as CSV](https://docs.gitlab.com/ee/user/project/issues/csv_export.html)
- View your entire CI/CD pipeline involving more than one project with [Multiple-Project Pipeline Graphs](https://docs.gitlab.com/ee/ci/multi_project_pipeline_graphs.html)
- [Lock files](https://docs.gitlab.com/ee/user/project/file_lock.html) to prevent conflicts
- View of the current health and status of each CI environment running on Kubernetes with [Deploy Boards](https://docs.gitlab.com/ee/user/project/deploy_boards.html)
- Leverage your continuous delivery method with [Canary Deployments](https://docs.gitlab.com/ee/user/project/canary_deployments.html)

You can also [integrate](project/integrations/project_services.md) GitLab with numerous third-party applications, such as Mattermost, Microsoft Teams, HipChat, Trello, Slack, Bamboo CI, JIRA, and a lot more.

## Projects

In GitLab, you can create [projects](project/index.md) for numerous reasons, such as, host
your code, use it as an issue tracker, collaborate on code, and continuously
build, test, and deploy your app with built-in GitLab CI/CD. Or, you can do
it all at once, from one single project.


	[Repositories](project/repository/index.md): Host your codebase in




repositories with version control and as part of a fully integrated platform.
- [Issues](project/issues/index.md): Explore the best of GitLab Issues’ features.
- [Merge Requests](project/merge_requests/index.md): Collaborate on code,
reviews, live preview changes per branch, and request approvals with Merge Requests.
- [Milestones](project/milestones/index.md): Work on multiple issues and merge
requests towards the same target date with Milestones.

## GitLab CI/CD

Use built-in [GitLab CI/CD](../ci/README.md) to test, build, and deploy your applications
directly from GitLab. No third-party integrations needed.


	[GitLab Auto Deploy](../ci/autodeploy/index.md): Deploy your application out-of-the-box with GitLab Auto Deploy.


	[Review Apps](../ci/review_apps/index.md): Live-preview the changes introduced by a merge request with Review Apps.


	[GitLab Pages](project/pages/index.md): Publish your static site directly from




GitLab with Gitlab Pages. You can build, test, and deploy any Static Site Generator with Pages.
- [GitLab Container Registry](project/container_registry.md): Build and deploy Docker
images with Container Registry.

## Account

There is a lot you can customize and configure
to enjoy the best of GitLab.


	[Settings](profile/index.md): Manage your user settings to change your personal info,




personal access tokens, authorized applications, etc.
- [Authentication](../topics/authentication/index.md): Read through the authentication
methods available in GitLab.
- [Permissions](permissions.md): Learn the different set of permissions levels for each
user type (guest, reporter, developer, maintainer, owner).
- [Feature highlight](feature_highlight.md): Learn more about the little blue dots
around the app that explain certain features

## Groups

With GitLab [Groups](group/index.md) you can assemble related projects together
and grant members access to several projects at once.

Groups can also be nested in [subgroups](group/subgroups/index.md).

## Discussions

In GitLab, you can comment and mention collaborators in issues,
merge requests, code snippets, and commits.

When performing inline reviews to implementations
to your codebase through merge requests you can
gather feedback through [resolvable discussions](discussions/index.md#resolvable-discussions).

### GitLab Flavored Markdown (GFM)

Read through the [GFM documentation](markdown.md) to learn how to apply
the best of GitLab Flavored Markdown in your discussions, comments,
issues and merge requests descriptions, and everywhere else GMF is
supported.

## Todos

Never forget to reply to your collaborators. [GitLab Todos](../workflow/todos.md)
are a tool for working faster and more effectively with your team,
by listing all user or group mentions, as well as issues and merge
requests you’re assigned to.

## Search

[Search and filter](search/index.md) through groups, projects, issues, merge requests, files, code, and more.

## Snippets

[Snippets](snippets.md) are code blocks that you want to store in GitLab, from which
you have quick access to. You can also gather feedback on them through
[discussions](#discussions).

## Integrations

[Integrate GitLab](../integration/README.md) with your preferred tool,
such as Trello, JIRA, etc.

## Webhooks

Configure [webhooks](project/integrations/webhooks.md) to listen for
specific events like pushes, issues or merge requests. GitLab will send a
POST request with data to the webhook URL.

## API

Automate GitLab via [API](../api/README.md).

## Git and GitLab

Learn what is [Git](../topics/git/index.md) and its best practices.

## Instance statistics

See [various statistics](instance_statistics/index.md) of your GitLab instance.



            

          

      

      

    

  

    
      
          
            
  # Markdown

## GitLab Flavored Markdown (GFM)

> Note:
> Not all of the GitLab-specific extensions to Markdown that are described in
> this document currently work on our documentation website.
>
> For the best result, we encourage you to check this document out as rendered
by GitLab: [markdown.md]

_GitLab uses (as of 11.1) the [CommonMark Ruby Library][commonmarker] for Markdown processing of all new issues, merge requests, comments, and other Markdown content in the GitLab system.  Previous content, wiki pages and Markdown files (.md) in the repositories are still processed using the [Redcarpet Ruby library][redcarpet]._

_Where there are significant differences, we will try to call them out in this document._

GitLab uses “GitLab Flavored Markdown” (GFM). It extends the standard Markdown in a few significant ways to add some useful functionality. It was inspired by [GitHub Flavored Markdown](https://help.github.com/articles/basic-writing-and-formatting-syntax/).

You can use GFM in the following areas:


	comments


	issues


	merge requests


	milestones


	snippets (the snippet must be named with a .md extension)


	wiki pages (currently only rendered by Redcarpet)


	markdown documents inside the repository (currently only rendered by Redcarpet)




You can also use other rich text files in GitLab. You might have to install a
dependency to do so. Please see the [github-markup gem readme](https://github.com/gitlabhq/markup#markups) for more information.

### Newlines

> If this is not rendered correctly, see
https://gitlab.com/gitlab-org/gitlab-ce/blob/master/doc/user/markdown.md#newlines

GFM honors the markdown specification in how [paragraphs and line breaks are handled](https://daringfireball.net/projects/markdown/syntax#p).

A paragraph is simply one or more consecutive lines of text, separated by one or more blank lines.
Line-breaks, or soft returns, are rendered if you end a line with two or more spaces:

[//]: # (Do NOT remove the two ending whitespaces in the following line.)
[//]: # (They are needed for the Markdown text to render correctly.)


Roses are red [followed by two or more spaces]
Violets are blue

Sugar is sweet




[//]: # (Do NOT remove the two ending whitespaces in the following line.)
[//]: # (They are needed for the Markdown text to render correctly.)
Roses are red
Violets are blue

Sugar is sweet

### Multiple underscores in words

> If this is not rendered correctly, see
https://gitlab.com/gitlab-org/gitlab-ce/blob/master/doc/user/markdown.md#multiple-underscores-in-words

It is not reasonable to italicize just _part_ of a word, especially when you’re dealing with code and names that often appear with multiple underscores. Therefore, GFM ignores multiple underscores in words:


perform_complicated_task

do_this_and_do_that_and_another_thing




perform_complicated_task

do_this_and_do_that_and_another_thing

### URL auto-linking

> If this is not rendered correctly, see
https://gitlab.com/gitlab-org/gitlab-ce/blob/master/doc/user/markdown.md#url-auto-linking

GFM will autolink almost any URL you copy and paste into your text:



	https://www.google.com


	https://google.com/


	ftp://ftp.us.debian.org/debian/


	smb://foo/bar/baz


	irc://irc.freenode.net/gitlab


	http://localhost:3000








	https://www.google.com


	https://google.com/


	ftp://ftp.us.debian.org/debian/


	smb://foo/bar/baz


	irc://irc.freenode.net/gitlab


	http://localhost:3000




### Multiline Blockquote

> If this is not rendered correctly, see
https://gitlab.com/gitlab-org/gitlab-ce/blob/master/doc/user/markdown.md#multiline-blockquote

On top of standard Markdown [blockquotes](#blockquotes), which require prepending > to quoted lines,
GFM supports multiline blockquotes fenced by <code>>>></code>:

```no-highlight
>>>
If you paste a message from somewhere else

that

spans

multiple lines,

you can quote that without having to manually prepend > to every line!
>>>
```

>>>
If you paste a message from somewhere else





that

spans

multiple lines,

you can quote that without having to manually prepend > to every line!
>>>

### Code and Syntax Highlighting

> If this is not rendered correctly, see
https://gitlab.com/gitlab-org/gitlab-ce/blob/master/doc/user/markdown.md#code-and-syntax-highlighting

_GitLab uses the [Rouge Ruby library][rouge] for syntax highlighting. For a
list of supported languages visit the Rouge website._

Blocks of code are either fenced by lines with three back-ticks <code>```</code>,
or are indented with four spaces. Only the fenced code blocks support syntax
highlighting:

`no-highlight
Inline `code` has `back-ticks around` it.
`

Inline code has back-ticks around it.

Example:


`javascript
var s = "JavaScript syntax highlighting";
alert(s);
`

```python
def function():

#indenting works just fine in the fenced code block
s = “Python syntax highlighting”
print s


```

`ruby
require 'redcarpet'
markdown = Redcarpet.new("Hello World!")
puts markdown.to_html
`

`
No language indicated, so no syntax highlighting.
s = "There is no highlighting for this."
But let's throw in a <b>tag</b>.
`




becomes:

`javascript
var s = "JavaScript syntax highlighting";
alert(s);
`

```python
def function():

#indenting works just fine in the fenced code block
s = “Python syntax highlighting”
print s


```

`ruby
require 'redcarpet'
markdown = Redcarpet.new("Hello World!")
puts markdown.to_html
`

`
No language indicated, so no syntax highlighting.
s = "There is no highlighting for this."
But let's throw in a <b>tag</b>.
`

### Inline Diff

> If this is not rendered correctly, see
https://gitlab.com/gitlab-org/gitlab-ce/blob/master/doc/user/markdown.md#inline-diff

With inline diffs tags you can display {+ additions +} or [- deletions -].

The wrapping tags can be either curly braces or square brackets: [+ additions +] or {- deletions -}.

Examples:

`
- {+ additions +}
- [+ additions +]
- {- deletions -}
- [- deletions -]
`

However the wrapping tags cannot be mixed as such:

`
- {+ additions +]
- [+ additions +}
- {- deletions -]
- [- deletions -}
`

### Emoji

> If this is not rendered correctly, see
https://gitlab.com/gitlab-org/gitlab-ce/blob/master/doc/user/markdown.md#emoji


Sometimes you want to :monkey: around a bit and add some :star2: to your :speech_balloon:. Well we have a gift for you:


	zap

	You can use emoji anywhere GFM is supported. :v:





You can use it to point out a :bug: or warn about :speak_no_evil: patches. And if someone improves your really :snail: code, send them some :birthday:. People will :heart: you for that.

If you are new to this, don’t be :fearful:. You can easily join the emoji :family:. All you need to do is to look up one of the supported codes.

Consult the [Emoji Cheat Sheet](https://www.emojicopy.com) for a list of all supported emoji codes. :thumbsup:




Sometimes you want to :monkey: around a bit and add some :star2: to your :speech_balloon:. Well we have a gift for you:


	zap

	You can use emoji anywhere GFM is supported. :v:





You can use it to point out a :bug: or warn about :speak_no_evil: patches. And if someone improves your really :snail: code, send them some :birthday:. People will :heart: you for that.

If you are new to this, don’t be :fearful:. You can easily join the emoji :family:. All you need to do is to look up one of the supported codes.

Consult the [Emoji Cheat Sheet](https://www.emojicopy.com) for a list of all supported emoji codes. :thumbsup:

### Special GitLab References

GFM recognizes special references.

You can easily reference e.g. an issue, a commit, a team member or even the whole team within a project.

GFM will turn that reference into a link so you can navigate between them easily.

GFM will recognize the following:


input                      | references                      |



:---------------------------	:——————————–
@user_name	specific user
@group_name	specific group
@all	entire team
#12345	issue
!123	merge request
$123	snippet
~123	label by ID
~bug	one-word label by name
~”feature request”	multi-word label by name
%123	project milestone by ID
%v1.23	one-word milestone by name
%”release candidate”	multi-word milestone by name
9ba12248	specific commit
9ba12248…b19a04f5	commit range comparison
[README](doc/README)	repository file references
[README](doc/README#L13)	repository file line references

GFM also recognizes certain cross-project references:


input                                   | references              |



:----------------------------------------	:————————
namespace/project#123	issue
namespace/project!123	merge request
namespace/project%123	project milestone
namespace/project$123	snippet
namespace/project@9ba12248	specific commit
namespace/project@9ba12248…b19a04f5	commit range comparison
namespace/project~”Some label”	issues with given label

It also has a shorthand version to reference other projects from the same namespace:


input                         | references              |



:------------------------------	:————————
project#123	issue
project!123	merge request
project%123	project milestone
project$123	snippet
project@9ba12248	specific commit
project@9ba12248…b19a04f5	commit range comparison
project~”Some label”	issues with given label

### Task Lists

> If this is not rendered correctly, see
https://gitlab.com/gitlab-org/gitlab-ce/blob/master/doc/user/markdown.md#task-lists

You can add task lists to issues, merge requests and comments. To create a task list, add a specially-formatted Markdown list, like so:

```no-highlight
- [x] Completed task
- [] Incomplete task

	[] Sub-task 1

	[x] Sub-task 2

	[] Sub-task 3


```


	[x] Completed task


	
	[ ] Incomplete task
	
	[ ] Sub-task 1


	[x] Sub-task 2


	[ ] Sub-task 3












Tasks formatted as ordered lists are supported as well:

```no-highlight
1. [x] Completed task
1. [] Incomplete task

1. [] Sub-task 1
1. [x] Sub-task 2


```

1. [x] Completed task
1. [ ] Incomplete task


1. [ ] Sub-task 1
1. [x] Sub-task 2




Task lists can only be created in descriptions, not in titles. Task item state can be managed by editing the description’s Markdown or by toggling the rendered check boxes.

### Videos

> If this is not rendered correctly, see
https://gitlab.com/gitlab-org/gitlab-ce/blob/master/doc/user/markdown.md#videos

Image tags with a video extension are automatically converted to a video player.

The valid video extensions are .mp4, .m4v, .mov, .webm, and .ogv.


Here’s a sample video:

![Sample Video](img/markdown_video.mp4)




Here’s a sample video:

![Sample Video](img/markdown_video.mp4)

### Math

> If this is not rendered correctly, see
https://gitlab.com/gitlab-org/gitlab-ce/blob/master/doc/user/markdown.md#math

It is possible to have math written with the LaTeX syntax rendered using [KaTeX][katex].

Math written inside `$``$` will be rendered inline with the text.

Math written inside triple back quotes, with the language declared as math, will be rendered on a separate line.

Example:


This math is inline $`a^2+b^2=c^2`$.

This is on a separate line
`math
a^2+b^2=c^2
`




Becomes:

This math is inline $`a^2+b^2=c^2`$.

This is on a separate line
`math
a^2+b^2=c^2
`

_Be advised that KaTeX only supports a [subset][katex-subset] of LaTeX._

>**Note:**
This also works for the asciidoctor :stem: latexmath. For details see the [asciidoctor user manual][asciidoctor-manual].

### Colors

> If this is not rendered correctly, see
https://gitlab.com/gitlab-org/gitlab-ce/blob/master/doc/user/markdown.md#colors

It is possible to have color written in HEX, RGB or HSL format rendered with a color indicator.

Color written inside backticks will be followed by a color “chip”.

Examples:


#F00
#F00A
#FF0000
#FF0000AA
RGB(0,255,0)
RGB(0%,100%,0%)
RGBA(0,255,0,0.7)
HSL(540,70%,50%)
HSLA(540,70%,50%,0.7)




Become:

#F00
#F00A
#FF0000
#FF0000AA
RGB(0,255,0)
RGB(0%,100%,0%)
RGBA(0,255,0,0.7)
HSL(540,70%,50%)
HSLA(540,70%,50%,0.7)

#### Supported formats:


	HEX: `` #RGB[A] `` or `` #RRGGBB[AA] ``


	RGB: `` RGB[A](R, G, B[, A]) ``


	HSL: `` HSL[A](H, S, L[, A]) ``




### Mermaid

> [Introduced](https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/15107) in
GitLab 10.3.

> If this is not rendered correctly, see
https://gitlab.com/gitlab-org/gitlab-ce/blob/master/doc/user/markdown.md#mermaid

It is possible to generate diagrams and flowcharts from text using [Mermaid][mermaid].

In order to generate a diagram or flowchart, you should write your text inside the mermaid block.

Example:


```mermaid
graph TD;

A–>B;
A–>C;
B–>D;
C–>D;


```




Becomes:

```mermaid
graph TD;

A–>B;
A–>C;
B–>D;
C–>D;


```

For details see the [Mermaid official page][mermaid].

## Standard Markdown

### Headers

```no-highlight
H1
H2
H3
H4
H5
H6

Alternatively, for H1 and H2, an underline-ish style:

Alt-H1

Alt-H2

```

### Header IDs and links

All Markdown-rendered headers automatically get IDs, except in comments.

On hover, a link to those IDs becomes visible to make it easier to copy the link to the header to give it to someone else.

The IDs are generated from the content of the header according to the following rules:

1. All text is converted to lowercase.
1. All non-word text (e.g., punctuation, HTML) is removed.
1. All spaces are converted to hyphens.
1. Two or more hyphens in a row are converted to one.
1. If a header with the same ID has already been generated, a unique


incrementing number is appended, starting at 1.




For example:

`
# This header has spaces in it
## This header has a :thumbsup: in it
# This header has Unicode in it: 한글
## This header has spaces in it
### This header has spaces in it
## This header has 3.5 in it (and parentheses)
`

Would generate the following link IDs:

1. this-header-has-spaces-in-it
1. this-header-has-a-in-it
1. this-header-has-unicode-in-it-한글
1. this-header-has-spaces-in-it
1. this-header-has-spaces-in-it-1
1. this-header-has-3-5-in-it-and-parentheses

Note that the Emoji processing happens before the header IDs are generated, so the Emoji is converted to an image which then gets removed from the ID.

### Emphasis

Examples:

```no-highlight
Emphasis, aka italics, with asterisks or _underscores_.

Strong emphasis, aka bold, with asterisks or __underscores__.

Combined emphasis with asterisks and _underscores_.

Strikethrough uses two tildes. ~~Scratch this.~~
```

Become:

Emphasis, aka italics, with asterisks or _underscores_.

Strong emphasis, aka bold, with asterisks or __underscores__.

Combined emphasis with asterisks and _underscores_.

Strikethrough uses two tildes. ~~Scratch this.~~

### Lists

Examples:

```no-highlight
1. First ordered list item
2. Another item

	Unordered sub-list.

	Actual numbers don’t matter, just that it’s a number
1. Ordered sub-list

	And another item.

	Unordered list can use asterisks

	Or minuses

	Or pluses


```

Become:


	First ordered list item


	Another item
* Unordered sub-list.





	Actual numbers don’t matter, just that it’s a number
1. Ordered sub-list





	And another item.





	Unordered list can use asterisks





	Or minuses





	Or pluses




If a list item contains multiple paragraphs,
each subsequent paragraph should be indented to the same level as the start of the list item text (_Redcarpet: paragraph should be indented with four spaces._)

Example:

```no-highlight
1. First ordered list item

Second paragraph of first item.

2. Another item
```

Becomes:


	First ordered list item

Paragraph of first item.



	Another item




If the paragraph of the first item is not indented with the proper number of spaces,
the paragraph will appear outside the list, instead of properly indented under the list item.

Example:

```no-highlight
1. First ordered list item

Paragraph of first item.

2. Another item
```

Becomes:


	First ordered list item





Paragraph of first item.





	Another item




### Links

There are two ways to create links, inline-style and reference-style.


[I’m an inline-style link](https://www.google.com)

[I’m a reference-style link][Arbitrary case-insensitive reference text]

[I’m a relative reference to a repository file](LICENSE)

[I am an absolute reference within the repository](/doc/user/markdown.md)

[I link to the Milestones page](/../milestones)

[You can use numbers for reference-style link definitions][1]

Or leave it empty and use the [link text itself][]

Some text to show that the reference links can follow later.

[arbitrary case-insensitive reference text]: https://www.mozilla.org
[1]: http://slashdot.org
[link text itself]: https://www.reddit.com




>**Note:**
Relative links do not allow referencing project files in a wiki page or wiki
page in a project file. The reason for this is that, in GitLab, wiki is always
a separate Git repository. For example, [I’m a reference-style link](style)
will point the link to wikis/style when the link is inside of a wiki markdown file.

### Images

Examples:


Here’s our logo (hover to see the title text):

Inline-style:
![alt text](img/markdown_logo.png)

Reference-style:
![alt text1][logo]

[logo]: img/markdown_logo.png




Become:

Here’s our logo:

Inline-style:

![alt text](img/markdown_logo.png)

Reference-style:

![alt text][logo]

[logo]: img/markdown_logo.png

### Blockquotes

Examples:

```no-highlight
> Blockquotes are very handy in email to emulate reply text.
> This line is part of the same quote.

Quote break.

> This is a very long line that will still be quoted properly when it wraps. Oh boy let’s keep writing to make sure this is long enough to actually wrap for everyone. Oh, you can put Markdown into a blockquote.
```

Become:

> Blockquotes are very handy in email to emulate reply text.
> This line is part of the same quote.

Quote break.

> This is a very long line that will still be quoted properly when it wraps. Oh boy let’s keep writing to make sure this is long enough to actually wrap for everyone. Oh, you can put Markdown into a blockquote.

### Inline HTML

You can also use raw HTML in your Markdown, and it’ll mostly work pretty well.

See the documentation for HTML::Pipeline’s [SanitizationFilter](http://www.rubydoc.info/gems/html-pipeline/1.11.0/HTML/Pipeline/SanitizationFilter#WHITELIST-constant) class for the list of allowed HTML tags and attributes.  In addition to the default SanitizationFilter whitelist, GitLab allows span, abbr, details and summary elements.

Examples:

```no-highlight
<dl>

<dt>Definition list</dt>
<dd>Is something people use sometimes.</dd>

<dt>Markdown in HTML</dt>
<dd>Does not work very well. Use HTML tags.</dd>

</dl>
```

Become:


	<dl>
	<dt>Definition list</dt>
<dd>Is something people use sometimes.</dd>

<dt>Markdown in HTML</dt>
<dd>Does not work very well. Use HTML <em>tags</em>.</dd>





</dl>

#### Details and Summary

Content can be collapsed using HTML’s [<details>](https://developer.mozilla.org/en-US/docs/Web/HTML/Element/details) and [<summary>](https://developer.mozilla.org/en-US/docs/Web/HTML/Element/summary) tags. This is especially useful for collapsing long logs so they take up less screen space.

<p>
<details>
<summary>Click me to collapse/fold.</summary>

These details <em>will</em> remain <strong>hidden</strong> until expanded.

<pre><code>PASTE LOGS HERE</code></pre>

</details>
</p>

Note: Markdown inside these tags is supported, as long as you have a blank link after the </summary> tag and before the </details> tag, as shown in the example.  _Redcarpet does not support Markdown inside these tags.  You can work around this by using HTML, for example you can use <pre><code> tags instead of [code fences](https://gitlab.com/gitlab-org/gitlab-ce/blob/master/doc/user/markdown.md#code-and-syntax-highlighting)._

```html
<details>
<summary>Click me to collapse/fold.</summary>

These details _will_ remain hidden until expanded.

PASTE LOGS HERE

</details>
```

### Horizontal Rule

Examples:

```
Three or more…

—

Hyphens

Asterisks

Underscores
```

Become:

Three or more…

—

Hyphens

***

Asterisks

___

Underscores

### Line Breaks

A good way to learn how line breaks work is to experiment and discover – hit <kbd>Enter</kbd> once (i.e., insert one newline), then hit it twice (i.e., insert two newlines), see what happens. You’ll soon learn to get what you want. The “Preview” tab is your friend.

Here are some things to try out:

Examples:

```
Here’s a line for us to start with.

This line is separated from the one above by two newlines, so it will be a separate paragraph.

This line is also a separate paragraph, but…
This line is only separated by a single newline, so it does not break and just follows the previous line in the same paragraph.

This line is also a separate paragraph, and…
This line is on its own line, because the previous line ends with two spaces. (but still in the same paragraph)

spaces.
```

Become:

Here’s a line for us to start with.

This line is separated from the one above by two newlines, so it will be a separate paragraph.

This line is also a separate paragraph, but…
This line is only separated by a single newline, so it does not break and just follows the previous line in the same paragraph.

This line is also a separate paragraph, and…
This line is on its own line, because the previous line ends with two spaces. (but still in the same paragraph)

spaces.

### Tables

Tables aren’t part of the core Markdown spec, but they are part of GFM.

Example:

`
header 1	header 2
cell 1	cell 2
cell 3	cell 4
`

Becomes:


header 1 | header 2 |

——– | ——– |

cell 1   | cell 2   |

cell 3   | cell 4   |



Note: The row of dashes between the table header and body must have at least three dashes in each column.

By including colons in the header row, you can align the text within that column.

Example:

`
Left Aligned	Centered	Right Aligned	Left Aligned	Centered	Right Aligned
Cell 1	Cell 2	Cell 3	Cell 4	Cell 5	Cell 6
Cell 7	Cell 8	Cell 9	Cell 10	Cell 11	Cell 12
`

Becomes:


Left Aligned | Centered | Right Aligned | Left Aligned | Centered | Right Aligned |

:———– | :——: | ————: | :———– | :——: | ————: |

Cell 1       | Cell 2   | Cell 3        | Cell 4       | Cell 5   | Cell 6        |

Cell 7       | Cell 8   | Cell 9        | Cell 10      | Cell 11  | Cell 12       |



### Footnotes

Example:

`
You can add footnotes to your text as follows.[^2]
[^2]: This is my awesome footnote.
`

Becomes:

You can add footnotes to your text as follows.[^2]

### Superscripts / Subscripts

CommonMark and GFM currently do not support the superscript syntax ( x^2 ) that Redcarpet does.  You can use the standard HTML syntax for superscripts and subscripts.

`
The formula for water is H<sub>2</sub>O
while the equation for the theory of relativity is E = mc<sup>2</sup>.
`

The formula for water is H<sub>2</sub>O while the equation for the theory of relativity is E = mc<sup>2</sup>.

## Wiki-specific Markdown

The following examples show how links inside wikis behave.

### Wiki - Direct page link

A link which just includes the slug for a page will point to that page,
_at the base level of the wiki_.

This snippet would link to a documentation page at the root of your wiki:

`markdown
[Link to Documentation](documentation)
`

### Wiki - Direct file link

Links with a file extension point to that file, _relative to the current page_.

If this snippet was placed on a page at <your_wiki>/documentation/related,
it would link to <your_wiki>/documentation/file.md:

`markdown
[Link to File](file.md)
`

### Wiki - Hierarchical link

A link can be constructed relative to the current wiki page using ./<page>,
../<page>, etc.


	If this snippet was placed on a page at <your_wiki>/documentation/main,
it would link to <your_wiki>/documentation/related:


`markdown
[Link to Related Page](./related)
`






	If this snippet was placed on a page at <your_wiki>/documentation/related/content,
it would link to <your_wiki>/documentation/main:


`markdown
[Link to Related Page](../main)
`






	If this snippet was placed on a page at <your_wiki>/documentation/main,
it would link to <your_wiki>/documentation/related.md:


`markdown
[Link to Related Page](./related.md)
`






	If this snippet was placed on a page at <your_wiki>/documentation/related/content,
it would link to <your_wiki>/documentation/main.md:


`markdown
[Link to Related Page](../main.md)
`








### Wiki - Root link

A link starting with a / is relative to the wiki root.


	This snippet links to <wiki_root>/documentation:


`markdown
[Link to Related Page](/documentation)
`






	This snippet links to <wiki_root>/miscellaneous.md:


`markdown
[Link to Related Page](/miscellaneous.md)
`








## References


	This document leveraged heavily from the [Markdown-Cheatsheet](https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet).


	The [Markdown Syntax Guide](https://daringfireball.net/projects/markdown/syntax) at Daring Fireball is an excellent resource for a detailed explanation of standard markdown.


	[Dillinger.io](http://dillinger.io) is a handy tool for testing standard markdown.




[^1]: This link will be broken if you see this document from the Help page or docs.gitlab.com
[^2]: This is my awesome footnote.

[markdown.md]: https://gitlab.com/gitlab-org/gitlab-ce/blob/master/doc/user/markdown.md
[mermaid]: https://mermaidjs.github.io/ “Mermaid website”
[rouge]: http://rouge.jneen.net/ “Rouge website”
[redcarpet]: https://github.com/vmg/redcarpet “Redcarpet website”
[katex]: https://github.com/Khan/KaTeX “KaTeX website”
[katex-subset]: https://github.com/Khan/KaTeX/wiki/Function-Support-in-KaTeX “Macros supported by KaTeX”
[asciidoctor-manual]: http://asciidoctor.org/docs/user-manual/#activating-stem-support “Asciidoctor user manual”
[commonmarker]: https://github.com/gjtorikian/commonmarker







            

          

      

      

    

  

    
      
          
            
  —
description: ‘Understand and explore the user permission levels in GitLab, and what features each of them grants you access to.’
—

# Permissions

Users have different abilities depending on the access level they have in a
particular group or project. If a user is both in a group’s project and the
project itself, the highest permission level is used.

On public and internal projects the Guest role is not enforced. All users will
be able to create issues, leave comments, and clone or download the project code.

When a member leaves the team all the assigned [Issues](project/issues/index.md) and [Merge Requests](project/merge_requests/index.md)
will be unassigned automatically.

GitLab [administrators](../README.md#administrator-documentation) receive all permissions.

To add or import a user, you can follow the
[project members documentation](../user/project/members/index.md).

## Principles behind permissions

See our [product handbook on permissions](https://about.gitlab.com/handbook/product#permissions-in-gitlab)

## Project members permissions

NOTE: Note:
In GitLab 11.0, the Master role was renamed to Maintainer.

The following table depicts the various user permission levels in a project.


Action                                | Guest   | Reporter   | Developer   |Maintainer| Owner  |



---------------------------------------	———	------------	————-	----------	——–
Create new issue	✓ [^1]	✓	✓	✓	✓
Create confidential issue	✓ [^1]	✓	✓	✓	✓
View confidential issues	(✓) [^2]	✓	✓	✓	✓
Leave comments	✓ [^1]	✓	✓	✓	✓
Lock issue discussions		✓	✓	✓	✓
Lock merge request discussions			✓	✓	✓
See a list of jobs	✓ [^3]	✓	✓	✓	✓
See a job log	✓ [^3]	✓	✓	✓	✓
Download and browse job artifacts	✓ [^3]	✓	✓	✓	✓
View wiki pages	✓ [^1]	✓	✓	✓	✓
Pull project code	[^1]	✓	✓	✓	✓
Download project	[^1]	✓	✓	✓	✓
Assign issues		✓	✓	✓	✓
Assign merge requests			✓	✓	✓
Label issues and merge requests		✓	✓	✓	✓
Create code snippets		✓	✓	✓	✓
Manage issue tracker		✓	✓	✓	✓
Manage labels		✓	✓	✓	✓
See a commit status		✓	✓	✓	✓
See a container registry		✓	✓	✓	✓
See environments		✓	✓	✓	✓
See a list of merge requests		✓	✓	✓	✓
Manage related issues [STARTER]		✓	✓	✓	✓
Lock issue discussions		✓	✓	✓	✓
Lock merge request discussions			✓	✓	✓
Create new environments			✓	✓	✓
Stop environments			✓	✓	✓
Manage/Accept merge requests			✓	✓	✓
Create new merge request			✓	✓	✓
Create new branches			✓	✓	✓
Push to non-protected branches			✓	✓	✓
Force push to non-protected branches			✓	✓	✓
Remove non-protected branches			✓	✓	✓
Add tags			✓	✓	✓
Write a wiki			✓	✓	✓
Cancel and retry jobs			✓	✓	✓
Create or update commit status			✓	✓	✓
Update a container registry			✓	✓	✓
Remove a container registry image			✓	✓	✓
Create/edit/delete project milestones			✓	✓	✓
Use environment terminals				✓	✓
Add new team members				✓	✓
Push to protected branches				✓	✓
Enable/disable branch protection				✓	✓
Turn on/off protected branch push for devs				✓	✓
Enable/disable tag protections				✓	✓
Rewrite/remove Git tags				✓	✓
Edit project				✓	✓
Add deploy keys to project				✓	✓
Configure project hooks				✓	✓
Manage Runners				✓	✓
Manage job triggers				✓	✓
Manage variables				✓	✓
Manage GitLab Pages				✓	✓
Manage GitLab Pages domains and certificates				✓	✓
Remove GitLab Pages					✓
Manage clusters				✓	✓
Edit comments (posted by any user)				✓	✓
Switch visibility level					✓
Transfer project to another namespace					✓
Remove project					✓
Delete issues					✓
Remove pages					✓
Force push to protected branches [^4]					
Remove protected branches [^4]					
View project Audit Events				✓	✓

## Project features permissions

### Wiki and issues

Project features like wiki and issues can be hidden from users depending on
which visibility level you select on project settings.


	Disabled: disabled for everyone


	Only team members: only team members will see even if your project is public or internal


	Everyone with access: everyone can see depending on your project visibility level




### Protected branches

To prevent people from messing with history or pushing code without
review, we’ve created protected branches. Read through the documentation on
[protected branches](project/protected_branches.md)
to learn more.

Additionally, you can allow or forbid users with Maintainer and/or
Developer permissions to push to a protected branch. Read through the documentation on
[Allowed to Merge and Allowed to Push settings](project/protected_branches.md#using-the-allowed-to-merge-and-allowed-to-push-settings)
to learn more.

### Cycle Analytics permissions

Find the current permissions on the Cycle Analytics dashboard on
the [documentation on Cycle Analytics permissions](project/cycle_analytics.md#permissions).

### Issue Board permissions

Developers and users with higher permission level can use all
the functionality of the Issue Board, that is create/delete lists
and drag issues around. Read though the
[documentation on Issue Boards permissions](project/issue_board.md#permissions)
to learn more.

### File Locking permissions [PREMIUM]

The user that locks a file or directory is the only one that can edit and push their changes back to the repository where the locked objects are located.

Read through the documentation on [permissions for File Locking](https://docs.gitlab.com/ee/user/project/file_lock.html#permissions-on-file-locking) to learn more.

### Confidential Issues permissions

Confidential issues can be accessed by reporters and higher permission levels,
as well as by guest users that create a confidential issue. To learn more,
read through the documentation on [permissions and access to confidential issues](project/issues/confidential_issues.md#permissions-and-access-to-confidential-issues).

## Group members permissions

NOTE: Note:
In GitLab 11.0, the Master role was renamed to Maintainer.

Any user can remove themselves from a group, unless they are the last Owner of
the group. The following table depicts the various user permission levels in a
group.


Action                  | Guest | Reporter | Developer | Maintainer | Owner |



-------------------------	——-	----------	———–	--------	——-
Browse group	✓	✓	✓	✓	✓
Edit group					✓
Create subgroup					✓
Create project in group				✓	✓
Manage group members					✓
Remove group					✓
Manage group labels		✓	✓	✓	✓
Create/edit/delete group milestones			✓	✓	✓
View private group epic [ULTIMATE]		✓	✓	✓	✓
View internal group epic [ULTIMATE]	✓	✓	✓	✓	✓
View public group epic [ULTIMATE]	✓	✓	✓	✓	✓
Create/edit group epic [ULTIMATE]		✓	✓	✓	✓
Delete group epic [ULTIMATE]					✓
View group Audit Events					✓

### Subgroup permissions

When you add a member to a subgroup, they inherit the membership and
permission level from the parent group. This model allows access to
nested groups if you have membership in one of its parents.

To learn more, read through the documentation on
[subgroups memberships](group/subgroups/index.md#membership).

## External users permissions

In cases where it is desired that a user has access only to some internal or
private projects, there is the option of creating External Users. This
feature may be useful when for example a contractor is working on a given
project and should only have access to that project.

External users can only access projects to which they are explicitly granted
access, thus hiding all other internal or private ones from them. Access can be
granted by adding the user as member to the project or group.

They will, like usual users, receive a role in the project or group with all
the abilities that are mentioned in the table above. They cannot however create
groups or projects, and they have the same access as logged out users in all
other cases.

An administrator can flag a user as external [through the API](../api/users.md)
or by checking the checkbox on the admin panel. As an administrator, navigate
to Admin > Users to create a new user or edit an existing one. There, you
will find the option to flag the user as external.

By default new users are not set as external users. This behavior can be changed
by an administrator under Admin > Application Settings.

## Auditor users [PREMIUM ONLY]

>[Introduced][ee-998] in [GitLab Premium][eep] 8.17.

Auditor users are given read-only access to all projects, groups, and other
resources on the GitLab instance.

An Auditor user should be able to access all projects and groups of a GitLab instance
with the permissions described on the documentation on [auditor users permissions](https://docs.gitlab.com/ee/administration/auditor_users.html#permissions-and-restrictions-of-an-auditor-user).

[Read more about Auditor users.](https://docs.gitlab.com/ee/administration/auditor_users.html)

## Project features

Project features like wiki and issues can be hidden from users depending on
which visibility level you select on project settings.


	Disabled: disabled for everyone


	Only team members: only team members will see even if your project is public or internal


	Everyone with access: everyone can see depending on your project visibility level




## GitLab CI/CD permissions

NOTE: Note:
In GitLab 11.0, the Master role was renamed to Maintainer.

GitLab CI/CD permissions rely on the role the user has in GitLab. There are four
permission levels in total:


	admin


	maintainer


	developer


	guest/reporter




The admin user can perform any action on GitLab CI/CD in scope of the GitLab
instance and project. In addition, all admins can use the admin interface under
/admin/runners.


Action                                | Guest, Reporter | Developer   |Maintainer| Admin  |



---------------------------------------	—————–	-------------	———-	--------
See commits and jobs	✓	✓	✓	✓
Retry or cancel job		✓	✓	✓
Erase job artifacts and trace		✓ [^5]	✓	✓
Remove project			✓	✓
Create project			✓	✓
Change project configuration			✓	✓
Add specific runners			✓	✓
Add shared runners				✓
See events in the system				✓
Admin interface				✓

### Job permissions

NOTE: Note:
In GitLab 11.0, the Master role was renamed to Maintainer.

>**Note:**
GitLab 8.12 has a completely redesigned job permissions system.
Read all about the [new model and its implications][new-mod].

This table shows granted privileges for jobs triggered by specific types of
users:


Action                                      | Guest, Reporter | Developer   |Maintainer| Admin  |



---------------------------------------------	—————–	-------------	———-	--------
Run CI job		✓	✓	✓
Clone source and LFS from current project		✓	✓	✓
Clone source and LFS from public projects		✓	✓	✓
Clone source and LFS from internal projects		✓ [^6]	✓ [^6]	✓
Clone source and LFS from private projects		✓ [^7]	✓ [^7]	✓ [^7]
Push source and LFS				
Pull container images from current project		✓	✓	✓
Pull container images from public projects		✓	✓	✓
Pull container images from internal projects		✓ [^6]	✓ [^6]	✓
Pull container images from private projects		✓ [^7]	✓ [^7]	✓ [^7]
Push container images to current project		✓	✓	✓
Push container images to other projects				

### New CI job permissions model

GitLab 8.12 has a completely redesigned job permissions system. To learn more,
read through the documentation on the [new CI/CD permissions model](project/new_ci_build_permissions_model.md#new-ci-job-permissions-model).

## Running pipelines on protected branches

The permission to merge or push to protected branches is used to define if a user can
run CI/CD pipelines and execute actions on jobs that are related to those branches.

See [Security on protected branches](../ci/pipelines.md#security-on-protected-branches)
for details about the pipelines security model.

## LDAP users permissions

Since GitLab 8.15, LDAP user permissions can now be manually overridden by an admin user.
Read through the documentation on [LDAP users permissions](https://docs.gitlab.com/ee/articles/how_to_configure_ldap_gitlab_ee/index.html#updating-user-permissions-new-feature) to learn more.

[^1]: On public and internal projects, all users are able to perform this action
[^2]: Guest users can only view the confidential issues they created themselves
[^3]: If Public pipelines is enabled in Project Settings > CI/CD
[^4]: Not allowed for Guest, Reporter, Developer, Maintainer, or Owner
[^5]: Only if the job was triggered by the user
[^6]: Only if user is not external one
[^7]: Only if user is a member of the project

[ce-18994]: https://gitlab.com/gitlab-org/gitlab-ce/issues/18994
[new-mod]: project/new_ci_build_permissions_model.md
[ee-998]: https://gitlab.com/gitlab-org/gitlab-ee/merge_requests/998
[eep]: https://about.gitlab.com/pricing/



            

          

      

      

    

  

    
      
          
            
  # Reserved project and group names

Not all project & group names are allowed because they would conflict with
existing routes used by GitLab.

For a list of words that are not allowed to be used as group or project names, see the
[path_regex.rb file][reserved] under the TOP_LEVEL_ROUTES, PROJECT_WILDCARD_ROUTES and GROUP_ROUTES lists:
- TOP_LEVEL_ROUTES: are names that are reserved as usernames or top level groups
- PROJECT_WILDCARD_ROUTES: are names that are reserved for child groups or projects.
- GROUP_ROUTES: are names that are reserved for all groups or projects.

## Reserved project names

It is currently not possible to create a project with the following names:


	
	





	badges


	blame


	blob


	builds


	commits


	create


	create_dir


	edit


	environments/folders


	files


	find_file


	gitlab-lfs/objects


	info/lfs/objects


	new


	preview


	raw


	refs


	tree


	update


	wikis




## Reserved group names

Currently the following names are reserved as top level groups:


	503.html


	
	





	.well-known


	404.html


	422.html


	500.html


	502.html


	abuse_reports


	admin


	api


	apple-touch-icon-precomposed.png


	apple-touch-icon.png


	files


	assets


	autocomplete


	ci


	dashboard


	deploy.html


	explore


	favicon.ico


	favicon.png


	groups


	header_logo_dark.png


	header_logo_light.png


	health_check


	help


	import


	invites


	jwt


	koding


	notification_settings


	oauth


	profile


	projects


	public


	robots.txt


	s


	search


	sent_notifications


	slash-command-logo.png


	snippets


	u


	unicorn_test


	unsubscribes


	uploads


	users




These group names are unavailable as subgroup names:


	
	





	activity


	analytics


	audit_events


	avatar


	edit


	group_members


	hooks


	issues


	labels


	ldap


	ldap_group_links


	merge_requests


	milestones


	notification_setting


	pipeline_quota


	projects


	subgroups




[reserved]:  https://gitlab.com/gitlab-org/gitlab-ce/blob/master/lib/gitlab/path_regex.rb



            

          

      

      

    

  

    
      
          
            
  # Snippets

With GitLab Snippets you can store and share bits of code and text with other users.

![GitLab Snippet](img/gitlab_snippet.png)

There are 2 types of snippets, personal snippets and project snippets.

## Personal snippets

Personal snippets are not related to any project and can be created completely
independently. There are 3 visibility levels that can be set, public, internal
and private. See [Public access](../public_access/public_access.md) for more information.

## Project snippets

Project snippets are always related to a specific project.
See [Project’s features](project/index.md#project-39-s-features) for more information.

## Discover snippets

There are two main ways of how you can discover snippets in GitLab.

For exploring all snippets that are visible to you, you can go to the Snippets
dashboard of your GitLab instance via the top navigation. For GitLab.com you can
find it [here](https://gitlab.com/dashboard/snippets). This navigates you to an
overview that shows snippets you created and allows you to explore all snippets.

If you want to discover snippets that belong to a specific project, you can navigate
to the Snippets page via the left side navigation on the project page.

## Snippet comments

> [Introduced](https://gitlab.com/gitlab-org/gitlab-ce/issues/12910) in GitLab 9.2.

With GitLab Snippets you engage in a conversation about that piece of code,
facilitating the collaboration among users.

## Downloading snippets

You can download the raw content of a snippet.

By default snippets will be downloaded with Linux-style line endings (LF). If
you want to preserve the original line endings you need to add a parameter line_ending=raw
(e.g., https://gitlab.com/snippets/SNIPPET_ID/raw?line_ending=raw). In case a
snippet was created using the GitLab web interface the original line ending is Windows-like (CRLF).

## Embedded snippets

> Introduced in GitLab 10.8.

Public snippets can not only be shared, but also embedded on any website. This
allows to reuse a GitLab snippet in multiple places and any change to the source
is automatically reflected in the embedded snippet.

To embed a snippet, first make sure that:


	The project is public (if it’s a project snippet)


	The snippet is public


	In Project > Settings > Permissions, the snippets permissions are
set to Everyone with access




Once the above conditions are met, the “Embed” section will appear in your snippet
where you can simply click on the “Copy to clipboard” button. This copies a one-line
script that you can add to any website or blog post.

Here’s how an example code looks like:

`html
<script src="https://gitlab.com/namespace/project/snippets/SNIPPET_ID.js"></script>
`

Here’s how an embedded snippet looks like:

<script src=”https://gitlab.com/gitlab-org/gitlab-ce/snippets/1717978.js”></script>

Embedded snippets are displayed with a header that shows the file name if defined,
the snippet size, a link to GitLab, and the actual snippet content. Actions in
the header allow users to see the snippet in raw format and download it.



            

          

      

      

    

  

    
      
          
            
  This document was moved to [profile](../profile/account/index.md).



            

          

      

      

    

  

    
      
          
            
  This document was moved to [profile/account/two_factor_authentication](../profile/account/two_factor_authentication.md).



            

          

      

      

    

  

    
      
          
            
  # Labels administration [CORE ONLY]

## Default Labels

### Define your own default Label Set

Labels that are created within the Labels view on the Admin Dashboard will be automatically added to each new project.

![Default label set](img/admin_labels.png)



            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘../instance_statistics/user_cohorts.md’
—

This document was moved to [another location](../instance_statistics/user_cohorts.md).



            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘../../instance_statistics/convdev.md’
—

This document was moved to [another location](../../instance_statistics/convdev.md).



            

          

      

      

    

  

    
      
          
            
  # Health Check


	>**Notes:**
	
	Liveness and readiness probes were [introduced][ce-10416] in GitLab 9.1.


	The health_check endpoint was [introduced][ce-3888] in GitLab 8.8 and will
be deprecated in GitLab 9.1. Read more in the [old behavior](#old-behavior)
section.


	[Access token](#access-token) has been deprecated in GitLab 9.4
in favor of [IP whitelist](#ip-whitelist)








GitLab provides liveness and readiness probes to indicate service health and
reachability to required services. These probes report on the status of the
database connection, Redis connection, and access to the filesystem. These
endpoints [can be provided to schedulers like Kubernetes][kubernetes] to hold
traffic until the system is ready or restart the container as needed.

## IP whitelist

To access monitoring resources, the client IP needs to be included in a whitelist.

[Read how to add IPs to a whitelist for the monitoring endpoints][admin].

## Using the endpoints

With default whitelist settings, the probes can be accessed from localhost:


	http://localhost/-/health


	http://localhost/-/readiness


	http://localhost/-/liveness




The first endpoint, /-/health/, only checks whether the application server is running. It does
-not verify the database or other services are running. A successful response will return
a 200 status code with the following message:

`
GitLab OK
`

The readiness and liveness probes will provide a report of system health in JSON format.

Readiness example output:

```
{

	“queues_check”{
	“status” : “ok”

},
“redis_check” : {

“status” : “ok”

},
“shared_state_check” : {

“status” : “ok”

},
“db_check” : {

“status” : “ok”

},
“cache_check” : {

“status” : “ok”

}

}

Liveness example output:

```
{



	“cache_check”{
	“status” : “ok”





},
“db_check” : {


“status” : “ok”




},
“redis_check” : {


“status” : “ok”




},
“queues_check” : {


“status” : “ok”




},
“shared_state_check” : {


“status” : “ok”




}







}

## Status

On failure, the endpoint will return a 500 HTTP status code. On success, the endpoint
will return a valid successful HTTP status code, and a success message.

## Access token (Deprecated)

>**Note:**
Access token has been deprecated in GitLab 9.4
in favor of [IP whitelist](#ip-whitelist)

An access token needs to be provided while accessing the probe endpoints. The current
accepted token can be found under the Admin area ➔ Monitoring ➔ Health check
(admin/health_check) page of your GitLab instance.

![access token](img/health_check_token.png)

The access token can be passed as a URL parameter:

`
https://gitlab.example.com/-/readiness?token=ACCESS_TOKEN
`

[ce-10416]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/10416
[ce-3888]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/3888
[pingdom]: https://www.pingdom.com
[nagios-health]: https://nagios-plugins.org/doc/man/check_http.html
[newrelic-health]: https://docs.newrelic.com/docs/alerts/alert-policies/downtime-alerts/availability-monitoring
[kubernetes]: https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-probes/
[admin]: ../../../administration/monitoring/ip_whitelist.md





            

          

      

      

    

  

    
      
          
            
  # Continuous integration Admin settings

## Maximum artifacts size

The maximum size of the [job artifacts][art-yml] can be set in the Admin area
of your GitLab instance. The value is in MB and the default is 100MB. Note
that this setting is set for each job.


	Go to Admin area > Settings (/admin/application_settings).


![Admin area settings button](img/admin_area_settings_button.png)









	Change the value of maximum artifacts size (in MB):


![Admin area maximum artifacts size](img/admin_area_maximum_artifacts_size.png)









	Hit Save for the changes to take effect.




## Default artifacts expiration

The default expiration time of the [job artifacts][art-yml] can be set in
the Admin area of your GitLab instance. The syntax of duration is described
in [artifacts:expire_in][duration-syntax]. The default is 30 days. Note that
this setting is set for each job. Set it to 0 if you don’t want default
expiration.


	Go to Admin area > Settings (/admin/application_settings).


![Admin area settings button](img/admin_area_settings_button.png)









	Change the value of default expiration time ([syntax][duration-syntax]):


![Admin area default artifacts expiration](img/admin_area_default_artifacts_expiration.png)









	Hit Save for the changes to take effect.




[art-yml]: ../../../administration/job_artifacts.md
[duration-syntax]: ../../../ci/yaml/README.md#artifactsexpire_in



            

          

      

      

    

  

    
      
          
            
  # Email

## Custom logo

The logo in the header of some emails can be customized, see the [logo customization section](../../../customization/branded_page_and_email_header.md).



            

          

      

      

    

  

    
      
          
            
  # Sign-up restrictions

You can block email addresses of specific domains, or whitelist only some
specific domains via the Application Settings in the Admin area.

>**Note**: These restrictions are only applied during sign-up. An admin is
able to add add a user through the admin panel with a disallowed domain. Also
note that the users can change their email addresses after signup to
disallowed domains.

## Whitelist email domains

> [Introduced][ce-598] in GitLab 7.11.0

You can restrict users to only signup using email addresses matching the given
domains list.

## Blacklist email domains

> [Introduced][ce-5259] in GitLab 8.10.

With this feature enabled, you can block email addresses of a specific domain
from creating an account on your GitLab server. This is particularly useful to
prevent spam. Disposable email addresses are usually used by malicious users to
create dummy accounts and spam issues.

## Settings

This feature can be activated via the Application Settings in the Admin area,
and you have the option of entering the list manually, or uploading a file with
the list.

Both whitelist and blacklist accept wildcards, so for example, you can use
*.company.com to accept every company.com subdomain, or *.io to block all
domains ending in .io. Domains should be separated by a whitespace,
semicolon, comma, or a new line.

![Domain Blacklist](img/domain_blacklist.png)

[ce-5259]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/5259
[ce-598]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/598



            

          

      

      

    

  

    
      
          
            
  # Enforce accepting Terms of Service

> [Introduced](https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/18570)
> in [GitLab Core](https://about.gitlab.com/pricing/) 10.8

## Configuration

When it is required for all users of the GitLab instance to accept the
Terms of Service, this can be configured by an admin on the settings
page:

![Enable enforcing Terms of Service](img/enforce_terms.png).

The terms itself can be entered using Markdown. For each update to the
terms, a new version is stored. When a user accepts or declines the
terms, GitLab will keep track of which version they accepted or
declined.

When an admin enables this feature, they will automattically be
directed to the page to accept the terms themselves. After they
accept, they will be directed back to the settings page.

## New registrations

When this feature is enabled, a checkbox will be available in the
sign-up form.

![Sign up form](img/sign_up_terms.png)

This checkbox will be required during sign up.

Users can review the terms entered in the admin panel before
accepting. The page will be opened in a new window so they can
continue their registration afterwards.

## Accepting terms

When this feature was enabled, the users that have not accepted the
terms of service will be presented with a screen where they can either
accept or decline the terms.

![Respond to terms](img/respond_to_terms.png)

When the user accepts the terms, they will be directed to where they
were going. After a sign-in or sign-up this will most likely be the
dashboard.

When the user was already logged in when the feature was turned on,
they will be asked to accept the terms on their next interaction.

When a user declines the terms, they will be signed out.



            

          

      

      

    

  

    
      
          
            
  # Third party offers

> [Introduced](https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/20379)
> in [GitLab Core](https://about.gitlab.com/pricing/) 11.1

The display of third party offers can be controlled in the Admin Area -> Settings page.



            

          

      

      

    

  

    
      
          
            
  # Usage statistics

GitLab Inc. will periodically collect information about your instance in order
to perform various actions.

All statistics are opt-out, you can enable/disable them from the admin panel
under Admin area > Settings > Usage statistics.

## Version check [CORE ONLY]

If enabled, version check will inform you if a new version is available and the
importance of it through a status. This is shown on the help page (i.e. /help)
for all signed in users, and on the admin pages. The statuses are:


	Green: You are running the latest version of GitLab.


	Orange: An updated version of GitLab is available.


	Red: The version of GitLab you are running is vulnerable. You should install
the latest version with security fixes as soon as possible.




![Orange version check example](img/update-available.png)

GitLab Inc. collects your instance’s version and hostname (through the HTTP
referer) as part of the version check. No other information is collected.

This information is used, among other things, to identify to which versions
patches will need to be back ported, making sure active GitLab instances remain
secure.

If you disable version check, this information will not be collected.  Enable or
disable the version check at Admin area > Settings > Usage statistics.

## Usage ping [CORE ONLY]

> [Introduced][ee-557] in GitLab Enterprise Edition 8.10. More statistics
[were added][ee-735] in GitLab Enterprise Edition
8.12. [Moved to GitLab Community Edition][ce-23361] in 9.1.

GitLab sends a weekly payload containing usage data to GitLab Inc. The usage
ping uses high-level data to help our product, support, and sales teams. It does
not send any project names, usernames, or any other specific data. The
information from the usage ping is not anonymous, it is linked to the hostname
of the instance.

You can view the exact JSON payload in the administration panel.

### Deactivate the usage ping

The usage ping is opt-out. If you want to deactivate this feature, go to
the Settings page of your administration panel and uncheck the Usage ping
checkbox.

To disable the usage ping and prevent it from being configured in future through
the administration panel, Omnibus installs can set the following in
[gitlab.rb](https://docs.gitlab.com/omnibus/settings/configuration.html#configuration-options):

`ruby
gitlab_rails['usage_ping_enabled'] = false
`

And source installs can set the following in gitlab.yml:

```yaml
production: &base

…
gitlab:

…
usage_ping_enabled: false


```

## Instance statistics visibility [CORE ONLY]

Once usage ping is enabled, GitLab will gather data from other instances and
will be able to show [usage statistics](../../instance_statistics/index.md)
of your instance to your users.

This can be restricted to admins by selecting “Only admins” in the Instance
Statistics visibility section under Admin area > Settings > Usage statistics.

[ee-557]: https://gitlab.com/gitlab-org/gitlab-ee/merge_requests/557
[ee-735]: https://gitlab.com/gitlab-org/gitlab-ee/merge_requests/735
[ce-23361]: https://gitlab.com/gitlab-org/gitlab-ce/issues/23361



            

          

      

      

    

  

    
      
          
            
  # Visibility and access controls

## Enabled Git access protocols

> [Introduced][ce-4696] in GitLab 8.10.

With GitLab’s Access restrictions you can choose which Git access protocols you
want your users to use to communicate with GitLab. This feature can be enabled
via the Application Settings in the Admin interface.

The setting is called Enabled Git access protocols, and it gives you the option
to choose between:


	Both SSH and HTTP(S)


	Only SSH


	Only HTTP(s)




![Settings Overview](img/access_restrictions.png)

When both SSH and HTTP(S) are enabled, GitLab will behave as usual, it will give
your users the option to choose which protocol they would like to use.

When you choose to allow only one of the protocols, a couple of things will happen:


	The project page will only show the allowed protocol’s URL, with no option to
change it.


	A tooltip will be shown when you hover over the URL’s protocol, if an action
on the user’s part is required, e.g. adding an SSH key, or setting a password.




![Project URL with SSH only access](img/restricted_url.png)

On top of these UI restrictions, GitLab will deny all Git actions on the protocol
not selected.

CAUTION: Important:
Starting with [GitLab 10.7][ce-18021], HTTP(s) protocol will be allowed for
git clone/fetch requests done by GitLab Runner from CI/CD Jobs, even if
_Only SSH_ was selected.

> Note: Please keep in mind that disabling an access protocol does not actually
block access to the server itself. The ports used for the protocol, be it SSH or
HTTP, will still be accessible. What GitLab does is restrict access on the
application level.

[ce-4696]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/4696
[ce-18021]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/18021



            

          

      

      

    

  

    
      
          
            
  # Discussions

The ability to contribute conversationally is offered throughout GitLab.

You can leave a comment in the following places:


	issues


	merge requests


	snippets


	commits


	commit diffs




The comment area supports [Markdown] and [quick actions]. One can edit their
own comment at any time, and anyone with [Maintainer access level][permissions] or
higher can also edit a comment made by someone else.

You could also reply to the notification email in order to reply to a comment,
provided that [Reply by email] is configured by your GitLab admin. This also
supports [Markdown] and [quick actions] as if replied from the web.

Apart from the standard comments, you also have the option to create a comment
in the form of a resolvable or threaded discussion.

## Resolvable discussions

>**Notes:**
- The main feature was [introduced][ce-5022] in GitLab 8.11.
- Resolvable discussions can be added only to merge request diffs.

Discussion resolution helps keep track of progress during planning or code review.
Resolving comments prevents you from forgetting to address feedback and lets you
hide discussions that are no longer relevant.

![“A discussion between two people on a piece of code”][discussion-view]

Comments and discussions can be resolved by anyone with at least Developer
access to the project or the author of the merge request.

### Commit discussions in the context of a merge request

> [Introduced][ce-31847] in GitLab 10.3.

For reviewers with commit-based workflow, it may be useful to add discussions to
specific commit diffs in the context of a merge request. These discussions will
persist through a commit ID change when:


	force-pushing after a rebase


	amending a commit




To create a commit diff discussion:


	Navigate to the merge request Commits tab. A list of commits that
constitute the merge request will be shown.


![Merge request commits tab](img/merge_request_commits_tab.png)









	Navigate to a specific commit, click on the Changes tab (where you
will only be presented diffs from the selected commit), and leave a comment.


![Commit diff discussion in merge request context](img/commit_comment_mr_context.png)









	Any discussions created this way will be shown in the merge request’s
Discussions tab and are resolvable.


![Merge request Discussions tab](img/commit_comment_mr_discussions_tab.png)








Discussions created this way will only appear in the original merge request
and not when navigating to that commit under your project’s
Repository > Commits page.

TIP: Tip:
When a link of a commit reference is found in a discussion inside a merge
request, it will be automatically converted to a link in the context of the
current merge request.

### Jumping between unresolved discussions

When a merge request has a large number of comments it can be difficult to track
what remains unresolved. You can jump between unresolved discussions with the
Jump button next to the Reply field on a discussion.

You can also jump to the first unresolved discussion from the button next to the
resolved discussions tracker.

![“3/4 discussions resolved”][discussions-resolved]

### Marking a comment or discussion as resolved

You can mark a discussion as resolved by clicking the Resolve discussion
button at the bottom of the discussion.

![“Resolve discussion” button][resolve-discussion-button]

Alternatively, you can mark each comment as resolved individually.

![“Resolve comment” button][resolve-comment-button]

### Move all unresolved discussions in a merge request to an issue

> [Introduced][ce-8266] in GitLab 9.1

To continue all open discussions from a merge request in a new issue, click the
Resolve all discussions in new issue button.

![Open new issue for all unresolved discussions](img/btn_new_issue_for_all_discussions.png)

Alternatively, when your project only accepts merge requests [when all discussions
are resolved](#only-allow-merge-requests-to-be-merged-if-all-discussions-are-resolved),
there will be an open an issue to resolve them later link in the merge
request widget.

![Link in merge request widget](img/resolve_discussion_open_issue.png)

This will prepare an issue with its content referring to the merge request and
the unresolved discussions.

![Issue mentioning discussions in a merge request](img/preview_issue_for_discussions.png)

Hitting Submit issue will cause all discussions to be marked as resolved and
add a note referring to the newly created issue.

![Mark discussions as resolved notice](img/resolve_discussion_issue_notice.png)

You can now proceed to merge the merge request from the UI.

### Moving a single discussion to a new issue

> [Introduced][ce-8266] in GitLab 9.1

To create a new issue for a single discussion, you can use the Resolve this
discussion in a new issue button.

![Create issue for discussion](img/new_issue_for_discussion.png)

This will direct you to a new issue prefilled with the content of the
discussion, similar to the issues created for delegating multiple
discussions at once. Saving the issue will mark the discussion as resolved and
add a note to the merge request discussion referencing the new issue.

![New issue for a single discussion](img/preview_issue_for_discussion.png)

### Only allow merge requests to be merged if all discussions are resolved

> [Introduced][ce-7125] in GitLab 8.14.

You can prevent merge requests from being merged until all discussions are
resolved.

Navigate to your project’s settings page, select the
Only allow merge requests to be merged if all discussions are resolved check
box and hit Save for the changes to take effect.

![Only allow merge if all the discussions are resolved settings](img/only_allow_merge_if_all_discussions_are_resolved.png)

From now on, you will not be able to merge from the UI until all discussions
are resolved.

![Only allow merge if all the discussions are resolved message](img/only_allow_merge_if_all_discussions_are_resolved_msg.png)

### Automatically resolve merge request diff discussions when they become outdated

> [Introduced][ce-14053] in GitLab 10.0.

You can automatically resolve merge request diff discussions on lines modified
with a new push.

Navigate to your project’s settings page, select the Automatically resolve
merge request diffs discussions on lines changed with a push check box and hit
Save for the changes to take effect.

![Automatically resolve merge request diff discussions when they become outdated](img/automatically_resolve_outdated_discussions.png)

From now on, any discussions on a diff will be resolved by default if a push
makes that diff section outdated. Discussions on lines that don’t change and
top-level resolvable discussions are not automatically resolved.

## Commit discussions

You can add comments and discussion threads to a particular commit under your
project’s Repository > Commits.

CAUTION: Attention:
Discussions created this way will be lost if the commit ID changes after a
force push.

## Threaded discussions

> [Introduced][ce-7527] in GitLab 9.1.

While resolvable discussions are only available to merge request diffs,
discussions can also be added without a diff. You can start a specific
discussion which will look like a thread, on issues, commits, snippets, and
merge requests.

To start a threaded discussion, click on the Comment button toggle dropdown,
select Start discussion and click Start discussion when you’re ready to
post the comment.

![Comment type toggle](img/comment_type_toggle.gif)

This will post a comment with a single thread to allow you to discuss specific
comments in greater detail.

![Discussion comment](img/discussion_comment.png)

## Image discussions

> [Introduced][ce-14061] in GitLab 10.1.

Sometimes a discussion is revolved around an image. With image discussions,
you can easily target a specific coordinate of an image and start a discussion
around it. Image discussions are available in merge requests and commit detail views.

To start an image discussion, hover your mouse over the image. Your mouse pointer
should convert into an icon, indicating that the image is available for commenting.
Simply click anywhere on the image to create a new discussion.

![Start image discussion](img/start_image_discussion.gif)

After you click on the image, a comment form will be displayed that would be the start
of your discussion. Once you save your comment, you will see a new badge displayed on
top of your image. This badge represents your discussion.

>**Note:**
This discussion badge is typically associated with a number that is only used as a visual
reference for each discussion. In the merge request discussion tab,
this badge will be indicated with a comment icon since each discussion will render a new
image section.

Image discussions also work on diffs that replace an existing image. In this diff view
mode, you can toggle the different view modes and still see the discussion point badges.


2-up | Swipe | Onion Skin |

:———–: | :———-: | :———-: |

![2-up view](img/two_up_view.png) | ![swipe view](img/swipe_view.png) | ![onion skin view](img/onion_skin_view.png) |



Image discussions also work well with resolvable discussions. Resolved discussions
on diffs (not on the merge request discussion tab) will appear collapsed on page
load and will have a corresponding badge counter to match the counter on the image.

![Image resolved discussion](img/image_resolved_discussion.png)

## Lock discussions

> [Introduced][ce-14531] in GitLab 10.1.

For large projects with many contributors, it may be useful to stop discussions
in issues or merge requests in these scenarios:


	The project maintainer has already resolved the discussion and it is not helpful




for continued feedback. The project maintainer has already directed new conversation
to newer issues or merge requests.
- The people participating in the discussion are trolling, abusive, or otherwise
being unproductive.

In these cases, a user with Maintainer permissions or higher in the project can lock (and unlock)
an issue or a merge request, using the “Lock” section in the sidebar:


Unlock | Lock |

:———–: | :———-: |

![Turn off discussion lock](img/turn_off_lock.png) | ![Turn on discussion lock](img/turn_on_lock.png) |



System notes indicate locking and unlocking.

![Discussion lock system notes](img/discussion_lock_system_notes.png)

In a locked issue or merge request, only team members can add new comments and
edit existing comments. Non-team members are restricted from adding or editing comments.


Team member | Non-team member |

:———–: | :———-: |

![Comment form member](img/lock_form_member.png) | ![Comment form non-member](img/lock_form_non_member.png) |



[ce-5022]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/5022
[ce-7125]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/7125
[ce-7527]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/7527
[ce-7180]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/7180
[ce-8266]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/8266
[ce-14053]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/14053
[ce-14061]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/14061
[ce-14531]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/14531
[ce-31847]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/31847
[resolve-discussion-button]: img/resolve_discussion_button.png
[resolve-comment-button]: img/resolve_comment_button.png
[discussion-view]: img/discussion_view.png
[discussions-resolved]: img/discussions_resolved.png
[markdown]: ../markdown.md
[quick actions]: ../project/quick_actions.md
[permissions]: ../permissions.md
[Reply by email]: ../../administration/reply_by_email.md



            

          

      

      

    

  

    
      
          
            
  # GitLab.com settings

In this page you will find information about the settings that are used on
[GitLab.com](https://about.gitlab.com/pricing).

## SSH host keys fingerprints

Below are the fingerprints for GitLab.com’s SSH host keys.


Algorithm | MD5 | SHA256  |

——— | — | ——- |


DSA      | 7a:47:81:3a:ee:89:89:64:33:ca:44:52:3d:30:d4:87 | p8vZBUOR0XQz6sYiaWSMLmh0t9i8srqYKool/Xfdfqw |

ECDSA    | f1:d0:fb:46:73:7a:70:92:5a:ab:5d:ef:43:e2:1c:35 | HbW3g8zUjNSksFbqTiUWPWg2Bq1x8xdGUrliXFzSnUw |

ED25519  | 2e:65:6a:c8:cf:bf:b2:8b:9a:bd:6d:9f:11:5c:12:16 | eUXGGm1YGsMAS7vkcx6JOJdOGHPem5gQp4taiCfCLB8 |

RSA      | b6:03:0e:39:97:9e:d0:e7:24:ce:a3:77:3e:01:42:09 | ROQFvPThGrW4RuWLoL9tq9I9zJ42fK4XywyRtbOz/EQ |





## Mail configuration

GitLab.com sends emails from the mg.gitlab.com domain via [Mailgun] and has
its own dedicated IP address (198.61.254.240).

## Alternative SSH port

GitLab.com can be reached via a [different SSH port][altssh] for git+ssh.


Setting     | Value               |

———   | ——————- |

Hostname  | altssh.gitlab.com |

Port      | 443               |



An example ~/.ssh/config is the following:

```
Host gitlab.com

Hostname altssh.gitlab.com
User git
Port 443
PreferredAuthentications publickey
IdentityFile ~/.ssh/gitlab


```

## GitLab Pages

Below are the settings for [GitLab Pages].


Setting                 | GitLab.com        | Default       |

———————– | —————-  | ————- |

Domain name             | gitlab.io       | -             |

IP address              | 52.167.214.135  | -             |

Custom domains support  | yes               | no            |

TLS certificates support| yes               | no            |



The maximum size of your Pages site is regulated by the artifacts maximum size
which is part of [GitLab CI/CD](#gitlab-ci-cd).

## GitLab CI/CD

Below are the current settings regarding [GitLab CI/CD](../../ci/README.md).


Setting                 | GitLab.com        | Default       |

———–             | —————– | ————- |

Artifacts maximum size  | 1G                | 100M          |

Artifacts [expiry time](../../ci/yaml/README.md#artifacts-expire_in)   | kept forever           | deleted after 30 days unless otherwise specified    |



## Repository size limit

The maximum size your Git repository is allowed to be, including LFS. If you are near
or over the size limit, you can [reduce your repository size with Git](../project/repository/reducing_the_repo_size_using_git.md).


Setting                 | GitLab.com        | Default       |

———–             | —————– | ————- |

Repository size including LFS | 10G         | Unlimited     |



## Shared Runners

Shared Runners on GitLab.com run in [autoscale mode] and powered by
Google Cloud Platform and DigitalOcean. Autoscaling means reduced
waiting times to spin up CI/CD jobs, and isolated VMs for each project,
thus maximizing security.
They’re free to use for public open source projects and limited to 2000 CI
minutes per month per group for private projects. Read about all
[GitLab.com plans](https://about.gitlab.com/pricing/).

In case of DigitalOcean based Runners, all your CI/CD jobs run on ephemeral
instances with 2GB of RAM, CoreOS and the latest Docker Engine installed.
Instances provide 2 vCPUs and 60GB of SSD disk space. The default region of the
VMs is NYC1.

In case of Google Cloud Platform based Runners, all your CI/CD jobs run on
ephemeral instances with 3.75GB of RAM, CoreOS and the latest Docker Engine
installed. Instances provide 1 vCPU and 25GB of HDD disk space. The default
region of the VMs is US East1.

Jobs handled by the shared Runners on GitLab.com (shared-runners-manager-X.gitlab.com),
will be timed out after 3 hours, regardless of the timeout configured in a
project. Check the issues [4010] and [4070] for the reference.

Below are the shared Runners settings.


Setting                               | GitLab.com                                        | Default    |

———–                           | —————–                                 | ———- |

[GitLab Runner]                       | [Runner versions dashboard][ci_version_dashboard] | -          |

Executor                              | docker+machine                                  | -          |

Default Docker image                  | ruby:2.5                                        | -          |

privileged (run [Docker in Docker]) | true                                            | false    |



[ci_version_dashboard]: https://monitor.gitlab.net/dashboard/db/ci?from=now-1h&to=now&refresh=5m&orgId=1&panelId=12&fullscreen&theme=light

### config.toml

The full contents of our config.toml are:

DigitalOcean

```toml
concurrent = X
check_interval = 1
metrics_server = “X”
sentry_dsn = “X”

	[[runners]]
	name = “docker-auto-scale”
request_concurrency = X
url = “https://gitlab.com/”
token = “SHARED_RUNNER_TOKEN”
executor = “docker+machine”
environment = [

“DOCKER_DRIVER=overlay2”

]
limit = X
[runners.docker]

image = “ruby:2.5”
privileged = true

	[runners.machine]
	IdleCount = 20
IdleTime = 1800
OffPeakPeriods = [“* * * * * sat,sun *”]
OffPeakTimezone = “UTC”
OffPeakIdleCount = 5
OffPeakIdleTime = 1800
MaxBuilds = 1
MachineName = “srm-%s”
MachineDriver = “digitalocean”
MachineOptions = [

“digitalocean-image=X”,
“digitalocean-ssh-user=core”,
“digitalocean-region=nyc1”,
“digitalocean-size=s-2vcpu-2gb”,
“digitalocean-private-networking”,
“digitalocean-tags=shared_runners,gitlab_com”,
“engine-registry-mirror=http://INTERNAL_IP_OF_OUR_REGISTRY_MIRROR”,
“digitalocean-access-token=DIGITAL_OCEAN_ACCESS_TOKEN”,

]

	[runners.cache]
	Type = “s3”
BucketName = “runner”
Insecure = true
Shared = true
ServerAddress = “INTERNAL_IP_OF_OUR_CACHE_SERVER”
AccessKey = “ACCESS_KEY”
SecretKey = “ACCESS_SECRET_KEY”


```

Google Cloud Platform

```toml
concurrent = X
check_interval = 1
metrics_server = “X”
sentry_dsn = “X”

	[[runners]]
	name = “docker-auto-scale”
request_concurrency = X
url = “https://gitlab.com/”
token = “SHARED_RUNNER_TOKEN”
executor = “docker+machine”
environment = [

“DOCKER_DRIVER=overlay2”

]
limit = X
[runners.docker]

image = “ruby:2.5”
privileged = true

	[runners.machine]
	IdleCount = 20
IdleTime = 1800
OffPeakPeriods = [“* * * * * sat,sun *”]
OffPeakTimezone = “UTC”
OffPeakIdleCount = 5
OffPeakIdleTime = 1800
MaxBuilds = 1
MachineName = “srm-%s”
MachineDriver = “google”
MachineOptions = [

“google-project=PROJECT”,
“google-disk-size=25”,
“google-machine-type=n1-standard-1”,
“google-username=core”,
“google-tags=gitlab-com,srm”,
“google-use-internal-ip”,
“google-zone=us-east1-d”,
“google-machine-image=PROJECT/global/images/IMAGE”,
“engine-registry-mirror=http://INTERNAL_IP_OF_OUR_REGISTRY_MIRROR”

]

	[runners.cache]
	Type = “s3”
BucketName = “runner”
Insecure = true
Shared = true
ServerAddress = “INTERNAL_IP_OF_OUR_CACHE_SERVER”
AccessKey = “ACCESS_KEY”
SecretKey = “ACCESS_SECRET_KEY”


```

## Sidekiq

GitLab.com runs [Sidekiq][sidekiq] with arguments –timeout=4 –concurrency=4
and the following environment variables:


Setting                                 | GitLab.com | Default   |



——–	———–	——–
SIDEKIQ_MEMORY_KILLER_MAX_RSS	1000000	1000000
SIDEKIQ_MEMORY_KILLER_SHUTDOWN_SIGNAL	SIGKILL	-
SIDEKIQ_LOG_ARGUMENTS	1	-

## Cron jobs

Periodically executed jobs by Sidekiq, to self-heal Gitlab, do external
synchronizations, run scheduled pipelines, etc.:


Setting                     | GitLab.com   | Default      |



|——–                     |————- |————- |
| pipeline_schedule_worker  | 19 * * * * | 19 * * * * |

## PostgreSQL

GitLab.com being a fairly large installation of GitLab means we have changed
various PostgreSQL settings to better suit our needs. For example, we use
streaming replication and servers in hot-standby mode to balance queries across
different database servers.

The list of GitLab.com specific settings (and their defaults) is as follows:


Setting                             | GitLab.com                                                          | Default                               |



:------------------------------------	:——————————————————————–	:--------------------------------------
archive_command	/usr/bin/envdir /etc/wal-e.d/env /opt/wal-e/bin/wal-e wal-push %p	empty
archive_mode	on	off
autovacuum_analyze_scale_factor	0.01	0.01
autovacuum_max_workers	6	3
autovacuum_vacuum_cost_limit	1000	-1
autovacuum_vacuum_scale_factor	0.01	0.02
checkpoint_completion_target	0.7	0.9
checkpoint_segments	32	10
effective_cache_size	338688MB	Based on how much memory is available
hot_standby	on	off
hot_standby_feedback	on	off
log_autovacuum_min_duration	0	-1
log_checkpoints	on	off
log_line_prefix	`%t [%p]: [%l-1] `	empty
log_min_duration_statement	1000	-1
log_temp_files	0	-1
maintenance_work_mem	2048MB	16 MB
max_replication_slots	5	0
max_wal_senders	32	0
max_wal_size	5GB	1GB
shared_buffers	112896MB	Based on how much memory is available
shared_preload_libraries	pg_stat_statements	empty
shmall	30146560	Based on the server’s capabilities
shmmax	123480309760	Based on the server’s capabilities
wal_buffers	16MB	-1
wal_keep_segments	512	10
wal_level	replica	minimal
statement_timeout	15s	60s
idle_in_transaction_session_timeout	60s	60s

Some of these settings are in the process being adjusted. For example, the value
for shared_buffers is quite high and as such we are looking into adjusting it.
More information on this particular change can be found at
<https://gitlab.com/gitlab-com/infrastructure/issues/1555>. An up to date list
of proposed changes can be found at
<https://gitlab.com/gitlab-com/infrastructure/issues?scope=all&utf8=%E2%9C%93&state=opened&label_name[]=database&label_name[]=change>.

## Unicorn

GitLab.com adjusts the memory limits for the [unicorn-worker-killer][unicorn-worker-killer] gem.

Base default:
* memory_limit_min = 750MiB
* memory_limit_max = 1024MiB

Web front-ends:
* memory_limit_min = 1024MiB
* memory_limit_max = 1280MiB

## GitLab.com at scale

In addition to the GitLab Enterprise Edition Omnibus install, GitLab.com uses
the following applications and settings to achieve scale. All settings are
located publicly available [chef cookbooks](https://gitlab.com/gitlab-cookbooks).

### ELK

We use Elasticsearch, logstash, and Kibana for part of our monitoring solution:


	[gitlab-cookbooks / gitlab-elk · GitLab](https://gitlab.com/gitlab-cookbooks/gitlab-elk)


	[gitlab-cookbooks / gitlab_elasticsearch · GitLab](https://gitlab.com/gitlab-cookbooks/gitlab_elasticsearch)




### Prometheus

Prometheus complete our monitoring stack:


	[gitlab-cookbooks / gitlab-prometheus · GitLab](https://gitlab.com/gitlab-cookbooks/gitlab-prometheus)




### Grafana

For the visualization of monitoring data:


	[gitlab-cookbooks / gitlab-grafana · GitLab](https://gitlab.com/gitlab-cookbooks/gitlab-grafana)




### Sentry

Open source error tracking:


	[gitlab-cookbooks / gitlab-sentry · GitLab](https://gitlab.com/gitlab-cookbooks/gitlab-sentry)




### Consul

Service discovery:


	[gitlab-cookbooks / gitlab_consul · GitLab](https://gitlab.com/gitlab-cookbooks/gitlab_consul)




### Haproxy

High Performance TCP/HTTP Load Balancer:


	[gitlab-cookbooks / gitlab-haproxy · GitLab](https://gitlab.com/gitlab-cookbooks/gitlab-haproxy)




[autoscale mode]: https://docs.gitlab.com/runner/configuration/autoscale.html “How Autoscale works”
[runners-post]: https://about.gitlab.com/2016/04/05/shared-runners/ “Shared Runners on GitLab.com”
[GitLab Runner]: https://gitlab.com/gitlab-org/gitlab-runner
[altssh]: https://about.gitlab.com/2016/02/18/gitlab-dot-com-now-supports-an-alternate-git-plus-ssh-port/ “GitLab.com now supports an alternate git+ssh port”
[GitLab Pages]: https://about.gitlab.com/features/pages “GitLab Pages”
[docker in docker]: https://hub.docker.com/_/docker/ “Docker in Docker at DockerHub”
[mailgun]: https://www.mailgun.com/ “Mailgun website”
[sidekiq]: http://sidekiq.org/ “Sidekiq website”
[unicorn-worker-killer]: https://rubygems.org/gems/unicorn-worker-killer “unicorn-worker-killer”
[4010]: https://gitlab.com/gitlab-com/infrastructure/issues/4010 “Find a good value for maximum timeout for Shared Runners”
[4070]: https://gitlab.com/gitlab-com/infrastructure/issues/4070 “Configure per-runner timeout for shared-runners-manager-X on GitLab.com”



            

          

      

      

    

  

    
      
          
            
  # Groups

With GitLab Groups you can assemble related projects together
and grant members access to several projects at once.

Groups can also be nested in [subgroups](subgroups/index.md).

Find your groups by expanding the left menu and clicking Groups:

![GitLab Groups](img/groups.png)

The Groups page displays all groups you are a member of, how many projects it holds,
how many members it has, the group visibility, and, if you have enough permissions,
a link to the group settings. By clicking the last button you can leave that group.

## Use cases

You can create groups for numerous reasons. To name a few:


	Organize related projects under the same [namespace](#namespaces), add members to that




group and grant access to all their projects at once
- Create a group, include members of your team, and make it easier to
@mention all the team at once in issues and merge requests



	Create a group for your company members, and create [subgroups](subgroups/index.md)





	for each individual team. Let’s say you create a group called company-team, and among others,
	you created subgroups in this group for each individual team backend-team,
frontend-team, and production-team:


1. When you start a new implementation from an issue, you add a comment:
_”@company-team, let’s do it! @company-team/backend-team you’re good to go!”_
1. When your backend team needs help from frontend, they add a comment:
_”@company-team/frontend-team could you help us here please?”_
1. When the frontend team completes their implementation, they comment:
_”@company-team/backend-team, it’s done! Let’s ship it @company-team/production-team!”_











## Namespaces

In GitLab, a namespace is a unique name to be used as a user name, a group name, or a subgroup name.


	http://gitlab.example.com/username


	http://gitlab.example.com/groupname


	http://gitlab.example.com/groupname/subgroup_name




For example, consider a user named Alex:

1. Alex creates an account on GitLab.com with the username alex;
their profile will be accessed under https://gitlab.example.com/alex
1. Alex creates a group for their team with the groupname alex-team;
the group and its projects will be accessed under https://gitlab.example.com/alex-team
1. Alex creates a subgroup of alex-team with the subgroup name marketing;
this subgroup and its projects will be accessed under https://gitlab.example.com/alex-team/marketing

By doing so:


	Any team member mentions Alex with @alex


	Alex mentions everyone from their team with @alex-team


	Alex mentions only the marketing team with @alex-team/marketing




## Issues and merge requests within a group

Issues and merge requests are part of projects. For a given group, view all the
[issues](../project/issues/index.md#issues-per-group) and [merge requests](../project/merge_requests/index.md#merge-requests-per-group) across all the projects in that group,
together in a single list view.

## Create a new group

> Notes:
- For a list of words that are not allowed to be used as group names see the


[reserved names](../reserved_names.md).




You can create a group in GitLab from:


	The Groups page: expand the left menu, click Groups, and click the green button New group:


![new group from groups page](img/new_group_from_groups.png)









	Elsewhere: expand the plus sign button on the top navbar and choose New group:


![new group from elsewhere](img/new_group_from_other_pages.png)








Add the following information:

![new group info](img/create_new_group_info.png)


	Set the Group path which will be the namespace under which your projects
will be hosted (path can contain only letters, digits, underscores, dashes
and dots; it cannot start with dashes or end in dot).





	The Group name will populate with the path. Optionally, you can change
it. This is the name that will display in the group views.





	Optionally, you can add a description so that others can briefly understand
what this group is about.




1. Optionally, choose an avatar for your project.
1. Choose the [visibility level](../../public_access/public_access.md).

## Add users to a group

Add members to a group by navigating to the group’s dashboard, and clicking Members:

![add members to group](img/add_new_members.png)

Select the [permission level](../permissions.md#permissions) and add the new member. You can also set the expiring
date for that user, from which they will no longer have access to your group.

One of the benefits of putting multiple projects in one group is that you can
give a user to access to all projects in the group with one action.

Consider we have a group with two projects:


	On the Group Members page we can now add a new user to the group.


	Now because this user is a Developer member of the group, he automatically




gets Developer access to all projects within that group.

If necessary, you can increase the access level of an individual user for a specific project,
by adding them again as a new member to the project with the new permission levels.

## Request access to a group

As a group owner you can enable or disable non members to request access to
your group. Go to the group settings and click on Allow users to request access.

As a user, you can request to be a member of a group. Go to the group you’d
like to be a member of, and click the Request Access button on the right
side of your screen.

![Request access button](img/request_access_button.png)

—

Group owners and maintainers will be notified of your request and will be able to approve or
decline it on the members page.

![Manage access requests](img/access_requests_management.png)

—

If you change your mind before your request is approved, just click the
Withdraw Access Request button.

![Withdraw access request button](img/withdraw_access_request_button.png)

## Add projects to a group

There are two different ways to add a new project to a group:


	Select a group and then click on the New project button.


![New project](img/create_new_project_from_group.png)

You can then continue on [creating a project](../../gitlab-basics/create-project.md).






	While you are creating a project, select a group namespace
you’ve already created from the dropdown menu.


![Select group](img/select_group_dropdown.png)








## Transfer projects into groups

Learn how to [transfer a project into a group](../project/index.md#transfer-an-existing-project-into-a-group).

## Sharing a project with a group

You can [share your projects with a group](../project/members/share_project_with_groups.md)
and give your group members access to the project all at once.

Alternatively, you can [lock the sharing with group feature](#share-with-group-lock).

## Manage group memberships via LDAP

In GitLab Enterprise Edition it is possible to manage GitLab group memberships using LDAP groups.
See [the GitLab Enterprise Edition documentation](../../integration/ldap.md) for more information.

## Transfer groups to another group

From 10.5 there are two different ways to transfer a group:


	Either by transferring a group into another group (making it a subgroup of that group).


	Or by converting a subgroup into a root group (a group with no parent).




Please make sure to understand that:


	Changing a group’s parent can have unintended side effects. See [Redirects when changing repository paths](https://docs.gitlab.com/ce/user/project/index.html#redirects-when-changing-repository-paths)


	You can only transfer the group to a group you manage.


	You will need to update your local repositories to point to the new location.


	If the parent group’s visibility is lower than the group current visibility, visibility levels for subgroups and projects will be changed to match the new parent group’s visibility.




## Group settings

Once you have created a group, you can manage its settings by navigating to
the group’s dashboard, and clicking Settings.

![group settings](img/group_settings.png)

### General settings

Besides giving you the option to edit any settings you’ve previously
set when [creating the group](#create-a-new-group), you can also
access further configurations for your group.

#### Changing a group’s path

Changing a group’s path can have unintended side effects. Read
[how redirects will behave](../project/index.md#redirects-when-changing-repository-paths)
before proceeding.

If you are vacating the path so it can be claimed by another group or user,
you may need to rename the group name as well since both names and paths must
be unique.

To change your group path:

1. Navigate to your group’s Settings > General.
1. Enter a new name under “Group path”.
1. Hit Save group.

CAUTION: Caution:
It is currently not possible to rename a namespace if it contains a
project with [Container Registry](../project/container_registry.md) tags,
because the project cannot be moved.

TIP: TIP:
If you want to retain ownership over the original namespace and
protect the URL redirects, then instead of changing a group’s path or renaming a
username, you can create a new group and transfer projects to it.

#### Enforce 2FA to group members

Add a security layer to your group by
[enforcing two-factor authentication (2FA)](../../security/two_factor_authentication.md#enforcing-2fa-for-all-users-in-a-group)
to all group members.

#### Share with group lock

Prevent projects in a group from [sharing
a project with another group](../project/members/share_project_with_groups.md).
This allows for tighter control over project access.

For example, consider you have two distinct teams (Group A and Group B)
working together in a project.
To inherit the group membership, you share the project between the
two groups A and B. Share with group lock prevents any project within
the group from being shared with another group. By doing so, you
guarantee only the right group members have access to that projects.

To enable this feature, navigate to the group settings page. Select
Share with group lock and Save the group.

![Checkbox for share with group lock](img/share_with_group_lock.png)

#### Member Lock [STARTER]

With Member Lock it is possible to lock membership in project to the
level of members in group.

Learn more about [Member Lock](https://docs.gitlab.com/ee/user/group/index.html#member-lock).

### Advanced settings


	Projects: view all projects within that group, add members to each project,




access each project’s settings, and remove any project from the same screen.
- Webhooks: configure [webhooks](../project/integrations/webhooks.md) to your group.
- Push rules: configure [push rules](https://docs.gitlab.com/ee/push_rules/push_rules.html#push-rules) to your group. [STARTER]
- Audit Events: view [Audit Events](https://docs.gitlab.com/ee/administration/audit_events.html#audit-events)
for the group. [STARTER ONLY]
- Pipelines quota: keep track of the [pipeline quota](../admin_area/settings/continuous_integration.md) for the group



            

          

      

      

    

  

    
      
          
            
  # Subgroups

>**Notes:**
- [Introduced][ce-2772] in GitLab 9.0.
- Not available when using MySQL as external database (support removed in


GitLab 9.3 [due to performance reasons][issue]).




With subgroups (aka nested groups or hierarchical groups) you can have
up to 20 levels of nested groups, which among other things can help you to:


	Separate internal / external organizations. Since every group
can have its own visibility level, you are able to host groups for different
purposes under the same umbrella.


	Organize large projects. For large projects, subgroups makes it
potentially easier to separate permissions on parts of the source code.


	Make it easier to manage people and control visibility. Give people
different [permissions][] depending on their group [membership](#membership).




## Database Requirements

Nested groups are only supported when you use PostgreSQL. Supporting nested
groups on MySQL in an efficient way is not possible due to MySQL’s limitations.
See the following links for more information:


	<https://gitlab.com/gitlab-org/gitlab-ce/issues/30472>


	<https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/10885>




## Overview

A group can have many subgroups inside it, and at the same time a group can have
only 1 parent group. It resembles a directory behavior or a nested items list:


	Group 1
- Group 1.1
- Group 1.2



	Group 1.2.1


	
	Group 1.2.2
	
	Group 1.2.2.1



















In a real world example, imagine maintaining a GNU/Linux distribution with the
first group being the name of the distro and subsequent groups split like:


	Organization Group - GNU/Linux distro
- Category Subgroup - Packages



	(project) Package01


	(project) Package02








	
	Category Subgroup - Software
	
	(project) Core


	(project) CLI


	(project) Android app


	(project) iOS app










	
	Category Subgroup - Infra tools
	
	(project) Ansible playbooks
















Another example of GitLab as a company would be the following:


	Organization Group - GitLab
- Category Subgroup - Marketing



	(project) Design


	(project) General








	
	Category Subgroup - Software
	
	(project) GitLab CE


	(project) GitLab EE


	(project) Omnibus GitLab


	(project) GitLab Runner


	(project) GitLab Pages daemon










	
	Category Subgroup - Infra tools
	
	(project) Chef cookbooks










	Category Subgroup - Executive team








—

The maximum nested groups a group can have, including the first one in the
hierarchy, is 21.

Things like transferring or importing a project inside nested groups, work like
when performing these actions the traditional way with the group/project
structure.

## Creating a subgroup

>**Notes:**
- You need to be an Owner of a group in order to be able to create


a subgroup. For more information check the [permissions table][permissions].





	For a list of words that are not allowed to be used as group names see the
[reserved names][reserved].


	Users can always create subgroups if they are explicitly added as an Owner to
a parent group even if group creation is disabled by an administrator in their
settings.




To create a subgroup:


	In the group’s dashboard expand the New project split button, select
New subgroup and click the New subgroup button.


![Subgroups page](img/create_subgroup_button.png)









	Create a new group like you would normally do. Notice that the parent group
namespace is fixed under Group path. The visibility level can differ from
the parent group.


![Subgroups page](img/create_new_group.png)









	Click the Create group button and you will be taken to the new group’s
dashboard page.




Follow the same process to create any subsequent groups.

## Membership

When you add a member to a subgroup, they inherit the membership and permission
level from the parent group. This model allows access to nested groups if you
have membership in one of its parents.

The group permissions for a member can be changed only by Owners and only on
the Members page of the group the member was added.

You can tell if a member has inherited the permissions from a parent group by
looking at the group’s Members page.

![Group members page](img/group_members.png)

From the image above, we can deduct the following things:


	There are 5 members that have access to the group four


	User0 is a Reporter and has inherited their permissions from group one
which is above the hierarchy of group four


	User1 is a Developer and has inherited their permissions from group
one/two which is above the hierarchy of group four


	User2 is a Developer and has inherited their permissions from group
one/two/three which is above the hierarchy of group four


	For User3 there is no indication of a parent group, therefore they belong to
group four, the one we’re inspecting


	Administrator is the Owner and member of all subgroups and for that reason,
same as User3, there is no indication of an ancestor group




### Overriding the ancestor group membership

>**Note:**
You need to be an Owner of a group in order to be able to add members to it.

To override a user’s membership of an ancestor group (the first group they were
added to), simply add the user in the new subgroup again, but with different
permissions.

For example, if User0 was first added to group group-1/group-1-1 with Developer
permissions, then they will inherit those permissions in every other subgroup
of group-1/group-1-1. To give them Maintainer access to group-1/group-1-1/group1-1-1,
you would add them again in that group as Maintainer. Removing them from that group,
the permissions will fallback to those of the ancestor group.

## Mentioning subgroups

Mentioning groups (@group) in issues, commits and merge requests, would
notify all members of that group. Now with subgroups, there is a more granular
support if you want to split your group’s structure. Mentioning works as before
and you can choose the group of people to be notified.

![Mentioning subgroups](img/mention_subgroups.png)

## Limitations

Here’s a list of what you can’t do with subgroups:


	[GitLab Pages](../../project/pages/index.md) are not currently working for
projects hosted under a subgroup. That means that only projects hosted under
the first parent group will work.


	Group level labels don’t work in subgroups / sub projects


	It is not possible to share a project with a group that’s an ancestor of
the group the project is in. That means you can only share as you walk down
the hierarchy. For example, group/subgroup01/project cannot be shared
with group, but can be shared with group/subgroup02 or
group/subgroup01/subgroup03.




[ce-2772]: https://gitlab.com/gitlab-org/gitlab-ce/issues/2772
[permissions]: ../../permissions.md#group
[reserved]:  ../../reserved_names.md
[issue]: https://gitlab.com/gitlab-org/gitlab-ce/issues/30472#note_27747600



            

          

      

      

    

  

    
      
          
            
  # Conversational Development Index

> [Introduced][ce-30469] in GitLab 9.3.

Conversational Development Index (ConvDev) gives you an overview of your entire
instance’s feature usage, from idea to production. It looks at your usage in the
past 30 days, averaged over the number of active users in that time period. It also
provides a lead score per feature, which is calculated based on GitLab’s analysis
of top performing instances, based on [usage ping data][ping] that GitLab has
collected. Your score is compared to the lead score, expressed as a percentage.
The overall index score is an average over all your feature scores.

![ConvDev index](img/convdev_index.png)

The page also provides helpful links to articles and GitLab docs, to help you
improve your scores.

Your GitLab instance’s usage ping must be activated in order to use this feature.
Usage ping data is aggregated on GitLab’s servers for analysis. Your usage
information is not sent to any other GitLab instances.

If you have just started using GitLab, it may take a few weeks for data to be
collected before this feature is available.

[ce-30469]: https://gitlab.com/gitlab-org/gitlab-ce/issues/30469
[ping]: ../admin_area/settings/usage_statistics.md#usage-ping



            

          

      

      

    

  

    
      
          
            
  # Instance statistics

> [Introduced](https://gitlab.com/gitlab-org/gitlab-ce/issues/41416)
in GitLab 11.2.

Instance statistics gives users or admins access to instance-wide analytics.
They are accessible to all users by default (GitLab admins can restrict its
visibility in the [admin area](../admin_area/settings/usage_statistics.md)),
and can be accessed via the top bar.

![Instance Statistics button](img/instance_statistics_button.png)

For the statistics to show up, [usage ping must be enabled](../admin_area/settings/usage_statistics.md#usage-ping)
by an admin in the admin settings area.

There are two kinds of statistics:


	[Conversational Development (ConvDev) Index](convdev.md): Provides an overview of your entire instance’s feature usage.


	[User Cohorts](user_cohorts.md): Display the monthly cohorts of new users and their activities over time.






            

          

      

      

    

  

    
      
          
            
  # Cohorts

> [Introduced](https://gitlab.com/gitlab-org/gitlab-ce/issues/23361)
in GitLab 9.1.

As a benefit of having the [usage ping active](../admin_area/settings/usage_statistics.md),
GitLab lets you analyze the users’ activities over time of your GitLab installation.

## Overview

How do we read the user cohorts table? Let’s take an example with the following
user cohorts.

![User cohort example](img/cohorts.png)

For the cohort of Jan 2018, 15 users have been added on this server and have
been active since this month. One month later, in Feb 2018, all 15 users are
still active. 6 months later (Month 6, July), we can see 10 users from this cohort
are active, or 66% of the original cohort of 15 that joined in January.

The Inactive users column shows the number of users who have been added during
the month, but who have never actually had any activity in the instance.

How do we measure the activity of users? GitLab considers a user active if:


	the user signs in


	the user has Git activity (whether push or pull).






            

          

      

      

    

  

    
      
          
            
  # Active Sessions

> - [Introduced](https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/17867)
>   in GitLab 10.8.

GitLab lists all devices that have logged into your account. This allows you to
review the sessions and revoke any of it that you don’t recognize.

## Listing all active sessions

1. On the upper right corner, click on your avatar and go to your Settings.
1. Navigate to the Active Sessions tab.

![Active sessions list](img/active_sessions_list.png)

## Revoking a session

1. Navigate to your [profile’s](#profile-settings) Settings > Active Sessions.
1. Click on Revoke besides a session. The current session cannot be


revoked, as this would sign you out of GitLab.






            

          

      

      

    

  

    
      
          
            
  # User account

When signed into their GitLab account, users can customize their
experience according to the best approach to their cases.

## Signing in

There are several ways to sign into your GitLab account.
See the [authentication topic](../../topics/authentication/index.md) for more details.

## User profile

Your profile is available from the up-right corner menu bar (user’s avatar) > Profile,
or from https://example.gitlab.com/username.

On your profile page, you will see the following information:


	Personal information


	Activity stream: see your activity streamline and the history of your contributions


	Groups: [groups](../group/index.md) you’re a member of


	Contributed projects: [projects](../project/index.md) you contributed to


	Personal projects: your personal projects (respecting the project’s visibility level)


	Snippets: your personal code [snippets](../snippets.md#personal-snippets)




## Profile settings

You can edit your account settings by navigating from the up-right corner menu bar
(user’s avatar) > Settings, or visiting https://example.gitlab.com/profile.

From there, you can:


	Update your personal information


	Set a [custom status](#current-status) for your profile


	Manage [2FA](account/two_factor_authentication.md)


	Change your username and [delete your account](account/delete_account.md)


	Manage applications that can




[use GitLab as an OAuth provider](../../integration/oauth_provider.md#introduction-to-oauth)
- Manage [personal access tokens](personal_access_tokens.md) to access your account via API and authorized applications
- Add and delete emails linked to your account
- Manage [SSH keys](../../ssh/README.md#ssh) to access your account via SSH
- Manage your [preferences](preferences.md#syntax-highlighting-theme)
to customize your own GitLab experience
- [View your active sessions](active_sessions.md) and revoke any of them if necessary
- Access your audit log, a security log of important events involving your account

## Changing your username

Your username is a unique [namespace](../group/index.md#namespaces)
related to your user ID. Changing it can have unintended side effects, read
[how redirects will behave](../project/index.md#redirects-when-changing-repository-paths)
before proceeding.

To change your username:

1. Navigate to your [profile’s](#profile-settings) Settings > Account.
1. Enter a new username under “Change username”.
1. Hit Update username.

CAUTION: Caution:
It is currently not possible to change your username if it contains a
project with [Container Registry](../project/container_registry.md) tags,
because the project cannot be moved.

TIP: Tip:
If you want to retain ownership over the original namespace and
protect the URL redirects, then instead of changing a group’s path or renaming a
username, you can create a new group and transfer projects to it.
Alternatively, you can follow [this detailed procedure from the GitLab Team Handbook](https://about.gitlab.com/handbook/tools-and-tips/#how-to-change-your-username-at-gitlabcom)
which also covers the case where you have projects hosted with
[GitLab Pages](../project/pages/index.md).

## Private profile

The following information will be hidden from the user profile page (https://gitlab.example.com/username) if this feature is enabled:


	Atom feed


	Date when account is created


	Activity tab


	Groups tab


	Contributed projects tab


	Personal projects tab


	Snippets tab




To enable private profile:

1. Navigate to your personal [profile settings](#profile-settings).
1. Check the “Private profile” option.
1. Hit Update profile settings.

NOTE: Note:
You and GitLab admins can see your the abovementioned information on your profile even if it is private.

## Current status

> Introduced in GitLab 11.2.

You can provide a custom status message for your user profile along with an emoji that describes it.
This may be helpful when you are out of office or otherwise not available.
Other users can then take your status into consideration when responding to your issues or assigning work to you.
Please be aware that your status is publicly visible even if your [profile is private](#private-profile).

To set your current status:

1. Navigate to your personal [profile settings](#profile-settings).
1. In the text field below Your status, enter your status message.
1. Select an emoji from the dropdown if you like.
1. Hit Update profile settings.

Status messages are restricted to 100 characters of plain text.
They may however contain emoji codes such as I’m on vacation :palm_tree:.

You can also set your current status [using the API](../../api/users.md#user-status).

## Troubleshooting

### Why do I keep getting signed out?

When signing in to the main GitLab application, a _gitlab_session cookie is
set. _gitlab_session is cleared client-side when you close your browser
and expires after “Application settings -> Session duration (minutes)”/session_expire_delay
(defaults to 10080 minutes = 7 days).

When signing in to the main GitLab application, you can also check the
“Remember me” option which sets the remember_user_token
cookie (via [devise](https://github.com/plataformatec/devise)).
remember_user_token expires after
config/initializers/devise.rb -> config.remember_for (defaults to 2 weeks).

When the _gitlab_session expires or isn’t available, GitLab uses the remember_user_token
to get you a new _gitlab_session and keep you signed in through browser restarts.

After your remember_user_token expires and your _gitlab_session is cleared/expired,
you will be asked to sign in again to verify your identity (which is for security reasons).



            

          

      

      

    

  

    
      
          
            
  # Personal access tokens

> [Introduced][ce-3749] in GitLab 8.8.

Personal access tokens are the preferred way for third party applications and scripts to
authenticate with the [GitLab API][api], if using [OAuth2](../../api/oauth2.md) is not practical.

You can also use them to authenticate against Git over HTTP. They are the only
accepted method of authentication when you have
[Two-Factor Authentication (2FA)][2fa] enabled.

Once you have your token, [pass it to the API][usage] using either the
private_token parameter or the Private-Token header.

The expiration of personal access tokens happens on the date you define,
at midnight UTC.

## Creating a personal access token

You can create as many personal access tokens as you like from your GitLab
profile.

1. Log in to your GitLab account.
1. Go to your Profile settings.
1. Go to Access tokens.
1. Choose a name and optionally an expiry date for the token.
1. Choose the [desired scopes](#limiting-scopes-of-a-personal-access-token).
1. Click on Create personal access token.
1. Save the personal access token somewhere safe. Once you leave or refresh


the page, you won’t be able to access it again.




![Personal access tokens page](img/personal_access_tokens.png)

## Revoking a personal access token

At any time, you can revoke any personal access token by just clicking the
respective Revoke button under the ‘Active personal access tokens’ area.

## Limiting scopes of a personal access token

Personal access tokens can be created with one or more scopes that allow various
actions that a given token can perform. The available scopes are depicted in
the following table.


Scope | Description |

—– | ———– |



read_user	Allows access to the read-only endpoints under /users. Essentially, any of the GET requests in the [Users API][users] are allowed ([introduced][ce-5951] in GitLab 8.15).
api	Grants complete access to the API (read/write) ([introduced][ce-5951] in GitLab 8.15). Required for accessing Git repositories over HTTP when 2FA is enabled.
read_registry	Allows to read [container registry] images if a project is private and authorization is required ([introduced][ce-11845] in GitLab 9.3).
sudo	Allows performing API actions as any user in the system (if the authenticated user is an admin) ([introduced][ce-14838] in GitLab 10.2).
read_repository	Allows read-access to the repository through git clone.

[2fa]: ../account/two_factor_authentication.md
[api]: ../../api/README.md
[ce-3749]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/3749
[ce-5951]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/5951
[ce-11845]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/11845
[ce-14838]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/14838
[container registry]: ../project/container_registry.md
[users]: ../../api/users.md
[usage]: ../../api/README.md#personal-access-tokens



            

          

      

      

    

  

    
      
          
            
  # Profile preferences

A user’s profile preferences page allows the user to customize various aspects
of GitLab to their liking.

To navigate to your profile’s preferences, click your avatar icon in the top
right corner, select Settings and then choose Preferences from the
left sidebar.

## Navigation theme

The GitLab navigation theme setting allows you to personalize your GitLab experience.
You can choose from several color themes that add unique colors to the top navigation
and left side navigation.
Using individual color themes might help you differentiate between your different
GitLab instances.

The default palette is Indigo. You can choose between 10 different themes:


	Indigo


	Light Indigo


	Blue


	Light Blue


	Green


	Light Green


	Red


	Light Red


	Dark


	Light




![Profile preferences navigation themes](img/profil-preferences-navigation-theme.png)

## Syntax highlighting theme

NOTE: Note:
GitLab uses the [rouge Ruby library](http://rouge.jneen.net/ “Rouge website”)
for syntax highlighting. For a list of supported languages visit the rouge website.

Changing this setting allows you to customize the color theme when viewing any
syntax highlighted code on GitLab.

The default syntax theme is White, and you can choose among 5 different colors:


	White


	Dark


	Solarized light


	Solarized dark


	Monokai




![Profile preferences syntax highlighting themes](img/profile-preferences-syntax-themes.png)

## Behavior

The following settings allow you to customize the behavior of GitLab’s layout
and default views of your dashboard and the projects’ landing pages.

### Layout width

GitLab can be set up to use different widths depending on your liking. Choose
between the fixed (max. 1200px) and the fluid (100%) application layout.

### Default dashboard

For users who have access to a large number of projects but only keep up with a
select few, the amount of activity on the default Dashboard page can be
overwhelming. Changing this setting allows you to redefine what your default
dashboard will be.

You have 8 options here that you can use for your default dashboard view:


	Your projects (default)


	Starred projects


	Your projects’ activity


	Starred projects’ activity


	Your groups


	Your [Todos](../../workflow/todos.md)


	Assigned Issues


	Assigned Merge Requests




### Project overview content

The project overview content setting allows you to choose what content you want to
see on a project’s home page.

You can choose between 3 options:


	Files and Readme (default)


	Readme


	Activity






            

          

      

      

    

  

    
      
          
            
  # Deleting a User Account


	As a user, you can delete your own account by navigating to Settings > Account and selecting Delete account


	As an admin, you can delete a user account by navigating to the Admin Area, selecting the Users tab, selecting a user, and clicking on Delete user




## Associated Records


	> Introduced for issues in [GitLab 9.0][ce-7393], and for merge requests, award
	emoji, notes, and abuse reports in [GitLab 9.1][ce-10467].
Hard deletion from abuse reports and spam logs was introduced in
[GitLab 9.1][ce-10273], and from the API in [GitLab 9.3][ce-11853].





When a user account is deleted, not all associated records are deleted with it.
Here’s a list of things that will not be deleted:


	Issues that the user created


	Merge requests that the user created


	Notes that the user created


	Abuse reports that the user reported


	Award emoji that the user created




Instead of being deleted, these records will be moved to a system-wide
“Ghost User”, whose sole purpose is to act as a container for such records.

When a user is deleted from an abuse report or spam log, these associated
records are not ghosted and will be removed, along with any groups the user
is a sole owner of. Administrators can also request this behaviour when
deleting users from the [API](../../../api/users.md#user-deletion) or the
admin area.

[ce-7393]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/7393
[ce-10273]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/10273
[ce-10467]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/10467
[ce-11853]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/11853



            

          

      

      

    

  

    
      
          
            
  This document was moved to [../index.md#profile-settings](../index.md#profile-settings).



            

          

      

      

    

  

    
      
          
            
  # Two-Factor Authentication

Two-factor Authentication (2FA) provides an additional level of security to your
GitLab account. Once enabled, in addition to supplying your username and
password to login, you’ll be prompted for a code generated by an application on
your phone.

By enabling 2FA, the only way someone other than you can log into your account
is to know your username and password and have access to your phone.

## Overview

> Note:
When you enable 2FA, don’t forget to back up your recovery codes.

In addition to a phone application, GitLab supports U2F (universal 2nd factor) devices as
the second factor of authentication. Once enabled, in addition to supplying your username and
password to login, you’ll be prompted to activate your U2F device (usually by pressing
a button on it), and it will perform secure authentication on your behalf.

The U2F workflow is only supported by Google Chrome at this point, so we _strongly_ recommend
that you set up both methods of two-factor authentication, so you can still access your account
from other browsers.

## Enabling 2FA

There are two ways to enable two-factor authentication: via a mobile application
or a U2F device.

### Enable 2FA via mobile application

In GitLab:

1. Log in to your GitLab account.
1. Go to your Profile Settings.
1. Go to Account.
1. Click Enable Two-factor Authentication.

![Two-factor setup](img/2fa.png)

On your phone:

1. Install a compatible application. We recommend [Google Authenticator]
(proprietary) or [FreeOTP] (open source).
1. In the application, add a new entry in one of two ways:



	Scan the code with your phone’s camera to add the entry automatically.


	Enter the details provided to add the entry manually.







In GitLab:


	Enter the six-digit pin number from the entry on your phone into the Pin
code field.





	Click Submit.




If the pin you entered was correct, you’ll see a message indicating that
Two-Factor Authentication has been enabled, and you’ll be presented with a list
of recovery codes.

### Enable 2FA via U2F device

> Notes:
- GitLab officially only supports [Yubikey] U2F devices.
- Support for U2F devices was added in GitLab 8.8.

In GitLab:

1. Log in to your GitLab account.
1. Go to your Profile Settings.
1. Go to Account.
1. Click Enable Two-Factor Authentication.
1. Plug in your U2F device.
1. Click on Setup New U2F Device.
1. A light will start blinking on your device. Activate it by pressing its button.

You will see a message indicating that your device was successfully set up.
Click on Register U2F Device to complete the process.

![Two-Factor U2F Setup](img/2fa_u2f_register.png)

## Recovery Codes

> Note:
Recovery codes are not generated for U2F devices.

Should you ever lose access to your phone, you can use one of the ten provided
backup codes to login to your account. We suggest copying or printing them for
storage in a safe place. Each code can be used only once to log in to your
account.

If you lose the recovery codes or just want to generate new ones, you can do so
[using SSH](#generate-new-recovery-codes-using-ssh).

## Logging in with 2FA Enabled

Logging in with 2FA enabled is only slightly different than a normal login.
Enter your username and password credentials as you normally would, and you’ll
be presented with a second prompt, depending on which type of 2FA you’ve enabled.

### Log in via mobile application

Enter the pin from your phone’s application or a recovery code to log in.

![Two-Factor Authentication on sign in via OTP](img/2fa_auth.png)

### Log in via U2F device

1. Click Login via U2F Device
1. A light will start blinking on your device. Activate it by pressing its button.

You will see a message indicating that your device responded to the authentication request.
Click on Authenticate via U2F Device to complete the process.

![Two-Factor Authentication on sign in via U2F device](img/2fa_u2f_authenticate.png)

## Disabling 2FA

1. Log in to your GitLab account.
1. Go to your Profile Settings.
1. Go to Account.
1. Click Disable, under Two-Factor Authentication.

This will clear all your two-factor authentication registrations, including mobile
applications and U2F devices.

## Personal access tokens

When 2FA is enabled, you can no longer use your normal account password to
authenticate with Git over HTTPS on the command line or when using
[GitLab’s API][api], you must use a [personal access token][pat] instead.

## Recovery options

To disable two-factor authentication on your account (for example, if you
have lost your code generation device) you can:


	[Use a saved recovery code](#use-a-saved-recovery-code)


	[Generate new recovery codes using SSH](#generate-new-recovery-codes-using-ssh)


	[Ask a GitLab administrator to disable two-factor authentication on your account](#ask-a-gitlab-administrator-to-disable-two-factor-authentication-on-your-account)




### Use a saved recovery code

Enabling two-factor authentication for your account generated several recovery
codes. If you saved these codes, you can use one of them to sign in.

To use a recovery code, enter your username/email and password on the GitLab
sign-in page. When prompted for a two-factor code, enter the recovery code.

>**Note:**
Once you use a recovery code, you cannot re-use it. You can still use the other
recovery codes you saved.

### Generate new recovery codes using SSH

Users often forget to save their recovery codes when enabling two-factor
authentication. If an SSH key is added to your GitLab account, you can generate
a new set of recovery codes with SSH.


	Run ssh git@gitlab.example.com 2fa_recovery_codes.


	
	You are prompted to confirm that you want to generate new codes. Continuing this process invalidates previously saved codes.
	```
bash
$ ssh git@gitlab.example.com 2fa_recovery_codes
Are you sure you want to generate new two-factor recovery codes?
Any existing recovery codes you saved will be invalidated. (yes/no)

yes

Your two-factor authentication recovery codes are:

119135e5a3ebce8e
11f6v2a498810dcd
3924c7ab2089c902
e79a3398bfe4f224
34bd7b74adbc8861
f061691d5107df1a
169bf32a18e63e7f
b510e7422e81c947
20dbed24c5e74663
df9d3b9403b9c9f0

During sign in, use one of the codes above when prompted for your
two-factor code. Then, visit your Profile Settings and add a new device
so you do not lose access to your account again.
```







	Go to the GitLab sign-in page and enter your username/email and password.
When prompted for a two-factor code, enter one of the recovery codes obtained
from the command-line output.




>**Note:**
After signing in, visit your Profile settings > Account  immediately to set
up two-factor authentication with a new device.

### Ask a GitLab administrator to disable two-factor authentication on your account

If you cannot use a saved recovery code or generate new recovery codes, ask a
GitLab global administrator to disable two-factor authentication for your
account. This will temporarily leave your account in a less secure state.
Sign in and re-enable two-factor authentication as soon as possible.

## Note to GitLab administrators


	You need to take special care to that 2FA keeps working after
[restoring a GitLab backup](../../../raketasks/backup_restore.md).


	To ensure 2FA authorizes correctly with TOTP server, you may want to ensure
your GitLab server’s time is synchronized via a service like NTP.  Otherwise,
you may have cases where authorization always fails because of time differences.


	The GitLab U2F implementation does _not_ work when the GitLab instance is accessed from
multiple hostnames, or FQDNs. Each U2F registration is linked to the _current hostname_ at
the time of registration, and cannot be used for other hostnames/FQDNs.


For example, if a user is trying to access a GitLab instance from first.host.xyz and second.host.xyz:


	The user logs in via first.host.xyz and registers their U2F key.


	The user logs out and attempts to log in via first.host.xyz - U2F authentication succeeds.


	The user logs out and attempts to log in via second.host.xyz - U2F authentication fails, because




the U2F key has only been registered on first.host.xyz.








[Google Authenticator]: https://support.google.com/accounts/answer/1066447?hl=en
[FreeOTP]: https://freeotp.github.io/
[YubiKey]: https://www.yubico.com/products/yubikey-hardware/
[api]: ../../../api/README.md
[pat]: ../personal_access_tokens.md



            

          

      

      

    

  

    
      
          
            
  # Badges

> [Introduced](https://gitlab.com/gitlab-org/gitlab-ce/issues/41174)
in GitLab 10.7.

Badges are a unified way to present condensed pieces of information about your
projects. They consist of a small image and additionally a URL that the image
points to. Examples for badges can be the [pipeline status], [test coverage],
or ways to contact the project maintainers.

![Badges on Project overview page](img/project_overview_badges.png)

## Project badges

Badges can be added to a project and will then be visible on the project’s overview page.
If you find that you have to add the same badges to several projects, you may want to add them at the [group level](#group-badges).

To add a new badge to a project:

1.  Navigate to your project’s Settings > Badges.
1.  Under “Link”, enter the URL that the badges should point to and under


“Badge image URL” the URL of the image that should be displayed.





	Submit the badge by clicking the Add badge button.




After adding a badge to a project, you can see it in the list below the form.
You can edit it by clicking on the pen icon next to it or to delete it by
clicking on the trash icon.

Badges associated with a group can only be edited or deleted on the
[group level](#group-badges).

## Group badges

Badges can be added to a group and will then be visible on every project’s
overview page that’s under that group. In this case, they cannot be edited or
deleted on the project level. If you need to have individual badges for each
project, consider adding them on the [project level](#project-badges) or use
[placeholders](#placeholders).

To add a new badge to a group:

1.  Navigate to your group’s Settings > Project Badges.
1.  Under “Link”, enter the URL that the badges should point to and under


“Badge image URL” the URL of the image that should be displayed.





	Submit the badge by clicking the Add badge button.




After adding a badge to a group, you can see it in the list below the form.
You can edit the badge by clicking on the pen icon next to it or to delete it
by clicking on the trash icon.

Badges directly associated with a project can be configured on the
[project level](#project-badges).

## Placeholders

The URL a badge points to, as well as the image URL, can contain placeholders
which will be evaluated when displaying the badge. The following placeholders
are available:


	%{project_path}: Path of a project including the parent groups


	%{project_id}: Database ID associated with a project


	%{default_branch}: Default branch name configured for a project’s repository


	%{commit_sha}: ID of the most recent commit to the default branch of a
project’s repository




## API

You can also configure badges via the GitLab API. As in the settings, there is
a distinction between endpoints for badges on the
[project level](../../api/project_badges.md) and [group level](../../api/group_badges.md).

[pipeline status]: pipelines/settings.md#pipeline-status-badge
[test coverage]: pipelines/settings.md#test-coverage-report-badge



            

          

      

      

    

  

    
      
          
            
  # Bulk editing issues and merge requests

>
Notes:
- A permission level of Reporter or higher is required in order to manage
issues.
- A permission level of Developer or higher is required in order to manage
merge requests.

Attributes can be updated simultaneously across multiple issues or merge requests
by using the bulk editing feature.

![Bulk editing](img/bulk-editing.png)

NOTE: Note:
Bulk editing of issues and merge requests is only available at the project level.

To update multiple project issues or merge requests at the same time, navigate to
their respective lists and click Edit issues or Edit merge requests available
in the tab bar. This will open a sidebar on the right-hand side of your screen
where editable fields will be displayed. Checkboxes will also appear to the left-hand
side of eachissue or merge request for you to select the items you want to update.

Once you have selected all relevant items, choose the appropriate fields and their
values from the sidebar and click Update all to apply your changes.



            

          

      

      

    

  

    
      
          
            
  # GitLab Container Registry

>**Notes:**
> [Introduced][ce-4040] in GitLab 8.8.
- Docker Registry manifest v1 support was added in GitLab 8.9 to support Docker


versions earlier than 1.10.





	This document is about the user guide. To learn how to enable GitLab Container
Registry across your GitLab instance, visit the
[administrator documentation](../../administration/container_registry.md).


	Starting from GitLab 8.12, if you have 2FA enabled in your account, you need
to pass a [personal access token][pat] instead of your password in order to
login to GitLab’s Container Registry.


	Multiple level image names support was added in GitLab 9.1




With the Docker Container Registry integrated into GitLab, every project can
have its own space to store its Docker images.

You can read more about Docker Registry at https://docs.docker.com/registry/introduction/.

## Enable the Container Registry for your project

NOTE: Note:
If you cannot find the Container Registry entry under your project’s settings,
that means that it is not enabled in your GitLab instance. Ask your administrator
to enable it.


	First, ask your system administrator to enable GitLab Container Registry
following the [administration documentation](../../administration/container_registry.md).
If you are using GitLab.com, this is enabled by default so you can start using
the Registry immediately. Currently there is a soft (10GB) size restriction for
registry on GitLab.com, as part of the [repository size limit](repository/index.html#repository-size).





	Go to your [project’s General settings](settings/index.md#sharing-and-permissions)
and enable the Container Registry feature on your project. For new
projects this might be enabled by default. For existing projects
(prior GitLab 8.8), you will have to explicitly enable it.





	Hit Save changes for the changes to take effect. You should now be able
to see the Registry link in the sidebar.




![Container Registry](img/container_registry.png)

## Build and push images

>**Notes:**
- Moving or renaming existing container registry repositories is not supported
once you have pushed images because the images are signed, and the
signature includes the repository name.
- To move or rename a repository with a container registry you will have to
delete all existing images.

If you visit the Registry link under your project’s menu, you can see the
explicit instructions to login to the Container Registry using your GitLab
credentials.

For example if the Registry’s URL is registry.example.com, the you should be
able to login with:

`
docker login registry.example.com
`

Building and publishing images should be a straightforward process. Just make
sure that you are using the Registry URL with the namespace and project name
that is hosted on GitLab:

`
docker build -t registry.example.com/group/project/image .
docker push registry.example.com/group/project/image
`

Your image will be named after the following scheme:

`
<registry URL>/<namespace>/<project>/<image>
`

GitLab supports up to three levels of image repository names.

Following examples of image tags are valid:

`
registry.example.com/group/project:some-tag
registry.example.com/group/project/image:latest
registry.example.com/group/project/my/image:rc1
`

## Use images from GitLab Container Registry

To download and run a container from images hosted in GitLab Container Registry,
use docker run:

`
docker run [options] registry.example.com/group/project/image [arguments]
`

For more information on running Docker containers, visit the
[Docker documentation][docker-docs].

## Control Container Registry from within GitLab

GitLab offers a simple Container Registry management panel. Go to your project
and click Registry in the project menu.

This view will show you all tags in your project and will easily allow you to
delete them.

## Build and push images using GitLab CI

> Note:
This feature requires GitLab 8.8 and GitLab Runner 1.2.

Make sure that your GitLab Runner is configured to allow building Docker images by
following the [Using Docker Build](../../ci/docker/using_docker_build.md)
and [Using the GitLab Container Registry documentation](../../ci/docker/using_docker_build.md#using-the-gitlab-container-registry).

## Using with private projects

> Personal Access tokens were [introduced][ce-11845] in GitLab 9.3.
> Project Deploy Tokens were [introduced][ce-17894] in GitLab 10.7

If a project is private, credentials will need to be provided for authorization.
The preferred way to do this, is either by using a [personal access tokens][pat] or a [project deploy token][pdt].
The minimal scope needed for both of them is read_registry.

Example of using a personal access token:
`
docker login registry.example.com -u <your_username> -p <your_access_token>
`

## Troubleshooting the GitLab Container Registry

### Basic Troubleshooting


	Check to make sure that the system clock on your Docker client and GitLab server have
been synchronized (e.g. via NTP).


	If you are using an S3-backed Registry, double check that the IAM
permissions and the S3 credentials (including region) are correct. See [the
sample IAM policy](https://docs.docker.com/registry/storage-drivers/s3/)
for more details.


	Check the Registry logs (e.g. /var/log/gitlab/registry/current) and the GitLab production logs
for errors (e.g. /var/log/gitlab/gitlab-rails/production.log). You may be able to find clues
there.




#### Enable the registry debug server

The optional debug server can be enabled by setting the registry debug address
in your gitlab.rb configuration.

`ruby
registry['debug_addr'] = "localhost:5001"
`

After adding the setting, [reconfigure] GitLab to apply the change.

Use curl to request debug output from the debug server:

`bash
curl localhost:5001/debug/health
curl localhost:5001/debug/vars
`

### Advanced Troubleshooting

>**NOTE:** The following section is only recommended for experts.

Sometimes it’s not obvious what is wrong, and you may need to dive deeper into
the communication between the Docker client and the Registry to find out
what’s wrong. We will use a concrete example in the past to illustrate how to
diagnose a problem with the S3 setup.

#### Unexpected 403 error during push

A user attempted to enable an S3-backed Registry. The docker login step went
fine. However, when pushing an image, the output showed:

`
The push refers to a repository [s3-testing.myregistry.com:4567/root/docker-test/docker-image]
dc5e59c14160: Pushing [==================================================>] 14.85 kB
03c20c1a019a: Pushing [==================================================>] 2.048 kB
a08f14ef632e: Pushing [==================================================>] 2.048 kB
228950524c88: Pushing 2.048 kB
6a8ecde4cc03: Pushing [==>                                                ] 9.901 MB/205.7 MB
5f70bf18a086: Pushing 1.024 kB
737f40e80b7f: Waiting
82b57dbc5385: Waiting
19429b698a22: Waiting
9436069b92a3: Waiting
error parsing HTTP 403 response body: unexpected end of JSON input: ""
`

This error is ambiguous, as it’s not clear whether the 403 is coming from the
GitLab Rails application, the Docker Registry, or something else. In this
case, since we know that since the login succeeded, we probably need to look
at the communication between the client and the Registry.

The REST API between the Docker client and Registry is [described
here](https://docs.docker.com/registry/spec/api/). Normally, one would just
use Wireshark or tcpdump to capture the traffic and see where things went
wrong.  However, since all communication between Docker clients and servers
are done over HTTPS, it’s a bit difficult to decrypt the traffic quickly even
if you know the private key. What can we do instead?

One way would be to disable HTTPS by setting up an [insecure
Registry](https://docs.docker.com/registry/insecure/). This could introduce a
security hole and is only recommended for local testing. If you have a
production system and can’t or don’t want to do this, there is another way:
use mitmproxy, which stands for Man-in-the-Middle Proxy.

#### mitmproxy

[mitmproxy](https://mitmproxy.org/) allows you to place a proxy between your
client and server to inspect all traffic. One wrinkle is that your system
needs to trust the mitmproxy SSL certificates for this to work.

The following installation instructions assume you are running Ubuntu:

1. Install mitmproxy (see http://docs.mitmproxy.org/en/stable/install.html)
1. Run mitmproxy –port 9000 to generate its certificates.


Enter <kbd>CTRL</kbd>-<kbd>C</kbd> to quit.





	Install the certificate from ~/.mitmproxy to your system:


`sh
sudo cp ~/.mitmproxy/mitmproxy-ca-cert.pem /usr/local/share/ca-certificates/mitmproxy-ca-cert.crt
sudo update-ca-certificates
`








If successful, the output should indicate that a certificate was added:

`sh
Updating certificates in /etc/ssl/certs... 1 added, 0 removed; done.
Running hooks in /etc/ca-certificates/update.d....done.
`

To verify that the certificates are properly installed, run:

`sh
mitmproxy --port 9000
`

This will run mitmproxy on port 9000. In another window, run:

`sh
curl --proxy http://localhost:9000 https://httpbin.org/status/200
`

If everything is setup correctly, you will see information on the mitmproxy window and
no errors from the curl commands.

#### Running the Docker daemon with a proxy

For Docker to connect through a proxy, you must start the Docker daemon with the
proper environment variables. The easiest way is to shutdown Docker (e.g. sudo initctl stop docker)
and then run Docker by hand. As root, run:

`sh
export HTTP_PROXY="http://localhost:9000"
export HTTPS_PROXY="https://localhost:9000"
docker daemon --debug
`

This will launch the Docker daemon and proxy all connections through mitmproxy.

#### Running the Docker client

Now that we have mitmproxy and Docker running, we can attempt to login and push
a container image. You may need to run as root to do this. For example:

`sh
docker login s3-testing.myregistry.com:4567
docker push s3-testing.myregistry.com:4567/root/docker-test/docker-image
`

In the example above, we see the following trace on the mitmproxy window:

![mitmproxy output from Docker](img/mitmproxy-docker.png)

The above image shows:


	The initial PUT requests went through fine with a 201 status code.


	The 201 redirected the client to the S3 bucket.


	The HEAD request to the AWS bucket reported a 403 Unauthorized.




What does this mean? This strongly suggests that the S3 user does not have the right
[permissions to perform a HEAD request](http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectHEAD.html).
The solution: check the [IAM permissions again](https://docs.docker.com/registry/storage-drivers/s3/).
Once the right permissions were set, the error will go away.

[ce-4040]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/4040
[ce-11845]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/11845
[ce-17894]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/17894
[docker-docs]: https://docs.docker.com/engine/userguide/intro/
[pat]: ../profile/personal_access_tokens.md
[pdt]: ../project/deploy_tokens/index.md
[reconfigure]: ../../administration/restart_gitlab.md#omnibus-gitlab-reconfigure



            

          

      

      

    

  

    
      
          
            
  # Cycle Analytics


	> [Introduced][ce-5986] in GitLab 8.12. Further features were added in GitLab
	8.14.





Cycle Analytics measures the time it takes to go from an [idea to production] for
each project you have. This is achieved by not only indicating the total time it
takes to reach that point, but the total time is broken down into the
multiple stages an idea has to pass through to be shipped.

Cycle Analytics is tightly coupled with the [GitLab flow] and
calculates a separate median for each stage.

## Overview

You can find the Cycle Analytics page under your project’s Pipelines ➔ Cycle
Analytics tab.

![Cycle Analytics landing page](img/cycle_analytics_landing_page.png)

You can see that there are seven stages in total:


	
	Issue (Tracker)
	
	Median time from issue creation until given a milestone or list label
(first assignment, any milestone, milestone date or assignee is not required)










	
	Plan (Board)
	
	Median time from giving an issue a milestone or label until pushing the
first commit to the branch










	
	Code (IDE)
	
	Median time from the first commit to the branch until the merge request is
created










	
	Test (CI)
	
	Median total test time for all commits/merges










	
	Review (Merge Request/MR)
	
	Median time from merge request creation until the merge request is merged
(closed merge requests won’t be taken into account)










	
	Staging (Continuous Deployment)
	
	Median time from when the merge request got merged until the deploy to
production (production is last stage/environment)










	
	Production (Total)
	
	Sum of all the above stages’ times excluding the Test (CI) time. To clarify,
it’s not so much that CI time is “excluded”, but rather CI time is already
counted in the review stage since CI is done automatically. Most of the
other stages are purely sequential, but Test is not.












## How the data is measured

Cycle Analytics records cycle time and data based on the project issues with the
exception of the staging and production stages, where only data deployed to
production are measured.

Specifically, if your CI is not set up and you have not defined a production
or production/* [environment], then you will not have any data for those stages.

Below you can see in more detail what the various stages of Cycle Analytics mean.


Stage | Description |

——— | ————— |

Issue     | Measures the median time between creating an issue and taking action to solve it, by either labeling it or adding it to a milestone, whatever comes first. The label will be tracked only if it already has an [Issue Board list][board] created for it. |

Plan      | Measures the median time between the action you took for the previous stage, and pushing the first commit to the branch. The very first commit of the branch is the one that triggers the separation between Plan and Code, and at least one of the commits in the branch needs to contain the related issue number (e.g., #42). If none of the commits in the branch mention the related issue number, it is not considered to the measurement time of the stage. |

Code      | Measures the median time between pushing a first commit (previous stage) and creating a merge request (MR) related to that commit. The key to keep the process tracked is to include the [issue closing pattern] to the description of the merge request (for example, Closes #xxx, where xxx is the number of the issue related to this merge request). If the issue closing pattern is not present in the merge request description, the MR is not considered to the measurement time of the stage. |

Test      | Measures the median time to run the entire pipeline for that project. It’s related to the time GitLab CI takes to run every job for the commits pushed to that merge request defined in the previous stage. It is basically the start->finish time for all pipelines. master is not excluded. It does not attempt to track time for any particular stages. |

Review    | Measures the median time taken to review the merge request, between its creation and until it’s merged. |

Staging   | Measures the median time between merging the merge request until the very first deployment to production. It’s tracked by the [environment] set to production or matching production/* (case-sensitive, Production won’t work) in your GitLab CI configuration. If there isn’t a production environment, this is not tracked. |

Production| The sum of all time (medians) taken to run the entire process, from issue creation to deploying the code to production. |



—

Here’s a little explanation of how this works behind the scenes:


	Issues and merge requests are grouped together in pairs, such that for each
<issue, merge request> pair, the merge request has the [issue closing pattern]
for the corresponding issue. All other issues and merge requests are not
considered.





	Then the <issue, merge request> pairs are filtered out by last XX days (specified
by the UI - default is 90 days). So it prohibits these pairs from being considered.





	For the remaining <issue, merge request> pairs, we check the information that
we need for the stages, like issue creation date, merge request merge time,
etc.




To sum up, anything that doesn’t follow the [GitLab flow] won’t be tracked at all.
So, the Cycle Analytics dashboard won’t present any data:
- For merge requests that do not close an issue.
- For issues not labeled with a label present in the Issue Board.
- For issues not assigned a milestone.
- For staging and production stages, if the project has no production or production/*


environment.




## Example workflow

Below is a simple fictional workflow of a single cycle that happens in a
single day passing through all seven stages. Note that if a stage does not have
a start/stop mark, it is not measured and hence not calculated in the median
time. It is assumed that milestones are created and CI for testing and setting
environments is configured.

1. Issue is created at 09:00 (start of Issue stage).
1. Issue is added to a milestone at 11:00 (stop of Issue stage / start of


Plan stage).





	Start working on the issue, create a branch locally and make one commit at
12:00.





	Make a second commit to the branch which mentions the issue number at 12.30
(stop of Plan stage / start of Code stage).





	Push branch and create a merge request that contains the [issue closing pattern]
in its description at 14:00 (stop of Code stage / start of Test and
Review stages).





	The CI starts running your scripts defined in [.gitlab-ci.yml][yml] and
takes 5min (stop of Test stage).





	Review merge request, ensure that everything is OK and merge the merge
request at 19:00. (stop of Review stage / start of Staging stage).





	Now that the merge request is merged, a deployment to the production
environment starts and finishes at 19:30 (stop of Staging stage).





	The cycle completes and the sum of the median times of the previous stages
is recorded to the Production stage. That is the time between creating an
issue and deploying its relevant merge request to production.




From the above example you can conclude the time it took each stage to complete
as long as their total time:


	Issue:  2h (11:00 - 09:00)


	Plan:   1h (12:00 - 11:00)


	Code:   2h (14:00 - 12:00)


	Test:   5min


	Review: 5h (19:00 - 14:00)


	Staging:  30min (19:30 - 19:00)


	Production: Since this stage measures the sum of median time off all
previous stages, we cannot calculate it if we don’t know the status of the
stages before. In case this is the very first cycle that is run in the project,
then the Production time is 10h 30min (19:30 - 09:00)




A few notes:


	In the above example we demonstrated that it doesn’t matter if your first
commit doesn’t mention the issue number, you can do this later in any commit
of the branch you are working on.


	You can see that the Test stage is not calculated to the overall time of
the cycle since it is included in the Review process (every MR should be
tested).


	The example above was just one cycle of the seven stages. Add multiple
cycles, calculate their median time and the result is what the dashboard of
Cycle Analytics is showing.




## Permissions

The current permissions on the Cycle Analytics dashboard are:


	Public projects - anyone can access


	Private/internal projects - any member (guest level and above) can access




You can [read more about permissions][permissions] in general.

## More resources

Learn more about Cycle Analytics in the following resources:


	[Cycle Analytics feature page](https://about.gitlab.com/solutions/cycle-analytics/)


	[Cycle Analytics feature preview](https://about.gitlab.com/2016/09/16/feature-preview-introducing-cycle-analytics/)


	[Cycle Analytics feature highlight](https://about.gitlab.com/2016/09/21/cycle-analytics-feature-highlight/)




[board]: issue_board.md#creating-a-new-list
[ce-5986]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/5986
[ce-20975]: https://gitlab.com/gitlab-org/gitlab-ce/issues/20975
[environment]: ../../ci/yaml/README.md#environment
[GitLab flow]: ../../workflow/gitlab_flow.md
[idea to production]: https://about.gitlab.com/2016/08/05/continuous-integration-delivery-and-deployment-with-gitlab/#from-idea-to-production-with-gitlab
[issue closing pattern]: issues/automatic_issue_closing.md
[permissions]: ../permissions.md
[yml]: ../../ci/yaml/README.md



            

          

      

      

    

  

    
      
          
            
  # Description templates

>[Introduced][ce-4981] in GitLab 8.11.

Description templates allow you to define context-specific templates for issue
and merge request description fields for your project.

## Overview

By using the description templates, users that create a new issue or merge
request can select a description template to help them communicate with other
contributors effectively.

Every GitLab project can define its own set of description templates as they
are added to the root directory of a GitLab project’s repository.

Description templates must be written in [Markdown](../markdown.md) and stored
in your project’s repository under a directory named .gitlab. Only the
templates of the default branch will be taken into account.

## Creating issue templates

Create a new Markdown (.md) file inside the .gitlab/issue_templates/
directory in your repository. Commit and push to your default branch.

## Creating merge request templates

Similarly to issue templates, create a new Markdown (.md) file inside the
.gitlab/merge_request_templates/ directory in your repository. Commit and
push to your default branch.

## Using the templates

Let’s take for example that you’ve created the file .gitlab/issue_templates/Bug.md.
This will enable the Bug dropdown option when creating or editing issues. When
Bug is selected, the content from the Bug.md template file will be copied
to the issue description field. The ‘Reset template’ button will discard any
changes you made after picking the template and return it to its initial status.

![Description templates](img/description_templates.png)

## Description template example

We make use of Description Templates for Issues and Merge Requests within the GitLab Community Edition project. Please refer to the [.gitlab folder][gitlab-ce-templates] for some examples.

> Tip:
It is possible to use [quick actions](./quick_actions.md) within description templates to quickly add labels, assignees, and milestones. The quick actions will only be executed if the user submitting the Issue or Merge Request has the permissions perform the relevant actions.

Here is an example for a Bug report template:

```
Summary

(Summarize the bug encountered concisely)

Steps to reproduce

(How one can reproduce the issue - this is very important)

Example Project

(If possible, please create an example project here on GitLab.com that exhibits the problematic behaviour, and link to it here in the bug report)

(If you are using an older version of GitLab, this will also determine whether the bug has been fixed in a more recent version)

What is the current bug behavior?

(What actually happens)

What is the expected correct behavior?

(What you should see instead)

Relevant logs and/or screenshots

(Paste any relevant logs - please use code blocks (```) to format console output,
logs, and code as it’s very hard to read otherwise.)

Possible fixes

(If you can, link to the line of code that might be responsible for the problem)

/label ~bug ~reproduced ~needs-investigation
/cc @project-manager
/assign @qa-tester
```

[ce-4981]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/4981
[gitlab-ce-templates]: https://gitlab.com/gitlab-org/gitlab-ce/tree/master/.gitlab



            

          

      

      

    

  

    
      
          
            
  # Git Attributes

GitLab supports defining custom [Git attributes][gitattributes] such as what
files to treat as binary, and what language to use for syntax highlighting
diffs.

To define these attributes, create a file called .gitattributes in the root
directory of your repository and push it to the default branch of your project.

## Encoding Requirements

The .gitattributes file _must_ be encoded in UTF-8 and _must not_ contain a
Byte Order Mark. If a different encoding is used, the file’s contents will be
ignored.

## Syntax Highlighting

The .gitattributes file can be used to define which language to use when
syntax highlighting files and diffs. See [“Syntax
Highlighting”](highlighting.md) for more information.

[gitattributes]: https://git-scm.com/docs/gitattributes



            

          

      

      

    

  

    
      
          
            
  [Rouge]: https://rubygems.org/gems/rouge

# Syntax Highlighting

GitLab provides syntax highlighting on all files and snippets through the [Rouge][] rubygem. It will try to guess what language to use based on the file extension, which most of the time is sufficient.

If GitLab is guessing wrong, you can override its choice of language using the gitlab-language attribute in .gitattributes. For example, if you are working in a Prolog project and using the .pl file extension (which would normally be highlighted as Perl), you can add the following to your .gitattributes file:

` conf
*.pl gitlab-language=prolog
`

When you check in and push that change, all *.pl files in your project will be highlighted as Prolog.

The paths here are simply git’s builtin [.gitattributes interface](https://git-scm.com/docs/gitattributes).  So, if you were to invent a file format called a Nicefile at the root of your project that used ruby syntax, all you need is:

` conf
/Nicefile gitlab-language=ruby
`

To disable highlighting entirely, use gitlab-language=text. Lots more fun shenanigans are available through CGI options, such as:

``` conf
json with erb in it
/my-cool-file gitlab-language=erb?parent=json

an entire file of highlighting errors!
/other-file gitlab-language=text?token=Error
```

Please note that these configurations will only take effect when the .gitattributes file is in your default branch (usually master).



            

          

      

      

    

  

    
      
          
            
  # Projects

In GitLab, you can create projects for hosting
your codebase, use it as an issue tracker, collaborate on code, and continuously
build, test, and deploy your app with built-in GitLab CI/CD.

Your projects can be [available](../../public_access/public_access.md)
publicly, internally, or privately, at your choice. GitLab does not limit
the number of private projects you create.

## Project’s features

When you create a project in GitLab, you’ll have access to a large number of
[features](https://about.gitlab.com/features/):

Issues and merge requests:


	[Issue tracker](issues/index.md): Discuss implementations with your team within issues
- [Issue Boards](issue_board.md): Organize and prioritize your workflow
- [Multiple Issue Boards](https://docs.gitlab.com/ee/user/project/issue_board.html#multiple-issue-boards): Allow your teams to create their own workflows (Issue Boards) for the same project [STARTER]


	[Repositories](repository/index.md): Host your code in a fully





	integrated platform
	
	[Branches](repository/branches/index.md): use Git branching strategies to




collaborate on code
- [Protected branches](protected_branches.md): Prevent collaborators
from messing with history or pushing code without review
- [Protected tags](protected_tags.md): Control over who has
permission to create tags, and prevent accidental update or deletion
- [Signing commits](gpg_signed_commits/index.md): use GPG to sign your commits
- [Deploy tokens](deploy_tokens/index.md): Manage project-based deploy tokens that allow permanent access to the repository and Container Registry.






	[Merge Requests](merge_requests/index.md): Apply your branching





	strategy and get reviewed by your team
	
	[Merge Request Approvals](https://docs.gitlab.com/ee/user/project/merge_requests/merge_request_approvals.html): Ask for approval before




implementing a change [STARTER]
- [Fix merge conflicts from the UI](merge_requests/resolve_conflicts.md):
Your Git diff tool right from GitLab’s UI
- [Review Apps](../../ci/review_apps/index.md): Live preview the results
of the changes proposed in a merge request in a per-branch basis






	[Labels](labels.md): Organize issues and merge requests by labels


	[Time Tracking](../../workflow/time_tracking.md): Track estimate time





	and time spent on
	the conclusion of an issue or merge request






	[Milestones](milestones/index.md): Work towards a target date


	[Description templates](description_templates.md): Define context-specific




templates for issue and merge request description fields for your project
- [Slash commands (quick actions)](quick_actions.md): Textual shortcuts for
common actions on issues or merge requests
- [Web IDE](web_ide/index.md)

GitLab CI/CD:


	[GitLab CI/CD](../../ci/README.md): GitLab’s built-in [Continuous Integration, Delivery, and Deployment](https://about.gitlab.com/2016/08/05/continuous-integration-delivery-and-deployment-with-gitlab/) tool
- [Container Registry](container_registry.md): Build and push Docker
images out-of-the-box
- [Auto Deploy](../../ci/autodeploy/index.md): Configure GitLab CI/CD
to automatically set up your app’s deployment
- [Enable and disable GitLab CI](../../ci/enable_or_disable_ci.md)
- [Pipelines](../../ci/pipelines.md#pipelines): Configure and visualize
your GitLab CI/CD pipelines from the UI



	[Scheduled Pipelines](pipelines/schedules.md): Schedule a pipeline




to start at a chosen time
- [Pipeline Graphs](../../ci/pipelines.md#pipeline-graphs): View your
entire pipeline from the UI
- [Job artifacts](pipelines/job_artifacts.md): Define,
browse, and download job artifacts
- [Pipeline settings](pipelines/settings.md): Set up Git strategy (choose the default way your repository is fetched from GitLab in a job),
timeout (defines the maximum amount of time in minutes that a job is able run), custom path for .gitlab-ci.yml, test coverage parsing, pipeline’s visibility, and much more





	[GKE cluster integration](clusters/index.md): Connecting your GitLab project
with Google Kubernetes Engine






	[GitLab Pages](pages/index.md): Build, test, and deploy your static




website with GitLab Pages

Other features:


	[Wiki](wiki/index.md): Document your GitLab project in an integrated Wiki


	[Snippets](../snippets.md): Store, share and collaborate on code snippets


	[Cycle Analytics](cycle_analytics.md): Review your development lifecycle


	[Syntax highlighting](highlighting.md): An alternative to customize




your code blocks, overriding GitLab’s default choice of language
- [Badges](badges.md): Badges for the project overview

### Project’s integrations

[Integrate your project](integrations/index.md) with Jira, Mattermost,
Kubernetes, Slack, and a lot more.

## New project

Learn how to [create a new project](../../gitlab-basics/create-project.md) in GitLab.

### Fork a project

You can [fork a project](../../gitlab-basics/fork-project.md) in order to:


	Collaborate on code by forking a project and creating a merge request




from your fork to the upstream project
- Fork a sample project to work on the top of that

## Project settings

Set the project’s visibility level and  the access levels to its various pages
and perform actions like archiving, renaming or transferring a project.

Read through the documentation on [project settings](settings/index.md).

## Import or export a project


	[Import a project](import/index.md) from:
- [GitHub to GitLab](import/github.md)
- [BitBucket to GitLab](import/bitbucket.md)
- [Gitea to GitLab](import/gitea.md)
- [FogBugz to GitLab](import/fogbugz.md)


	[Export a project from GitLab](settings/import_export.md#exporting-a-project-and-its-data)


	[Importing and exporting projects between GitLab instances](settings/import_export.md)




## Project’s members

Learn how to [add members to your projects](members/index.md).

### Leave a project

Leave project will only display on the project’s dashboard
when a project is part of a group (under a
[group namespace](../group/index.md#namespaces)).
If you choose to leave a project you will no longer be a project
member, therefore, unable to contribute.

## Redirects when changing repository paths

When a repository path changes, it is essential to smoothly transition from the
old location to the new one. GitLab provides two kinds of redirects: the web UI
and Git push/pull redirects.

Depending on the situation, different things apply.

When [renaming a user](../profile/index.md#changing-your-username),
[changing a group path](../group/index.md#changing-a-group-s-path) or [renaming a repository](settings/index.md#renaming-a-repository):


	Existing web URLs for the namespace and anything under it (e.g., projects) will
redirect to the new URLs.


	Starting with GitLab 10.3, existing Git remote URLs for projects under the
namespace will redirect to the new remote URL. Every time you push/pull to a
repository that has changed its location, a warning message to update
your remote will be displayed instead of rejecting your action.
This means that any automation scripts, or Git clients will continue to
work after a rename, making any transition a lot smoother.


	The redirects will be available as long as the original path is not claimed by
another group, user or project.






            

          

      

      

    

  

    
      
          
            
  # Issue Boards

> [Introduced][ce-5554] in [GitLab 8.11](https://about.gitlab.com/2016/08/22/gitlab-8-11-released/#issue-board).

The GitLab Issue Board is a software project management tool used to plan,
organize, and visualize a workflow for a feature or product release.
It can be used as a [Kanban] or a [Scrum] board.

![GitLab Issue Board](img/issue_board.png)

## Overview

The Issue Board builds on GitLab’s existing
[issue tracking functionality](issues/index.md#issue-tracker) and
leverages the power of [labels](labels.md) by utilizing them as lists of the scrum board.

With the Issue Board you can have a different view of your issues while
maintaining the same filtering and sorting abilities you see across the
issue tracker. An Issue Board is based on its project’s label structure, therefore, it
applies the same descriptive labels to indicate placement on the board, keeping
consistency throughout the entire development lifecycle.

An Issue Board shows you what issues your team is working on, who is assigned to each,
and where in the workflow those issues are.

You create issues, host code, perform reviews, build, test,
and deploy from one single platform. Issue Boards help you to visualize
and manage the entire process _in_ GitLab.

With [Multiple Issue Boards](#use-cases-for-multiple-issue-boards), available
only in [GitLab Enterprise Edition](#features-per-tier),
you go even further, as you can not only keep yourself and your project
organized from a broader perspective with one Issue Board per project,
but also allow your team members to organize their own workflow by creating
multiple Issue Boards within the same project.

For a visual overview, see our [Issue Board feature page](https://about.gitlab.com/features/issueboard/)
on about.gitlab.com or our [video introduction to Issue Boards](https://www.youtube.com/watch?v=UWsJ8tkHAa8).

## Use cases

There are many ways to use GitLab Issue Boards tailored to your own preferred workflow.
Here are some common use cases for Issue Boards.

### Use cases for a single Issue Board

GitLab Workflow allows you to discuss proposals in issues, categorize them
with labels, and from there organize and prioritize them with Issue Boards.

For example, let’s consider this simplified development workflow:

1. You have a repository hosting your app’s codebase
and your team actively contributing to code
1. Your backend team starts working a new
implementation, gathers feedback and approval, and pass it over to frontend
1. When frontend is complete, the new feature is deployed to staging to be tested
1. When successful, it is deployed to production

If we have the labels “backend”, “frontend”, “staging”, and
“production”, and an Issue Board with a list for each, we can:


	Visualize the entire flow of implementations since the




beginning of the development lifecycle until deployed to production
- Prioritize the issues in a list by moving them vertically
- Move issues between lists to organize them according to the labels you’ve set
- Add multiple issues to lists in the board by selecting one or more existing issues

![issue card moving](img/issue_board_move_issue_card_list.png)

### Use cases for Multiple Issue Boards

With [Multiple Issue Boards](#multiple-issue-boards), available only in
[GitLab Enterprise Edition](https://about.gitlab.com/pricing/),
each team can have their own board to organize their workflow individually.

#### Scrum team

With Multiple Issue Boards, each team has one board. Now you can move issues through each
part of the process. For instance: To Do, Doing, and Done.

#### Organization of topics

Create lists to order things by topic and quickly change them between topics or groups,
such as between UX, Frontend, and Backend. The changes will be reflected across boards,
as changing lists will update the label accordingly.

#### Advanced team handover

For example, suppose we have a UX team with an Issue Board that contains:


	To Do


	Doing


	Frontend




When done with something, they move the card to Frontend. The Frontend team’s board looks like:


	Frontend


	Doing


	Done




Cards finished by the UX team will automatically appear in the Frontend column when they’re ready for them.

NOTE: Note:
For a broader use case, please see the blog post
[GitLab Workflow, an Overview](https://about.gitlab.com/2016/10/25/gitlab-workflow-an-overview/#gitlab-workflow-use-case-scenario).
For a real use case example, you can read why
[Codepen decided to adopt Issue Boards](https://about.gitlab.com/2017/01/27/codepen-welcome-to-gitlab/#project-management-everything-in-one-place)
to improve their workflow with multiple boards.

#### Quick assignments

Create lists for each of your team members and quickly drag-and-drop issues onto each team member.

## Permissions

[Developers and up](../permissions.md) can use all the functionality of the
Issue Board, that is, create or delete lists and drag issues from one list to another.

## Issue Board terminology


	Issue Board - Each board represents a unique view for your issues. It can have multiple lists with each list consisting of issues represented by cards.


	
	List - A column on the issue board that displays issues matching certain attributes. In addition to the default lists of ‘Backlog’ and ‘Closed’ issue, each additional list will show issues matching your chosen label or assignee. On the top of that list you can see the number of issues that belong to it.
	
	Label list: a list based on a label. It shows all opened issues with that label.


	Assignee list: a list which includes all issues assigned to a user.


	Backlog (default): shows all open issues that do not belong to one of the other lists. Always appears as the leftmost list.


	Closed (default): shows all closed issues. Always appears as the rightmost list.










	Card - A box in the list that represents an individual issue. The information you can see on a card consists of the issue number, the issue title, the assignee, and the labels associated with the issue. You can drag cards from one list to another to change their label or assignee from that of the source list to that of the destination list.




## Actions you can take on an Issue Board


	[Create a new list](#creating-a-new-list).


	[Delete an existing list](#deleting-a-list).


	Drag issues between lists.


	Re-order issues in lists.


	Drag and reorder the lists themselves.


	Change issue labels on-the-fly while dragging issues between lists.


	Close an issue if you drag it to the Done list.


	Create a new list from a non-existing label by [creating the label on-the-fly](#creating-a-new-list)
within the Issue Board.


	[Filter issues](#filtering-issues) that appear across your Issue Board.




If you are not able to perform one or more of the things above, make sure you
have the right [permissions](#permissions).

## First time using the Issue Board

The first time you navigate to your Issue Board, you will be presented with
a default list (Done) and a welcoming message that gives
you two options. You can either create a predefined set of labels and create
their corresponding lists to the Issue Board or opt-out and use your own lists.

![Issue Board welcome message](img/issue_board_welcome_message.png)

If you choose to use and create the predefined lists, they will appear as empty
because the labels associated to them will not exist up until that moment,
which means the system has no way of populating them automatically. That’s of
course if the predefined labels don’t already exist. If any of them does exist,
the list will be created and filled with the issues that have that label.

## Creating a new list

Create a new list by clicking on the Add list button at the upper
right corner of the Issue Board.

![Issue Board welcome message](img/issue_board_add_list.png)

Simply choose the label or user to create the list from. The new list will be inserted
at the end of the lists, before Done. Moving and reordering lists is as
easy as dragging them around.

To create a list for a label that doesn’t yet exist, simply create the label by
choosing Create new label. The label will be created on-the-fly and it will
be immediately added to the dropdown. You can now choose it to create a list.

## Deleting a list

To delete a list from the Issue Board use the small trash icon that is present
in the list’s heading. A confirmation dialog will appear for you to confirm.

Deleting a list doesn’t have any effect in issues and labels, it’s just the
list view that is removed. You can always add it back later if you need.

## Adding issues to a list

You can add issues to a list by clicking the Add issues button that is
present in the upper right corner of the Issue Board. This will open up a modal
window where you can see all the issues that do not belong to any list.

Select one or more issues by clicking on the cards and then click Add issues
to add them to the selected list. You can limit the issues you want to add to
the list by filtering by author, assignee, milestone and label.

![Bulk adding issues to lists](img/issue_boards_add_issues_modal.png)

## Removing an issue from a list

Removing an issue from a list can be done by clicking on the issue card and then
clicking the Remove from board button in the sidebar. Under the hood, the
respective label is removed, and as such it’s also removed from the list and the
board itself.

![Remove issue from list](img/issue_boards_remove_issue.png)

## Issue ordering in a list

When visiting a board, issues appear ordered in any list. You are able to change
that order simply by dragging and dropping the issues. The changed order will be saved
to the system so that anybody who visits the same board later will see the reordering,
with some exceptions.

The first time a given issue appears in any board (i.e. the first time a user
loads a board containing that issue), it will be ordered with
respect to other issues in that list according to [Priority order](labels.md#label-priority).

At that point, that issue will be assigned a relative order value by the system
representing its relative order with respect to the other issues in the list. Any time
you drag-and-drop reorder that issue, its relative order value will change accordingly.

Also, any time that issue appears in any board when it is loaded by a user,
the updated relative order value will be used for the ordering. (It’s only the first
time an issue appears that it takes from the Priority order mentioned above.) This means that
if issue A is drag-and-drop reordered to be above issue B by any user in
a given board inside your GitLab instance, any time those two issues are subsequently
loaded in any board in the same instance (could be a different project board or a different group board, for example),
that ordering will be maintained.

## Filtering issues

You should be able to use the filters on top of your Issue Board to show only
the results you want. This is similar to the filtering used in the issue tracker
since the metadata from the issues and labels are re-used in the Issue Board.

You can filter by author, assignee, milestone and label.

## Creating workflows

By reordering your lists, you can create workflows. As lists in Issue Boards are
based on labels, it works out of the box with your existing issues. So if you’ve
already labeled things with ‘Backend’ and ‘Frontend’, the issue will appear in
the lists as you create them. In addition, this means you can easily move
something between lists by changing a label.

A typical workflow of using the Issue Board would be:


	You have [created](labels.md#creating-labels) and [prioritized](labels.md#label-priority)
labels so that you can easily categorize your issues.




1. You have a bunch of issues (ideally labeled).
1. You visit the Issue Board and start [creating lists](#creating-a-new-list) to


create a workflow.





	You move issues around in lists so that your team knows who should be working
on what issue.





	When the work by one team is done, the issue can be dragged to the next list
so someone else can pick up.





	When the issue is finally resolved, the issue is moved to the Done list
and gets automatically closed.




For instance you can create a list based on the label of ‘Frontend’ and one for
‘Backend’. A designer can start working on an issue by adding it to the
‘Frontend’ list. That way, everyone knows that this issue is now being
worked on by the designers. Then, once they’re done, all they have to do is
drag it over to the next list, ‘Backend’, where a backend developer can
eventually pick it up. Once they’re done, they move it to Done, to close the
issue.

This process can be seen clearly when visiting an issue since with every move
to another list the label changes and a system not is recorded.

![Issue Board system notes](img/issue_board_system_notes.png)

## Multiple Issue Boards [STARTER]

> Introduced in [GitLab Enterprise Edition 8.13](https://about.gitlab.com/2016/10/22/gitlab-8-13-released/#multiple-issue-boards-ee).

Multiple Issue Boards, as the name suggests, allow for more than one Issue Board
for a given project or group. This is great for large projects with more than one team
or in situations where a repository is used to host the code of multiple
products.

Clicking on the current board name in the upper left corner will reveal a
menu from where you can create another Issue Board and rename or delete the
existing one.

NOTE: Note:
The Multiple Issue Boards feature is available for
projects in GitLab Starter Edition and for groups in GitLab Premium Edition.

![Multiple Issue Boards](img/issue_boards_multiple.png)

## Configurable Issue Boards [STARTER]

> Introduced in [GitLab Starter Edition 10.2](https://about.gitlab.com/2017/11/22/gitlab-10-2-released/#issue-boards-configuration).

An Issue Board can be associated with GitLab [Milestone](milestones/index.md#milestones),
[Labels](labels.md), Assignee and Weight
which will automatically filter the Board issues according to these fields.
This allows you to create unique boards according to your team’s need.

![Create scoped board](img/issue_board_creation.png)

You can define the scope of your board when creating it or by clicking on the “Edit board” button. Once a milestone, assignee or weight is assigned to an Issue Board, you will no longer be able to filter
through these in the search bar. In order to do that, you need to remove the desired scope (e.g. milestone, assignee or weight) from the Issue Board.

![Edit board configuration](img/issue_board_edit_button.png)

If you don’t have editing permission in a board, you’re still able to see the configuration by clicking on “View scope”.

![Viewing board configuration](img/issue_board_view_scope.png)

## Focus mode [STARTER]

> Introduced in [GitLab Starter 9.1](https://about.gitlab.com/2017/04/22/gitlab-9-1-released/#issue-boards-focus-mode-ees-eep).

Click the button at the top right to toggle focus mode on and off. In focus mode, the navigation UI is hidden, allowing you to focus on issues in the board.

![Board focus mode](img/issue_board_focus_mode.gif)

## Group Issue Boards [PREMIUM]

> Introduced in [GitLab Premium 10.0](https://about.gitlab.com/2017/09/22/gitlab-10-0-released/#group-issue-boards).

Accessible at the group navigation level, a group issue board offers the same features as a project-level board,
but it can display issues from all projects in that
group and its descendant subgroups. Similarly, you can only filter by group labels for these
boards. When updating milestones and labels for an issue through the sidebar update mechanism, again only
group-level objects are available.

NOTE: Note:
Multiple group issue boards were originally introduced in [GitLab 10.0 Premium](https://about.gitlab.com/2017/09/22/gitlab-10-0-released/#group-issue-boards) and
one group issue board per group was made available in GitLab 10.6 Core.

![Group issue board](img/group_issue_board.png)

## Assignee lists [PREMIUM]

> [Introduced](https://gitlab.com/gitlab-org/gitlab-ee/issues/5784) in GitLab 11.0 Premium.

Like a regular list that shows all issues that have the list label, you can add
an assignee list that shows all issues assigned to the given user.
You can have a board with both label lists and assignee lists. To add an
assignee list:

1. Click Add list.
1. Select the Assignee list tab.
1. Search and click on the user you want to add as an assignee.

Now that the assignee list is added, you can assign or unassign issues to that user
by [dragging issues](#dragging-issues-between-lists) to and/or from an assignee list.
To remove an assignee list, just as with a label list, click the trash icon.

![Assignee lists](img/issue_board_assignee_lists.png)

## Dragging issues between lists

When dragging issues between lists, different behavior occurs depending on the source list and the target list.


| To Backlog | To Closed | To label B list | To assignee Bob list |

— | — | — | — | —  |

From Backlog | - | Issue closed | B added | Bob assigned |

From Closed | Issue reopened | - | Issue reopened<br/>`B` added | Issue reopened<br/>`Bob` assigned |

From label A list | A removed | Issue closed | A removed<br/>`B` added | Bob assigned |

From assignee Alice list | Alice unassigned | Issue closed | B added | Alice unassigned<br/>`Bob` assigned |



## Features per tier

Different issue board features are available in different [GitLab tiers](https://about.gitlab.com/pricing/), as shown in the following table:


Tier | Number of Project Issue Boards | Number of Group Issue Boards | Configurable Issue Boards | Assignee Lists

— | — | — | — | — | — |

Core     | 1        | 1        | No  | No  |

Starter  | Multiple | 1        | Yes | No  |

Premium  | Multiple | Multiple | Yes | Yes |

Ultimate | Multiple | Multiple | Yes | Yes |



## Tips

A few things to remember:


	Moving an issue between lists removes the label from the list it came from
and adds the label from the list it goes to.


	An issue can exist in multiple lists if it has more than one label.


	Lists are populated with issues automatically if the issues are labeled.


	Clicking on the issue title inside a card will take you to that issue.


	Clicking on a label inside a card will quickly filter the entire Issue Board
and show only the issues from all lists that have that label.


	For performance and visibility reasons, each list shows the first 20 issues
by default. If you have more than 20 issues start scrolling down and the next
20 will appear.




[ce-5554]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/5554
[scrum]: https://en.wikipedia.org/wiki/Scrum_(software_development)
[kanban]: https://en.wikipedia.org/wiki/Kanban_(development)



            

          

      

      

    

  

    
      
          
            
  # Koding integration

>**Notes:**
- **As of GitLab 10.0, the Koding integration is deprecated and will be removed


in a future version.**





	[Introduced][ce-5909] in GitLab 8.11.




This document will guide you through using Koding integration on GitLab in
detail. For configuring and installing please follow the
[administrator guide](../../administration/integration/koding.md).

You can use Koding integration to run and develop your projects on GitLab. This
will allow you and the users to test your project without leaving the browser.
Koding handles projects as stacks which are basic recipes to define your
environment for your project. With this integration you can automatically
create a proper stack template for your projects. Currently auto-generated
stack templates are designed to work with AWS which requires a valid AWS
credential to be able to use these stacks. You can find more information about
stacks and the other providers that you can use on Koding following the
[Koding documentation][koding-docs].

## Enable Integration

You can enable Koding integration by providing the running Koding instance URL
in Application Settings under Admin area > Settings (/admin/application_settings).

![Enable Koding](img/koding_enable-koding.png)

Once enabled you will see Koding link on your sidebar which leads you to
Koding Landing page.

![Koding Landing](img/koding_landing.png)

You can navigate to running Koding instance from here. For more information and
details about configuring the integration, please follow the
[administrator guide](../../administration/integration/koding.md).

## Set up Koding on Projects

Once it’s enabled, you will see some integration buttons on Project pages,
Merge Requests etc. To get started working on a specific project you first need
to create a .koding.yml file under your project root. You can easily do that
by using Set Up Koding button which will be visible on every project’s
landing page;

![Set Up Koding](img/koding_set-up-ide.png)

Once you click this will open a New File page on GitLab with auto-generated
.koding.yml content based on your server and repository configuration.

![Commit .koding.yml](img/koding_commit-koding.yml.png)

## Run a project on Koding

If there is .koding.yml exists in your project root, you will see
Run in IDE (Koding) button in your project landing page. You can initiate the
process from here.

![Run on Koding](img/koding_run-in-ide.png)

This will open Koding defined in the settings in a new window and will start
importing the project’s stack file.

![Import Stack](img/koding_stack-import.png)

You should see the details of your repository imported into your Koding
instance. Once it’s completed it will lead you to the Stack Editor and from
there you can start using your new stack integrated with your project on your
GitLab instance. For details about what’s next you can follow
[this guide](https://www.koding.com/docs/creating-an-aws-stack) from step 8.

Once stack initialized you will see the README.md content from your project
in Stack Build wizard, this wizard will let you build the stack and import
your project into it. Once it’s completed it will automatically open the
related vm instead of importing from scratch.

![Stack Building](img/koding_start-build.png)

This will take time depending on the required environment.

![Stack Building in Progress](img/koding_build-in-progress.png)

It usually takes ~4 min. to make it ready with a t2.nano instance on given
AWS region. (t2.nano is default vm type on auto-generated stack template
which can be manually changed).

![Stack Building Success](img/koding_build-success.png)

You can check out the Build Logs from this success modal as well.

![Stack Build Logs](img/koding_build-logs.png)

You can now Start Coding!

![Edit On IDE](img/koding_edit-on-ide.png)

## Try a Merge Request on IDE

It’s also possible to try a change on IDE before merging it. This flow only
enabled if the target project has .koding.yml in it’s target branch. You
should see the alternative version of Run in IDE (Koding) button in merge
request pages as well;

![Run in IDE on MR](img/koding_run-mr-in-ide.png)

This will again take you to Koding with proper arguments passed, which will
allow Koding to modify the stack template provided by target branch. You can
see the difference;

![Different Branch for MR](img/koding_different-stack-on-mr-try.png)

The flow for the branch stack is also same with the regular project flow.

## Open GitLab from Koding

Since stacks generated with import flow defined in previous steps, they have
information about the repository they are belonging to. By using this
information you can access to related GitLab page from stacks on your sidebar
on Koding.

![Open GitLab from Koding](img/koding_open-gitlab-from-koding.png)

## Other links


	[YouTube video on GitLab + Koding workflow][youtube]


	[Koding documentation][koding-docs]




[ce-5909]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/5909
[youtube]: https://youtu.be/3wei5yv_Ye8
[koding-docs]: https://www.koding.com/docs



            

          

      

      

    

  

    
      
          
            
  # Labels

## Overview

Labels allow you to categorize issues or merge requests using descriptive titles like bug, feature request, or docs. Each label also has a customizable color. They allow you to quickly and dynamically filter and manage issues or merge requests you care about, and are visible throughout GitLab in most places where issues and merge requests are located.

## Project labels and group labels

In GitLab, you can create project and group labels:


	Project labels can be assigned to issues or merge requests in that project only.


	Group labels can be assigned to any issue or merge request of any project in that group or any subgroups of the group.




## Creating labels

>**Note:**
A permission level of Developer or higher is required to create labels.

### New project label

To create a project label, navigate to Issues > Labels in the project.

Click the New label button. Enter the title, an optional description, and the background color. Click Create label to create the label.

If a project has no labels, you can generate a default set of project labels from its empty label list page:

![Labels generate default](img/labels_generate_default.png)

GitLab will add the following default labels to the project:

![Labels default](img/labels_default.png)

### New group label

To create a group label, follow similar steps from above to project labels. Navigate to Issues > Labels in the group and create it from there.

Group labels appear in every label list page of the group’s child projects.

![Labels list](img/labels_list.png)

### New project label from sidebar

From the sidebar of an issue or a merge request, you can create a create a new project label inline immediately, instead of navigating to the project label list page.

![Labels inline](img/new_label_from_sidebar.gif)

## Editing labels

NOTE: Note:
A permission level of Developer or higher is required to edit labels.

You can update a label by navigating to Issues > Labels in the project or group and clicking the pencil icon.

You can delete a label by clicking the trash icon.

### Promoting project labels to group labels

If you are expanding from a few projects to a larger number of projects within the same group, you may want to share the same label among multiple projects in the same group. If you previously created a project label and now want to make it available for other projects, you can promote it to a group label.

From the project label list page, you can promote a project label to a group label. This will merge all project labels across all projects in this group with the same name into a single group label. All issues and merge requests that previously were assigned one of these project labels will now be assigned the new group label. This action cannot be reversed and the changes are permanent.

![Labels promotion](img/labels_promotion.png)

## Assigning labels from the sidebar

Every issue and merge request can be assigned any number of labels. The labels are visible on every issue and merge request page, in the sidebar. They are also visible in the issue board. From the sidebar, you can assign or unassign a label to the object (i.e. label or unlabel it). You can also perform this as a [quick action](quick_actions.md) in a comment.


View labels in sidebar | Assign labels from sidebar |



|:---:|:—:|
| ![Labels sidebar](img/labels_sidebar.png) | ![Labels sidebar assign](img/labels_sidebar_assign.png) |

## Searching for project labels

You can search for project labels by navigating from the left sidebar to your
project’s Issues > Labels and entering your query to the search bar on the
top-right:

![Labels project list search](img/labels_project_list_search.png)

GitLab will consider the label title and description for the search.

## Filtering issues and merge requests by label

### Filtering in list pages

From the project issue list page and the project merge request list page, you can [filter](../search/index.md#issues-and-merge-requests) by both group (including subgroup ancestors) labels and project labels.

From the group issue list page and the group merge request list page, you can [filter](../search/index.md#issues-and-merge-requests) by both group labels (including subgroup ancestors and subgroup descendants) and project labels.

![Labels group issues](img/labels_group_issues.png)

### Filtering in issue boards


	From [project boards](issue_board.md), you can filter by both group labels and project labels in the [search and filter bar](../search/index.md#issue-boards).




## Subscribing to labels

From the project label list page and the group label list page, you can subscribe to [notifications](../../workflow/notifications.md) of a given label, to alert you that that label has been assigned to an issue or merge request.

![Labels subscriptions](img/labels_subscriptions.png)

## Label priority

>**Notes:**
>
> - Introduced in GitLab 8.9.
> - Priority sorting is based on the highest priority label only. [This discussion](https://gitlab.com/gitlab-org/gitlab-ce/issues/18554) considers changing this.

Labels can have relative priorities, which are used in the “Label priority” and “Priority” sort orders of the issue and merge request list pages.

From the project label list page, star a label to indicate that it has a priority. Drag starred labels up and down to change their priority. Higher means higher priority. Prioritization happens at the project level, only on the project label list page, and not on the group label list page. However, both project and group labels can be prioritized on the project label list page since both types are displayed on the project label list page.

![Labels prioritized](img/labels_prioritized.png)

On the project and group issue and merge request list pages, you can sort by Label priority and Priority, which account for objects (issues and merge requests) that have prioritized labels assigned to them.

If you sort by Label priority, GitLab considers this sort comparison order:


	Object with a higher priority prioritized label.


	Object without a prioritized label.




Ties are broken arbitrarily. (Note that we _only_ consider the highest prioritized label in an object, and not any of the lower prioritized labels. [This discussion](https://gitlab.com/gitlab-org/gitlab-ce/issues/18554) considers changing this.)

![Labels sort label priority](img/labels_sort_label_priority.png)

If you sort by Priority, GitLab considers this sort comparison order:


	Object’s assigned [milestone](milestones/index.md)’s due date is sooner, provided the object has a milestone and the milestone has a due date. If this isn’t the case, consider the object having a due date in the infinite future.


	Object with a higher priority prioritized label.


	Object without a prioritized label.




Ties are broken arbitrarily.

![Labels sort priority](img/labels_sort_priority.png)



            

          

      

      

    

  

    
      
          
            
  This document was moved to [merge_requests/index.md](merge_requests/index.md).



            

          

      

      

    

  

    
      
          
            
  # New CI job permissions model

> Introduced in GitLab 8.12.

GitLab 8.12 has a completely redesigned [job permissions] system. You can find
all discussion and all our concerns when choosing the current approach in issue
[#18994](https://gitlab.com/gitlab-org/gitlab-ce/issues/18994).

—

Jobs permissions should be tightly integrated with the permissions of a user
who is triggering a job.

The reasons to do it like that are:


	We already have a permissions system in place: group and project membership
of users.


	We already fully know who is triggering a job (using git push, using the
web UI, executing triggers).


	We already know what user is allowed to do.


	We use the user permissions for jobs that are triggered by the user.


	It opens a lot of possibilities to further enforce user permissions, like
allowing only specific users to access runners or use secure variables and
environments.


	It is simple and convenient that your job can access everything that you
as a user have access to.


	Short living unique tokens are now used, granting access for time of the job
and maximizing security.




With the new behavior, any job that is triggered by the user, is also marked
with their permissions. When a user does a git push or changes files through
the web UI, a new pipeline will be usually created. This pipeline will be marked
as created be the pusher (local push or via the UI) and any job created in this
pipeline will have the permissions of the pusher.

This allows us to make it really easy to evaluate the access for all projects
that have [Git submodules][gitsub] or are using container images that the pusher
would have access too. The permission is granted only for time that job is
running. The access is revoked after the job is finished.

## Types of users

It is important to note that we have a few types of users:


	Administrators: CI jobs created by Administrators will not have access
to all GitLab projects, but only to projects and container images of projects
that the administrator is a member of.That means that if a project is either
public or internal users have access anyway, but if a project is private, the
Administrator will have to be a member of it in order to have access to it
via another project’s job.


	External users: CI jobs created by [external users][ext] will have
access only to projects to which user has at least reporter access. This
rules out accessing all internal projects by default,




This allows us to make the CI and permission system more trustworthy.
Let’s consider the following scenario:


	You are an employee of a company. Your company has a number of internal tools
hosted in private repositories and you have multiple CI jobs that make use
of these repositories.


	You invite a new [external user][ext]. CI jobs created by that user do not
have access to internal repositories, because the user also doesn’t have the
access from within GitLab. You as an employee have to grant explicit access
for this user. This allows us to prevent from accidental data leakage.




## Job token

A unique job token is generated for each job and it allows the user to
access all projects that would be normally accessible to the user creating that
job.

We try to make sure that this token doesn’t leak by:

1. Securing all API endpoints to not expose the job token.
1. Masking the job token from job logs.
1. Allowing to use the job token only when job is running.

However, this brings a question about the Runners security. To make sure that
this token doesn’t leak, you should also make sure that you configure
your Runners in the most possible secure way, by avoiding the following:

1. Any usage of Docker’s privileged mode is risky if the machines are re-used.
1. Using the shell executor since jobs run on the same machine.

By using an insecure GitLab Runner configuration, you allow the rogue developers
to steal the tokens of other jobs.

## Pipeline triggers

Since 9.0 [pipeline triggers][triggers] do support the new permission model.
The new triggers do impersonate their associated user including their access
to projects and their project permissions. To migrate trigger to use new permission
model use Take ownership.

## Before GitLab 8.12

In versions before GitLab 8.12, all CI jobs would use the CI Runner’s token
to checkout project sources.

The project’s Runner’s token was a token that you could find under the
project’s Settings > Pipelines and was limited to access only that
project.
It could be used for registering new specific Runners assigned to the project
and to checkout project sources.
It could also be used with the GitLab Container Registry for that project,
allowing pulling and pushing Docker images from within the CI job.

—

GitLab would create a special checkout URL like:

`
https://gitlab-ci-token:<project-runners-token>/gitlab.com/gitlab-org/gitlab-ce.git
`

And then the users could also use it in their CI jobs all Docker related
commands to interact with GitLab Container Registry. For example:

`
docker login -u gitlab-ci-token -p $CI_JOB_TOKEN registry.gitlab.com
`

Using single token had multiple security implications:


	The token would be readable to anyone who had developer access to a project
that could run CI jobs, allowing the developer to register any specific
Runner for that project.


	The token would allow to access only the project’s sources, forbidding from
accessing any other projects.


	The token was not expiring and was multi-purpose: used for checking out sources,
for registering specific runners and for accessing a project’s container
registry with read-write permissions.




All the above led to a new permission model for jobs that was introduced
with GitLab 8.12.

## Making use of the new CI job permissions model

With the new job permissions model, there is now an easy way to access all
dependent source code in a project. That way, we can:

1. Access a project’s dependent repositories
1. Access a project’s [Git submodules][gitsub]
1. Access private container images
1. Access project’s and submodule LFS objects

Below you can see the prerequisites needed to make use of the new permissions
model and how that works with Git submodules and private Docker images hosted on
the container registry.

### Prerequisites to use the new permissions model

With the new permissions model in place, there may be times that your job will
fail. This is most likely because your project tries to access other project’s
sources, and you don’t have the appropriate permissions. In the job log look
for information about 403 or forbidden access messages.

In short here’s what you need to do should you encounter any issues.

As an administrator:


	500 errors: You will need to update [GitLab Workhorse][workhorse] to at
least 0.8.2. This is done automatically for Omnibus installations, you need to
[check manually][update-docs] for installations from source.


	500 errors: Check if you have another web proxy sitting in front of NGINX (HAProxy,
Apache, etc.). It might be a good idea to let GitLab use the internal NGINX
web server and not disable it completely. See [this comment][comment] for an
example.


	403 errors: You need to make sure that your installation has [HTTP(S)
cloning enabled][https]. HTTP(S) support is now a requirement by GitLab CI
to clone all sources.




As a user:


	Make sure you are a member of the group or project you’re trying to have
access to. As an Administrator, you can verify that by impersonating the user
and retry the failing job in order to verify that everything is correct.




### Dependent repositories

The [Job environment variable][jobenv] CI_JOB_TOKEN can be used to
authenticate any clones of dependent repositories. For example:

`
git clone https://gitlab-ci-token:${CI_JOB_TOKEN}@gitlab.com/myuser/mydependentrepo
`

It can also be used for system-wide authentication
(only do this in a docker container, it will overwrite ~/.netrc):

`
echo -e "machine gitlab.com\nlogin gitlab-ci-token\npassword ${CI_JOB_TOKEN}" > ~/.netrc
`

### Git submodules

To properly configure submodules with GitLab CI, read the
[Git submodules documentation][gitsub].

### Container Registry

With the update permission model we also extended the support for accessing
Container Registries for private projects.

> Notes:
- GitLab Runner versions prior to 1.8 don’t incorporate the introduced changes


for permissions. This makes the image: directive to not work with private
projects automatically and it needs to be configured manually on Runner’s host
with a predefined account (for example administrator’s personal account with
access token created explicitly for this purpose). This issue is resolved with
latest changes in GitLab Runner 1.8 which receives GitLab credentials with
build data.





	Starting from GitLab 8.12, if you have [2FA] enabled in your account, you need
to pass a [personal access token][pat] instead of your password in order to
login to GitLab’s Container Registry.




Your jobs can access all container images that you would normally have access
to. The only implication is that you can push to the Container Registry of the
project for which the job is triggered.

This is how an example usage can look like:

```
test:

	script:
	
	docker login -u gitlab-ci-token -p $CI_JOB_TOKEN $CI_REGISTRY

	docker pull $CI_REGISTRY/group/other-project:latest

	docker run $CI_REGISTRY/group/other-project:latest


```

[job permissions]: ../permissions.md#job-permissions
[comment]: https://gitlab.com/gitlab-org/gitlab-ce/issues/22484#note_16648302
[ext]: ../permissions.md#external-users
[gitsub]: ../../ci/git_submodules.md
[https]: ../admin_area/settings/visibility_and_access_controls.md#enabled-git-access-protocols
[triggers]: ../../ci/triggers/README.md
[update-docs]: https://gitlab.com/gitlab-org/gitlab-ce/tree/master/doc/update
[workhorse]: https://gitlab.com/gitlab-org/gitlab-workhorse
[jobenv]: ../../ci/variables/README.md#predefined-variables-environment-variables
[2fa]: ../profile/account/two_factor_authentication.md
[pat]: ../profile/personal_access_tokens.md



            

          

      

      

    

  

    
      
          
            
  # Protected Branches

[Permissions](../permissions.md) in GitLab are fundamentally defined around the
idea of having read or write permission to the repository and branches. To
prevent people from messing with history or pushing code without review, we’ve
created protected branches.

## Overview

By default, a protected branch does four simple things:


	it prevents its creation, if not already created, from everybody except users
with Maintainer permission


	it prevents pushes from everybody except users with Maintainer permission


	it prevents anyone from force pushing to the branch


	it prevents anyone from deleting the branch




See the [Changelog](#changelog) section for changes over time.

>
>Additional functionality for GitLab Enterprise Edition:
>
>- Restrict push and merge access to [certain users][ee-restrict]

## Configuring protected branches

To protect a branch, you need to have at least Maintainer permission level. Note
that the master branch is protected by default.

1. Navigate to your project’s Settings ➔ Repository
1. Scroll to find the Protected branches section.
1. From the Branch dropdown menu, select the branch you want to protect and


click Protect. In the screenshot below, we chose the develop branch.


![Protected branches page](img/protected_branches_page.png)








	Once done, the protected branch will appear in the “Protected branches” list.


![Protected branches list](img/protected_branches_list.png)








## Using the Allowed to merge and Allowed to push settings

> [Introduced][ce-5081] in GitLab 8.11.

Since GitLab 8.11, we added another layer of branch protection which provides
more granular management of protected branches. The “Developers can push”
option was replaced by an “Allowed to push” setting which can be set to
allow/prohibit Maintainers and/or Developers to push to a protected branch.

Using the “Allowed to push” and “Allowed to merge” settings, you can control
the actions that different roles can perform with the protected branch.
For example, you could set “Allowed to push” to “No one”, and “Allowed to merge”
to “Developers + Maintainers”, to require _everyone_ to submit a merge request for
changes going into the protected branch. This is compatible with workflows like
the [GitLab workflow](../../workflow/gitlab_flow.md).

However, there are workflows where that is not needed, and only protecting from
force pushes and branch removal is useful. For those workflows, you can allow
everyone with write access to push to a protected branch by setting
“Allowed to push” to “Developers + Maintainers”.

You can set the “Allowed to push” and “Allowed to merge” options while creating
a protected branch or afterwards by selecting the option you want from the
dropdown list in the “Already protected” area.

![Developers can push](img/protected_branches_devs_can_push.png)

If you don’t choose any of those options while creating a protected branch,
they are set to “Maintainers” by default.

## Wildcard protected branches

> [Introduced][ce-4665] in GitLab 8.10.

You can specify a wildcard protected branch, which will protect all branches
matching the wildcard. For example:


Wildcard Protected Branch | Matching Branches                                      |



|---------------------------+--------------------------------------------------------|
*-stable	production-stable, staging-stable
production/*	production/app-server, production/load-balancer
*gitlab*	gitlab, gitlab/staging, master/gitlab/production

Protected branch settings (like “Developers can push”) apply to all matching
branches.

Two different wildcards can potentially match the same branch. For example,
*-stable and production-* would both match a production-stable branch.
In that case, if _any_ of these protected branches have a setting like
“Allowed to push”, then production-stable will also inherit this setting.

If you click on a protected branch’s name, you will be presented with a list of
all matching branches:

![Protected branch matches](img/protected_branches_matches.png)

## Deleting a protected branch

> [Introduced][ce-21393] in GitLab 9.3.

From time to time, it may be required to delete or clean up branches that are
protected.

User with [Maintainer permissions][perm] and up can manually delete protected
branches via GitLab’s web interface:

1. Visit Repository > Branches
1. Click on the delete icon next to the branch you wish to delete
1. In order to prevent accidental deletion, an additional confirmation is


required


![Delete protected branches](img/protected_branches_delete.png)







Deleting a protected branch is only allowed via the web interface, not via Git.
This means that you can’t accidentally delete a protected branch from your
command line or a Git client application.

## Running pipelines on protected branches

The permission to merge or push to protected branches is used to define if a user can
run CI/CD pipelines and execute actions on jobs that are related to those branches.

See [Security on protected branches](../../ci/pipelines.md#security-on-protected-branches)
for details about the pipelines security model.

## Changelog

9.2


	Allow deletion of protected branches via the web interface [gitlab-org/gitlab-ce#21393][ce-21393]




8.11


	Allow creating protected branches that can’t be pushed to [gitlab-org/gitlab-ce!5081][ce-5081]




8.10


	Allow developers to merge into a protected branch without having push access [gitlab-org/gitlab-ce!4892][ce-4892]


	Allow specifying protected branches using wildcards [gitlab-org/gitlab-ce!4665][ce-4665]




—

[ce-4665]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/4665 “Allow specifying protected branches using wildcards”
[ce-4892]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/4892 “Allow developers to merge into a protected branch without having push access”
[ce-5081]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/5081 “Allow creating protected branches that can’t be pushed to”
[ce-21393]: https://gitlab.com/gitlab-org/gitlab-ce/issues/21393
[ee-restrict]: http://docs.gitlab.com/ee/user/project/protected_branches.html#restricting-push-and-merge-access-to-certain-users
[perm]: ../permissions.md



            

          

      

      

    

  

    
      
          
            
  # Protected Tags

> [Introduced][ce-10356] in GitLab 9.1.

Protected Tags allow control over who has permission to create tags as well as preventing accidental update or deletion once created. Each rule allows you to match either an individual tag name, or use wildcards to control multiple tags at once.

This feature evolved out of [Protected Branches](protected_branches.md)

## Overview

Protected tags will prevent anyone from updating or deleting the tag, as and will prevent creation of matching tags based on the permissions you have selected. By default, anyone without Maintainer permission will be prevented from creating tags.

## Configuring protected tags

To protect a tag, you need to have at least Maintainer permission level.


	Navigate to the project’s Settings -> Repository page


![Repository Settings](img/project_repository_settings.png)









	From the Tag dropdown menu, select the tag you want to protect or type and click Create wildcard. In the screenshot below, we chose to protect all tags matching v*.


![Protected tags page](img/protected_tags_page.png)









	From the Allowed to create dropdown, select who will have permission to create matching tags and then click Protect.


![Allowed to create tags dropdown](img/protected_tags_permissions_dropdown.png)









	Once done, the protected tag will appear in the “Protected tags” list.


![Protected tags list](img/protected_tags_list.png)








## Wildcard protected tags

You can specify a wildcard protected tag, which will protect all tags
matching the wildcard. For example:


Wildcard Protected Tag | Matching Tags                 |



|------------------------+-------------------------------|
v*	v1.0.0, version-9.1
*-deploy	march-deploy, 1.0-deploy
*gitlab*	gitlab, gitlab/v1
*	v1.0.1rc2, accidental-tag

Two different wildcards can potentially match the same tag. For example,
*-stable and production-* would both match a production-stable tag.
In that case, if _any_ of these protected tags have a setting like
“Allowed to create”, then production-stable will also inherit this setting.

If you click on a protected tag’s name, you will be presented with a list of
all matching tags:

![Protected tag matches](img/protected_tag_matches.png)

—

[ce-10356]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/10356 “Protected Tags”



            

          

      

      

    

  

    
      
          
            
  # GitLab quick actions

Quick actions are textual shortcuts for common actions on issues or merge
requests that are usually done by clicking buttons or dropdowns in GitLab’s UI.
You can enter these commands while creating a new issue or merge request, and
in comments. Each command should be on a separate line in order to be properly
detected and executed. The commands are removed from the issue, merge request or
comment body before it is saved and will not be visible to anyone else.

Below is a list of all of the available commands and descriptions about what they
do.


Command                    | Action       |



:---------------------------	:————-
/close	Close the issue or merge request
/reopen	Reopen the issue or merge request
/merge	Merge (when pipeline succeeds)
/title <New title>	Change title
/assign @username	Assign
/unassign	Remove assignee
/milestone %milestone	Set milestone
/remove_milestone	Remove milestone
/label ~foo ~”bar baz”	Add label(s)
/unlabel ~foo ~”bar baz”	Remove all or specific label(s)
/relabel ~foo ~”bar baz”	Replace all label(s)
/todo	Add a todo
/done	Mark todo as done
/subscribe	Subscribe
/unsubscribe	Unsubscribe
<code>/due &lt;in 2 days &#124; this Friday &#124; December 31st&gt;</code>	Set due date
/remove_due_date	Remove due date
/wip	Toggle the Work In Progress status
<code>/estimate &lt;1w 3d 2h 14m&gt;</code>	Set time estimate
/remove_estimate	Remove estimated time
<code>/spend &lt;time(1h 30m &#124; -1h 5m)&gt; &lt;date(YYYY-MM-DD)&gt;</code>	Add or subtract spent time; optionally, specify the date that time was spent on
/remove_time_spent	Remove time spent
/target_branch <Branch Name>	Set target branch for current merge request
/award :emoji:	Toggle award for :emoji:
/board_move ~column	Move issue to column on the board
/duplicate #issue	Closes this issue and marks it as a duplicate of another issue
/move path/to/project	Moves issue to another project
/tableflip	Append the comment with (╯°□°)╯︵ ┻━┻
/shrug	Append the comment with ¯＿(ツ)＿/¯
<code>/copy_metadata #issue &#124; !merge_request</code>	Copy labels and milestone from other issue or merge request
/confidential	Makes the issue confidential



            

          

      

      

    

  

    
      
          
            
  This document was moved to [user/project/quick_actions.md](quick_actions.md).



            

          

      

      

    

  

    
      
          
            
  This document was moved to [pipelines/job_artifacts](../pipelines/job_artifacts.md).



            

          

      

      

    

  

    
      
          
            
  # Connecting GitLab with a Kubernetes cluster

> [Introduced](https://gitlab.com/gitlab-org/gitlab-ce/issues/35954) in GitLab 10.1.

Connect your project to Google Kubernetes Engine (GKE) or an existing Kubernetes
cluster in a few steps.

## Overview

With one or more Kubernetes clusters associated to your project, you can use
[Review Apps](../../../ci/review_apps/index.md), deploy your applications, run
your pipelines, use it with [Auto DevOps](../../../topics/autodevops/index.md),
and much more, all from within GitLab.

There are two options when adding a new cluster to your project; either associate
your account with Google Kubernetes Engine (GKE) so that you can [create new
clusters](#adding-and-creating-a-new-gke-cluster-via-gitlab) from within GitLab,
or provide the credentials to an [existing Kubernetes cluster](#adding-an-existing-kubernetes-cluster).

## Adding and creating a new GKE cluster via GitLab

TIP: Tip:
Every new Google Cloud Platform (GCP) account receives [$300 in credit upon sign up](https://console.cloud.google.com/freetrial),
and in partnership with Google, GitLab is able to offer an additional $200 for new GCP accounts to get started with GitLab’s
Google Kubernetes Engine Integration. All you have to do is [follow this link](https://goo.gl/AaJzRW) and apply for credit.

NOTE: Note:
The [Google authentication integration](../../../integration/google.md) must
be enabled in GitLab at the instance level. If that’s not the case, ask your
GitLab administrator to enable it. On GitLab.com, this is enabled.

### Requirements

Before creating your first cluster on Google Kubernetes Engine with GitLab’s
integration, make sure the following requirements are met:


	A [billing account](https://cloud.google.com/billing/docs/how-to/manage-billing-account)
is set up and you have permissions to access it.


	The Kubernetes Engine API is enabled. Follow the steps as outlined in the
[“Before you begin” section of the Kubernetes Engine docs](https://cloud.google.com/kubernetes-engine/docs/quickstart#before-you-begin).




### Creating the cluster

If all of the above requirements are met, you can proceed to create and add a
new Kubernetes cluster to your project:


	Navigate to your project’s Operations > Kubernetes page.


NOTE: Note:
You need Maintainer [permissions] and above to access the Kubernetes page.








1. Click on Add Kubernetes cluster.
1. Click on Create with Google Kubernetes Engine.
1. Connect your Google account if you haven’t done already by clicking the


Sign in with Google button.





	From there on, choose your cluster’s settings:






	Kubernetes cluster name - The name you wish to give the cluster.


	Environment scope - The [associated environment](#setting-the-environment-scope) to this cluster.


	Google Cloud Platform project - Choose the project you created in your GCP
console that will host the Kubernetes cluster. Learn more about
[Google Cloud Platform projects](https://cloud.google.com/resource-manager/docs/creating-managing-projects).


	Zone - Choose the [region zone](https://cloud.google.com/compute/docs/regions-zones/)
under which the cluster will be created.


	Number of nodes - Enter the number of nodes you wish the cluster to have.


	Machine type - The [machine type](https://cloud.google.com/compute/docs/machine-types)
of the Virtual Machine instance that the cluster will be based on.








	Finally, click the Create Kubernetes cluster button.




After a couple of minutes, your cluster will be ready to go. You can now proceed
to install some [pre-defined applications](#installing-applications).

## Adding an existing Kubernetes cluster

To add an existing Kubernetes cluster to your project:


	Navigate to your project’s Operations > Kubernetes page.


NOTE: Note:
You need Maintainer [permissions] and above to access the Kubernetes page.








1. Click on Add Kubernetes cluster.
1. Click on Add an existing Kubernetes cluster and fill in the details:



	Kubernetes cluster name (required) - The name you wish to give the cluster.


	Environment scope (required)- The
[associated environment](#setting-the-environment-scope) to this cluster.


	API URL (required) -
It’s the URL that GitLab uses to access the Kubernetes API. Kubernetes
exposes several APIs, we want the “base” URL that is common to all of them,
e.g., https://kubernetes.example.com rather than https://kubernetes.example.com/api/v1.


	CA certificate (optional) -
If the API is using a self-signed TLS certificate, you’ll also need to include
the ca.crt contents here.


	Token -
GitLab authenticates against Kubernetes using service tokens, which are
scoped to a particular namespace. If you don’t have a service token yet,
you can follow the
[Kubernetes documentation](https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/)
to create one. You can also view or create service tokens in the
[Kubernetes dashboard](https://kubernetes.io/docs/tasks/access-application-cluster/web-ui-dashboard/)
(under Config > Secrets). The account that will issue the service token
must have admin privileges on the cluster.


	Project namespace (optional) - You don’t have to fill it in; by leaving
it blank, GitLab will create one for you. Also:
- Each project should have a unique namespace.
- The project namespace is not necessarily the namespace of the secret, if


you’re using a secret with broader permissions, like the secret from default.





	You should not use default as the project namespace.


	If you or someone created a secret specifically for the project, usually
with limited permissions, the secret’s namespace and project namespace may
be the same.












	Finally, click the Create Kubernetes cluster button.




After a couple of minutes, your cluster will be ready to go. You can now proceed
to install some [pre-defined applications](#installing-applications).

## Security implications

CAUTION: Important:
The whole cluster security is based on a model where [developers](../../permissions.md)
are trusted, so only trusted users should be allowed to control your clusters.

The default cluster configuration grants access to a wide set of
functionalities needed to successfully build and deploy a containerized
application. Bare in mind that the same credentials are used for all the
applications running on the cluster.

When GitLab creates the cluster, it enables and uses the legacy
[Attribute-based access control (ABAC)](https://kubernetes.io/docs/admin/authorization/abac/).
The newer [RBAC](https://kubernetes.io/docs/admin/authorization/rbac/)
authorization will be supported in a
[future release](https://gitlab.com/gitlab-org/gitlab-ce/issues/29398).

### Security of GitLab Runners

GitLab Runners have the [privileged mode](https://docs.gitlab.com/runner/executors/docker.html#the-privileged-mode)
enabled by default, which allows them to execute special commands and running
Docker in Docker. This functionality is needed to run some of the [Auto DevOps]
jobs. This implies the containers are running in privileged mode and you should,
therefore, be aware of some important details.

The privileged flag gives all capabilities to the running container, which in
turn can do almost everything that the host can do. Be aware of the
inherent security risk associated with performing docker run operations on
arbitrary images as they effectively have root access.

If you don’t want to use GitLab Runner in privileged mode, first make sure that
you don’t have it installed via the applications, and then use the
[Runner’s Helm chart](../../../install/kubernetes/gitlab_runner_chart.md) to
install it manually.

## Installing applications

GitLab provides a one-click install for various applications which will be
added directly to your configured cluster. Those applications are needed for
[Review Apps](../../../ci/review_apps/index.md) and [deployments](../../../ci/environments.md).

NOTE: Note:
The applications will be installed in a dedicated namespace called
gitlab-managed-apps. In case you have added an existing Kubernetes cluster
with Tiller already installed, you should be careful as GitLab cannot
detect it. By installing it via the applications will result into having it
twice, which can lead to confusion during deployments.


Application | GitLab version | Description |

———– | :————: | ———– |

[Helm Tiller](https://docs.helm.sh/) | 10.2+ | Helm is a package manager for Kubernetes and is required to install all the other applications. It is installed in its own pod inside the cluster which can run the helm CLI in a safe environment. |

[Ingress](https://kubernetes.io/docs/concepts/services-networking/ingress/) | 10.2+ | Ingress can provide load balancing, SSL termination, and name-based virtual hosting. It acts as a web proxy for your applications and is useful if you want to use [Auto DevOps] or deploy your own web apps. |

[Prometheus](https://prometheus.io/docs/introduction/overview/) | 10.4+ | Prometheus is an open-source monitoring and alerting system useful to supervise your deployed applications. |

[GitLab Runner](https://docs.gitlab.com/runner/) | 10.6+ | GitLab Runner is the open source project that is used to run your jobs and send the results back to GitLab. It is used in conjunction with [GitLab CI/CD](https://about.gitlab.com/features/gitlab-ci-cd/), the open-source continuous integration service included with GitLab that coordinates the jobs. When installing the GitLab Runner via the applications, it will run in privileged mode by default. Make sure you read the [security implications](#security-implications) before doing so. |

[JupyterHub](http://jupyter.org/) | 11.0+ | [JupyterHub](https://jupyterhub.readthedocs.io/en/stable/) is a multi-user service for managing notebooks across a team. [Jupyter Notebooks](https://jupyter-notebook.readthedocs.io/en/latest/) provide a web-based interactive programming environment used for data analysis, visualization, and machine learning. We use [this](https://gitlab.com/gitlab-org/jupyterhub-user-image/blob/master/Dockerfile) custom Jupyter image that installs additional useful packages on top of the base Jupyter. Note: Authentication will be enabled for any user of the GitLab server via OAuth2. HTTPS will be supported in a future release. |



## Getting the external IP address

NOTE: Note:
You need a load balancer installed in your cluster in order to obtain the
external IP address with the following procedure. It can be deployed using the
[Ingress application](#installing-applications).

In order to publish your web application, you first need to find the external IP
address associated to your load balancer.

### Let GitLab fetch the IP address

> [Introduced](https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/17052) in GitLab 10.6.

If you installed the Ingress [via the Applications](#installing-applications),
you should see the Ingress IP address on this same page within a few minutes.
If you don’t see this, GitLab might not be able to determine the IP address of
your ingress application in which case you should manually determine it.

### Manually determining the IP address

If the cluster is on GKE, click on the Google Kubernetes Engine link in the
Advanced settings, or go directly to the
[Google Kubernetes Engine dashboard](https://console.cloud.google.com/kubernetes/)
and select the proper project and cluster. Then click on Connect and execute
the gcloud command in a local terminal or using the Cloud Shell.

If the cluster is not on GKE, follow the specific instructions for your
Kubernetes provider to configure kubectl with the right credentials.

If you installed the Ingress [via the Applications](#installing-applications),
run the following command:

`bash
kubectl get svc --namespace=gitlab-managed-apps ingress-nginx-ingress-controller -o jsonpath='{.status.loadBalancer.ingress[0].ip} '
`

Otherwise, you can list the IP addresses of all load balancers:

`bash
kubectl get svc --all-namespaces -o jsonpath='{range.items[?(@.status.loadBalancer.ingress)]}{.status.loadBalancer.ingress[*].ip} '
`

> Note: Some Kubernetes clusters return a hostname instead, like [Amazon EKS](https://aws.amazon.com/eks/). For these platforms, run:
> `bash
> kubectl get service ingress-nginx-ingress-controller -n gitlab-managed-apps -o jsonpath="{.status.loadBalancer.ingress[0].hostname}".
> `

The output is the external IP address of your cluster. This information can then
be used to set up DNS entries and forwarding rules that allow external access to
your deployed applications.

### Using a static IP

By default, an ephemeral external IP address is associated to the cluster’s load
balancer. If you associate the ephemeral IP with your DNS and the IP changes,
your apps will not be able to be reached, and you’d have to change the DNS
record again. In order to avoid that, you should change it into a static
reserved IP.

[Read how to promote an ephemeral external IP address in GKE.](https://cloud.google.com/compute/docs/ip-addresses/reserve-static-external-ip-address#promote_ephemeral_ip)

### Pointing your DNS at the cluster IP

Once you’ve set up the static IP, you should associate it to a [wildcard DNS
record](https://en.wikipedia.org/wiki/Wildcard_DNS_record), in order to be able
to reach your apps. This heavily depends on your domain provider, but in case
you aren’t sure, just create an A record with a wildcard host like
*.example.com..

## Setting the environment scope

NOTE: Note:
This is only available for [GitLab Premium][ee] where you can add more than
one Kubernetes cluster.

When adding more than one Kubernetes clusters to your project, you need to
differentiate them with an environment scope. The environment scope associates
clusters and [environments](../../../ci/environments.md) in an 1:1 relationship
similar to how the
[environment-specific variables](../../../ci/variables/README.md#limiting-environment-scopes-of-variables)
work.

The default environment scope is *, which means all jobs, regardless of their
environment, will use that cluster. Each scope can only be used by a single
cluster in a project, and a validation error will occur if otherwise.
Also, jobs that don’t have an environment keyword set will not be able to access any cluster.

—

For example, let’s say the following Kubernetes clusters exist in a project:


Cluster    | Environment scope   |

———- | ——————- |

Development| *                 |

Staging    | staging/*         |

Production | production/*      |



And the following environments are set in [.gitlab-ci.yml](../../../ci/yaml/README.md):

```yaml
stages:
- test
- deploy

	test:
	stage: test
script: sh test

	deploy to staging:
	stage: deploy
script: make deploy
environment:

name: staging/$CI_COMMIT_REF_NAME
url: https://staging.example.com/

	deploy to production:
	stage: deploy
script: make deploy
environment:

name: production/$CI_COMMIT_REF_NAME
url: https://example.com/


```

The result will then be:


	The development cluster will be used for the “test” job.


	The staging cluster will be used for the “deploy to staging” job.


	The production cluster will be used for the “deploy to production” job.




## Multiple Kubernetes clusters

> Introduced in [GitLab Premium][ee] 10.3.

With GitLab Premium, you can associate more than one Kubernetes clusters to your
project. That way you can have different clusters for different environments,
like dev, staging, production, etc.

Simply add another cluster, like you did the first time, and make sure to
[set an environment scope](#setting-the-environment-scope) that will
differentiate the new cluster with the rest.

## Deployment variables

The Kubernetes cluster integration exposes the following
[deployment variables](../../../ci/variables/README.md#deployment-variables) in the
GitLab CI/CD build environment.


Variable | Description |

——– | ———– |

KUBE_URL | Equal to the API URL. |

KUBE_TOKEN | The Kubernetes token. |

KUBE_NAMESPACE | The Kubernetes namespace is auto-generated if not specified. The default value is <project_name>-<project_id>. You can overwrite it to use different one if needed, otherwise the KUBE_NAMESPACE variable will receive the default value. |

KUBE_CA_PEM_FILE | Only present if a custom CA bundle was specified. Path to a file containing PEM data. |

KUBE_CA_PEM | (deprecated) Only if a custom CA bundle was specified. Raw PEM data. |

KUBECONFIG | Path to a file containing kubeconfig for this deployment. CA bundle would be embedded if specified. |



## Enabling or disabling the Kubernetes cluster integration

After you have successfully added your cluster information, you can enable the
Kubernetes cluster integration:

1. Click the “Enabled/Disabled” switch
1. Hit Save for the changes to take effect

You can now start using your Kubernetes cluster for your deployments.

To disable the Kubernetes cluster integration, follow the same procedure.

## Removing the Kubernetes cluster integration

NOTE: Note:
You need Maintainer [permissions] and above to remove a Kubernetes cluster integration.

NOTE: Note:
When you remove a cluster, you only remove its relation to GitLab, not the
cluster itself. To remove the cluster, you can do so by visiting the GKE
dashboard or using kubectl.

To remove the Kubernetes cluster integration from your project, simply click on the
Remove integration button. You will then be able to follow the procedure
and add a Kubernetes cluster again.

## What you can get with the Kubernetes integration

Here’s what you can do with GitLab if you enable the Kubernetes integration.

### Deploy Boards

> Available in [GitLab Premium][ee].

GitLab’s Deploy Boards offer a consolidated view of the current health and
status of each CI [environment](../../../ci/environments.md) running on Kubernetes,
displaying the status of the pods in the deployment. Developers and other
teammates can view the progress and status of a rollout, pod by pod, in the
workflow they already use without any need to access Kubernetes.

[> Read more about Deploy Boards](https://docs.gitlab.com/ee/user/project/deploy_boards.html)

### Canary Deployments

> Available in [GitLab Premium][ee].

Leverage [Kubernetes’ Canary deployments](https://kubernetes.io/docs/concepts/cluster-administration/manage-deployment/#canary-deployments)
and visualize your canary deployments right inside the Deploy Board, without
the need to leave GitLab.

[> Read more about Canary Deployments](https://docs.gitlab.com/ee/user/project/canary_deployments.html)

### Kubernetes monitoring

Automatically detect and monitor Kubernetes metrics. Automatic monitoring of
[NGINX ingress](../integrations/prometheus_library/nginx.md) is also supported.

[> Read more about Kubernetes monitoring](../integrations/prometheus_library/kubernetes.md)

### Auto DevOps

Auto DevOps automatically detects, builds, tests, deploys, and monitors your
applications.

To make full use of Auto DevOps(Auto Deploy, Auto Review Apps, and Auto Monitoring)
you will need the Kubernetes project integration enabled.

[> Read more about Auto DevOps](../../../topics/autodevops/index.md)

### Web terminals

NOTE: Note:
Introduced in GitLab 8.15. You must be the project owner or have maintainer permissions
to use terminals. Support is limited to the first container in the
first pod of your environment.

When enabled, the Kubernetes service adds [web terminal](../../../ci/environments.md#web-terminals)
support to your [environments](../../../ci/environments.md). This is based on the exec functionality found in
Docker and Kubernetes, so you get a new shell session within your existing
containers. To use this integration, you should deploy to Kubernetes using
the deployment variables above, ensuring any pods you create are labelled with
app=$CI_ENVIRONMENT_SLUG. GitLab will do the rest!

## Read more


	[Connecting and deploying to an Amazon EKS cluster](eks_and_gitlab/index.md)




[permissions]: ../../permissions.md
[ee]: https://about.gitlab.com/pricing/
[Auto DevOps]: ../../../topics/autodevops/index.md



            

          

      

      

    

  

    
      
          
            
  —
author: Joshua Lambert
author_gitlab: joshlambert
level: intermediate
article_type: tutorial
date: 2018-06-05
—

# Connecting and deploying to an Amazon EKS cluster

## Introduction

In this tutorial, we will show how easy it is to integrate an [Amazon EKS](https://aws.amazon.com/eks/) cluster with GitLab, and begin deploying applications.

For an end-to-end walkthrough we will:
1. Start with a new project based on the sample Ruby on Rails template
1. Integrate an EKS cluster
1. Utilize [Auto DevOps](../../../../topics/autodevops/) to build, test, and deploy our application

You will need:
1. An account on GitLab, like [GitLab.com](https://gitlab.com)
1. An Amazon EKS cluster
1. kubectl [installed and configured for access to the EKS cluster](https://docs.aws.amazon.com/eks/latest/userguide/getting-started.html#get-started-kubectl)

If you don’t have an Amazon EKS cluster, one can be created by following [the EKS getting started guide](https://docs.aws.amazon.com/eks/latest/userguide/getting-started.html).

## Creating a new project

On GitLab, create a new project by clicking on the + icon in the top navigation bar, and selecting New project.

![New Project](img/new_project.png)

On the new project screen, click on the Create from template tab, and select Use template for the Ruby on Rails sample project.

Give the project a name, and then select Create project.

![Create Project](img/create_project.png)

## Connecting the EKS cluster

From the left side bar, hover over Operations and select Kubernetes, then click on Add Kubernetes cluster, and finally Add an existing Kubernetes cluster.

A few details from the EKS cluster will be required to connect it to GitLab.


	A valid Kubernetes certificate and token are needed to authenticate to the EKS cluster. A pair is created by default, which can be used. Open a shell and use kubectl to retrieve them:






	List the secrets with kubectl get secrets, and one should named similar to default-token-xxxxx. Copy that token name for use below.


	Get the certificate with kubectl get secret <secret name> -o jsonpath=”{[‘data’][‘ca.crt’]}” | base64 -D


	Retrieve the token with kubectl get secret <secret name> -o jsonpath=”{[‘data’][‘token’]}” | base64 -D.








	The API server endpoint is also required, so GitLab can connect to the cluster. This is displayed on the AWS EKS console, when viewing the EKS cluster details.




You now have all the information needed to connect the EKS cluster:
* Kubernetes cluster name: Provide a name for the cluster to identify it within GitLab.
* Environment scope: Leave this as * for now, since we are only connecting a single cluster.
* API URL: Paste in the API server endpoint retrieved above.
* CA Certificate: Paste the certificate data from the earlier step, as-is.
* Paste the token value. Note on some versions of Kubernetes a trailing % is output, do not include it.
* Project namespace: This can be left blank to accept the default namespace, based on the project name.

![Add Cluster](img/add_cluster.png)

Click on Add Kubernetes cluster, the cluster is now connected to GitLab. At this point, [Kubernetes deployment variables](../#deployment-variables) will automatically be available during CI jobs, making it easy to interact with the cluster.

If you would like to utilize your own CI/CD scripts to deploy to the cluster, you can stop here.

## Disable Role-Based Access Control (RBAC)

Presently, Auto DevOps and one-click app installs do not support [Kubernetes role-based access control](https://kubernetes.io/docs/reference/access-authn-authz/rbac/). Support is [being worked on](https://gitlab.com/groups/gitlab-org/-/epics/136), but in the interim RBAC must be disabled to utilize for these features.

> Note: Disabling RBAC means that any application running in the cluster, or user who can authenticate to the cluster, has full API access. This is a [security concern](https://docs.gitlab.com/ee/user/project/clusters/#security-implications), and may not be desirable.

To effectively disable RBAC, global permissions can be applied granting full access:

```bash
kubectl create clusterrolebinding permissive-binding

–clusterrole=cluster-admin –user=admin –user=kubelet –group=system:serviceaccounts


```

## Deploy services to the cluster

GitLab supports one-click deployment of helpful services to the cluster, many of which support Auto DevOps. Back on the Kubernetes cluster screen in GitLab, a list of applications is now available to deploy.

First install Helm Tiller, a package manager for Kubernetes. This enables deployment of the other applications.

![Deploy Apps](img/deploy_apps.png)

### Deploying NGINX Ingress (optional)

Next, if you would like the deployed app to be reachable on the internet, deploy the Ingress. Note that this will also cause an [Elastic Load Balancer](https://aws.amazon.com/documentation/elastic-load-balancing/) to be created, which will incur additional AWS costs.

Once installed, you may see a ? for Ingress IP Address. This is because the created ELB is available at a DNS name, not an IP address. To get the DNS name, run: kubectl get service ingress-nginx-ingress-controller -n gitlab-managed-apps -o jsonpath=”{.status.loadBalancer.ingress[0].hostname}”. Note, you may see a trailing % on some Kubernetes versions, do not include it.

The Ingress is now available at this address, and will route incoming requests to the proper service based on the DNS name in the request. To support this, a wildcard DNS CNAME record should be created for the desired domain name. For example *.myekscluster.com would point to the Ingress hostname obtained earlier.

![Create DNS](img/create_dns.png)

### Deploying the GitLab Runner (optional)

If the project is on GitLab.com, free shared runners are available and you do not have to deploy one. If a project specific runner is desired, or there are no shared runners, it is easy to deploy one.

Simply click on the Install button for the GitLab Runner. It is important to note that the runner deployed is set as privileged, which means it essentially has root access to the underlying machine. This is required to build docker images, and so is on by default.

### Deploying Prometheus (optional)

GitLab is able to monitor applications automatically, utilizing [Prometheus](../../integrations/prometheus.html). Kubernetes container CPU and memory metrics are automatically collected, and response metrics are retrieved from NGINX Ingress as well.

To enable monitoring, simply install Prometheus into the cluster with the Install button.

## Create a default Storage Class

Amazon EKS does not have a default Storage Class out of the box, which means requests for persistent volumes will not be automatically fulfilled. As part of Auto DevOps, the deployed Postgres instance requests persistent storage, and without a default storage class it will fail to start.

If a default Storage Class does not already exist and is desired, follow Amazon’s [short guide](https://docs.aws.amazon.com/eks/latest/userguide/storage-classes.html) to create one.

Alternatively, disable Postgres by setting the project variable [POSTGRES_ENABLED](../../../../topics/autodevops/#environment-variables) to false.

## Deploy the app to EKS

With RBAC disabled and services deployed, [Auto DevOps](https://docs.gitlab.com/ee/topics/autodevops/) can now be leveraged to build, test, and deploy the app. To enable, click on Settings in the left sidebar, then CI/CD. You will see a section for Auto DevOps, expand it. Click on the radio button to Enable Auto DevOps.

If a wildcard DNS entry was created resolving to the Load Balancer, enter it in the domain field. Otherwise, the deployed app will not be externally available outside of the cluster. To save, click Save changes.

![Deploy Pipeline](img/pipeline.png)

A new pipeline will automatically be created, which will begin to build, test, and deploy the app.

After the pipeline has finished, your app will be running in EKS and available to users. Click on CI/CD tab in the left navigation bar, and choose Environments.

![Deployed Environment](img/environment.png)

You will see a list of the environments and their deploy status, as well as options to browse to the app, view monitoring metrics, and even access a shell on the running pod.

To learn more about Auto DevOps, review our [documentation](../../../../topics/autodevops/).



            

          

      

      

    

  

    
      
          
            
  # Deploy Tokens

> [Introduced][ce-17894] in GitLab 10.7.

Deploy tokens allow to download (through git clone), or read the container registry images of a project without the need of having a user and a password.

Please note, that the expiration of deploy tokens happens on the date you define,
at midnight UTC and that they can be only managed by [maintainers](https://docs.gitlab.com/ee/user/permissions.html).

## Creating a Deploy Token

You can create as many deploy tokens as you like from the settings of your project:

1. Log in to your GitLab account.
1. Go to the project you want to create Deploy Tokens for.
1. Go to Settings > Repository
1. Click on “Expand” on Deploy Tokens section
1. Choose a name and optionally an expiry date for the token.
1. Choose the [desired scopes](#limiting-scopes-of-a-deploy-token).
1. Click on Create deploy token.
1. Save the deploy token somewhere safe. Once you leave or refresh


the page, you won’t be able to access it again.




![Personal access tokens page](img/deploy_tokens.png)

## Revoking a deploy token

At any time, you can revoke any deploy token by just clicking the
respective Revoke button under the ‘Active deploy tokens’ area.

## Limiting scopes of a deploy token

Deploy tokens can be created with two different scopes that allow various
actions that a given token can perform. The available scopes are depicted in
the following table.


Scope | Description |

—– | ———– |

read_repository | Allows read-access to the repository through git clone |

read_registry | Allows read-access to [container registry] images if a project is private and authorization is required. |



## Usage

### Git clone a repository

To download a repository using a Deploy Token, you just need to:


	Create a Deploy Token with read_repository as a scope.


	Take note of your username and token


	git clone the project using the Deploy Token:




`bash
git clone http://<username>:<deploy_token>@gitlab.example.com/tanuki/awesome_project.git
`

Just replace <username> and <deploy_token> with the proper values

### Read container registry images

To read the container registry images, you’ll need to:


	Create a Deploy Token with read_registry as a scope.


	Take note of your username and token


	Log in to GitLab’s Container Registry using the deploy token:




`
docker login registry.example.com -u <username> -p <deploy_token>
`

Just replace <username> and <deploy_token> with the proper values. Then you can simply
pull images from your Container Registry.

### GitLab Deploy Token

> [Introduced][ce-18414] in GitLab 10.8.

There’s a special case when it comes to Deploy Tokens, if a user creates one
named gitlab-deploy-token, the username and token of the Deploy Token will be
automatically exposed to the CI/CD jobs as environment variables: CI_DEPLOY_USER and
CI_DEPLOY_PASSWORD, respectively.

[ce-17894]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/17894
[ce-11845]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/11845
[ce-18414]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/18414
[container registry]: ../container_registry.md



            

          

      

      

    

  

    
      
          
            
  This document was moved to [another location](../repository/gpg_signed_commits/index.md).



            

          

      

      

    

  

    
      
          
            
  # Import your project from Bitbucket Cloud to GitLab

NOTE: Note:
The Bitbucket Cloud importer works only with Bitbucket.org, not with Bitbucket
Server (aka Stash). If you are trying to import projects from Bitbucket Server, use
[the Bitbucket Server importer](bitbucket_server.md).

Import your projects from Bitbucket Cloud to GitLab with minimal effort.

## Overview


	At its current state, the Bitbucket importer can import:
- the repository description (GitLab 7.7+)
- the Git repository data (GitLab 7.7+)
- the issues (GitLab 7.7+)
- the issue comments (GitLab 8.15+)
- the pull requests (GitLab 8.4+)
- the pull request comments (GitLab 8.15+)
- the milestones (GitLab 8.15+)
- the wiki (GitLab 8.15+)


	References to pull requests and issues are preserved (GitLab 8.7+)


	Repository public access is retained. If a repository is private in Bitbucket
it will be created as private in GitLab as well.




## Requirements

The [Bitbucket Cloud integration][bb-import] must be first enabled in order to be
able to import your projects from Bitbucket Cloud. Ask your GitLab administrator
to enable this if not already.

## How it works

When issues/pull requests are being imported, the Bitbucket importer tries to find
the Bitbucket author/assignee in GitLab’s database using the Bitbucket ID. For this
to work, the Bitbucket author/assignee should have signed in beforehand in GitLab
and associated their Bitbucket account. If the user is not
found in GitLab’s database, the project creator (most of the times the current
user that started the import process) is set as the author, but a reference on
the issue about the original Bitbucket author is kept.

The importer will create any new namespaces (groups) if they don’t exist or in
the case the namespace is taken, the repository will be imported under the user’s
namespace that started the import process.

## Importing your Bitbucket repositories

1. Sign in to GitLab and go to your dashboard.
1. Click on New project.


	Click on the “Bitbucket Cloud” button.


![Bitbucket](img/import_projects_from_new_project_page.png)









	Grant GitLab access to your Bitbucket account


![Grant access](img/bitbucket_import_grant_access.png)









	Click on the projects that you’d like to import or Import all projects.
You can also select the namespace under which each project will be
imported.


![Import projects](img/bitbucket_import_select_project.png)








[bb-import]: ../../../integration/bitbucket.md
[social sign-in]: ../../profile/account/social_sign_in.md



            

          

      

      

    

  

    
      
          
            
  # Import your project from Bitbucket Server to GitLab

> [Introduced](https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/20164)
in GitLab 11.2.

NOTE: Note:
The Bitbucket Server importer does not work with Bitbucket Cloud (aka bitbucket.org).
Use the [Bitbucket Cloud importer](bitbucket.md) for that.

Import your projects from Bitbucket Server to GitLab with minimal effort.

## Overview


	In its current state, the Bitbucket importer can import:
- the repository description (GitLab 11.2+)
- the Git repository data (GitLab 11.2+)
- the pull requests (GitLab 11.2+)
- the pull request comments (GitLab 11.2+)


	Repository public access is retained. If a repository is private in Bitbucket
it will be created as private in GitLab as well.




## Limitations

1. Currently GitLab doesn’t allow comments on arbitrary lines of code, so any
Bitbucket comments out of bounds will be inserted as comments in the merge
request.
1. Bitbucket Server allows multiple levels of threading. GitLab
import will collapse this into one discussion and quote part of the original
comment.
1. Declined pull requests have unrecahable commits, which prevents the GitLab
importer from generating a proper diff. These pull requests will show up as
empty changes.
1. Attachments in Markdown are currently not imported.
1. Task lists are not imported.
1. Emoji reactions are not imported

## How it works

The Bitbucket Server importer works as follows:


	The user will be prompted to enter the URl, username, and password or personal access token to login to Bitbucket.
These credentials are preserved only as long as the importer is running.




1. The importer will attempt to list all the current repositories on the Bitbucket Server.
1. Upon selection, the importer will clone the repository and import pull requests and comments.

### User assignment

When issues/pull requests are being imported, the Bitbucket importer tries to
find the author’s e-mail address with a confirmed e-mail address in the GitLab
user database.  If no such user is available, the project creator is set as
the author. The importer will append a note in the comment to mark the original
creator.

The importer will create any new namespaces (groups) if they don’t exist or in
the case the namespace is taken, the repository will be imported under the user’s
namespace that started the import process.

## Importing your Bitbucket repositories

1. Sign in to GitLab and go to your dashboard.
1. Click on New project.
1. Click on the “Bitbucket Server” button. If the button is not present, enable the importer in


Admin > Application Settings > Visibility and access controls > Import sources.

![Bitbucket](img/import_projects_from_new_project_page.png)





	Enter your Bitbucket Server credentials.


![Grant access](img/bitbucket_server_import_credentials.png)









	Click on the projects that you’d like to import or Import all projects.
You can also select the namespace under which each project will be
imported.


![Import projects](img/bitbucket_server_import_select_project.png)










            

          

      

      

    

  

    
      
          
            
  # Migrating from ClearCase

[ClearCase](https://www-03.ibm.com/software/products/en/clearcase/) is a set of
tools developed by IBM which also include a centralized version control system
similar to Git.

A good read of ClearCase’s basic concepts is can be found in this [StackOverflow
post](https://stackoverflow.com/a/645771/974710).

The following table illustrates the main differences between ClearCase and Git:


Aspect | ClearCase | Git |

—— | ——— | — |

Repository model | Client-server | Distributed |

Revision IDs | Branch + number  | Global alphanumeric ID |

Scope of Change | File | Directory tree snapshot |

Concurrency model | Merge | Merge |

Storage Method | Deltas | Full content |

Client | CLI, Eclipse, CC Client | CLI, Eclipse, Git client/GUIs |

Server | UNIX, Windows legacy systems | UNIX, macOS |

License | Proprietary | GPL |



_Taken from the slides [ClearCase and the journey to Git](https://www.open.collab.net/media/pdfs/ClearCase-and-the-journey-to-Git.pdf) provided by collab.net_

## Why migrate

ClearCase can be difficult to manage both from a user and an admin perspective.
Migrating to Git/GitLab there is:


	No licensing costs, Git is GPL while ClearCase is proprietary.


	Shorter learning curve, Git has a big community and a vast number of
tutorials to get you started.


	Integration with modern tools, migrating to Git and GitLab you can have
an open source end-to-end software development platform with built-in version
control, issue tracking, code review, CI/CD, and more.




## How to migrate

While there doesn’t exist a tool to fully migrate from ClearCase to Git, here
are some useful links to get you started:


	[Bridge for Git and ClearCase](https://github.com/charleso/git-cc)


	[Slides “ClearCase and the journey to Git”](https://www.open.collab.net/media/pdfs/ClearCase-and-the-journey-to-Git.pdf)


	[ClearCase to Git](https://therub.org/2013/07/19/clearcase-to-git/)


	[Dual syncing ClearCase to Git](https://therub.org/2013/10/22/dual-syncing-clearcase-and-git/)


	[Moving to Git from ClearCase](https://sateeshkumarb.wordpress.com/2011/01/15/moving-to-git-from-clearcase/)


	[ClearCase to Git webinar](https://www.brighttalk.com/webcast/11817/162473/clearcase-to-git)






            

          

      

      

    

  

    
      
          
            
  # Migrating from CVS

[CVS](https://savannah.nongnu.org/projects/cvs) is an old centralized version
control system similar to [SVN](svn.md).

## CVS vs Git

The following list illustrates the main differences between CVS and Git:


	Git is distributed. On the other hand, CVS is centralized using a client-server
architecture. This translates to Git having a more flexible workflow since
your working area is a copy of the entire repository. This decreases the
overhead when switching branches or merging for example, since you don’t have
to communicate with a remote server.


	Atomic operations. In Git all operations are
[atomic](https://en.wikipedia.org/wiki/Atomic_commit), either they succeed as
whole, or they fail without any changes. In CVS, commits (and other operations)
are not atomic. If an operation on the repository is interrupted in the middle,
the repository can be left in an inconsistent state.


	Storage method. Changes in CVS are per file (changeset), while in Git
a committed file(s) is stored in its entirety (snapshot). That means that’s
very easy in Git to revert or undo a whole change.


	Revision IDs. The fact that in CVS changes are per files, the revision ID
is depicted by version numbers, for example 1.4 reflects how many time a
given file has been changed. In Git, each version of a project as a whole
(each commit) has its unique name given by SHA-1.


	Merge tracking. Git uses a commit-before-merge approach rather than
merge-before-commit (or update-then-commit) like CVS. If while you were
preparing to create a new commit (new revision) somebody created a
new commit on the same branch and pushed to the central repository, CVS would
force you to first update your working directory and resolve conflicts before
allowing you to commit. This is not the case with Git. You first commit, save
your state in version control, then you merge the other developer’s changes.
You can also ask the other developer to do the merge and resolve any conflicts
themselves.


	Signed commits. Git supports signing your commits with GPG for additional
security and verification that the commit indeed came from its original author.
GitLab can [integrate with GPG](../repository/gpg_signed_commits/index.md)
and show whether a signed commit is correctly verified.




_Some of the items above were taken from this great
[Stack Overflow post](https://stackoverflow.com/a/824241/974710). For a more
complete list of differences, consult the
Wikipedia article on [comparing the different version control software](https://en.wikipedia.org/wiki/Comparison_of_version_control_software)._

## Why migrate

CVS is old with no new release since 2008. Git provides more tools to work
with (git bisect for one) which makes for a more productive workflow.
Migrating to Git/GitLab there is:


	Shorter learning curve, Git has a big community and a vast number of
tutorials to get you started (see our [Git topic](../../../topics/git/index.md)).


	Integration with modern tools, migrating to Git and GitLab you can have
an open source end-to-end software development platform with built-in version
control, issue tracking, code review, CI/CD, and more.


	Support for many network protocols. Git supports SSH, HTTP/HTTPS and rsync
among others, whereas CVS supports only SSH and its own insecure pserver
protocol with no user authentication.




## How to migrate

Here’s a few links to get you started with the migration:


	[Migrate using the cvs-fast-export tool](http://www.catb.org/~esr/reposurgeon/dvcs-migration-guide.html) ([_source code_](https://gitlab.com/esr/cvs-fast-export))


	[Stack Overflow post on importing the CVS repo](https://stackoverflow.com/a/11490134/974710)


	[Convert a CVS repository to Git](http://www.techrepublic.com/blog/linux-and-open-source/convert-cvs-repositories-to-git/)


	[Man page of the git-cvsimport tool](https://www.kernel.org/pub/software/scm/git/docs/git-cvsimport.html)






            

          

      

      

    

  

    
      
          
            
  # Import your project from FogBugz to GitLab

It only takes a few simple steps to import your project from FogBugz.
The importer will import all of your cases and comments with original case
numbers and timestamps. You will also have the opportunity to map FogBugz
users to GitLab users.

1. From your GitLab dashboard click ‘New project’
1. Click on the ‘FogBugz’ button


![FogBugz](img/fogbugz_import_select_fogbogz.png)





	Enter your FogBugz URL, email address, and password.





![Login](img/fogbugz_import_login.png)





	Create mapping from FogBugz users to GitLab users.





![User Map](img/fogbugz_import_user_map.png)





	Select the projects you wish to import by clicking the Import buttons





![Import Project](img/fogbugz_import_select_project.png)




1. Once the import has finished click the link to take you to the project
dashboard. Follow the directions to push your existing repository.


![Finished](img/fogbugz_import_finished.png)






            

          

      

      

    

  

    
      
          
            
  # Import your project from Gitea to GitLab

Import your projects from Gitea to GitLab with minimal effort.

## Overview

>**Note:**
This requires Gitea v1.0.0 or newer.


	At its current state, Gitea importer can import:
- the repository description (GitLab 8.15+)
- the Git repository data (GitLab 8.15+)
- the issues (GitLab 8.15+)
- the pull requests (GitLab 8.15+)
- the milestones (GitLab 8.15+)
- the labels (GitLab 8.15+)


	Repository public access is retained. If a repository is private in Gitea
it will be created as private in GitLab as well.




## How it works

Since Gitea is currently not an OAuth provider, author/assignee cannot be mapped
to users in your GitLab’s instance. This means that the project creator (most of
the times the current user that started the import process) is set as the author,
but a reference on the issue about the original Gitea author is kept.

The importer will create any new namespaces (groups) if they don’t exist or in
the case the namespace is taken, the repository will be imported under the user’s
namespace that started the import process.

## Importing your Gitea repositories

The importer page is visible when you create a new project.

![New project page on GitLab](img/import_projects_from_new_project_page.png)

Click on the Gitea link and the import authorization process will start.

![New Gitea project import](img/import_projects_from_gitea_new_import.png)

### Authorize access to your repositories using a personal access token

With this method, you will perform a one-off authorization with Gitea to grant
GitLab access your repositories:


	Go to <https://you-gitea-instance/user/settings/applications> (replace
you-gitea-instance with the host of your Gitea instance).




1. Click Generate New Token.
1. Enter a token description.
1. Click Generate Token.
1. Copy the token hash.
1. Go back to GitLab and provide the token to the Gitea importer.
1. Hit the List Your Gitea Repositories button and wait while GitLab reads


your repositories’ information. Once done, you’ll be taken to the importer
page to select the repositories to import.




### Select which repositories to import

After you’ve authorized access to your Gitea repositories, you will be
redirected to the Gitea importer page.

From there, you can see the import statuses of your Gitea repositories.


	Those that are being imported will show a _started_ status,


	those already successfully imported will be green with a _done_ status,


	whereas those that are not yet imported will have an Import button on the
right side of the table.




If you want, you can import all your Gitea projects in one go by hitting
Import all projects in the upper left corner.

![Gitea importer page](img/import_projects_from_github_importer.png)

—

You can also choose a different name for the project and a different namespace,
if you have the privileges to do so.



            

          

      

      

    

  

    
      
          
            
  # Import your project from GitHub to GitLab

Using the importer, you can import your GitHub repositories to GitLab.com or to
your self-hosted GitLab instance.

## Overview

NOTE: Note:
While these instructions will always work for users on GitLab.com, if you are an
administrator of a self-hosted GitLab instance, you will need to enable the
[GitHub integration][gh-import] in order for users to follow the preferred
import method described on this page. If this is not enabled, users can alternatively import their
GitHub repositories using a [personal access token](#using-a-github-token) from GitHub,
but this method will not be able to associate all user activity (such as issues and pull requests)
with matching GitLab users. As an administrator of a self-hosted GitLab instance, you can also use
the [GitHub rake task](../../../administration/raketasks/github_import.md) to import projects from
GitHub without the constraints of a Sidekiq worker.


	The following aspects of a project are imported:
	
	Repository description (GitLab.com & 7.7+)


	Git repository data (GitLab.com & 7.7+)


	Issues (GitLab.com & 7.7+)


	Pull requests (GitLab.com & 8.4+)


	Wiki pages (GitLab.com & 8.4+)


	Milestones (GitLab.com & 8.7+)


	Labels (GitLab.com & 8.7+)


	Release note descriptions (GitLab.com & 8.12+)


	Pull request review comments (GitLab.com & 10.2+)


	Regular issue and pull request comments








References to pull requests and issues are preserved (GitLab.com & 8.7+), and
each imported repository maintains visibility level unless that [visibility
level is restricted](../../../public_access/public_access.md#restricting-the-use-of-public-or-internal-projects),
in which case it defaults to the default project visibility.

## How it works

When issues and pull requests are being imported, the importer attempts to find their GitHub authors and
assignees in the database of the GitLab instance (note that pull requests are called “merge requests” in GitLab).

For this association to succeed, prior to the import, each GitHub author and assignee in the repository must
have either previously logged in to a GitLab account using the GitHub icon or have a GitHub account with
a [public email address](https://help.github.com/articles/setting-your-commit-email-address-on-github/) that
matches their GitLab account’s email address.

If a user referenced in the project is not found in GitLab’s database, the project creator (typically the user
that initiated the import process) is set as the author/assignee, but a note on the issue mentioning the original
GitHub author is added.

The importer creates any new namespaces (groups) if they do not exist, or, if the namespace is taken, the
repository is imported under the namespace of the user who initiated the import process. The namespace/repository
name can also be edited, with the proper permissions.

The importer will also import branches on forks of projects related to open pull requests. These branches will be
imported with a naming scheme similar to GH-SHA-username/pull-request-number/fork-name/branch. This may lead to
a discrepancy in branches compared to those of the GitHub repository.

For additional technical details, you can refer to the
[GitHub Importer](../../../development/github_importer.md “Working with the GitHub importer”)
developer documentation.

## Import your GitHub repository into GitLab

### Using the GitHub integration

Before you begin, ensure that any GitHub users who you want to map to GitLab users have either:

1. A GitLab account that has logged in using the GitHub icon
- or -
2. A GitLab account with an email address that matches the [public email address](https://help.github.com/articles/setting-your-commit-email-address-on-github/) of the GitHub user

User-matching attempts occur in that order, and if a user is not identified either way, the activity is associated with
the user account that is performing the import.

NOTE: Note:
If you are using a self-hosted GitLab instance, this process requires that you have configured the
[GitHub integration][gh-import].


	From the top navigation bar, click + and select New project.


	Select the Import project tab and then select GitHub.


	Select the first button to List your GitHub repositories. You are redirected to a page on github.com to authorize the GitLab application.


	Click Authorize gitlabhq. You are redirected back to GitLab’s Import page and all of your GitHub repositories are listed.


	Continue on to [selecting which repositories to import](#selecting-which-repositories-to-import).




### Using a GitHub token

NOTE: Note:
For a proper author/assignee mapping for issues and pull requests, the [GitHub integration method (above)](#using-the-github-integration)
should be used instead of the personal access token. If you are using GitLab.com or a self-hosted GitLab instance with the GitHub
integration enabled, that should be the preferred method to import your repositories. Read more in the [How it works](#how-it-works) section.

If you are not using the GitHub integration, you can still perform an authorization with GitHub to grant GitLab access your repositories:


	Go to https://github.com/settings/tokens/new


	Enter a token description.


	Select the repo scope.


	Click Generate token.


	Copy the token hash.


	Go back to GitLab and provide the token to the GitHub importer.


	Hit the List Your GitHub Repositories button and wait while GitLab reads your repositories’ information.
Once done, you’ll be taken to the importer page to select the repositories to import.




### Selecting which repositories to import

After you have authorized access to your GitHub repositories, you are redirected to the GitHub importer page and
your GitHub repositories are listed.


	By default, the proposed repository namespaces match the names as they exist in GitHub, but based on your permissions,
you can choose to edit these names before you proceed to import any of them.


	Select the Import button next to any number of repositories, or select Import all repositories.


	The Status column shows the import status of each repository. You can choose to leave the page open and it will
update in realtime or you can return to it later.


	Once a repository has been imported, click its GitLab path to open its GitLab URL.




## Mirroring and pipeline status sharing

Depending your GitLab tier, [project mirroring](../../../workflow/repository_mirroring.md) can be set up to keep
your imported project in sync with its GitHub copy.

Additionally, you can configure GitLab to send pipeline status updates back GitHub with the
[GitHub Project Integration](https://docs.gitlab.com/ee/user/project/integrations/github.html). [PREMIUM]

If you import your project using [CI/CD for external repo](https://docs.gitlab.com/ee/ci/ci_cd_for_external_repos/), then both
of the above are automatically configured. [PREMIUM]

## Improving the speed of imports on self-hosted instances

NOTE: Note:
Admin access to the GitLab server is required.

For large projects it may take a while to import all data. To reduce the time necessary, you can increase the number of
Sidekiq workers that process the following queues:


	github_importer


	github_importer_advance_stage




For an optimal experience, it’s recommended having at least 4 Sidekiq processes (each running a number of threads equal
to the number of CPU cores) that only process these queues. It’s also recommended that these processes run on separate
servers. For 4 servers with 8 cores this means you can import up to 32 objects (e.g., issues) in parallel.

Reducing the time spent in cloning a repository can be done by increasing network throughput, CPU capacity, and disk
performance (e.g., by using high performance SSDs) of the disks that store the Git repositories (for your GitLab instance).
Increasing the number of Sidekiq workers will not reduce the time spent cloning repositories.

[gh-import]: ../../../integration/github.md “GitHub integration”



            

          

      

      

    

  

    
      
          
            
  # Project importing from GitLab.com to your private GitLab instance

You can import your existing GitLab.com projects to your GitLab instance. But keep in mind that it is possible only if
GitLab support is enabled on your GitLab instance.
You can read more about GitLab support [here](http://docs.gitlab.com/ce/integration/gitlab.html)
To get to the importer page you need to go to “New project” page.

>**Note:**
If you are interested in importing Wiki and Merge Request data to your new
instance, you’ll need to follow the instructions for [project export](../settings/import_export.md)

![New project page](img/gitlab_new_project_page.png)

Click on the “Import projects from GitLab.com” link and you will be redirected to GitLab.com
for permission to access your projects. After accepting, you’ll be automatically redirected to the importer.

![Importer page](img/gitlab_importer.png)

To import a project, you can simple click “Import”. The importer will import your repository and issues.
Once the importer is done, a new GitLab project will be created with your imported data.



            

          

      

      

    

  

    
      
          
            
  # Migrating projects to a GitLab instance

1. [From Bitbucket.org](bitbucket.md)
1. [From ClearCase](clearcase.md)
1. [From CVS](cvs.md)
1. [From FogBugz](fogbugz.md)
1. [From GitHub.com or GitHub Enterprise](github.md)
1. [From GitLab.com](gitlab_com.md)
1. [From Gitea](gitea.md)
1. [From Perforce](perforce.md)
1. [From SVN](svn.md)
1. [From TFS](tfs.md)
1. [From repo by URL](repo_by_url.md)
1. [By uploading a manifest file (AOSP)](manifest.md)

In addition to the specific migration documentation above, you can import any
Git repository via HTTP from the New Project page. Be aware that if the
repository is too large the import can timeout.

## Migrating from self-hosted GitLab to GitLab.com

You can copy your repos by changing the remote and pushing to the new server,
but issues and merge requests can’t be imported.

If you want to retain all metadata like issues and merge requests, you can use
the [import/export feature](../settings/import_export.md).



            

          

      

      

    

  

    
      
          
            
  # Import multiple repositories by uploading a manifest file

> [Introduced](https://gitlab.com/gitlab-org/gitlab-ce/issues/28811) in
GitLab 11.2.

GitLab allows you to import all the required Git repositories
based on a manifest file like the one used by the
[Android repository](https://android.googlesource.com/platform/manifest/+/2d6f081a3b05d8ef7a2b1b52b0d536b2b74feab4/default.xml).
This feature can be very handy when you need to import a project with many
repositories like the Android Open Source Project (AOSP).

## Requirements

GitLab must be using PostgreSQL for its database, since
[subgroups](../../group/subgroups/index.md) are needed for the manifest import
to work.

Read more about the [database requirements](../../../install/requirements.md#database).

## Manifest format

A manifest must be an XML file. There must be one remote tag with a review
attribute that contains a URL to a Git server, and each project tag must have
a name and path attribute. GitLab will then build the URL to the repository
by combining the URL from the remote tag with a project name.
A path attribute will be used to represent the project path in GitLab.

Below is a valid example of a manifest file:

```xml
<manifest>

<remote review=”https://android-review.googlesource.com/” />

<project path=”build/make” name=”platform/build” />
<project path=”build/blueprint” name=”platform/build/blueprint” />

</manifest>
```

As a result, the following projects will be created:


GitLab | Import URL |



---	—
https://gitlab.com/YOUR_GROUP/build/make	https://android-review.googlesource.com/platform/build
https://gitlab.com/YOUR_GROUP/build/blueprint	https://android-review.googlesource.com/platform/build/blueprint

## Importing the repositories

You can start the import with:

1. From your GitLab dashboard click New project
1. Switch to the Import project tab
1. Click on the Manifest file button
1. Provide GitLab with a manifest xml file
1. Select a group you want to import to (you need to create a group first if you don’t have one)
1. Click List available repositories. At this point, you will be redirected


to the import status page with projects list based on the manifest file.





	Check the list and click Import all repositories to start the import.


![Manifest status](img/manifest_status.png)










            

          

      

      

    

  

    
      
          
            
  # Migrating from Perforce Helix

[Perforce Helix](https://www.perforce.com/) provides a set of tools which also
include a centralized, proprietary version control system similar to Git.

## Perforce vs Git

The following list illustrates the main differences between Perforce Helix and
Git:


	In general the biggest difference is that Perforce branching is heavyweight
compared to Git’s lightweight branching. When you create a branch in Perforce,
it creates an integration record in their proprietary database for every file
in the branch, regardless how many were actually changed. Whereas Git was
implemented with a different architecture so that a single SHA acts as a pointer
to the state of the whole repo after the changes, making it very easy to branch.
This is what made feature branching workflows so easy to adopt with Git.





	Also, context switching between branches is much easier in Git. If your manager
said ‘You need to stop work on that new feature and fix this security
vulnerability’ you can do so very easily in Git.





	Having a complete copy of the project and its history on your local machine
means every transaction is superfast and Git provides that. You can branch/merge
and experiment in isolation, then clean up your mess before sharing your new
cool stuff with everyone.





	Git also made code review simple because you could share your changes without
merging them to master, whereas Perforce had to implement a Shelving feature on
the server so others could review changes before merging.




## Why migrate

Perforce Helix can be difficult to manage both from a user and an admin
perspective. Migrating to Git/GitLab there is:


	No licensing costs, Git is GPL while Perforce Helix is proprietary.


	Shorter learning curve, Git has a big community and a vast number of
tutorials to get you started.


	Integration with modern tools, migrating to Git and GitLab you can have
an open source end-to-end software development platform with built-in version
control, issue tracking, code review, CI/CD, and more.




## How to migrate

Git includes a built-in mechanism (git p4) to pull code from Perforce and to
submit back from Git to Perforce.

Here’s a few links to get you started:


	[git-p4 manual page](https://www.kernel.org/pub/software/scm/git/docs/git-p4.html)


	[git-p4 example usage](https://git.wiki.kernel.org/index.php/Git-p4_Usage)


	[Git book migration guide](https://git-scm.com/book/en/v2/Git-and-Other-Systems-Migrating-to-Git#_perforce_import)




Note that git p4 and git filter-branch are not very good at
creating small and efficient Git pack files. So it might be a good
idea to spend time and CPU to properly repack your repository before
sending it for the first time to your GitLab server. See
[this StackOverflow question](https://stackoverflow.com/questions/28720151/git-gc-aggressive-vs-git-repack/).



            

          

      

      

    

  

    
      
          
            
  # Import project from repo by URL

You can import your existing repositories by providing the Git URL:

1. From your GitLab dashboard click New project
1. Switch to the Import project tab
1. Click on the Repo by URL button
1. Fill in the “Git repository URL” and the remaining project fields
1. Click Create project to being the import process
1. Once complete, you will be redirected to your newly created project

![Import project by repo URL](img/import_projects_from_repo_url.png)



            

          

      

      

    

  

    
      
          
            
  # Migrating from SVN to GitLab

Subversion (SVN) is a central version control system (VCS) while
Git is a distributed version control system. There are some major differences
between the two, for more information consult your favorite search engine.

## Overview

There are two approaches to SVN to Git migration:


	
	[Git/SVN Mirror](#smooth-migration-with-a-gitsvn-mirror-using-subgit) which:
	
	Makes the GitLab repository to mirror the SVN project.


	Git and SVN repositories are kept in sync; you can use either one.


	Smoothens the migration process and allows to manage migration risks.













	
	[Cut over migration](#cut-over-migration-with-svn2git) which:
	
	Translates and imports the existing data and history from SVN to Git.


	Is a fire and forget approach, good for smaller teams.












## Smooth migration with a Git/SVN mirror using SubGit

[SubGit](https://subgit.com) is a tool for a smooth, stress-free SVN to Git
migration. It creates a writable Git mirror of a local or remote Subversion
repository and that way you can use both Subversion and Git as long as you like.
It requires access to your GitLab server as it talks with the Git repositories
directly in a filesystem level.

### SubGit prerequisites


	Install Oracle JRE 1.8 or newer. On Debian-based Linux distributions you can
follow [this article](http://www.webupd8.org/2012/09/install-oracle-java-8-in-ubuntu-via-ppa.html).




1. Download SubGit from https://subgit.com/download/.
1. Unpack the downloaded SubGit zip archive to the /opt directory. The subgit


command will be available at /opt/subgit-VERSION/bin/subgit.




### SubGit configuration

The first step to mirror you SVN repository in GitLab is to create a new empty
project which will be used as a mirror. For Omnibus installations the path to
the repository will be located at
/var/opt/gitlab/git-data/repositories/USER/REPO.git by default. For
installations from source, the default repository directory will be
/home/git/repositories/USER/REPO.git. For convenience, assign this path to a
variable:

`
GIT_REPO_PATH=/var/opt/gitlab/git-data/repositories/USER/REPOS.git
`

SubGit will keep this repository in sync with a remote SVN project. For
convenience, assign your remote SVN project URL to a variable:

`
SVN_PROJECT_URL=http://svn.company.com/repos/project
`

Next you need to run SubGit to set up a Git/SVN mirror. Make sure the following
subgit command is ran on behalf of the same user that keeps ownership of
GitLab Git repositories (by default git):

`
subgit configure --layout auto $SVN_PROJECT_URL $GIT_REPO_PATH
`

Adjust authors and branches mappings, if necessary. Open with your favorite
text editor:

`
edit $GIT_REPO_PATH/subgit/authors.txt
edit $GIT_REPO_PATH/subgit/config
`

For more information regarding the SubGit configuration options, refer to
[SubGit’s documentation](https://subgit.com/documentation.html) website.

### Initial translation

Now that SubGit has configured the Git/SVN repos, run subgit to perform the
initial translation of existing SVN revisions into the Git repository:

`
subgit install $GIT_REPO_PATH
`

After the initial translation is completed, the Git repository and the SVN
project will be kept in sync by subgit - new Git commits will be translated to
SVN revisions and new SVN revisions will be translated to Git commits. Mirror
works transparently and does not require any special commands.

If you would prefer to perform one-time cut over migration with subgit, use
the import command instead of install:

`
subgit import $GIT_REPO_PATH
`

### SubGit licensing

Running SubGit in a mirror mode requires a
[registration](https://subgit.com/pricing.html). Registration is free for open
source, academic and startup projects.

We’re currently working on deeper GitLab/SubGit integration. You may track our
progress at [this issue](https://gitlab.com/gitlab-org/gitlab-ee/issues/990).

### SubGit support

For any questions related to SVN to GitLab migration with SubGit, you can
contact the SubGit team directly at [support@subgit.com](mailto:support@subgit.com).

## Cut over migration with svn2git

If you are currently using an SVN repository, you can migrate the repository
to Git and GitLab. We recommend a hard cut over - run the migration command once
and then have all developers start using the new GitLab repository immediately.
Otherwise, it’s hard to keep changing in sync in both directions. The conversion
process should be run on a local workstation.

Install svn2git. On all systems you can install as a Ruby gem if you already
have Ruby and Git installed.

`bash
sudo gem install svn2git
`

On Debian-based Linux distributions you can install the native packages:

`bash
sudo apt-get install git-core git-svn ruby
`

Optionally, prepare an authors file so svn2git can map SVN authors to Git authors.
If you choose not to create the authors file then commits will not be attributed
to the correct GitLab user. Some users may not consider this a big issue while
others will want to ensure they complete this step. If you choose to map authors
you will be required to map every author that is present on changes in the SVN
repository. If you don’t, the conversion will fail and you will have to update
the author file accordingly. The following command will search through the
repository and output a list of authors.

`bash
svn log --quiet | grep -E "r[0-9]+ \| .+ \|" | cut -d'|' -f2 | sed 's/ //g' | sort | uniq
`

Use the output from the last command to construct the authors file.
Create a file called authors.txt and add one mapping per line.

`
janedoe = Jane Doe <janedoe@example.com>
johndoe = John Doe <johndoe@example.com>
`

If your SVN repository is in the standard format (trunk, branches, tags,
not nested) the conversion is simple. For a non-standard repository see
[svn2git documentation](https://github.com/nirvdrum/svn2git). The following
command will checkout the repository and do the conversion in the current
working directory. Be sure to create a new directory for each repository before
running the svn2git command. The conversion process will take some time.

`bash
svn2git https://svn.example.com/path/to/repo --authors /path/to/authors.txt
`

If your SVN repository requires a username and password add the
–username <username> and –password <password flags to the above command.
svn2git also supports excluding certain file paths, branches, tags, etc. See
[svn2git documentation](https://github.com/nirvdrum/svn2git) or run
svn2git –help for full documentation on all of the available options.

Create a new GitLab project, where you will eventually push your converted code.
Copy the SSH or HTTP(S) repository URL from the project page. Add the GitLab
repository as a Git remote and push all the changes. This will push all commits,
branches and tags.

`bash
git remote add origin git@gitlab.com:<group>/<project>.git
git push --all origin
git push --tags origin
`

## Contribute to this guide
We welcome all contributions that would expand this guide with instructions on
how to migrate from SVN and other version control systems.



            

          

      

      

    

  

    
      
          
            
  # Migrating from TFS

[TFS](https://www.visualstudio.com/tfs/) is a set of tools developed by Microsoft
which also includes a centralized version control system (TFVC) similar to Git.

In this document, we emphasize on the TFVC to Git migration.

## TFVC vs Git

The following list illustrates the main differences between TFVC and Git:


	Git is distributed whereas TFVC is centralized using a client-server
architecture. This translates to Git having a more flexible workflow since
your working area is a copy of the entire repository. This decreases the
overhead when switching branches or merging for example, since you don’t have
to communicate with a remote server.


	Storage method. Changes in CVS are per file (changeset), while in Git
a committed file(s) is stored in its entirety (snapshot). That means that’s
very easy in Git to revert or undo a whole change.




_Check also Microsoft’s documentation on the
[comparison of Git and TFVC](https://www.visualstudio.com/en-us/docs/tfvc/comparison-git-tfvc)
and the Wikipedia article on
[comparing the different version control software](https://en.wikipedia.org/wiki/Comparison_of_version_control_software)._

## Why migrate

Migrating to Git/GitLab there is:


	No licensing costs, Git is GPL while TFVC is proprietary.


	Shorter learning curve, Git has a big community and a vast number of
tutorials to get you started (see our [Git topic](../../../topics/git/index.md)).


	Integration with modern tools, migrating to Git and GitLab you can have
an open source end-to-end software development platform with built-in version
control, issue tracking, code review, CI/CD, and more.




## How to migrate

The best option to migrate from TFVC to Git is to use the
[git-tfs](https://github.com/git-tfs/git-tfs) tool. A specific guide for the
migration exists:
[Migrate TFS to Git](https://github.com/git-tfs/git-tfs/blob/master/doc/usecases/migrate_tfs_to_git.md).



            

          

      

      

    

  

    
      
          
            
  # Atlassian Bamboo CI Service

GitLab provides integration with Atlassian Bamboo for continuous integration.
When configured, pushes to a project will trigger a build in Bamboo automatically.
Merge requests will also display CI status showing whether the build is pending,
failed, or completed successfully. It also provides a link to the Bamboo build
page for more information.

Bamboo doesn’t quite provide the same features as a traditional build system when
it comes to accepting webhooks and commit data. There are a few things that
need to be configured in a Bamboo build plan before GitLab can integrate.

## Setup

### Complete these steps in Bamboo


	Navigate to a Bamboo build plan and choose ‘Configure plan’ from the ‘Actions’
dropdown.




1. Select the ‘Triggers’ tab.
1. Click ‘Add trigger’.
1. Enter a description such as ‘GitLab trigger’
1. Choose ‘Repository triggers the build when changes are committed’
1. Check one or more repositories checkboxes
1. Enter the GitLab IP address in the ‘Trigger IP addresses’ box. This is a


whitelist of IP addresses that are allowed to trigger Bamboo builds.




1. Save the trigger.
1. In the left pane, select a build stage. If you have multiple build stages


you want to select the last stage that contains the git checkout task.




1. Select the ‘Miscellaneous’ tab.
1. Under ‘Pattern Match Labelling’ put ‘${bamboo.repository.revision.number}’


in the ‘Labels’ box.





	Save




Bamboo is now ready to accept triggers from GitLab. Next, set up the Bamboo
service in GitLab.

### Complete these steps in GitLab

1. Navigate to the project you want to configure to trigger builds.
1. Navigate to the [Integrations page](project_services.md#accessing-the-project-services)
1. Click ‘Atlassian Bamboo CI’
1. Select the ‘Active’ checkbox.
1. Enter the base URL of your Bamboo server. ‘https://bamboo.example.com’
1. Enter the build key from your Bamboo build plan. Build keys are typically made


up from the Project Key and Plan Key that are set on project/plan creation and
separated with a dash (-), for example  PROJ-PLAN. This is a short, all
uppercase identifier that is unique. When viewing a plan within Bamboo, the
build key is also shown in the browser URL, for example https://bamboo.example.com/browse/PROJ-PLAN.





	If necessary, enter username and password for a Bamboo user that has
access to trigger the build plan. Leave these fields blank if you do not require
authentication.





	Save or optionally click ‘Test Settings’. Please note that ‘Test Settings’
will actually trigger a build in Bamboo.




## Troubleshooting

If builds are not triggered, ensure you entered the right GitLab IP address in
Bamboo under ‘Trigger IP addresses’.

>**Note:**
- Starting with GitLab 8.14.0, builds are triggered on push events.



            

          

      

      

    

  

    
      
          
            
  # Bugzilla Service

Navigate to the [Integrations page](project_services.md#accessing-the-project-services),
select the Bugzilla service and fill in the required details as described
in the table below.


Field | Description |

—– | ———– |

description   | A name for the issue tracker (to differentiate between instances, for example) |

project_url   | The URL to the project in Bugzilla which is being linked to this GitLab project. Note that the project_url requires PRODUCT_NAME to be updated with the product/project name in Bugzilla. |

issues_url    | The URL to the issue in Bugzilla project that is linked to this GitLab project. Note that the issues_url requires :id in the URL. This ID is used by GitLab as a placeholder to replace the issue number. |

new_issue_url | This is the URL to create a new issue in Bugzilla for the project linked to this GitLab project. Note that the new_issue_url requires PRODUCT_NAME to be updated with the product/project name in Bugzilla. |



Once you have configured and enabled Bugzilla you’ll see the Bugzilla link on the GitLab project pages that takes you to the appropriate Bugzilla project.

## Referencing issues in Bugzilla

Issues in Bugzilla can be referenced in two alternative ways:
1. #<ID> where <ID> is a number (example #143).
2. <PROJECT>-<ID> where <PROJECT> starts with a capital letter which is


then followed by capital letters, numbers or underscores, and <ID> is
a number (example API_32-143).




We suggest using the longer format if you have both internal and external issue trackers enabled. If you use the shorter format and an issue with the same ID exists in the internal issue tracker the internal issue will be linked.

Please note that <PROJECT> part is ignored and links always point to the
address specified in issues_url.



            

          

      

      

    

  

    
      
          
            
  # Custom Issue Tracker Service

To enable the Custom Issue Tracker integration in a project, navigate to the
[Integrations page](project_services.md#accessing-the-project-services), click
the Customer Issue Tracker service, and fill in the required details on the page as described
in the table below.


Field | Description |

—– | ———– |

title   | A title for the issue tracker (to differentiate between instances, for example) |

description   | A name for the issue tracker (to differentiate between instances, for example) |

project_url   | Currently unused. Will be changed in a future release. |

issues_url    | The URL to the issue in the issue tracker project that is linked to this GitLab project. Note that the issues_url requires :id in the URL. This ID is used by GitLab as a placeholder to replace the issue number. For example, https://customissuetracker.com/project-name/:id. |

new_issue_url | Currently unused. Will be changed in a future release. |



Once you have configured and enabled Custom Issue Tracker Service you’ll see a link on the GitLab project pages that takes you to that custom issue tracker.

## Referencing issues


	Issues are referenced with ANYTHING-<ID>, where ANYTHING can be any string and <ID> is a number used in the target project of the custom integration (example PROJECT-143).


	ANYTHING is a placeholder to differentiate against GitLab issues, which are referenced with #<ID>. You can use a project name or project key to replace it for example.


	So with the example above, PROJECT-143 would refer to https://customissuetracker.com/project-name/143.






            

          

      

      

    

  

    
      
          
            
  # Enabling emails on push

By enabling this service, you will be able to receive email notifications for
every change that is pushed to your project.

Navigate to the [Integrations page](project_services.md#accessing-the-project-services)
and select the Emails on push service to configure it.

In the _Recipients_ area, provide a list of emails separated by spaces or newlines.

You can configure any of the following settings depending on your preference.


	Push events - Email will be triggered when a push event is received


	Tag push events - Email will be triggered when a tag is created and pushed


	Send from committer - Send notifications from the committer’s email address if the domain is part of the domain GitLab is running on (e.g. user@gitlab.com).


	Disable code diffs - Don’t include possibly sensitive code diffs in notification body.




—

![Email on push service settings](img/emails_on_push_service.png)



            

          

      

      

    

  

    
      
          
            
  # Hangouts Chat service

> [Introduced](https://gitlab.com/gitlab-org/gitlab-ce/issues/43756) in GitLab 11.2.

The Hangouts Chat service sends notifications from GitLab to the room for which the webhook was created.

## On Hangouts Chat

1. Open the chat room in which you want to see the notifications.
1. From the chat room menu, select Configure Webhooks.
1. Click on ADD WEBHOOK and fill in the name of the bot that will post the messages. Optionally define avatar.
1. Click SAVE and copy the Webhook URL of your webhook.

See also [the Hangouts Chat documentation for configuring incoming webhooks](https://developers.google.com/hangouts/chat/how-tos/webhooks)

## On GitLab

When you have the Webhook URL for your Hangouts Chat room webhook, you can setup the GitLab service.

1. Navigate to the [Integrations page](project_services.md#accessing-the-project-services) in your project’s settings, i.e. Project > Settings > Integrations.
1. Select the Hangouts Chat project service to configure it.
1. Check the Active checkbox to turn on the service.
1. Check the checkboxes corresponding to the GitLab events you want to receive.
1. Paste the Webhook URL that you copied from the Hangouts Chat configuration step.
1. Configure the remaining options and click Save changes.

Your Hangouts Chat room will now start receiving GitLab event notifications as configured.

![Hangouts Chat configuration](img/hangouts_chat_configuration.png)



            

          

      

      

    

  

    
      
          
            
  # Atlassian HipChat

GitLab provides a way to send HipChat notifications upon a number of events,
such as when a user pushes code, creates a branch or tag, adds a comment, and
creates a merge request.

## Setup

GitLab requires the use of a HipChat v2 API token to work. v1 tokens are
not supported at this time. Note the differences between v1 and v2 tokens:

HipChat v1 API (legacy) supports “API Auth Tokens” in the Group API menu. A v1
token is allowed to send messages to any room.

HipChat v2 API has tokens that are can be created using the Integrations tab
in the Group or Room admin page. By design, these are lightweight tokens that
allow GitLab to send messages only to one room.

### Complete these steps in HipChat

1. Go to: https://admin.hipchat.com/admin
1. Click on “Group Admin” -> “Integrations”.
1. Find “Build Your Own!” and click “Create”.
1. Select the desired room, name the integration “GitLab”, and click “Create”.
1. In the “Send messages to this room by posting this URL” column, you should
see a URL in the format:

`
https://api.hipchat.com/v2/room/<room>/notification?auth_token=<token>
`

HipChat is now ready to accept messages from GitLab. Next, set up the HipChat
service in GitLab.

### Complete these steps in GitLab

1. Navigate to the project you want to configure for notifications.
1. Navigate to the [Integrations page](project_services.md#accessing-the-project-services)
1. Click “HipChat”.
1. Select the “Active” checkbox.
1. Insert the token field from the URL into the Token field on the Web page.
1. Insert the room field from the URL into the Room field on the Web page.
1. Save or optionally click “Test Settings”.

## Troubleshooting

If you do not see notifications, make sure you are using a HipChat v2 API
token, not a v1 token.

Note that the v2 token is tied to a specific room. If you want to be able to
specify arbitrary rooms, you can create an API token for a specific user in
HipChat under “Account settings” and “API access”. Use the XXX value under
auth_token=XXX.



            

          

      

      

    

  

    
      
          
            
  # Project integrations

You can find the available integrations under your project’s
Settings ➔ Integrations page. You need to have at least
[maintainer permission][permissions] on the project.

## Project services

Project services allow you to integrate GitLab with other applications.
They are a bit like plugins in that they allow a lot of freedom in
adding functionality to GitLab.

[Learn more about project services.](project_services.md)

## Project webhooks

Project webhooks allow you to trigger a URL if for example new code is pushed or
a new issue is created. You can configure webhooks to listen for specific events
like pushes, issues or merge requests. GitLab will send a POST request with data
to the webhook URL.

[Learn more about webhooks.](webhooks.md)

[permissions]: ../../permissions.md



            

          

      

      

    

  

    
      
          
            
  # Irker IRC Gateway

GitLab provides a way to push update messages to an Irker server. When
configured, pushes to a project will trigger the service to send data directly
to the Irker server.

See the project homepage for further info: https://gitlab.com/esr/irker

## Needed setup

You will first need an Irker daemon. You can download the Irker code from its
repository on https://gitlab.com/esr/irker:

`
git clone https://gitlab.com/esr/irker.git
`

Once you have downloaded the code, you can run the python script named irkerd.
This script is the gateway script, it acts both as an IRC client, for sending
messages to an IRC server obviously, and as a TCP server, for receiving messages
from the GitLab service.

If the Irker server runs on the same machine, you are done. If not, you will
need to follow the firsts steps of the next section.

## Complete these steps in GitLab

1. Navigate to the project you want to configure for notifications.
1. Navigate to the [Integrations page](project_services.md#accessing-the-project-services)
1. Click “Irker”.
1. Select the “Active” checkbox.
1. Enter the server host address where irkerd runs (defaults to localhost)
in the Server host field on the Web page
1. Enter the server port of irkerd (e.g. defaults to 6659) in the
Server port field on the Web page.
1. Optional: if Default IRC URI is set, it has to be in the format
irc[s]://domain.name and will be prepend to each and every channel provided
by the user which is not a full URI.
1. Specify the recipients (e.g. #channel1, user1, etc.)
1. Save or optionally click “Test Settings”.

## Note on Irker recipients

Irker accepts channel names of the form chan and #chan, both for the
#chan channel. If you want to send messages in query, you will need to add
,isnick after the channel name, in this form: Aorimn,isnick. In this latter
case, Aorimn is treated as a nick and no more as a channel name.

Irker can also join password-protected channels. Users need to append
?key=thesecretpassword to the chan name.  When using this feature remember to
not put the # sign in front of the channel name; failing to do so will
result on irker joining a channel literally named #chan?key=password henceforth
leaking the channel key through the /whois IRC command (depending on IRC server
configuration). This is due to a long standing irker bug.



            

          

      

      

    

  

    
      
          
            
  # GitLab JIRA integration

GitLab can be configured to interact with [JIRA], a project management platform.

Once your GitLab project is connected to JIRA, you can reference and close the
issues in JIRA directly from GitLab.

For a use case, check out this article of [How and why to integrate GitLab with
JIRA](https://www.programmableweb.com/news/how-and-why-to-integrate-gitlab-jira/how-to/2017/04/25).

## Configuration

Each GitLab project can be configured to connect to a different JIRA instance. That
means one GitLab project maps to _all_ JIRA projects in that JIRA instance once
the configuration is set up. Therefore, you don’t have to explicitly associate
one GitLab project to any JIRA project. Once the configuration is set up, any JIRA
projects in the JIRA instance are already mapped to the GitLab project.

If you have one JIRA instance you can pre-fill the settings page with a default
template, see the [Services Templates][services-templates] docs.

Configuration happens via user name and password. Connecting to a JIRA server
via CAS is not possible.

In order to enable the JIRA service in GitLab, you need to first configure the
project in JIRA and then enter the correct values in GitLab.

### Configuring JIRA

We need to create a user in JIRA which will have access to all projects that
need to integrate with GitLab. Login to your JIRA instance as admin and under
Administration go to User Management and create a new user.

As an example, we’ll create a user named gitlab and add it to JIRA-developers
group.

It is important that the user `GitLab` has write-access to projects in JIRA

We have split this stage in steps so it is easier to follow.

—


	Login to your JIRA instance as an administrator and under Administration
go to User Management to create a new user.


![JIRA user management link](img/jira_user_management_link.png)

—









	The next step is to create a new user (e.g., gitlab) who has write access
to projects in JIRA. Enter the user’s name and a _valid_ e-mail address
since JIRA sends a verification e-mail to set-up the password.
_**Note:** JIRA creates the username automatically by using the e-mail
prefix. You can change it later if you want._


![JIRA create new user](img/jira_create_new_user.png)

—









	Now, let’s create a gitlab-developers group which will have write access
to projects in JIRA. Go to the Groups tab and select Create group.


![JIRA create new user](img/jira_create_new_group.png)

—

Give it an optional description and hit Create group.

![jira create new group](img/jira_create_new_group_name.png)

—









	Give the newly-created group write access by going to
Application access ➔ View configuration and adding the gitlab-developers
group to JIRA Core.


![JIRA group access](img/jira_group_access.png)

—









	Add the gitlab user to the gitlab-developers group by going to
Users ➔ GitLab user ➔ Add group and selecting the gitlab-developers
group from the dropdown menu. Notice that the group says _Access_ which is
what we aim for.


![JIRA add user to group](img/jira_add_user_to_group.png)

—








The JIRA configuration is over. Write down the new JIRA username and its
password as they will be needed when configuring GitLab in the next section.

### Configuring GitLab

>**Notes:**
- The currently supported JIRA versions are v6.x and v7.x.. GitLab 7.8 or


higher is required.





	GitLab 8.14 introduced a new way to integrate with JIRA which greatly simplified
the configuration options you have to enter. If you are using an older version,
[follow this documentation][jira-repo-old-docs].


	In order to support Oracle’s Access Manager, GitLab will send additional cookies
to enable Basic Auth. The cookie being added to each request is OBBasicAuth with
a value of fromDialog.




To enable JIRA integration in a project, navigate to the
[Integrations page](project_services.md#accessing-the-project-services), click
the JIRA service, and fill in the required details on the page as described
in the table below.


Field | Description |

—– | ———– |

Web URL | The base URL to the JIRA instance web interface which is being linked to this GitLab project. E.g., https://jira.example.com. |

JIRA API URL | The base URL to the JIRA instance API. Web URL value will be used if not set. E.g., https://jira-api.example.com. |

Username | The user name created in [configuring JIRA step](#configuring-jira). Using the email address will cause 401 unauthorized. |

Password |The password of the user created in [configuring JIRA step](#configuring-jira). |

Transition ID | This is the ID of a transition that moves issues to the desired state. It is possible to insert transition ids separated by , or ; which means the issue will be moved to each state after another using the given order.  Closing JIRA issues via commits or Merge Requests won’t work if you don’t set the ID correctly. |



### Getting a transition ID

In the most recent JIRA UI, you can no longer see transition IDs in the workflow
administration UI. You can get the ID you need in either of the following ways:


	By using the API, with a request like https://yourcompany.atlassian.net/rest/api/2/issue/ISSUE-123/transitions
using an issue that is in the appropriate “open” state





	By mousing over the link for the transition you want and looking for the
“action” parameter in the URL




Note that the transition ID may vary between workflows (e.g., bug vs. story),
even if the status you are changing to is the same.

After saving the configuration, your GitLab project will be able to interact
with all JIRA projects in your JIRA instance and you’ll see the JIRA link on the GitLab project pages that takes you to the appropriate JIRA project.

![JIRA service page](img/jira_service_page.png)

—

## JIRA issues

By now you should have [configured JIRA](#configuring-jira) and enabled the
[JIRA service in GitLab](#configuring-gitlab). If everything is set up correctly
you should be able to reference and close JIRA issues by just mentioning their
ID in GitLab commits and merge requests.

### Referencing JIRA Issues

When GitLab project has JIRA issue tracker configured and enabled, mentioning
JIRA issue in GitLab will automatically add a comment in JIRA issue with the
link back to GitLab. This means that in comments in merge requests and commits
referencing an issue, e.g., PROJECT-7, will add a comment in JIRA issue in the
format:

`
USER mentioned this issue in RESOURCE_NAME of [PROJECT_NAME|LINK_TO_COMMENT]:
ENTITY_TITLE
`


	USER A user that mentioned the issue. This is the link to the user profile in GitLab.


	LINK_TO_THE_COMMENT Link to the origin of mention with a name of the entity where JIRA issue was mentioned.


	RESOURCE_NAME Kind of resource which referenced the issue. Can be a commit or merge request.


	PROJECT_NAME GitLab project name.


	ENTITY_TITLE Merge request title or commit message first line.




![example of mentioning or closing the JIRA issue](img/jira_issue_reference.png)

—

### Closing JIRA Issues

JIRA issues can be closed directly from GitLab by using trigger words in
commits and merge requests. When a commit which contains the trigger word
followed by the JIRA issue ID in the commit message is pushed, GitLab will
add a comment in the mentioned JIRA issue and immediately close it (provided
the transition ID was set up correctly).

There are currently three trigger words, and you can use either one to achieve
the same goal:


	Resolves PROJECT-1


	Closes PROJECT-1


	Fixes PROJECT-1




where PROJECT-1 is the issue ID of the JIRA project.

>**Note:**
- Only commits and merges into the project’s default branch (usually master) will


close an issue in Jira. You can change your projects default branch under
[project settings](img/jira_project_settings.png).





	The JIRA issue will not be transitioned if it has a resolution.




### JIRA issue closing example

Let’s consider the following example:


	For the project named PROJECT in JIRA, we implemented a new feature
and created a merge request in GitLab.





	This feature was requested in JIRA issue PROJECT-7 and the merge request
in GitLab contains the improvement





	In the merge request description we use the issue closing trigger
Closes PROJECT-7.





	Once the merge request is merged, the JIRA issue will be automatically closed
with a comment and an associated link to the commit that resolved the issue.




—

In the following screenshot you can see what the link references to the JIRA
issue look like.

![A Git commit that causes the JIRA issue to be closed](img/jira_merge_request_close.png)

—

Once this merge request is merged, the JIRA issue will be automatically closed
with a link to the commit that resolved the issue.

![The GitLab integration closes JIRA issue](img/jira_service_close_issue.png)

—

![The GitLab integration creates a comment and a link on JIRA issue.](img/jira_service_close_comment.png)

## Troubleshooting

If things don’t work as expected that’s usually because you have configured
incorrectly the JIRA-GitLab integration.

### GitLab is unable to comment on a ticket

Make sure that the user you set up for GitLab to communicate with JIRA has the
correct access permission to post comments on a ticket and to also transition
the ticket, if you’d like GitLab to also take care of closing them.
JIRA issue references and update comments will not work if the GitLab issue tracker is disabled.

### GitLab is unable to close a ticket

Make sure the Transition ID you set within the JIRA settings matches the one
your project needs to close a ticket.

Make sure that the JIRA issue is not already marked as resolved, in other words that
the JIRA issue resolution field is not set. (It should not be struck through in
JIRA lists.)

[services-templates]: services_templates.md
[jira-repo-old-docs]: https://gitlab.com/gitlab-org/gitlab-ce/blob/8-13-stable/doc/project_services/jira.md
[jira]: https://www.atlassian.com/software/jira



            

          

      

      

    

  

    
      
          
            
  This document was moved to [another location](../clusters/index.md).



            

          

      

      

    

  

    
      
          
            
  # Mattermost Notifications Service

## On Mattermost

To enable Mattermost integration you must create an incoming webhook integration:

1. Sign in to your Mattermost instance
1. Visit incoming webhooks, that will be something like: https://mattermost.example/your_team_name/integrations/incoming_webhooks/add
1. Choose a display name, description and channel, those can be overridden on GitLab
1. Save it, copy the Webhook URL, we’ll need this later for GitLab.

There might be some cases that Incoming Webhooks are blocked by admin, ask your mattermost admin to enable
it on https://mattermost.example/admin_console/integrations/custom.

Display name override is not enabled by default, you need to ask your admin to enable it on that same section.

## On GitLab

After you set up Mattermost, it’s time to set up GitLab.

Navigate to the [Integrations page](project_services.md#accessing-the-project-services)
and select the Mattermost notifications service to configure it.
There, you will see a checkbox with the following events that can be triggered:


	Push


	Issue


	Confidential issue


	Merge request


	Note


	Tag push


	Pipeline


	Wiki page




Below each of these event checkboxes, you have an input field to enter
which Mattermost channel you want to send that event message. Enter your preferred channel handle (the hash sign # is optional).

At the end, fill in your Mattermost details:


Field | Description |

—– | ———– |

Webhook  | The incoming webhook URL which you have to setup on Mattermost, it will be something like: http://mattermost.example/hooks/5xo… |

Username | Optional username which can be on messages sent to Mattermost. Fill this in if you want to change the username of the bot. |

Notify only broken pipelines | If you choose to enable the Pipeline event and you want to be only notified about failed pipelines. |



![Mattermost configuration](img/mattermost_configuration.png)



            

          

      

      

    

  

    
      
          
            
  # Mattermost slash commands

> Introduced in GitLab 8.14

Mattermost commands give users an extra interface to perform common operations
from the chat environment. This allows one to, for example, create an issue as
soon as the idea was discussed in Mattermost.

## Prerequisites

Mattermost 3.4 and up is required.

If you have the Omnibus GitLab package installed, Mattermost is already bundled
in it. All you have to do is configure it. Read more in the
[Omnibus GitLab Mattermost documentation][omnimmdocs].

## Automated Configuration

If Mattermost is installed on the same server as GitLab, the configuration process can be
done for you by GitLab.

Go to the Mattermost Slash Command service on your project and click the ‘Add to Mattermost’ button.

## Manual Configuration

The configuration consists of two parts. First you need to enable the slash
commands in Mattermost and then enable the service in GitLab.

### Step 1. Enable custom slash commands in Mattermost

This step is only required when using a source install, omnibus installs will be
preconfigured with the right settings.

The first thing to do in Mattermost is to enable custom slash commands from
the administrator console.


	Log in with an account that has admin privileges and navigate to the system
console.


![Mattermost go to console](img/mattermost_goto_console.png)

—









	Click Custom integrations and set Enable Custom Slash Commands,
Enable custom integrations to override usernames, and Override
custom integrations to override profile picture icons to true


![Mattermost console](img/mattermost_console_integrations.png)

—









	Click Save at the bottom to save the changes.




### Step 2. Open the Mattermost slash commands service in GitLab


	Open a new tab for GitLab, go to your project’s
[Integrations page](project_services.md#accessing-the-project-services)
and select the Mattermost command service to configure it.
A screen will appear with all the values you need to copy in Mattermost as
described in the next step. Leave the window open.


>**Note:**
GitLab will propose some values for the Mattermost settings. The only one
required to copy-paste as-is is the Request URL, all the others are just
suggestions.

![Mattermost setup instructions](img/mattermost_config_help.png)

—









	Proceed to the next step and create a slash command in Mattermost with the
above values.




### Step 3. Create a new custom slash command in Mattermost

Now that you have enabled custom slash commands in Mattermost and opened
the Mattermost slash commands service in GitLab, it’s time to copy these values
in a new slash command.


	Back to Mattermost, under your team page settings, you should see the
Integrations option.


![Mattermost team integrations](img/mattermost_team_integrations.png)

—









	Go to the Slash Commands integration and add a new one by clicking the
Add Slash Command button.


![Mattermost add command](img/mattermost_add_slash_command.png)

—









	Fill in the options for the custom command as described in
[step 2](#step-2-open-the-mattermost-slash-commands-service-in-gitlab).


>**Note:**
If you plan on connecting multiple projects, pick a slash command trigger
word that relates to your projects such as /gitlab-project-name or even
just /project-name. Only use /gitlab if you will only connect a single
project to your Mattermost team.

![Mattermost add command configuration](img/mattermost_slash_command_configuration.png)









	After you setup all the values, copy the token (we will use it below) and
click Done.


![Mattermost slash command token](img/mattermost_slash_command_token.png)








### Step 4. Copy the Mattermost token into the Mattermost slash command service


	In GitLab, paste the Mattermost token you copied in the previous step and
check the Active checkbox.


![Mattermost copy token to GitLab](img/mattermost_gitlab_token.png)









	Click Save changes for the changes to take effect.




—

You are now set to start using slash commands in Mattermost that talk to the
GitLab project you configured.

## Authorizing Mattermost to interact with GitLab

The first time a user will interact with the newly created slash commands,
Mattermost will trigger an authorization process.

![Mattermost bot authorize](img/mattermost_bot_auth.png)

This will connect your Mattermost user with your GitLab user. You can
see all authorized chat accounts in your profile’s page under Chat.

When the authorization process is complete, you can start interacting with
GitLab using the Mattermost commands.

## Available slash commands

The available slash commands are:


Command | Description | Example |

——- | ———– | ——- |

<kbd>/&lt;trigger&gt; issue new &lt;title&gt; <kbd>⇧ Shift</kbd>+<kbd>↵ Enter</kbd> &lt;description&gt;</kbd> | Create a new issue in the project that <trigger> is tied to. <description> is optional. | <samp>/gitlab issue new We need to change the homepage</samp> |

<kbd>/&lt;trigger&gt; issue show &lt;issue-number&gt;</kbd> | Show the issue with ID <issue-number> from the project that <trigger> is tied to. | <samp>/gitlab issue show 42</samp> |

<kbd>/&lt;trigger&gt; deploy &lt;environment&gt; to &lt;environment&gt;</kbd> | Start the CI job that deploys from one environment to another, for example staging to production. CI/CD must be [properly configured][ciyaml]. | <samp>/gitlab deploy staging to production</samp> |



To see a list of available commands to interact with GitLab, type the
trigger word followed by <kbd>help</kbd>. Example: <samp>/gitlab help</samp>

![Mattermost bot available commands](img/mattermost_bot_available_commands.png)

## Permissions

The permissions to run the [available commands](#available-slash-commands) derive from
the [permissions you have on the project](../../permissions.md#project).

## Further reading


	[Mattermost slash commands documentation][mmslashdocs]


	[Omnibus GitLab Mattermost][omnimmdocs]




[omnimmdocs]: https://docs.gitlab.com/omnibus/gitlab-mattermost/
[mmslashdocs]: https://docs.mattermost.com/developer/slash-commands.html
[ciyaml]: ../../../ci/yaml/README.md



            

          

      

      

    

  

    
      
          
            
  # Microsoft Teams service

## On Microsoft Teams

To enable Microsoft Teams integration you must create an incoming webhook integration on Microsoft Teams by following the steps described in this [document](https://docs.microsoft.com/en-us/microsoftteams/platform/concepts/connectors#setting-up-a-custom-incoming-webhook).

## On GitLab

After you set up Microsoft Teams, it’s time to set up GitLab.

Navigate to the [Integrations page](project_services.md#accessing-the-project-services)
and select the Microsoft Teams Notification service to configure it.
There, you will see a checkbox with the following events that can be triggered:


	Push


	Issue


	Confidential issue


	Merge request


	Note


	Tag push


	Pipeline


	Wiki page




At the end fill in your Microsoft Teams details:


Field | Description |

—– | ———– |

Webhook | The incoming webhook URL which you have to setup on Microsoft Teams. |

Notify only broken pipelines | If you choose to enable the Pipeline event and you want to be only notified about failed pipelines. |



After you are all done, click Save changes for the changes to take effect.

![Microsoft Teams configuration](img/microsoft_teams_configuration.png)



            

          

      

      

    

  

    
      
          
            
  # Mock CI Service

NB: This service is only listed if you are in a development environment!

To setup the mock CI service server, respond to the following endpoints


	
	commit_status: #{project.namespace.path}/#{project.path}/status/#{sha}.json
	
	Have your service return 200 { status: [‘failed’|’canceled’|’running’|’pending’|’success’|’success_with_warnings’|’skipped’|’not_found’] }


	If the service returns a 404, it is interpreted as pending










	
	build_page: #{project.namespace.path}/#{project.path}/status/#{sha}
	
	Just where the build is linked to, doesn’t matter if implemented












For an example of a mock CI server, see [gitlab-org/gitlab-mock-ci-service](https://gitlab.com/gitlab-org/gitlab-mock-ci-service)



            

          

      

      

    

  

    
      
          
            
  # Project services

Project services allow you to integrate GitLab with other applications. They
are a bit like plugins in that they allow a lot of freedom in adding
functionality to GitLab.

## Accessing the project services

You can find the available services under your project’s
Settings ➔ Integrations page.

There are more than 20 services to integrate with. Click on the one that you
want to configure.


![Project services list](img/project_services.png)




Below, you will find a list of the currently supported ones accompanied with
comprehensive documentation.

## Services

Click on the service links to see further configuration instructions and details.


Service |     Description |

——- | ———– |

Asana     |   Asana - Teamwork without email |

Assembla      | Project Management Software (Source Commits Endpoint) |

[Atlassian Bamboo CI](bamboo.md) | A continuous integration and build server |

Buildkite | Continuous integration and deployments |

[Bugzilla](bugzilla.md) | Bugzilla issue tracker |

Campfire | Simple web-based real-time group chat |

Custom Issue Tracker | Custom issue tracker |

Drone CI | Continuous Integration platform built on Docker, written in Go |

[Emails on push](emails_on_push.md) | Email the commits and diff of each push to a list of recipients |

External Wiki | Replaces the link to the internal wiki with a link to an external wiki |

Flowdock | Flowdock is a collaboration web app for technical teams |

Gemnasium   _(Has been deprecated in GitLab 11.0)_ | Gemnasium monitors your project dependencies and alerts you about updates and security vulnerabilities |

[Hangouts Chat](hangouts_chat.md) | Receive events notifications in Google Hangouts Chat |

[HipChat](hipchat.md) | Private group chat and IM |

[Irker (IRC gateway)](irker.md) | Send IRC messages, on update, to a list of recipients through an Irker gateway |

[JIRA](jira.md) | JIRA issue tracker |

JetBrains TeamCity CI | A continuous integration and build server |

[Mattermost slash commands](mattermost_slash_commands.md) | Mattermost chat and ChatOps slash commands |

[Mattermost Notifications](mattermost.md) | Receive event notifications in Mattermost |

[Microsoft teams](microsoft_teams.md) |  Receive notifications for actions that happen on GitLab into a room on Microsoft Teams using Office 365 Connectors |

Packagist | Update your project on Packagist, the main Composer repository |

Pipelines emails | Email the pipeline status to a list of recipients |

[Slack Notifications](slack.md) | Send GitLab events (e.g. issue created) to Slack as notifications |

[Slack slash commands](slack_slash_commands.md) | Use slash commands in Slack to control GitLab |

PivotalTracker | Project Management Software (Source Commits Endpoint) |

[Prometheus](prometheus.md) | Monitor the performance of your deployed apps |

Pushover | Pushover makes it easy to get real-time notifications on your Android device, iPhone, iPad, and Desktop |

[Redmine](redmine.md) | Redmine issue tracker |



## Services templates

Services templates is a way to set some predefined values in the Service of
your liking which will then be pre-filled on each project’s Service.

Read more about [Services templates in this document](services_templates.md).

## Contributing to project services

Because GitLab is open source we can ship with the code and tests for all
plugins. This allows the community to keep the plugins up to date so that they
always work in newer GitLab versions.

For an overview of what projects services are available, please see the
[project_services source directory][projects-code].

Contributions are welcome!

[projects-code]: https://gitlab.com/gitlab-org/gitlab-ce/tree/master/app/models/project_services
[permissions]: ../../permissions.md



            

          

      

      

    

  

    
      
          
            
  # Prometheus integration

> [Introduced][ce-8935] in GitLab 9.0.

GitLab offers powerful integration with [Prometheus] for monitoring key metrics of your apps, directly within GitLab.
Metrics for each environment are retrieved from Prometheus, and then displayed
within the GitLab interface.

![Environment Dashboard](img/prometheus_dashboard.png)

There are two ways to setup Prometheus integration, depending on where your apps are running:
* For deployments on Kubernetes, GitLab can automatically [deploy and manage Prometheus](#managed-prometheus-on-kubernetes)
* For other deployment targets, simply [specify the Prometheus server](#manual-configuration-of-prometheus).

Once enabled, GitLab will automatically detect metrics from known services in the [metric library](#monitoring-ci-cd-environments).

## Enabling Prometheus Integration

### Managed Prometheus on Kubernetes
> Note: [Introduced](https://gitlab.com/gitlab-org/gitlab-ce/issues/28916) in GitLab 10.5

GitLab can seamlessly deploy and manage Prometheus on a [connected Kubernetes cluster](../clusters/index.md), making monitoring of your apps easy.

#### Requirements


	A [connected Kubernetes cluster](../clusters/index.md)


	Helm Tiller [installed by GitLab](../clusters/index.md#installing-applications)




#### Getting started

Once you have a connected Kubernetes cluster with Helm installed, deploying a managed Prometheus is as easy as a single click.

1. Go to the Operations > Kubernetes page, to view your connected clusters
1. Select the cluster you would like to deploy Prometheus to
1. Click the Install button to deploy Prometheus to the cluster

![Managed Prometheus Deploy](img/prometheus_deploy.png)

#### About managed Prometheus deployments

Prometheus is deployed into the gitlab-managed-apps namespace, using the [official Helm chart](https://github.com/kubernetes/charts/tree/master/stable/prometheus). Prometheus is only accessible within the cluster, with GitLab communicating through the [Kubernetes API](https://kubernetes.io/docs/concepts/overview/kubernetes-api/).

The Prometheus server will [automatically detect and monitor](https://prometheus.io/docs/prometheus/latest/configuration/configuration/#%3Ckubernetes_sd_config%3E) nodes, pods, and endpoints. To configure a resource to be monitored by Prometheus, simply set the following [Kubernetes annotations](https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/):
* prometheus.io/scrape to true to enable monitoring of the resource.
* prometheus.io/port to define the port of the metrics endpoint.
* prometheus.io/path to define the path of the metrics endpoint. Defaults to /metrics.

CPU and Memory consumption is monitored, but requires [naming conventions](prometheus_library/kubernetes.html#specifying-the-environment) in order to determine the environment. If you are using [Auto DevOps](../../../topics/autodevops/), this is handled automatically.

The [NGINX Ingress](../clusters/index.md#installing-applications) that is deployed by GitLab to clusters, is automatically annotated for monitoring providing key response metrics: latency, throughput, and error rates.

### Manual configuration of Prometheus

#### Requirements

Integration with Prometheus requires the following:

1. GitLab 9.0 or higher
1. Prometheus must be configured to collect one of the [supported metrics](prometheus_library/metrics.md)
1. Each metric must be have a label to indicate the environment
1. GitLab must have network connectivity to the Prometheus server

#### Getting started

Installing and configuring Prometheus to monitor applications is fairly straight forward.

1. [Install Prometheus](https://prometheus.io/docs/introduction/install/)
1. Set up one of the [supported monitoring targets](prometheus_library/metrics.md)
1. Configure the Prometheus server to [collect their metrics](https://prometheus.io/docs/operating/configuration/#scrape_config)

#### Configuration in GitLab

The actual configuration of Prometheus integration within GitLab is very simple.
All you will need is the DNS or IP address of the Prometheus server you’d like
to integrate with.

1. Navigate to the [Integrations page](project_services.md#accessing-the-project-services)
1. Click the Prometheus service
1. Provide the base URL of the your server, for example http://prometheus.example.com/.


The Test Settings button can be used to confirm connectivity from GitLab
to the Prometheus server.




![Configure Prometheus Service](img/prometheus_service_configuration.png)

## Monitoring CI/CD Environments

Once configured, GitLab will attempt to retrieve performance metrics for any
environment which has had a successful deployment.

GitLab will automatically scan the Prometheus server for metrics from known serves like Kubernetes and NGINX, and attempt to identify individual environment. The supported metrics and scan process is detailed in our [Prometheus Metric Library documentation](prometheus_library/metrics.html).

You can view the performance dashboard for an environment by [clicking on the monitoring button](../../../ci/environments.md#monitoring-environments).

## Determining the performance impact of a merge

> [Introduced][ce-10408] in GitLab 9.2.
> GitLab 9.3 added the [numeric comparison](https://gitlab.com/gitlab-org/gitlab-ce/issues/27439) of the 30 minute averages.
> Requires [Kubernetes](prometheus_library/kubernetes.md) metrics

Developers can view the performance impact of their changes within the merge
request workflow. When a source branch has been deployed to an environment, a sparkline and numeric comparison of the average memory consumption will appear. On the sparkline, a dot
indicates when the current changes were deployed, with up to 30 minutes of
performance data displayed before and after. The comparison shows the difference between the 30 minute average before and after the deployment. This information is updated after
each commit has been deployed.

Once merged and the target branch has been redeployed, the metrics will switch
to show the new environments this revision has been deployed to.

Performance data will be available for the duration it is persisted on the
Prometheus server.

![Merge Request with Performance Impact](img/merge_request_performance.png)

## Troubleshooting

If the “No data found” screen continues to appear, it could be due to:


	No successful deployments have occurred to this environment.


	Prometheus does not have performance data for this environment, or the metrics
are not labeled correctly. To test this, connect to the Prometheus server and
[run a query](#gitlab-prometheus-queries), replacing $CI_ENVIRONMENT_SLUG
with the name of your environment.




[autodeploy]: ../../../ci/autodeploy/index.md
[kubernetes]: https://kubernetes.io
[kube]: ./kubernetes.md
[prometheus-k8s-sd]: https://prometheus.io/docs/operating/configuration/#<kubernetes_sd_config>
[prometheus]: https://prometheus.io
[gitlab-prometheus-k8s-monitor]: ../../../administration/monitoring/prometheus/index.md#configuring-prometheus-to-monitor-kubernetes
[prometheus-docker-image]: https://hub.docker.com/r/prom/prometheus/
[prometheus-yml]:samples/prometheus.yml
[gitlab.com-ip-range]: https://gitlab.com/gitlab-com/infrastructure/issues/434
[ci-environment-slug]: ../../../ci/variables/#predefined-variables-environment-variables
[ce-8935]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/8935
[ce-10408]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/10408
[promgldocs]: ../../../administration/monitoring/prometheus/index.md



            

          

      

      

    

  

    
      
          
            
  # Redmine Service

1. To enable the Redmine integration in a project, navigate to the
[Integrations page](project_services.md#accessing-the-project-services), click
the Redmine service, and fill in the required details on the page as described
in the table below.



Field | Description |

—– | ———– |

description   | A name for the issue tracker (to differentiate between instances, for example) |

project_url   | The URL to the project in Redmine which is being linked to this GitLab project |

issues_url    | The URL to the issue in Redmine project that is linked to this GitLab project. Note that the issues_url requires :id in the URL. This ID is used by GitLab as a placeholder to replace the issue number. |

new_issue_url | This is the URL to create a new issue in Redmine for the project linked to this GitLab project. This is currently not being used and will be removed in a future release. |



Once you have configured and enabled Redmine you’ll see the Redmine link on the GitLab project pages that takes you to the appropriate Redmine project.

As an example, below is a configuration for a project named gitlab-ci.

![Redmine configuration](img/redmine_configuration.png)





	To disable the internal issue tracking system in a project, navigate to the General page, expand [Permissions](../settings/index.md#sharing-and-permissions), and slide the Issues switch invalid.


![Issue configuration](img/issue_configuration.png)








## Referencing issues in Redmine

Issues in Redmine can be referenced in two alternative ways:
1. #<ID> where <ID> is a number (example #143)
2. <PROJECT>-<ID> where <PROJECT> starts with a capital letter which is


then followed by capital letters, numbers or underscores, and <ID> is
a number (example API_32-143).




We suggest using the longer format if you have both internal and external issue trackers enabled. If you use the shorter format and an issue with the same ID exists in the internal issue tracker the internal issue will be linked.

Please note that <PROJECT> part is ignored and links always point to the
address specified in issues_url.



            

          

      

      

    

  

    
      
          
            
  # Services templates

A GitLab administrator can add a service template that sets a default for each
project. After a service template is enabled, it will be applied to new
projects only and its details will be pre-filled on the project’s Service page.

## Enable a service template

In GitLab’s Admin area, navigate to Service Templates and choose the
service template you wish to create.

## Services for external issue trackers

In the image below you can see how a service template for Redmine would look
like.

![Redmine service template](img/services_templates_redmine_example.png)

—

For each project, you will still need to configure the issue tracking
URLs by replacing :issues_tracker_id in the above screenshot with the ID used
by your external issue tracker. Prior to GitLab v7.8, this ID was configured in
the project settings, and GitLab would automatically update the URL configured
in gitlab.yml. This behavior is now deprecated and all issue tracker URLs
must be configured directly within the project’s Integrations settings.



            

          

      

      

    

  

    
      
          
            
  # Slack Notifications Service

The Slack Notifications Service allows your GitLab project to send events (e.g. issue created) to your existing Slack team as notifications. This requires configurations in both Slack and GitLab.

> Note: You can also use Slack slash commands to control GitLab inside Slack. This is the separately configured [Slack slash commands](slack_slash_commands.md).

## Slack Configuration

1. Sign in to your Slack team and [start a new Incoming WebHooks configuration](https://my.slack.com/services/new/incoming-webhook/).
1. Select the Slack channel where notifications will be sent to by default. Click the Add Incoming WebHooks integration button to add the configuration.
1. Copy the Webhook URL, which we’ll use later in the GitLab configuration.

## GitLab Configuration

1. Navigate to the [Integrations page](project_services.md#accessing-the-project-services) in your project’s settings, i.e. Project > Settings > Integrations.
1. Select the Slack notifications project service to configure it.
1. Check the Active checkbox to turn on the service.
1. Check the checkboxes corresponding to the GitLab events you want to send to Slack as a notification.
1. For each event, optionally enter the Slack channel where you want to send the event. (Do _not_ include the # symbol.) If left empty, the event will be sent to the default channel that you configured in the Slack Configuration step.
1. Paste the Webhook URL that you copied from the Slack Configuration step.
1. Optionally customize the Slack bot username that will be sending the notifications.
1. Configure the remaining options and click Save changes.

Your Slack team will now start receiving GitLab event notifications as configured.

![Slack configuration](img/slack_configuration.png)



            

          

      

      

    

  

    
      
          
            
  # Slack slash commands

> Introduced in GitLab 8.15

Slack slash commands allow you to control GitLab and view content right inside Slack, without having to leave it. This requires configurations in both Slack and GitLab.

> Note: GitLab can also send events (e.g. issue created) to Slack as notifications. This is the separately configured [Slack Notifications Service](slack.md).

## Configuration

1. Slack slash commands are scoped to a project. Navigate to the [Integrations page](project_services.md#accessing-the-project-services) in your project’s settings, i.e. Project > Settings > Integrations.
1. Select the Slack slash commands project service to configure it. This page contains required information to complete the configuration in Slack. Leave this browser tab open.
1. Open a new browser tab and sign in to your Slack team. [Start a new Slash Commands integration](https://my.slack.com/services/new/slash-commands).
1. Enter a trigger term. We suggest you use the project name. Click Add Slash Command Integration.
1. Complete the rest of the fields in the Slack configuration page using information from the GitLab browser tab. In particular, the URL needs to be copied and pasted. Click Save Integration to complete the configuration in Slack.
1. While still on the Slack configuration page, copy the token. Go back to the GitLab browser tab and paste in the token.
1. Check the Active checkbox and click Save changes to complete the configuration in GitLab.

![Slack setup instructions](img/slack_setup.png)

## Usage

You can now use the [Slack slash commands](../../../integration/slash_commands.md).



            

          

      

      

    

  

    
      
          
            
  # Webhooks

>**Note:**
Starting from GitLab 8.5:
- the repository key is deprecated in favor of the project key
- the project.ssh_url key is deprecated in favor of the project.git_ssh_url key
- the project.http_url key is deprecated in favor of the project.git_http_url key

>**Note:**
Starting from GitLab 11.1, the logs of web hooks are automatically removed after
one month.

>**Note**
Starting from GitLab 11.2:
- The description field for issues, merge requests, comments, and wiki pages


is rewritten so that simple Markdown image references (like
![](/uploads/…)) have their target URL changed to an absolute URL. See
[image URL rewriting](#image-url-rewriting) for more details.




Project webhooks allow you to trigger a URL if for example new code is pushed or
a new issue is created. You can configure webhooks to listen for specific events
like pushes, issues or merge requests. GitLab will send a POST request with data
to the webhook URL.

Webhooks can be used to update an external issue tracker, trigger CI jobs,
update a backup mirror, or even deploy to your production server.

Navigate to the webhooks page by going to your project’s
Settings ➔ Integrations.

## Webhook endpoint tips

If you are writing your own endpoint (web server) that will receive
GitLab webhooks keep in mind the following things:


	Your endpoint should send its HTTP response as fast as possible. If
you wait too long, GitLab may decide the hook failed and retry it.


	Your endpoint should ALWAYS return a valid HTTP response. If you do
not do this then GitLab will think the hook failed and retry it.
Most HTTP libraries take care of this for you automatically but if
you are writing a low-level hook this is important to remember.


	GitLab ignores the HTTP status code returned by your endpoint.




## Secret token

If you specify a secret token, it will be sent with the hook request in the
X-Gitlab-Token HTTP header. Your webhook endpoint can check that to verify
that the request is legitimate.

## SSL verification

By default, the SSL certificate of the webhook endpoint is verified based on
an internal list of Certificate Authorities, which means the certificate cannot
be self-signed.

You can turn this off in the webhook settings in your GitLab projects.

![SSL Verification](img/webhooks_ssl.png)

## Events

Below are described the supported events.

### Push events

Triggered when you push to the repository except when pushing tags.


	> Note: When more than 20 commits are pushed at once, the commits web hook
	attribute will only contain the first 20 for performance reasons. Loading
detailed commit data is expensive. Note that despite only 20 commits being
present in the commits attribute, the total_commits_count attribute will
contain the actual total.





Request header:

`
X-Gitlab-Event: Push Hook
`

Request body:

```json
{

“object_kind”: “push”,
“before”: “95790bf891e76fee5e1747ab589903a6a1f80f22”,
“after”: “da1560886d4f094c3e6c9ef40349f7d38b5d27d7”,
“ref”: “refs/heads/master”,
“checkout_sha”: “da1560886d4f094c3e6c9ef40349f7d38b5d27d7”,
“user_id”: 4,
“user_name”: “John Smith”,
“user_username”: “jsmith”,
“user_email”: “john@example.com”,
“user_avatar”: “https://s.gravatar.com/avatar/d4c74594d841139328695756648b6bd6?s=8://s.gravatar.com/avatar/d4c74594d841139328695756648b6bd6?s=80”,
“project_id”: 15,
“project”:{

“id”: 15,
“name”:”Diaspora”,
“description”:””,
“web_url”:”http://example.com/mike/diaspora”,
“avatar_url”:null,
“git_ssh_url”:”git@example.com:mike/diaspora.git”,
“git_http_url”:”http://example.com/mike/diaspora.git”,
“namespace”:”Mike”,
“visibility_level”:0,
“path_with_namespace”:”mike/diaspora”,
“default_branch”:”master”,
“homepage”:”http://example.com/mike/diaspora”,
“url”:”git@example.com:mike/diaspora.git”,
“ssh_url”:”git@example.com:mike/diaspora.git”,
“http_url”:”http://example.com/mike/diaspora.git”

},
“repository”:{

“name”: “Diaspora”,
“url”: “git@example.com:mike/diaspora.git”,
“description”: “”,
“homepage”: “http://example.com/mike/diaspora”,
“git_http_url”:”http://example.com/mike/diaspora.git”,
“git_ssh_url”:”git@example.com:mike/diaspora.git”,
“visibility_level”:0

},
“commits”: [

	{
	“id”: “b6568db1bc1dcd7f8b4d5a946b0b91f9dacd7327”,
“message”: “Update Catalan translation to e38cb41.”,
“timestamp”: “2011-12-12T14:27:31+02:00”,
“url”: “http://example.com/mike/diaspora/commit/b6568db1bc1dcd7f8b4d5a946b0b91f9dacd7327”,
“author”: {

“name”: “Jordi Mallach”,
“email”: “jordi@softcatala.org”

},
“added”: [“CHANGELOG”],
“modified”: [“app/controller/application.rb”],
“removed”: []

},
{

“id”: “da1560886d4f094c3e6c9ef40349f7d38b5d27d7”,
“message”: “fixed readme”,
“timestamp”: “2012-01-03T23:36:29+02:00”,
“url”: “http://example.com/mike/diaspora/commit/da1560886d4f094c3e6c9ef40349f7d38b5d27d7”,
“author”: {

“name”: “GitLab dev user”,
“email”: “gitlabdev@dv6700.(none)”

},
“added”: [“CHANGELOG”],
“modified”: [“app/controller/application.rb”],
“removed”: []

}

],
“total_commits_count”: 4

}

Tag events

Triggered when you create (or delete) tags to the repository.

Request header:

`
X-Gitlab-Event: Tag Push Hook
`

Request body:

```json
{


“object_kind”: “tag_push”,
“before”: “0000000000000000000000000000000000000000”,
“after”: “82b3d5ae55f7080f1e6022629cdb57bfae7cccc7”,
“ref”: “refs/tags/v1.0.0”,
“checkout_sha”: “82b3d5ae55f7080f1e6022629cdb57bfae7cccc7”,
“user_id”: 1,
“user_name”: “John Smith”,
“user_avatar”: “https://s.gravatar.com/avatar/d4c74594d841139328695756648b6bd6?s=8://s.gravatar.com/avatar/d4c74594d841139328695756648b6bd6?s=80”,
“project_id”: 1,
“project”:{


“id”: 1,
“name”:”Example”,
“description”:””,
“web_url”:”http://example.com/jsmith/example”,
“avatar_url”:null,
“git_ssh_url”:”git@example.com:jsmith/example.git”,
“git_http_url”:”http://example.com/jsmith/example.git”,
“namespace”:”Jsmith”,
“visibility_level”:0,
“path_with_namespace”:”jsmith/example”,
“default_branch”:”master”,
“homepage”:”http://example.com/jsmith/example”,
“url”:”git@example.com:jsmith/example.git”,
“ssh_url”:”git@example.com:jsmith/example.git”,
“http_url”:”http://example.com/jsmith/example.git”




},
“repository”:{


“name”: “Example”,
“url”: “ssh://git@example.com/jsmith/example.git”,
“description”: “”,
“homepage”: “http://example.com/jsmith/example”,
“git_http_url”:”http://example.com/jsmith/example.git”,
“git_ssh_url”:”git@example.com:jsmith/example.git”,
“visibility_level”:0




},
“commits”: [],
“total_commits_count”: 0







}

### Issues events

Triggered when a new issue is created or an existing issue was updated/closed/reopened.

Request header:

`
X-Gitlab-Event: Issue Hook
`

Request body:

```json
{

“object_kind”: “issue”,
“user”: {

“name”: “Administrator”,
“username”: “root”,
“avatar_url”: “http://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=40u0026d=identicon”

},
“project”: {

“id”: 1,
“name”:”Gitlab Test”,
“description”:”Aut reprehenderit ut est.”,
“web_url”:”http://example.com/gitlabhq/gitlab-test”,
“avatar_url”:null,
“git_ssh_url”:”git@example.com:gitlabhq/gitlab-test.git”,
“git_http_url”:”http://example.com/gitlabhq/gitlab-test.git”,
“namespace”:”GitlabHQ”,
“visibility_level”:20,
“path_with_namespace”:”gitlabhq/gitlab-test”,
“default_branch”:”master”,
“homepage”:”http://example.com/gitlabhq/gitlab-test”,
“url”:”http://example.com/gitlabhq/gitlab-test.git”,
“ssh_url”:”git@example.com:gitlabhq/gitlab-test.git”,
“http_url”:”http://example.com/gitlabhq/gitlab-test.git”

},
“repository”: {

“name”: “Gitlab Test”,
“url”: “http://example.com/gitlabhq/gitlab-test.git”,
“description”: “Aut reprehenderit ut est.”,
“homepage”: “http://example.com/gitlabhq/gitlab-test”

},
“object_attributes”: {

“id”: 301,
“title”: “New API: create/update/delete file”,
“assignee_ids”: [51],
“assignee_id”: 51,
“author_id”: 51,
“project_id”: 14,
“created_at”: “2013-12-03T17:15:43Z”,
“updated_at”: “2013-12-03T17:15:43Z”,
“position”: 0,
“branch_name”: null,
“description”: “Create new API for manipulations with repository”,
“milestone_id”: null,
“state”: “opened”,
“iid”: 23,
“url”: “http://example.com/diaspora/issues/23”,
“action”: “open”

},
“assignees”: [{

“name”: “User1”,
“username”: “user1”,
“avatar_url”: “http://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=40u0026d=identicon”

}],
“assignee”: {

“name”: “User1”,
“username”: “user1”,
“avatar_url”: “http://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=40u0026d=identicon”

},
“labels”: [{

“id”: 206,
“title”: “API”,
“color”: “#ffffff”,
“project_id”: 14,
“created_at”: “2013-12-03T17:15:43Z”,
“updated_at”: “2013-12-03T17:15:43Z”,
“template”: false,
“description”: “API related issues”,
“type”: “ProjectLabel”,
“group_id”: 41

}],
“changes”: {

“updated_by_id”: [null, 1],
“updated_at”: [“2017-09-15 16:50:55 UTC”, “2017-09-15 16:52:00 UTC”],
“labels”: {

	“previous”: [{
	“id”: 206,
“title”: “API”,
“color”: “#ffffff”,
“project_id”: 14,
“created_at”: “2013-12-03T17:15:43Z”,
“updated_at”: “2013-12-03T17:15:43Z”,
“template”: false,
“description”: “API related issues”,
“type”: “ProjectLabel”,
“group_id”: 41

}],
“current”: [{

“id”: 205,
“title”: “Platform”,
“color”: “#123123”,
“project_id”: 14,
“created_at”: “2013-12-03T17:15:43Z”,
“updated_at”: “2013-12-03T17:15:43Z”,
“template”: false,
“description”: “Platform related issues”,
“type”: “ProjectLabel”,
“group_id”: 41

}]

}

}

}

Note: assignee and assignee_id keys are deprecated and now show the first assignee only.

Comment events

Triggered when a new comment is made on commits, merge requests, issues, and code snippets.
The note data will be stored in object_attributes (e.g. note, noteable_type). The
payload will also include information about the target of the comment. For example,
a comment on an issue will include the specific issue information under the issue key.
Valid target types:

	commit

	merge_request

	issue

	snippet

Comment on commit

Request header:

`
X-Gitlab-Event: Note Hook
`

Request body:

```json
{


“object_kind”: “note”,
“user”: {


“name”: “Administrator”,
“username”: “root”,
“avatar_url”: “http://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=40u0026d=identicon”




},
“project_id”: 5,
“project”:{


“id”: 5,
“name”:”Gitlab Test”,
“description”:”Aut reprehenderit ut est.”,
“web_url”:”http://example.com/gitlabhq/gitlab-test”,
“avatar_url”:null,
“git_ssh_url”:”git@example.com:gitlabhq/gitlab-test.git”,
“git_http_url”:”http://example.com/gitlabhq/gitlab-test.git”,
“namespace”:”GitlabHQ”,
“visibility_level”:20,
“path_with_namespace”:”gitlabhq/gitlab-test”,
“default_branch”:”master”,
“homepage”:”http://example.com/gitlabhq/gitlab-test”,
“url”:”http://example.com/gitlabhq/gitlab-test.git”,
“ssh_url”:”git@example.com:gitlabhq/gitlab-test.git”,
“http_url”:”http://example.com/gitlabhq/gitlab-test.git”




},
“repository”:{


“name”: “Gitlab Test”,
“url”: “http://example.com/gitlab-org/gitlab-test.git”,
“description”: “Aut reprehenderit ut est.”,
“homepage”: “http://example.com/gitlab-org/gitlab-test”




},
“object_attributes”: {


“id”: 1243,
“note”: “This is a commit comment. How does this work?”,
“noteable_type”: “Commit”,
“author_id”: 1,
“created_at”: “2015-05-17 18:08:09 UTC”,
“updated_at”: “2015-05-17 18:08:09 UTC”,
“project_id”: 5,
“attachment”:null,
“line_code”: “bec9703f7a456cd2b4ab5fb3220ae016e3e394e3_0_1”,
“commit_id”: “cfe32cf61b73a0d5e9f13e774abde7ff789b1660”,
“noteable_id”: null,
“system”: false,
“st_diff”: {


“diff”: “— /dev/nulln+++ b/sixn@@ -0,0 +1 @@n+Subproject commit 409f37c4f05865e4fb208c771485f211a22c4c2dn”,
“new_path”: “six”,
“old_path”: “six”,
“a_mode”: “0”,
“b_mode”: “160000”,
“new_file”: true,
“renamed_file”: false,
“deleted_file”: false




},
“url”: “http://example.com/gitlab-org/gitlab-test/commit/cfe32cf61b73a0d5e9f13e774abde7ff789b1660#note_1243”




},
“commit”: {


“id”: “cfe32cf61b73a0d5e9f13e774abde7ff789b1660”,
“message”: “Add submodulennSigned-off-by: Dmitriy Zaporozhets u003cdmitriy.zaporozhets@gmail.comu003en”,
“timestamp”: “2014-02-27T10:06:20+02:00”,
“url”: “http://example.com/gitlab-org/gitlab-test/commit/cfe32cf61b73a0d5e9f13e774abde7ff789b1660”,
“author”: {


“name”: “Dmitriy Zaporozhets”,
“email”: “dmitriy.zaporozhets@gmail.com”




}




}







}

#### Comment on merge request

Request header:

`
X-Gitlab-Event: Note Hook
`

Request body:

```json
{

“object_kind”: “note”,
“user”: {

“name”: “Administrator”,
“username”: “root”,
“avatar_url”: “http://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=40u0026d=identicon”

},
“project_id”: 5,
“project”:{

“id”: 5,
“name”:”Gitlab Test”,
“description”:”Aut reprehenderit ut est.”,
“web_url”:”http://example.com/gitlab-org/gitlab-test”,
“avatar_url”:null,
“git_ssh_url”:”git@example.com:gitlab-org/gitlab-test.git”,
“git_http_url”:”http://example.com/gitlab-org/gitlab-test.git”,
“namespace”:”Gitlab Org”,
“visibility_level”:10,
“path_with_namespace”:”gitlab-org/gitlab-test”,
“default_branch”:”master”,
“homepage”:”http://example.com/gitlab-org/gitlab-test”,
“url”:”http://example.com/gitlab-org/gitlab-test.git”,
“ssh_url”:”git@example.com:gitlab-org/gitlab-test.git”,
“http_url”:”http://example.com/gitlab-org/gitlab-test.git”

},
“repository”:{

“name”: “Gitlab Test”,
“url”: “http://localhost/gitlab-org/gitlab-test.git”,
“description”: “Aut reprehenderit ut est.”,
“homepage”: “http://example.com/gitlab-org/gitlab-test”

},
“object_attributes”: {

“id”: 1244,
“note”: “This MR needs work.”,
“noteable_type”: “MergeRequest”,
“author_id”: 1,
“created_at”: “2015-05-17 18:21:36 UTC”,
“updated_at”: “2015-05-17 18:21:36 UTC”,
“project_id”: 5,
“attachment”: null,
“line_code”: null,
“commit_id”: “”,
“noteable_id”: 7,
“system”: false,
“st_diff”: null,
“url”: “http://example.com/gitlab-org/gitlab-test/merge_requests/1#note_1244”

},
“merge_request”: {

“id”: 7,
“target_branch”: “markdown”,
“source_branch”: “master”,
“source_project_id”: 5,
“author_id”: 8,
“assignee_id”: 28,
“title”: “Tempora et eos debitis quae laborum et.”,
“created_at”: “2015-03-01 20:12:53 UTC”,
“updated_at”: “2015-03-21 18:27:27 UTC”,
“milestone_id”: 11,
“state”: “opened”,
“merge_status”: “cannot_be_merged”,
“target_project_id”: 5,
“iid”: 1,
“description”: “Et voluptas corrupti assumenda temporibus. Architecto cum animi eveniet amet asperiores. Vitae numquam voluptate est natus sit et ad id.”,
“position”: 0,
“source”:{

“name”:”Gitlab Test”,
“description”:”Aut reprehenderit ut est.”,
“web_url”:”http://example.com/gitlab-org/gitlab-test”,
“avatar_url”:null,
“git_ssh_url”:”git@example.com:gitlab-org/gitlab-test.git”,
“git_http_url”:”http://example.com/gitlab-org/gitlab-test.git”,
“namespace”:”Gitlab Org”,
“visibility_level”:10,
“path_with_namespace”:”gitlab-org/gitlab-test”,
“default_branch”:”master”,
“homepage”:”http://example.com/gitlab-org/gitlab-test”,
“url”:”http://example.com/gitlab-org/gitlab-test.git”,
“ssh_url”:”git@example.com:gitlab-org/gitlab-test.git”,
“http_url”:”http://example.com/gitlab-org/gitlab-test.git”

},
“target”: {

“name”:”Gitlab Test”,
“description”:”Aut reprehenderit ut est.”,
“web_url”:”http://example.com/gitlab-org/gitlab-test”,
“avatar_url”:null,
“git_ssh_url”:”git@example.com:gitlab-org/gitlab-test.git”,
“git_http_url”:”http://example.com/gitlab-org/gitlab-test.git”,
“namespace”:”Gitlab Org”,
“visibility_level”:10,
“path_with_namespace”:”gitlab-org/gitlab-test”,
“default_branch”:”master”,
“homepage”:”http://example.com/gitlab-org/gitlab-test”,
“url”:”http://example.com/gitlab-org/gitlab-test.git”,
“ssh_url”:”git@example.com:gitlab-org/gitlab-test.git”,
“http_url”:”http://example.com/gitlab-org/gitlab-test.git”

},
“last_commit”: {

“id”: “562e173be03b8ff2efb05345d12df18815438a4b”,
“message”: “Merge branch ‘another-branch’ into ‘master’nnCheck in this testn”,
“timestamp”: “2015-04-08T21: 00:25-07:00”,
“url”: “http://example.com/gitlab-org/gitlab-test/commit/562e173be03b8ff2efb05345d12df18815438a4b”,
“author”: {

“name”: “John Smith”,
“email”: “john@example.com”

}

},
“work_in_progress”: false,
“assignee”: {

“name”: “User1”,
“username”: “user1”,
“avatar_url”: “http://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=40u0026d=identicon”

}

}

}

Comment on issue

Request header:

`
X-Gitlab-Event: Note Hook
`

Request body:

```json
{


“object_kind”: “note”,
“user”: {


“name”: “Administrator”,
“username”: “root”,
“avatar_url”: “http://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=40u0026d=identicon”




},
“project_id”: 5,
“project”:{


“id”: 5,
“name”:”Gitlab Test”,
“description”:”Aut reprehenderit ut est.”,
“web_url”:”http://example.com/gitlab-org/gitlab-test”,
“avatar_url”:null,
“git_ssh_url”:”git@example.com:gitlab-org/gitlab-test.git”,
“git_http_url”:”http://example.com/gitlab-org/gitlab-test.git”,
“namespace”:”Gitlab Org”,
“visibility_level”:10,
“path_with_namespace”:”gitlab-org/gitlab-test”,
“default_branch”:”master”,
“homepage”:”http://example.com/gitlab-org/gitlab-test”,
“url”:”http://example.com/gitlab-org/gitlab-test.git”,
“ssh_url”:”git@example.com:gitlab-org/gitlab-test.git”,
“http_url”:”http://example.com/gitlab-org/gitlab-test.git”




},
“repository”:{


“name”:”diaspora”,
“url”:”git@example.com:mike/diaspora.git”,
“description”:””,
“homepage”:”http://example.com/mike/diaspora”




},
“object_attributes”: {


“id”: 1241,
“note”: “Hello world”,
“noteable_type”: “Issue”,
“author_id”: 1,
“created_at”: “2015-05-17 17:06:40 UTC”,
“updated_at”: “2015-05-17 17:06:40 UTC”,
“project_id”: 5,
“attachment”: null,
“line_code”: null,
“commit_id”: “”,
“noteable_id”: 92,
“system”: false,
“st_diff”: null,
“url”: “http://example.com/gitlab-org/gitlab-test/issues/17#note_1241”




},
“issue”: {


“id”: 92,
“title”: “test”,
“assignee_ids”: [],
“assignee_id”: null,
“author_id”: 1,
“project_id”: 5,
“created_at”: “2015-04-12 14:53:17 UTC”,
“updated_at”: “2015-04-26 08:28:42 UTC”,
“position”: 0,
“branch_name”: null,
“description”: “test”,
“milestone_id”: null,
“state”: “closed”,
“iid”: 17




}







}

Note: assignee_id field is deprecated and now shows the first assignee only.

#### Comment on code snippet

Request header:

`
X-Gitlab-Event: Note Hook
`

Request body:

```json
{

“object_kind”: “note”,
“user”: {

“name”: “Administrator”,
“username”: “root”,
“avatar_url”: “http://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=40u0026d=identicon”

},
“project_id”: 5,
“project”:{

“id”: 5,
“name”:”Gitlab Test”,
“description”:”Aut reprehenderit ut est.”,
“web_url”:”http://example.com/gitlab-org/gitlab-test”,
“avatar_url”:null,
“git_ssh_url”:”git@example.com:gitlab-org/gitlab-test.git”,
“git_http_url”:”http://example.com/gitlab-org/gitlab-test.git”,
“namespace”:”Gitlab Org”,
“visibility_level”:10,
“path_with_namespace”:”gitlab-org/gitlab-test”,
“default_branch”:”master”,
“homepage”:”http://example.com/gitlab-org/gitlab-test”,
“url”:”http://example.com/gitlab-org/gitlab-test.git”,
“ssh_url”:”git@example.com:gitlab-org/gitlab-test.git”,
“http_url”:”http://example.com/gitlab-org/gitlab-test.git”

},
“repository”:{

“name”:”Gitlab Test”,
“url”:”http://example.com/gitlab-org/gitlab-test.git”,
“description”:”Aut reprehenderit ut est.”,
“homepage”:”http://example.com/gitlab-org/gitlab-test”

},
“object_attributes”: {

“id”: 1245,
“note”: “Is this snippet doing what it’s supposed to be doing?”,
“noteable_type”: “Snippet”,
“author_id”: 1,
“created_at”: “2015-05-17 18:35:50 UTC”,
“updated_at”: “2015-05-17 18:35:50 UTC”,
“project_id”: 5,
“attachment”: null,
“line_code”: null,
“commit_id”: “”,
“noteable_id”: 53,
“system”: false,
“st_diff”: null,
“url”: “http://example.com/gitlab-org/gitlab-test/snippets/53#note_1245”

},
“snippet”: {

“id”: 53,
“title”: “test”,
“content”: “puts ‘Hello world’”,
“author_id”: 1,
“project_id”: 5,
“created_at”: “2015-04-09 02:40:38 UTC”,
“updated_at”: “2015-04-09 02:40:38 UTC”,
“file_name”: “test.rb”,
“expires_at”: null,
“type”: “ProjectSnippet”,
“visibility_level”: 0

}

}

Merge request events

Triggered when a new merge request is created, an existing merge request was updated/merged/closed or a commit is added in the source branch.

Request header:

`
X-Gitlab-Event: Merge Request Hook
`

Request body:

```json
{


“object_kind”: “merge_request”,
“user”: {


“name”: “Administrator”,
“username”: “root”,
“avatar_url”: “http://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=40u0026d=identicon”




},
“project”: {


“id”: 1,
“name”:”Gitlab Test”,
“description”:”Aut reprehenderit ut est.”,
“web_url”:”http://example.com/gitlabhq/gitlab-test”,
“avatar_url”:null,
“git_ssh_url”:”git@example.com:gitlabhq/gitlab-test.git”,
“git_http_url”:”http://example.com/gitlabhq/gitlab-test.git”,
“namespace”:”GitlabHQ”,
“visibility_level”:20,
“path_with_namespace”:”gitlabhq/gitlab-test”,
“default_branch”:”master”,
“homepage”:”http://example.com/gitlabhq/gitlab-test”,
“url”:”http://example.com/gitlabhq/gitlab-test.git”,
“ssh_url”:”git@example.com:gitlabhq/gitlab-test.git”,
“http_url”:”http://example.com/gitlabhq/gitlab-test.git”




},
“repository”: {


“name”: “Gitlab Test”,
“url”: “http://example.com/gitlabhq/gitlab-test.git”,
“description”: “Aut reprehenderit ut est.”,
“homepage”: “http://example.com/gitlabhq/gitlab-test”




},
“object_attributes”: {


“id”: 99,
“target_branch”: “master”,
“source_branch”: “ms-viewport”,
“source_project_id”: 14,
“author_id”: 51,
“assignee_id”: 6,
“title”: “MS-Viewport”,
“created_at”: “2013-12-03T17:23:34Z”,
“updated_at”: “2013-12-03T17:23:34Z”,
“milestone_id”: null,
“state”: “opened”,
“merge_status”: “unchecked”,
“target_project_id”: 14,
“iid”: 1,
“description”: “”,
“source”: {


“name”:”Awesome Project”,
“description”:”Aut reprehenderit ut est.”,
“web_url”:”http://example.com/awesome_space/awesome_project”,
“avatar_url”:null,
“git_ssh_url”:”git@example.com:awesome_space/awesome_project.git”,
“git_http_url”:”http://example.com/awesome_space/awesome_project.git”,
“namespace”:”Awesome Space”,
“visibility_level”:20,
“path_with_namespace”:”awesome_space/awesome_project”,
“default_branch”:”master”,
“homepage”:”http://example.com/awesome_space/awesome_project”,
“url”:”http://example.com/awesome_space/awesome_project.git”,
“ssh_url”:”git@example.com:awesome_space/awesome_project.git”,
“http_url”:”http://example.com/awesome_space/awesome_project.git”




},
“target”: {


“name”:”Awesome Project”,
“description”:”Aut reprehenderit ut est.”,
“web_url”:”http://example.com/awesome_space/awesome_project”,
“avatar_url”:null,
“git_ssh_url”:”git@example.com:awesome_space/awesome_project.git”,
“git_http_url”:”http://example.com/awesome_space/awesome_project.git”,
“namespace”:”Awesome Space”,
“visibility_level”:20,
“path_with_namespace”:”awesome_space/awesome_project”,
“default_branch”:”master”,
“homepage”:”http://example.com/awesome_space/awesome_project”,
“url”:”http://example.com/awesome_space/awesome_project.git”,
“ssh_url”:”git@example.com:awesome_space/awesome_project.git”,
“http_url”:”http://example.com/awesome_space/awesome_project.git”




},
“last_commit”: {


“id”: “da1560886d4f094c3e6c9ef40349f7d38b5d27d7”,
“message”: “fixed readme”,
“timestamp”: “2012-01-03T23:36:29+02:00”,
“url”: “http://example.com/awesome_space/awesome_project/commits/da1560886d4f094c3e6c9ef40349f7d38b5d27d7”,
“author”: {


“name”: “GitLab dev user”,
“email”: “gitlabdev@dv6700.(none)”




}




},
“work_in_progress”: false,
“url”: “http://example.com/diaspora/merge_requests/1”,
“action”: “open”,
“assignee”: {


“name”: “User1”,
“username”: “user1”,
“avatar_url”: “http://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=40u0026d=identicon”




}




},
“labels”: [{


“id”: 206,
“title”: “API”,
“color”: “#ffffff”,
“project_id”: 14,
“created_at”: “2013-12-03T17:15:43Z”,
“updated_at”: “2013-12-03T17:15:43Z”,
“template”: false,
“description”: “API related issues”,
“type”: “ProjectLabel”,
“group_id”: 41




}],
“changes”: {


“updated_by_id”: [null, 1],
“updated_at”: [“2017-09-15 16:50:55 UTC”, “2017-09-15 16:52:00 UTC”],
“labels”: {



	“previous”: [{
	“id”: 206,
“title”: “API”,
“color”: “#ffffff”,
“project_id”: 14,
“created_at”: “2013-12-03T17:15:43Z”,
“updated_at”: “2013-12-03T17:15:43Z”,
“template”: false,
“description”: “API related issues”,
“type”: “ProjectLabel”,
“group_id”: 41





}],
“current”: [{


“id”: 205,
“title”: “Platform”,
“color”: “#123123”,
“project_id”: 14,
“created_at”: “2013-12-03T17:15:43Z”,
“updated_at”: “2013-12-03T17:15:43Z”,
“template”: false,
“description”: “Platform related issues”,
“type”: “ProjectLabel”,
“group_id”: 41




}]




}




}







}

### Wiki Page events

Triggered when a wiki page is created, updated or deleted.

Request Header:

`
X-Gitlab-Event: Wiki Page Hook
`

Request Body:

```json
{

“object_kind”: “wiki_page”,
“user”: {

“name”: “Administrator”,
“username”: “root”,
“avatar_url”: “http://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80u0026d=identicon”

},
“project”: {

“id”: 1,
“name”: “awesome-project”,
“description”: “This is awesome”,
“web_url”: “http://example.com/root/awesome-project”,
“avatar_url”: null,
“git_ssh_url”: “git@example.com:root/awesome-project.git”,
“git_http_url”: “http://example.com/root/awesome-project.git”,
“namespace”: “root”,
“visibility_level”: 0,
“path_with_namespace”: “root/awesome-project”,
“default_branch”: “master”,
“homepage”: “http://example.com/root/awesome-project”,
“url”: “git@example.com:root/awesome-project.git”,
“ssh_url”: “git@example.com:root/awesome-project.git”,
“http_url”: “http://example.com/root/awesome-project.git”

},
“wiki”: {

“web_url”: “http://example.com/root/awesome-project/wikis/home”,
“git_ssh_url”: “git@example.com:root/awesome-project.wiki.git”,
“git_http_url”: “http://example.com/root/awesome-project.wiki.git”,
“path_with_namespace”: “root/awesome-project.wiki”,
“default_branch”: “master”

},
“object_attributes”: {

“title”: “Awesome”,
“content”: “awesome content goes here”,
“format”: “markdown”,
“message”: “adding an awesome page to the wiki”,
“slug”: “awesome”,
“url”: “http://example.com/root/awesome-project/wikis/awesome”,
“action”: “create”

}

}

Pipeline events

Triggered on status change of Pipeline.

Request Header:

`
X-Gitlab-Event: Pipeline Hook
`

Request Body:

```json
{


“object_kind”: “pipeline”,
“object_attributes”:{


“id”: 31,
“ref”: “master”,
“tag”: false,
“sha”: “bcbb5ec396a2c0f828686f14fac9b80b780504f2”,
“before_sha”: “bcbb5ec396a2c0f828686f14fac9b80b780504f2”,
“status”: “success”,
“stages”:[


“build”,
“test”,
“deploy”




],
“created_at”: “2016-08-12 15:23:28 UTC”,
“finished_at”: “2016-08-12 15:26:29 UTC”,
“duration”: 63




},
“user”:{


“name”: “Administrator”,
“username”: “root”,
“avatar_url”: “http://www.gravatar.com/avatar/e32bd13e2add097461cb96824b7a829c?s=80u0026d=identicon”




},
“project”:{


“id”: 1,
“name”: “Gitlab Test”,
“description”: “Atque in sunt eos similique dolores voluptatem.”,
“web_url”: “http://192.168.64.1:3005/gitlab-org/gitlab-test”,
“avatar_url”: null,
“git_ssh_url”: “git@192.168.64.1:gitlab-org/gitlab-test.git”,
“git_http_url”: “http://192.168.64.1:3005/gitlab-org/gitlab-test.git”,
“namespace”: “Gitlab Org”,
“visibility_level”: 20,
“path_with_namespace”: “gitlab-org/gitlab-test”,
“default_branch”: “master”




},
“commit”:{


“id”: “bcbb5ec396a2c0f828686f14fac9b80b780504f2”,
“message”: “testn”,
“timestamp”: “2016-08-12T17:23:21+02:00”,
“url”: “http://example.com/gitlab-org/gitlab-test/commit/bcbb5ec396a2c0f828686f14fac9b80b780504f2”,
“author”:{


“name”: “User”,
“email”: “user@gitlab.com”




}




},
“builds”:[



	{
	“id”: 380,
“stage”: “deploy”,
“name”: “production”,
“status”: “skipped”,
“created_at”: “2016-08-12 15:23:28 UTC”,
“started_at”: null,
“finished_at”: null,
“when”: “manual”,
“manual”: true,
“user”:{


“name”: “Administrator”,
“username”: “root”,
“avatar_url”: “http://www.gravatar.com/avatar/e32bd13e2add097461cb96824b7a829c?s=80u0026d=identicon”




},
“runner”: null,
“artifacts_file”:{


“filename”: null,
“size”: null




}





},
{


“id”: 377,
“stage”: “test”,
“name”: “test-image”,
“status”: “success”,
“created_at”: “2016-08-12 15:23:28 UTC”,
“started_at”: “2016-08-12 15:26:12 UTC”,
“finished_at”: null,
“when”: “on_success”,
“manual”: false,
“user”:{


“name”: “Administrator”,
“username”: “root”,
“avatar_url”: “http://www.gravatar.com/avatar/e32bd13e2add097461cb96824b7a829c?s=80u0026d=identicon”




},
“runner”: null,
“artifacts_file”:{


“filename”: null,
“size”: null




}




},
{


“id”: 378,
“stage”: “test”,
“name”: “test-build”,
“status”: “success”,
“created_at”: “2016-08-12 15:23:28 UTC”,
“started_at”: “2016-08-12 15:26:12 UTC”,
“finished_at”: “2016-08-12 15:26:29 UTC”,
“when”: “on_success”,
“manual”: false,
“user”:{


“name”: “Administrator”,
“username”: “root”,
“avatar_url”: “http://www.gravatar.com/avatar/e32bd13e2add097461cb96824b7a829c?s=80u0026d=identicon”




},
“runner”: null,
“artifacts_file”:{


“filename”: null,
“size”: null




}




},
{


“id”: 376,
“stage”: “build”,
“name”: “build-image”,
“status”: “success”,
“created_at”: “2016-08-12 15:23:28 UTC”,
“started_at”: “2016-08-12 15:24:56 UTC”,
“finished_at”: “2016-08-12 15:25:26 UTC”,
“when”: “on_success”,
“manual”: false,
“user”:{


“name”: “Administrator”,
“username”: “root”,
“avatar_url”: “http://www.gravatar.com/avatar/e32bd13e2add097461cb96824b7a829c?s=80u0026d=identicon”




},
“runner”: null,
“artifacts_file”:{


“filename”: null,
“size”: null




}




},
{


“id”: 379,
“stage”: “deploy”,
“name”: “staging”,
“status”: “created”,
“created_at”: “2016-08-12 15:23:28 UTC”,
“started_at”: null,
“finished_at”: null,
“when”: “on_success”,
“manual”: false,
“user”:{


“name”: “Administrator”,
“username”: “root”,
“avatar_url”: “http://www.gravatar.com/avatar/e32bd13e2add097461cb96824b7a829c?s=80u0026d=identicon”




},
“runner”: null,
“artifacts_file”:{


“filename”: null,
“size”: null




}




}




]







}

### Build events

Triggered on status change of a Build.

Request Header:

`
X-Gitlab-Event: Build Hook
`

Request Body:

```json
{

“object_kind”: “build”,
“ref”: “gitlab-script-trigger”,
“tag”: false,
“before_sha”: “2293ada6b400935a1378653304eaf6221e0fdb8f”,
“sha”: “2293ada6b400935a1378653304eaf6221e0fdb8f”,
“build_id”: 1977,
“build_name”: “test”,
“build_stage”: “test”,
“build_status”: “created”,
“build_started_at”: null,
“build_finished_at”: null,
“build_duration”: null,
“build_allow_failure”: false,
“project_id”: 380,
“project_name”: “gitlab-org/gitlab-test”,
“user”: {

“id”: 3,
“name”: “User”,
“email”: “user@gitlab.com”

},
“commit”: {

“id”: 2366,
“sha”: “2293ada6b400935a1378653304eaf6221e0fdb8f”,
“message”: “testn”,
“author_name”: “User”,
“author_email”: “user@gitlab.com”,
“status”: “created”,
“duration”: null,
“started_at”: null,
“finished_at”: null

},
“repository”: {

“name”: “gitlab_test”,
“git_ssh_url”: “git@192.168.64.1:gitlab-org/gitlab-test.git”,
“description”: “Atque in sunt eos similique dolores voluptatem.”,
“homepage”: “http://192.168.64.1:3005/gitlab-org/gitlab-test”,
“git_ssh_url”: “git@192.168.64.1:gitlab-org/gitlab-test.git”,
“git_http_url”: “http://192.168.64.1:3005/gitlab-org/gitlab-test.git”,
“visibility_level”: 20

}

}

Image URL rewriting

From GitLab 11.2, simple image references are rewritten to use an absolute URL
in webhooks. So if an image, merge request, comment, or wiki page has this in
its description:

`markdown
![image](/uploads/$sha/image.png)
`

It will appear in the webhook body as the below (assuming that GitLab is
installed at gitlab.example.com):

`markdown
![image](https://gitlab.example.com/uploads/$sha/image.png)
`

This will not rewrite URLs that already are pointing to HTTP, HTTPS, or
protocol-relative URLs. It will also not rewrite image URLs using advanced
Markdown features, like link labels.

Testing webhooks

You can trigger the webhook manually. Sample data from the project will be used.Sample data will take from the project.
> For example: for triggering Push Events your project should have at least one commit.

![Webhook testing](img/webhook_testing.png)

Troubleshoot webhooks

Gitlab stores each perform of the webhook.
You can find records for last 2 days in “Recent Deliveries” section on the edit page of each webhook.

![Recent deliveries](img/webhook_logs.png)

In this section you can see HTTP status code (green for 200-299 codes, red for the others, internal error for failed deliveries), triggered event, a time when the event was called, elapsed time of the request.

If you need more information about execution, you can click View details link.
On this page, you can see data that GitLab sends (request headers and body) and data that it received (response headers and body).

From this page, you can repeat delivery with the same data by clicking Resend Request button.

>**Note:** If URL or secret token of the webhook were updated, data will be delivered to the new address.

Receiving duplicate or multiple web hook requests triggered by one event

When GitLab sends a webhook it expects a response in 10 seconds (set default value). If it does not receive one, it’ll retry the webhook.
If the endpoint doesn’t send its HTTP response within those 10 seconds, GitLab may decide the hook failed and retry it.

If you are receiving multiple requests, you can try increasing the default value to wait for the HTTP response after sending the webhook
by uncommenting or adding the following setting to your /etc/gitlab/gitlab.rb:

`
gitlab_rails['webhook_timeout'] = 10
`

Example webhook receiver

If you want to see GitLab’s webhooks in action for testing purposes you can use
a simple echo script running in a console session. For the following script to
work you need to have Ruby installed.

Save the following file as print_http_body.rb:

```ruby
require ‘webrick’

server = WEBrick::HTTPServer.new(:Port => ARGV.first)
server.mount_proc ‘/’ do |req, res|


puts req.body




end


	trap ‘INT’ do
	server.shutdown





end
server.start
```

Pick an unused port (e.g. 8000) and start the script: ruby print_http_body.rb
8000. Then add your server as a webhook receiver in GitLab as
http://my.host:8000/.

When you press ‘Test’ in GitLab, you should see something like this in the
console:

`
{"before":"077a85dd266e6f3573ef7e9ef8ce3343ad659c4e","after":"95cd4a99e93bc4bbabacfa2cd10e6725b1403c60",<SNIP>}
example.com - - [14/May/2014:07:45:26 EDT] "POST / HTTP/1.1" 200 0
- -> /
`

 # Monitoring AWS Resources

> [Introduced](https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/12621) in GitLab 9.4

GitLab has support for automatically detecting and monitoring AWS resources, starting with the [Elastic Load Balancer](https://aws.amazon.com/elasticloadbalancing/). This is provided by leveraging the official [Cloudwatch exporter](https://github.com/prometheus/cloudwatch_exporter), which translates [Cloudwatch metrics](https://aws.amazon.com/cloudwatch/) into a Prometheus readable form.

Requirements

The [Prometheus service](../prometheus.md) must be enabled.

Metrics supported

Name | Query |

—- | —– |

Throughput (req/sec) | sum(aws_elb_request_count_sum{%{environment_filter}}) / 60 |

Latency (ms) | avg(aws_elb_latency_average{%{environment_filter}}) * 1000 |

HTTP Error Rate (%) | sum(aws_elb_httpcode_backend_5_xx_sum{%{environment_filter}}) / sum(aws_elb_request_count_sum{%{environment_filter}}) |

Configuring Prometheus to monitor for Cloudwatch metrics

To get started with Cloudwatch monitoring, you should install and configure the [Cloudwatch exporter](https://github.com/hnlq715/nginx-vts-exporter) which retrieves and parses the specified Cloudwatch metrics and translates them into a Prometheus monitoring endpoint.

Right now, the only AWS resource supported is the Elastic Load Balancer, whose Cloudwatch metrics can be found [here](http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/elb-cloudwatch-metrics.html).

A sample Cloudwatch Exporter configuration file, configured for basic AWS ELB monitoring, is [available for download](../samples/cloudwatch.yml).

Specifying the Environment label

In order to isolate and only display relevant metrics for a given environment
however, GitLab needs a method to detect which labels are associated. To do this, GitLab will [look for an environment label](metrics.md#identifying-environments).

 # Monitoring HAProxy
> [Introduced](https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/12621) in GitLab 9.4

GitLab has support for automatically detecting and monitoring HAProxy. This is provided by leveraging the [HAProxy Exporter](https://github.com/prometheus/haproxy_exporter), which translates HAProxy statistics into a Prometheus readable form.

Requirements

The [Prometheus service](../prometheus.md) must be enabled.

Metrics supported

Name | Query |

—- | —– |

Throughput (req/sec) | sum(rate(haproxy_frontend_http_requests_total{%{environment_filter}}[2m])) by (code) |

HTTP Error Rate (%) | sum(rate(haproxy_frontend_http_requests_total{code=”5xx”,%{environment_filter}}[2m])) / sum(rate(haproxy_frontend_http_requests_total{%{environment_filter}}[2m])) |

Configuring Prometheus to monitor for HAProxy metrics

To get started with NGINX monitoring, you should install and configure the [HAProxy exporter](https://github.com/prometheus/haproxy_exporter) which parses these statistics and translates them into a Prometheus monitoring endpoint.

Specifying the Environment label

In order to isolate and only display relevant metrics for a given environment
however, GitLab needs a method to detect which labels are associated. To do this, GitLab will [look for an environment label](metrics.md#identifying-environments).

 # Monitoring Kubernetes

> [Introduced](https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/8935) in GitLab 9.0

GitLab has support for automatically detecting and monitoring Kubernetes metrics.

Requirements

The [Prometheus](../prometheus.md) and [Kubernetes](../kubernetes.md)
integration services must be enabled.

Metrics supported

	Average Memory Usage (MB):

`
avg(sum(container_memory_usage_bytes{container_name!="POD",pod_name=~"^%{ci_environment_slug}-([^c].*|c([^a]|a([^n]|n([^a]|a([^r]|r[^y])))).*|)-(.*)",namespace="%{kube_namespace}"}) by (job)) without (job) / count(avg(container_memory_usage_bytes{container_name!="POD",pod_name=~"^%{ci_environment_slug}-([^c].*|c([^a]|a([^n]|n([^a]|a([^r]|r[^y])))).*|)-(.*)",namespace="%{kube_namespace}"}) without (job)) /1024/1024
`

	Average CPU Utilization (%):

`
avg(sum(rate(container_cpu_usage_seconds_total{container_name!="POD",pod_name=~"^%{ci_environment_slug}-([^c].*|c([^a]|a([^n]|n([^a]|a([^r]|r[^y])))).*|)-(.*)",namespace="%{kube_namespace}"}[15m])) by (job)) without (job) / count(sum(rate(container_cpu_usage_seconds_total{container_name!="POD",pod_name=~"^%{ci_environment_slug}-([^c].*|c([^a]|a([^n]|n([^a]|a([^r]|r[^y])))).*|)-(.*)",namespace="%{kube_namespace}"}[15m])) by (pod_name))
`

Configuring Prometheus to monitor for Kubernetes metrics

Prometheus needs to be deployed into the cluster and configured properly in order to gather Kubernetes metrics. GitLab supports two methods for doing so:

	GitLab [integrates with Kubernetes](../../clusters/index.md), and can [deploy Prometheus into a connected cluster](../prometheus.html#managed-prometheus-on-kubernetes). It is automatically configured to collect Kubernetes metrics.

	To configure your own Prometheus server, you can follow the [Prometheus documentation](https://prometheus.io/docs/introduction/overview/).

Specifying the Environment

In order to isolate and only display relevant CPU and Memory metrics for a given environment, GitLab needs a method to detect which containers it is running. Because these metrics are tracked at the container level, traditional Kubernetes labels are not available.

Instead, the [Deployment](https://kubernetes.io/docs/concepts/workloads/controllers/deployment/) or [DaemonSet](https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/) name should begin with [CI_ENVIRONMENT_SLUG](../../../../ci/variables/README.md#predefined-variables-environment-variables). It can be followed by a - and additional content if desired. For example, a deployment name of review-homepage-5620p5 would match the review/homepage environment.

 # Prometheus Metrics library

> [Introduced](https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/8935) in GitLab 9.0

GitLab offers automatic detection of select [Prometheus exporters](https://prometheus.io/docs/instrumenting/exporters/). Currently supported exporters are:
* [Kubernetes](kubernetes.md)
* [NGINX](nginx.md)
* [NGINX Ingress Controller](nginx_ingress.md)
* [HAProxy](haproxy.md)
* [Amazon Cloud Watch](cloudwatch.md)

We have tried to surface the most important metrics for each exporter, and will be continuing to add support for additional exporters in future releases. If you would like to add support for other official exporters, [contributions](#adding-to-the-library) are welcome.

Identifying Environments

GitLab retrieves performance data from the configured Prometheus server, and attempts to identifying the presence of known metrics. Once identified, GitLab then needs to be able to map the data to a particular environment.

In order to isolate and only display relevant metrics for a given environment, GitLab needs a method to detect which labels are associated. To do that,
GitLab uses the defined queries and fills in the environment specific variables. Typically this involves looking for the [$CI_ENVIRONMENT_SLUG](../../../../ci/variables/README.md#predefined-variables-environment-variables), but may also include other information such as the project’s Kubernetes namespace. Each search query is defined in the [exporter specific documentation](#prometheus-metrics-library).

Adding to the library

We strive to support the 2-4 most important metrics for each common system service that supports Prometheus. If you are looking for support for a particular exporter which has not yet been added to the library, additions can be made [to the additional_metrics.yml](https://gitlab.com/gitlab-org/gitlab-ce/blob/master/config/prometheus/additional_metrics.yml) file.

> Note: The library is only for monitoring public, common, system services which all customers can benefit from. Support for monitoring [customer proprietary metrics](https://gitlab.com/gitlab-org/gitlab-ee/issues/2273) will be added in a subsequent release.

 # Monitoring NGINX

> [Introduced](https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/12621) in GitLab 9.4

GitLab has support for automatically detecting and monitoring NGINX. This is provided by leveraging the [NGINX VTS exporter](https://github.com/hnlq715/nginx-vts-exporter), which translates [VTS statistics](https://github.com/vozlt/nginx-module-vts) into a Prometheus readable form.

Requirements

The [Prometheus service](../prometheus.md) must be enabled.

Metrics supported

NGINX server metrics are detected, which tracks the pages and content directly served by NGINX.

Name | Query |

—- | —– |

Throughput (req/sec) | sum(rate(nginx_server_requests{server_zone!=”*”, server_zone!=”_”, %{environment_filter}}[2m])) by (code) |

Latency (ms) | avg(nginx_server_requestMsec{%{environment_filter}}) |

HTTP Error Rate (HTTP Errors / sec) | sum(rate(nginx_server_requests{code=”5xx”, %{environment_filter}}[2m])) |

Configuring Prometheus to monitor for NGINX metrics

To get started with NGINX monitoring, you should first enable the [VTS statistics](https://github.com/vozlt/nginx-module-vts)) module for your NGINX server. This will capture and display statistics in an HTML readable form. Next, you should install and configure the [NGINX VTS exporter](https://github.com/hnlq715/nginx-vts-exporter) which parses these statistics and translates them into a Prometheus monitoring endpoint.

If you are using NGINX as your Kubernetes ingress, GitLab will [automatically detect](nginx_ingress.md) the metrics once enabled in 0.9.0 and later releases.

Specifying the Environment label

In order to isolate and only display relevant metrics for a given environment
however, GitLab needs a method to detect which labels are associated. To do this, GitLab will [look for an environment label](metrics.md#identifying-environments).

 # Monitoring NGINX Ingress Controller

> [Introduced](https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/13438) in GitLab 9.5

GitLab has support for automatically detecting and monitoring the Kubernetes NGINX ingress controller. This is provided by leveraging the built in Prometheus metrics included in [version 0.9.0](https://github.com/kubernetes/ingress/blob/master/controllers/nginx/Changelog.md#09-beta1) and above of the ingress.

Requirements

[Prometheus integration](../prometheus.md) must be active.

Metrics supported

Name | Query |

—- | —– |

Throughput (req/sec) | sum(rate(nginx_upstream_responses_total{upstream=~”%{kube_namespace}-%{ci_environment_slug}-.*”}[2m])) by (status_code) |

Latency (ms) | avg(nginx_upstream_response_msecs_avg{upstream=~”%{kube_namespace}-%{ci_environment_slug}-.*”}) |

HTTP Error Rate (%) | sum(rate(nginx_upstream_responses_total{status_code=”5xx”, upstream=~”%{kube_namespace}-%{ci_environment_slug}-.*”}[2m])) / sum(rate(nginx_upstream_responses_total{upstream=~”%{kube_namespace}-%{ci_environment_slug}-.*”}[2m])) * 100 |

Configuring NGINX ingress monitoring

If you have deployed NGINX Ingress using GitLab’s [Kubernetes cluster integration](../../clusters/index.md#installing-applications), it will [automatically be monitored](#about-managed-nginx-ingress-deployments) by Prometheus.

For other deployments, there is [some configuration](#manually-setting-up-nginx-ingress-for-prometheus-monitoring) required depending on your installation:
* NGINX Ingress should be version 0.9.0 or above, with metrics enabled
* NGINX Ingress should be annotated for Prometheus monitoring
* Prometheus should be configured to monitor annotated pods

About managed NGINX Ingress deployments

NGINX Ingress is deployed into the gitlab-managed-apps namespace, using the [official Helm chart](https://github.com/kubernetes/charts/tree/master/stable/nginx-ingress). NGINX Ingress will be [externally reachable via the Load Balancer’s IP](../../clusters/index.md#getting-the-external-ip-address).

NGINX is configured for Prometheus monitoring, by setting:
* enable-vts-status: “true”, to export Prometheus metrics
* prometheus.io/scrape: “true”, to enable automatic discovery
* prometheus.io/port: “10254”, to specify the metrics port

When used in conjunction with the GitLab deployed Prometheus service, response metrics will be automatically collected.

Manually setting up NGINX Ingress for Prometheus monitoring

Version 0.9.0 and above of [NGINX ingress](https://github.com/kubernetes/ingress/tree/master/controllers/nginx) have built-in support for exporting Prometheus metrics. To enable, a ConfigMap setting must be passed: enable-vts-status: “true”. Once enabled, a Prometheus metrics endpoint will start running on port 10254.

Next, the ingress needs to be annotated for Prometheus monitoring. Two new annotations need to be added:

	prometheus.io/scrape: “true”

	prometheus.io/port: “10254”

Managing these settings depends on how NGINX ingress has been deployed. If you have deployed via the [official Helm chart](https://github.com/kubernetes/charts/tree/master/stable/nginx-ingress), metrics can be enabled with controller.stats.enabled along with the required annotations. Alternatively it is possible edit the NGINX ingress YML directly in the [Kubernetes dashboard](https://github.com/kubernetes/dashboard).

Specifying the Environment label

In order to isolate and only display relevant metrics for a given environment, GitLab needs a method to detect which labels are associated. To do this, GitLab will search for metrics with appropriate labels. In this case, the upstream label must be of the form <KUBE_NAMESPACE>-<CI_ENVIRONMENT_SLUG>-*.

If you have used [Auto Deploy](../../../../topics/autodevops/index.md#auto-deploy) to deploy your app, this format will be used automatically and metrics will be detected with no action on your part.

 # Automatic issue closing

>**Notes:**
> - This is the user docs. In order to change the default issue closing pattern,
> follow the steps in the [administration docs].
> - For performance reasons, automatic issue closing is disabled for the very
> first push from an existing repository.

When a commit or merge request resolves one or more issues, it is possible to
automatically have these issues closed when the commit or merge request lands
in the project’s default branch.

If a commit message or merge request description contains a sentence matching
a certain regular expression, all issues referenced from the matched text will
be closed. This happens when the commit is pushed to a project’s
[default branch](../repository/branches/index.md#default-branch), or when a
commit or merge request is merged into it.

Default closing pattern value

When not specified, the default issue closing pattern as shown below will be
used:

`bash
((?:[Cc]los(?:e[sd]?|ing)|[Ff]ix(?:e[sd]|ing)?|[Rr]esolv(?:e[sd]?|ing)|[Ii]mplement(?:s|ed|ing)?)(:?) +(?:(?:issues? +)?%{issue_ref}(?:(?:, *| +and +)?)|([A-Z][A-Z0-9_]+-\d+))+)
`

Note that %{issue_ref} is a complex regular expression defined inside GitLab’s
source code that can match a reference to 1) a local issue (#123),
2) a cross-project issue (group/project#123) or 3) a link to an issue
(https://gitlab.example.com/group/project/issues/123).

—

This translates to the following keywords:

	Close, Closes, Closed, Closing, close, closes, closed, closing

	Fix, Fixes, Fixed, Fixing, fix, fixes, fixed, fixing

	Resolve, Resolves, Resolved, Resolving, resolve, resolves, resolved, resolving

	Implement, Implements, Implemented, Implementing, implement, implements, implemented, implementing

—

For example the following commit message:

```
Awesome commit message

Fix #20, Fixes #21 and Closes group/otherproject#22.
This commit is also related to #17 and fixes #18, #19
and https://gitlab.example.com/group/otherproject/issues/23.
```

will close #18, #19, #20, and #21 in the project this commit is pushed
to, as well as #22 and #23 in group/otherproject. #17 won’t be closed as
it does not match the pattern. It works with multi-line commit messages as well
as one-liners when used with git commit -m.

[administration docs]: ../../../administration/issue_closing_pattern.md

 # Closing Issues

Please read through the [GitLab Issue Documentation](index.md) for an overview on GitLab Issues.

Directly

Whenever you decide that’s no longer need for that issue,
close the issue using the close button:

![close issue - button](img/button_close_issue.png)

Via Merge Request

When a merge request resolves the discussion over an issue, you can
make it close that issue(s) when merged.

All you need is to use a [keyword](automatic_issue_closing.md)
accompanying the issue number, add to the description of that MR.

In this example, the keyword “closes” prefixing the issue number will create a relationship
in such a way that the merge request will close the issue when merged.

Mentioning various issues in the same line also works for this purpose:

`md
Closes #333, #444, #555 and #666
`

If the issue is in a different repository rather then the MR’s,
add the full URL for that issue(s):

`md
Closes #333, #444, and https://gitlab.com/<username>/<projectname>/issues/<xxx>
`

All the following keywords will produce the same behaviour:

	Close, Closes, Closed, Closing, close, closes, closed, closing

	Fix, Fixes, Fixed, Fixing, fix, fixes, fixed, fixing

	Resolve, Resolves, Resolved, Resolving, resolve, resolves, resolved, resolving

![merge request closing issue when merged](img/merge_request_closes_issue.png)

If you use any other word before the issue number, the issue and the MR will
link to each other, but the MR will NOT close the issue(s) when merged.

![mention issues in MRs - closing and related](img/closing_and_related_issues.png)

From the Issue Board

You can close an issue from [Issue Boards](../issue_board.md) by dragging an issue card
from its list and dropping into Closed.

![close issue from the Issue Board](img/close_issue_from_board.gif)

Customizing the issue closing pattern

Alternatively, a GitLab administrator can
[customize the issue closing pattern](../../../administration/issue_closing_pattern.md).

 # Confidential issues

> [Introduced][ce-3282] in GitLab 8.6.

Confidential issues are issues visible only to members of a project with
[sufficient permissions](#permissions-and-access-to-confidential-issues).
Confidential issues can be used by open source projects and companies alike to
keep security vulnerabilities private or prevent surprises from leaking out.

Making an issue confidential

You can make an issue confidential during issue creation or by editing
an existing one.

When you create a new issue, a checkbox right below the text area is available
to mark the issue as confidential. Check that box and hit the Submit issue
button to create the issue. For existing issues, edit them, check the
confidential checkbox and hit Save changes.

![Creating a new confidential issue](img/confidential_issues_create.png)

Modifying issue confidentiality

There are two ways to change an issue’s confidentiality.

The first way is to edit the issue and mark/unmark the confidential checkbox.
Once you save the issue, it will change the confidentiality of the issue.

The second way is to locate the Confidentiality section in the sidebar and click
Edit. A popup should appear and give you the option to turn on or turn off confidentiality.

Turn off confidentiality | Turn on confidentiality |

:———–: | :———-: |

![Turn off confidentiality](img/turn_off_confidentiality.png) | ![Turn on confidentiality](img/turn_on_confidentiality.png) |

Every change from regular to confidential and vice versa, is indicated by a
system note in the issue’s comments.

![Confidential issues system notes](img/confidential_issues_system_notes.png)

Indications of a confidential issue

>**Note:** If you don’t have [enough permissions](#permissions-and-access-to-confidential-issues),
you won’t be able to see the confidential issues at all.

There are a few things that visually separate a confidential issue from a
regular one. In the issues index page view, you can see the eye-slash icon
next to the issues that are marked as confidential.

![Confidential issues index page](img/confidential_issues_index_page.png)

—

Likewise, while inside the issue, you can see the eye-slash icon right next to
the issue number, but there is also an indicator in the comment area that the
issue you are commenting on is confidential.

![Confidential issue page](img/confidential_issues_issue_page.png)

There is also an indicator on the sidebar denoting confidentiality.

Confidential issue | Not confidential issue |

:———–: | :———-: |

![Sidebar confidential issue](img/sidebar_confidential_issue.png) | ![Sidebar not confidential issue](img/sidebar_not_confidential_issue.png) |

Permissions and access to confidential issues

There are two kinds of level access for confidential issues. The general rule
is that confidential issues are visible only to members of a project with at
least [Reporter access][permissions]. However, a guest user can also create
confidential issues, but can only view the ones that they created themselves.

Confidential issues are also hidden in search results for unprivileged users.
For example, here’s what a user with Maintainer and Guest access sees in the
project’s search results respectively.

Maintainer access | Guest access |

:———–: | :———-: |

![Confidential issues search master](img/confidential_issues_search_master.png) | ![Confidential issues search guest](img/confidential_issues_search_guest.png) |

[permissions]: ../../permissions.md#project
[ce-3282]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/3282

 # Create a new Issue

Please read through the [GitLab Issue Documentation](index.md) for an overview on GitLab Issues.

When you create a new issue, you’ll be prompted to fill in
the information illustrated on the image below.

![New issue from the issues list](img/new_issue.png)

Read through the [issues functionalities documentation](issues_functionalities.md#issues-functionalities)
to understand these fields one by one.

New issue from the Issue Tracker

Navigate to your Project’s Dashboard > Issues > New Issue to create a new issue:

![New issue from the issue list view](img/new_issue_from_tracker_list.png)

New issue from an opened issue

From an opened issue in your project, click New Issue to create a new
issue in the same project:

![New issue from an open issue](img/new_issue_from_open_issue.png)

New issue from the project’s dashboard

From your Project’s Dashboard, click the plus sign (+) to open a dropdown
menu with a few options. Select New Issue to create an issue in that project:

![New issue from a project’s dashboard](img/new_issue_from_projects_dashboard.png)

New issue from the Issue Board

From an Issue Board, create a new issue by clicking on the plus sign (+) on the top of a list.
It opens a new issue for that project labeled after its respective list.

![From the issue board](img/new_issue_from_issue_board.png)

New issue via email

This feature needs [incoming email](../../../administration/incoming_email.md)
to be configured by a GitLab administrator to be available for CE/EE users, and
it’s available on GitLab.com.

At the bottom of a project’s issue page, click
Email a new issue to this project, and you will find an email address
which belongs to you. You could add this address to your contact.

This is a private email address, generated just for you.
Keep it to yourself as anyone who gets ahold of it can create issues or
merge requests as if they were you. You can add this address to your contact
list for easy access.

Sending an email to this address will create a new issue on your behalf for
this project, where the email subject becomes the issue title, and the email
body becomes the issue description. [Markdown] and [quick actions] are
supported.

![Bottom of a project issues page](img/new_issue_from_email.png)

 # Crosslinking Issues

Please read through the [GitLab Issue Documentation](index.md) for an overview on GitLab Issues.

From Commit Messages

Every time you mention an issue in your commit message, you’re creating
a relationship between the two stages of the development workflow: the
issue itself and the first commit related to that issue.

If the issue and the code you’re committing are both in the same project,
you simply add #xxx to the commit message, where xxx is the issue number.
If they are not in the same project, you can add the full URL to the issue
(https://gitlab.com/<username>/<projectname>/issues/<xxx>).

`shell
git commit -m "this is my commit message. Ref #xxx"
`

or

`shell
git commit -m "this is my commit message. Related to https://gitlab.com/<username>/<projectname>/issues/<xxx>"
`

Of course, you can replace gitlab.com with the URL of your own GitLab instance.

Note: Linking your first commit to your issue is going to be relevant
for tracking your process far ahead with
[GitLab Cycle Analytics](https://about.gitlab.com/features/cycle-analytics/)).
It will measure the time taken for planning the implementation of that issue,
which is the time between creating an issue and making the first commit.

From Related Issues

Mentioning related issues in merge requests and other issues is useful
for your team members and collaborators to know that there are opened
issues around that same idea.

You do that as explained above, when
[mentioning an issue from a commit message](#from-commit-messages).

When mentioning the issue “A” in issue “B”, the issue “A” will also
display a notification in its tracker. The same is valid for mentioning
issues in merge requests.

![issue mentioned in issue](img/mention_in_issue.png)

From Merge Requests

Mentioning issues in merge request comments work exactly the same way
they do for [related issues](#from-related-issues).

When you mention an issue in a merge request description, you can either
[close the issue as soon as the merge request is merged](closing_issues.md#via-merge-request),
or simply link both issue and merge request as described in the
[closing issues documentation](closing_issues.md#from-related-issues).

![issue mentioned in MR](img/mention_in_merge_request.png)

Close an issue by merging a merge request

To [close an issue when a merge request is merged](closing_issues.md#via-merge-request), use the [automatic issue closing pattern](automatic_issue_closing.md).

 # Deleting Issues

> [Introduced][ce-2982] in GitLab 8.6

Please read through the [GitLab Issue Documentation](index.md) for an overview on GitLab Issues.

You can delete an issue by editing it and clicking on the delete button.

![delete issue - button](img/delete_issue.png)

>**Note:** Only [project owners](../../permissions.md) can delete issues.

[ce-2982]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/2982

 # Due dates

> [Introduced][ce-3614] in GitLab 8.7.

Please read through the [GitLab Issue Documentation](index.md) for an overview on GitLab Issues.

Due dates can be used in issues to keep track of deadlines and make sure
features are shipped on time. Due dates require at least [Reporter permissions][permissions]
to be able to edit them. On the contrary, they can be seen by everybody.

Setting a due date

When creating or editing an issue, you can see the due date field from where
a calendar will appear to help you choose the date you want. To remove it,
select the date text and delete it.

![Create a due date](img/due_dates_create.png)

A quicker way to set a due date is via the issue sidebar. Simply expand the
sidebar and select Edit to pick a due date or remove the existing one.
Changes are saved immediately.

![Edit a due date via the sidebar](img/due_dates_edit_sidebar.png)

Making use of due dates

Issues that have a due date can be distinctively seen in the issue tracker
displaying a date next to them. Issues where the date is overdue will have
the icon and the date colored red. You can sort issues by those that are
Due soon or _Due later_ from the dropdown menu in the right.

![Issues with due dates in the issues index page](img/due_dates_issues_index_page.png)

Due dates also appear in your [todos list](../../../workflow/todos.md).

![Issues with due dates in the todos](img/due_dates_todos.png)

The day before an open issue is due, an email will be sent to all participants
of the issue. Both the due date and the day before are calculated using the
server’s timezone.

Issues with due dates can also be exported as an iCalendar feed. The URL of the
feed can be added to calendar applications. The feed is accessible by clicking
on the _Subscribe to calendar_ button on the following pages:
- on the Assigned Issues page that is linked on the right-hand side of the

GitLab header

	on the Project Issues page

	on the Group Issues page

[ce-3614]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/3614
[permissions]: ../../permissions.md#project

 # Issues

The GitLab Issue Tracker is an advanced and complete tool
for tracking the evolution of a new idea or the process
of solving a problem.

It allows you, your team, and your collaborators to share
and discuss proposals before and while implementing them.

GitLab Issues and the GitLab Issue Tracker are available in all
[GitLab Products](https://about.gitlab.com/pricing/) as
part of the [GitLab Workflow](https://about.gitlab.com/2016/10/25/gitlab-workflow-an-overview/).

Use cases

Issues can have endless applications. Just to exemplify, these are
some cases for which creating issues are most used:

	Discussing the implementation of a new idea

	Submitting feature proposals

	Asking questions

	Reporting bugs and malfunction

	Obtaining support

	Elaborating new code implementations

See also the blog post “[Always start a discussion with an issue](https://about.gitlab.com/2016/03/03/start-with-an-issue/)”.

Keep private things private

For instance, let’s assume you have a public project but want to start a discussion on something
you don’t want to be public. With [Confidential Issues](#confidential-issues),
you can discuss private matters among the project members, and still keep
your project public, open to collaboration.

Streamline collaboration

With [Multiple Assignees for Issues](https://docs.gitlab.com/ee/user/project/issues/multiple_assignees_for_issues.html),
available in [GitLab Starter](https://about.gitlab.com/pricing/)
you can streamline collaboration and allow shared responsibilities to be clearly displayed.
All assignees are shown across your workflows and receive notifications (as they
would as single assignees), simplifying communication and ownership.

Consistent collaboration

Create [issue templates](#issue-templates) to make collaboration consistent and
containing all information you need. For example, you can create a template
for feature proposals and another one for bug reports.

Issue Tracker

The Issue Tracker is the collection of opened and closed issues created in a project.
It is available for all projects, from the moment the project is created.

Find the issue tracker by navigating to your Project’s homepage > Issues.

Issues per project

When you access your project’s issues, GitLab will present them in a list,
and you can use the tabs available to quickly filter by open and closed issues.

![Project issues list view](img/project_issues_list_view.png)

You can also [search and filter](../../search/index.md#issues-and-merge-requests-per-project) the results more deeply with GitLab’s search capacities.

Issues per group

View issues in all projects in the group, including all projects of all descendant subgroups of the group. Navigate to Group > Issues to view these issues. This view also has the open and closed issues tabs.

![Group Issues list view](img/group_issues_list_view.png)

GitLab Issues Functionalities

The image bellow illustrates how an issue looks like:

![Issue view](img/issues_main_view.png)

Learn more about it on the [GitLab Issues Functionalities documentation](issues_functionalities.md).

New issue

Read through the [documentation on creating issues](create_new_issue.md).

Closing issues

Learn distinct ways to [close issues](closing_issues.md) in GitLab.

Moving issues

Read through the [documentation on moving issues](moving_issues.md).

Deleting issues

Read through the [documentation on deleting issues](deleting_issues.md)

Create a merge request from an issue

Learn more about it on the [GitLab Issues Functionalities documentation](issues_functionalities.md#18-new-merge-request).

Search for an issue

Learn how to [find an issue](../../search/index.md) by searching for and filtering them.

Advanced features

Confidential Issues

Whenever you want to keep the discussion presented in a
issue within your team only, you can make that
[issue confidential](confidential_issues.md). Even if your project
is public, that issue will be preserved. The browser will
respond with a 404 error whenever someone who is not a project
member with at least [Reporter level](../../permissions.md#project) tries to
access that issue’s URL.

Learn more about them on the [confidential issues documentation](confidential_issues.md).

Issue templates

Create templates for every new issue. They will be available from
the dropdown menu Choose a template when you create a new issue:

![issue template](img/issue_template.png)

Learn more about them on the [issue templates documentation](../../project/description_templates.md#creating-issue-templates).

Crosslinking issues

Learn more about [crosslinking](crosslinking_issues.md) issues and merge requests.

Issue Board

The [GitLab Issue Board](https://about.gitlab.com/features/issueboard/) is a way to
enhance your workflow by organizing and prioritizing issues in GitLab.

![Issue board](img/issue_board.png)

Find GitLab Issue Boards by navigating to your Project’s Dashboard > Issues > Board.

Read through the documentation for [Issue Boards](../issue_board.md)
to find out more about this feature.

With [GitLab Starter](https://about.gitlab.com/pricing/), you can also
create various boards per project with [Multiple Issue Boards](https://docs.gitlab.com/ee/user/project/issue_board.html#multiple-issue-boards).

External Issue Tracker

Alternatively to GitLab’s built-in Issue Tracker, you can also use an [external
tracker](../../../integration/external-issue-tracker.md) such as Jira, Redmine,
or Bugzilla.

Issue’s API

Read through the [API documentation](../../../api/issues.md).

Bulk editing issues

Find out about [bulk editing issues](../../project/bulk_editing.md).

 # GitLab Issues Functionalities

Please read through the [GitLab Issue Documentation](index.md) for an overview on GitLab Issues.

Issues Functionalities

The image bellow illustrates how an issue looks like:

![Issue view](img/issues_main_view_numbered.jpg)

You can find all the information on that issue on one screen.

Issue screen

An issue starts with its status (open or closed), followed by its author,
and includes many other functionalities, numbered on the image above to
explain what they mean, one by one.

Many of the elements of the issue screen refresh automatically, such as the title and description, when they are changed by another user.
Comments and system notes also appear automatically in response to various actions and content updates.

1. New Issue, close issue, edit

	New issue: create a new issue in the same project

	Close issue: close this issue

	Edit: edit the same fields available when you create an issue.

2. Todos

	Add todo: add that issue to your [GitLab Todo](../../../workflow/todos.html) list

	Mark todo as done: mark that issue as done (reflects on the Todo list)

3. Assignee

Whenever someone starts to work on an issue, it can be assigned
to that person. The assignee can be changed as much as needed.
The idea is that the assignee is responsible for that issue until
it’s reassigned to someone else to take it from there.

> Tip:
if a user is not member of that project, it can only be
assigned to them if they created the issue themselves.

3.1. Multiple Assignees [STARTER]

Often multiple people likely work on the same issue together,
which can especially be difficult to track in large teams
where there is shared ownership of an issue.

In [GitLab Starter](https://about.gitlab.com/pricing/), you can also
select multiple assignees to an issue.

Learn more on the [Multiple Assignees documentation](https://docs.gitlab.com/ee/user/project/issues/multiple_assignees_for_issues.html).

4. Milestone

	Select a [milestone](../milestones/index.md) to attribute that issue to.

5. Time Tracking

	Estimate time: add an estimate time in which the issue will be implemented

	Spend: add the time spent on the implementation of that issue

> Note:
Both estimate and spend times are set via [GitLab Quick Actions](../quick_actions.md).

Learn more on the [Time Tracking documentation](../../../workflow/time_tracking.md).

6. Due date

When you work on a tight schedule, and it’s important to
have a way to setup a deadline for implementations and for solving
problems. This can be facilitated by the [due date](due_dates.md)). Due dates
can be changed as many times as needed.

7. Labels

Categorize issues by giving them [labels](../labels.md). They help to
organize team’s workflows, once they enable you to work with the
[GitLab Issue Board](index.md#gitlab-issue-board).

Group Labels, which allow you to use the same labels per
group of projects, can be also given to issues. They work exactly the same,
but they are immediately available to all projects in the group.

> Tip:
if the label doesn’t exist yet, when you click Edit, it opens a dropdown menu from which you can select Create new label.

8. Weight [STARTER]

	Attribute a weight (in a 0 to 9 range) to that issue. Easy to complete

should weight 1 and very hard to complete should weight 9.

Learn more on the [Issue Weight documentation](https://docs.gitlab.com/ee/workflow/issue_weight.html).

9. Participants

	People involved in that issue (mentioned in the description or in the [discussion](../../discussions/index.md)).

10. Notifications

	Subscribe: if you are not a participant of the discussion on that issue, but

want to receive notifications on each new input, subscribe to it.
- Unsubscribe: if you are receiving notifications on that issue but no
longer want to receive them, unsubscribe to it.

Read more on the [notifications documentation](../../../workflow/notifications.md#issue-merge-request-events).

11. Reference

	A quick “copy to clipboard” button to that issue’s reference, foo/bar#xxx, where foo is the username or groupname, bar

is the project-name, and xxx is the issue number.

12. Title and description

	Title: a plain text title describing the issue’s subject.

	Description: a text field which fully supports [GitLab Flavored Markdown](../../markdown.md#gitlab-flavored-markdown-gfm).

13. @mentions

	Mentions: you can either @mention a user or a group present in your

GitLab instance and they will be notified via todos and email, unless that
person has disabled all notifications in their profile settings.

To change your [notification settings](../../../workflow/notifications.md) navigate to
Profile Settings > Notifications > Global notification level
and choose your preferences from the dropdown menu.

> Tip:
Avoid mentioning @all in issues and merge requests,
as it sends an email notification
to all the members of that project’s group, which can be
interpreted as spam.

14. Related Merge Requests

	Any merge requests mentioned in that issue’s description

or in the issue thread.

15. Award emoji

	Award an emoji to that issue.

> Tip:
Posting “+1” as comments in threads spam all
participants of that issue. Awarding an emoji is a way to let them
know you like it without spamming them.

16. Thread

	Comments: collaborate to that issue by posting comments in its thread.

These text fields also fully support
[GitLab Flavored Markdown](../../markdown.md#gitlab-flavored-markdown-gfm).

17. Comment, start a discussion, or comment and close

Once you wrote your comment, you can either:

	Click “Comment” and your comment will be published.

	Click “Start discussion”: start a thread within that issue’s thread to discuss specific points.

	Click “Comment and close issue”: post your comment and close that issue in one click.

18. New Merge Request

	Create a new merge request (with a new source branch named after the issue) in one action.

The merge request will automatically inherit the milestone and labels of the issue. The merge
request will automatically close that issue as soon as merged.
- Optionally, you can just create a [new branch](../repository/web_editor.md#create-a-new-branch-from-an-issue)
named after that issue.

 # Moving Issues

Please read through the [GitLab Issue Documentation](index.md) for an overview on GitLab Issues.

Moving an issue will close it and duplicate it on the specified project.
There will also be a system note added to both issues indicating where it came from or went to.

You can move an issue with the “Move issue” button at the bottom of the right-sidebar when viewing the issue.

![move issue - button](img/sidebar_move_issue.png)

 # Project’s members

You can manage the groups and users and their access levels in all of your
projects. You can also personalize the access level you give each user,
per-project.

You should have Maintainer or Owner [permissions](../../permissions.md) to add
or import a new user to your project.

To view, edit, add, and remove project’s members, go to your
project’s Settings > Members.

—

Add a user

Right next to People, start typing the name or username of the user you
want to add.

![Search for people](img/add_user_search_people.png)

—

Select the user and the [permission level](../../permissions.md)
that you’d like to give the user. Note that you can select more than one user.

![Give user permissions](img/add_user_give_permissions.png)

—

Once done, hit Add users to project and they will be immediately added to
your project with the permissions you gave them above.

![List members](img/add_user_list_members.png)

—

From there on, you can either remove an existing user or change their access
level to the project.

Import users from another project

You can import another project’s users in your own project by hitting the
Import members button on the upper right corner of the Members menu.

In the dropdown menu, you can see only the projects you are Maintainer on.

![Import members from another project](img/add_user_import_members_from_another_project.png)

—

Select the one you want and hit Import project members. A flash message
notifying you that the import was successful will appear, and the new members
are now in the project’s members list. Notice that the permissions that they
had on the project you imported from are retained.

![Members list of new members](img/add_user_imported_members.png)

—

Invite people using their e-mail address

If a user you want to give access to doesn’t have an account on your GitLab
instance, you can invite them just by typing their e-mail address in the
user search field.

![Invite user by mail](img/add_user_email_search.png)

—

As you can imagine, you can mix inviting multiple people and adding existing
GitLab users to the project.

![Invite user by mail ready to submit](img/add_user_email_ready.png)

—

Once done, hit Add users to project and watch that there is a new member
with the e-mail address we used above. From there on, you can resend the
invitation, change their access level or even delete them.

![Invite user members list](img/add_user_email_accept.png)

—

Once the user accepts the invitation, they will be prompted to create a new
GitLab account using the same e-mail address the invitation was sent to.

Request access to a project

As a project owner you can enable or disable non members to request access to
your project. Go to the project settings and click on Allow users to request access.

As a user, you can request to be a member of a project. Go to the project you’d
like to be a member of, and click the Request Access button on the right
side of your screen.

![Request access button](img/request_access_button.png)

—

Project owners & maintainers will be notified of your request and will be able to approve or
decline it on the members page.

![Manage access requests](img/access_requests_management.png)

—

If you change your mind before your request is approved, just click the
Withdraw Access Request button.

![Withdraw access request button](img/withdraw_access_request_button.png)

Share project with group

Alternatively, you can [share a project with an entire group](share_project_with_groups.md) instead of adding users one by one.

 # Share Projects with other Groups

You can share projects with other [groups](../../group/index.md). This makes it
possible to add a group of users to a project with a single action.

Groups as collections of users

Groups are used primarily to [create collections of projects](../../group/index.md), but you can also
take advantage of the fact that groups define collections of _users_, namely the group
members.

Sharing a project with a group of users

The primary mechanism to give a group of users, say ‘Engineering’, access to a project,
say ‘Project Acme’, in GitLab is to make the ‘Engineering’ group the owner of ‘Project
Acme’. But what if ‘Project Acme’ already belongs to another group, say ‘Open Source’?
This is where the group sharing feature can be of use.

To share ‘Project Acme’ with the ‘Engineering’ group:

	For ‘Project Acme’ use the left navigation menu to go to Settings > Members

![share project with groups](img/share_project_with_groups.png)

1. Select the ‘Share with group’ tab
1. Add the ‘Engineering’ group with the maximum access level of your choice
1. Click Share to share it

![share project with groups tab](img/share_project_with_groups_tab.png)

	After sharing ‘Project Acme’ with ‘Engineering’, the project will be listed
on the group dashboard

![‘Project Acme’ is listed as a shared project for ‘Engineering’](img/other_group_sees_shared_project.png)

Note that you can only share a project with:

	groups for which you have an explicitly defined membership

	groups that contain a nested subgroup or project for which you have an explicitly defined role

Admins are able to share projects with any group in the system.

Maximum access level

In the example above, the maximum access level of ‘Developer’ for members from ‘Engineering’ means that users with higher access levels in ‘Engineering’ (‘Maintainer’ or ‘Owner’) will only have ‘Developer’ access to ‘Project Acme’.

Share project with group lock

It is possible to prevent projects in a group from [sharing
a project with another group](../members/share_project_with_groups.md).
This allows for tighter control over project access.

Learn more about [Share with group lock](../../group/index.html#share-with-group-lock).

 # Allow collaboration on merge requests across forks

> [Introduced][ce-17395] in GitLab 10.6.

This feature is available for merge requests across forked projects that are
publicly accessible. It makes it easier for members of projects to
collaborate on merge requests across forks.

When enabled for a merge request, members with merge access to the target
branch of the project will be granted write permissions to the source branch
of the merge request.

The feature can only be enabled by users who already have push access to the
source project, and only lasts while the merge request is open.

Enable this functionality while creating or editing a merge request:

![Enable collaboration](./img/allow_collaboration.png)

[ce-17395]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/17395

 # Authorization for Merge requests

There are two main ways to have a merge request flow with GitLab:

1. Working with [protected branches] in a single repository.
1. Working with forks of an authoritative project.

Protected branch flow

With the protected branch flow everybody works within the same GitLab project.

The project maintainers get Maintainer access and the regular developers get
Developer access.

The maintainers mark the authoritative branches as ‘Protected’.

The developers push feature branches to the project and create merge requests
to have their feature branches reviewed and merged into one of the protected
branches.

By default, only users with Maintainer access can merge changes into a protected
branch.

Advantages

	Fewer projects means less clutter.

	Developers need to consider only one remote repository.

Disadvantages

	Manual setup of protected branch required for each new project

Forking workflow

With the forking workflow the maintainers get Maintainer access and the regular
developers get Reporter access to the authoritative repository, which prohibits
them from pushing any changes to it.

Developers create forks of the authoritative project and push their feature
branches to their own forks.

To get their changes into master they need to create a merge request across
forks.

Advantages

	In an appropriately configured GitLab group, new projects automatically get
the required access restrictions for regular developers: fewer manual steps
to configure authorization for new projects.

Disadvantages

	The project need to keep their forks up to date, which requires more advanced
Git skills (managing multiple remotes).

[protected branches]: ../protected_branches.md

 # Cherry-pick changes

> [Introduced][ce-3514] in GitLab 8.7.

GitLab implements Git’s powerful feature to [cherry-pick any commit][git-cherry-pick]
with introducing a Cherry-pick button in merge requests and commit details.

Cherry-picking a merge request

After the merge request has been merged, a Cherry-pick button will be available
to cherry-pick the changes introduced by that merge request.

![Cherry-pick Merge Request](img/cherry_pick_changes_mr.png)

After you click that button, a modal will appear where you can choose to
cherry-pick the changes directly into the selected branch or you can opt to
create a new merge request with the cherry-pick changes

Cherry-picking a Commit

You can cherry-pick a Commit from the Commit details page:

![Cherry-pick commit](img/cherry_pick_changes_commit.png)

Similar to cherry-picking a merge request, you can opt to cherry-pick the changes
directly into the target branch or create a new merge request to cherry-pick the
changes.

Please note that when cherry-picking merge commits, the mainline will always be the
first parent. If you want to use a different mainline then you need to do that
from the command line.

Here is a quick example to cherry-pick a merge commit using the second parent as the
mainline:

`bash
git cherry-pick -m 2 7a39eb0
`

[ce-3514]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/3514 “Cherry-pick button Merge Request”
[git-cherry-pick]: https://git-scm.com/docs/git-cherry-pick “Git cherry-pick documentation”

 # Fast-forward merge requests

Retain a linear Git history and a way to accept merge requests without
creating merge commits.

Overview

When the fast-forward merge ([–ff-only][ffonly]) setting is enabled, no merge
commits will be created and all merges are fast-forwarded, which means that
merging is only allowed if the branch could be fast-forwarded.

When a fast-forward merge is not possible, the user is given the option to rebase.

Use cases

Sometimes, a workflow policy might mandate a clean commit history without
merge commits. In such cases, the fast-forward merge is the perfect candidate.

Enabling fast-forward merges

1. Navigate to your project’s Settings and search for the ‘Merge method’
1. Select the Fast-forward merge option
1. Hit Save changes for the changes to take effect

Now, when you visit the merge request page, you will be able to accept it
only if a fast-forward merge is possible.

![Fast forward merge request](img/ff_merge_rebase.png)

If the target branch is ahead of the source branch, you need to rebase the
source branch locally before you will be able to do a fast-forward merge.

![Fast forward merge rebase locally](img/ff_merge_rebase_locally.png)

[ffonly]: https://git-scm.com/docs/git-merge#git-merge—ff-only [https://git-scm.com/docs/git-merge#git-merge---ff-only]

 # Merge requests

Merge requests allow you to exchange changes you made to source code and
collaborate with other people on the same project.

![Merge request view](img/merge_request.png)

Overview

A Merge Request (MR) is the basis of GitLab as a code collaboration
and version control platform.
Is it simple as the name implies: a _request_ to _merge_ one branch into another.

With GitLab merge requests, you can:

	Compare the changes between two [branches](https://git-scm.com/book/en/v2/Git-Branching-Branches-in-a-Nutshell#_git_branching)

	[Review and discuss](../../discussions/index.md#discussions) the proposed modifications inline

	Live preview the changes when [Review Apps](../../../ci/review_apps/index.md) is configured for your project

	Build, test, and deploy your code in a per-branch basis with built-in [GitLab CI/CD](../../../ci/README.md)

	Prevent the merge request from being merged before it’s ready with [WIP MRs](#work-in-progress-merge-requests)

	View the deployment process through [Pipeline Graphs](../../../ci/pipelines.md#pipeline-graphs)

	[Automatically close the issue(s)](../../project/issues/closing_issues.md#via-merge-request) that originated the implementation proposed in the merge request

	Assign it to any registered user, and change the assignee how many times you need

	Assign a [milestone](../../project/milestones/index.md) and track the development of a broader implementation

	Organize your issues and merge requests consistently throughout the project with [labels](../../project/labels.md)

	Add a time estimation and the time spent with that merge request with [Time Tracking](../../../workflow/time_tracking.html#time-tracking)

	[Resolve merge conflicts from the UI](#resolve-conflicts)

	Enable [fast-forward merge requests](#fast-forward-merge-requests)

	Enable [semi-linear history merge requests](#semi-linear-history-merge-requests) as another security layer to guarantee the pipeline is passing in the target branch

	[Create new merge requests by email](#create-new-merge-requests-by-email)

	[Allow collaboration](allow_collaboration.md) so members of the target project can push directly to the fork

	[Squash and merge](squash_and_merge.md) for a cleaner commit history

With [GitLab Enterprise Edition][ee], you can also:

	View the deployment process across projects with [Multi-Project Pipeline Graphs](https://docs.gitlab.com/ee/ci/multi_project_pipeline_graphs.html#multi-project-pipeline-graphs) [PREMIUM]

	Request [approvals](https://docs.gitlab.com/ee/user/project/merge_requests/merge_request_approvals.html) from your managers [STARTER]

	Analyze the impact of your changes with [Code Quality reports](https://docs.gitlab.com/ee/user/project/merge_requests/code_quality.html) [STARTER]

Use cases

	Consider you are a software developer working in a team:

1. You checkout a new branch, and submit your changes through a merge request
1. You gather feedback from your team
1. You verify your changes with [JUnit test reports](../../../ci/junit_test_reports.md) in GitLab CI/CD
1. You request the approval from your manager
1. Your manager pushes a commit with his final review, [approves the merge request](https://docs.gitlab.com/ee/user/project/merge_requests/merge_request_approvals.html), and set it to [merge when pipeline succeeds](#merge-when-pipeline-succeeds) (Merge Request Approvals are available in GitLab Starter)
1. Your changes get deployed to production with [manual actions](../../../ci/yaml/README.md#manual-actions) for GitLab CI/CD
1. Your implementations were successfully shipped to your customer

	Consider you’re a web developer writing a webpage for your company’s:

1. You checkout a new branch, and submit a new page through a merge request
1. You gather feedback from your reviewers
1. Your changes are previewed with [Review Apps](../../../ci/review_apps/index.md)
1. You request your web designers for their implementation
1. You request the [approval](https://docs.gitlab.com/ee/user/project/merge_requests/merge_request_approvals.html) from your manager [STARTER]
1. Once approved, your merge request is [squashed and merged](squash_and_merge.md), and [deployed to staging with GitLab Pages](https://about.gitlab.com/2016/08/26/ci-deployment-and-environments/)
1. Your production team [cherry picks](#cherry-pick-changes) the merge commit into production

Merge requests per project

View all the merge requests within a project by navigating to Project > Merge Requests.

When you access your project’s merge requests, GitLab will present them in a list,
and you can use the tabs available to quickly filter by open and closed. You can also [search and filter the results](../../search/index.md#issues-and-merge-requests-per-project).

![Project merge requests list view](img/project_merge_requests_list_view.png)

Merge requests per group

View merge requests in all projects in the group, including all projects of all descendant subgroups of the group. Navigate to Group > Merge Requests to view these merge requests. This view also has the open and closed merge requests tabs.

You can [search and filter the results](../../search/index.md#issues-and-merge-requests-per-group) from here.

![Group Issues list view](img/group_merge_requests_list_view.png)

Removing the source branch

When creating a merge request, select the “Remove source branch when merge
request accepted” option and the source branch will be removed when the merge
request is merged.

This option is also visible in an existing merge request next to the merge
request button and can be selected/deselected before merging. It’s only visible
to users with [Maintainer permissions](../../permissions.md) in the source project.

If the user viewing the merge request does not have the correct permissions to
remove the source branch and the source branch is set for removal, the merge
request widget will show the “Removes source branch” text.

![Remove source branch status](img/remove_source_branch_status.png)

Authorization for merge requests

There are two main ways to have a merge request flow with GitLab:

1. Working with [protected branches][] in a single repository
1. Working with forks of an authoritative project

[Learn more about the authorization for merge requests.](authorization_for_merge_requests.md)

Cherry-pick changes

Cherry-pick any commit in the UI by simply clicking the Cherry-pick button
in a merged merge requests or a commit.

[Learn more about cherry-picking changes.](cherry_pick_changes.md)

Semi-linear history merge requests

A merge commit is created for every merge, but the branch is only merged if
a fast-forward merge is possible. This ensures that if the merge request build
succeeded, the target branch build will also succeed after merging.

Navigate to a project’s settings, select the Merge commit with semi-linear
history option under Merge Requests: Merge method and save your changes.

Fast-forward merge requests

If you prefer a linear Git history and a way to accept merge requests without
creating merge commits, you can configure this on a per-project basis.

[Read more about fast-forward merge requests.](fast_forward_merge.md)

Merge when pipeline succeeds

When reviewing a merge request that looks ready to merge but still has one or
more CI jobs running, you can set it to be merged automatically when CI
pipeline succeeds. This way, you don’t have to wait for the pipeline to finish
and remember to merge the request manually.

[Learn more about merging when pipeline succeeds.](merge_when_pipeline_succeeds.md)

Resolve discussion comments in merge requests reviews

Keep track of the progress during a code review with resolving comments.
Resolving comments prevents you from forgetting to address feedback and lets
you hide discussions that are no longer relevant.

[Read more about resolving discussion comments in merge requests reviews.](../../discussions/index.md)

Resolve conflicts

When a merge request has conflicts, GitLab may provide the option to resolve
those conflicts in the GitLab UI.

[Learn more about resolving merge conflicts in the UI.](resolve_conflicts.md)

Create new merge requests by email

This feature needs [incoming email](../../../administration/incoming_email.md)
to be configured by a GitLab administrator to be available for CE/EE users, and
it’s available on GitLab.com.

You can create a new merge request by sending an email to a user-specific email
address. The address can be obtained on the merge requests page by clicking on
a Email a new merge request to this project button. The subject will be
used as the source branch name for the new merge request and the target branch
will be the default branch for the project. The message body (if not empty)
will be used as the merge request description. You need
[“Reply by email”](../../../administration/reply_by_email.md) enabled to use
this feature. If it’s not enabled to your instance, you may ask your GitLab
administrator to do so.

![Create new merge requests by email](img/create_from_email.png)

Find the merge request that introduced a change

> Note: this feature was [implemented in GitLab 10.5](https://gitlab.com/gitlab-org/gitlab-ce/issues/2383).

When viewing the commit details page, GitLab will link to the merge request (or
merge requests, if it’s in more than one) containing that commit.

This only applies to commits that are in the most recent version of a merge
request - if a commit was in a merge request, then rebased out of that merge
request, they will not be linked.

[Read more about merge request versions](versions.md)

Revert changes

GitLab implements Git’s powerful feature to revert any commit with introducing
a Revert button in merge requests and commit details.

[Learn more about reverting changes in the UI](revert_changes.md)

Merge requests versions

Every time you push to a branch that is tied to a merge request, a new version
of merge request diff is created. When you visit a merge request that contains
more than one pushes, you can select and compare the versions of those merge
request diffs.

[Read more about merge request versions](versions.md)

Work In Progress merge requests

To prevent merge requests from accidentally being accepted before they’re
completely ready, GitLab blocks the “Accept” button for merge requests that
have been marked as a Work In Progress.

[Learn more about settings a merge request as “Work In Progress”.](work_in_progress_merge_requests.md)

Merge request diff file navigation

The diff view has a persistent dropdown for file navigation. As you scroll through
diffs with a large number of files and/or many changes in those files, you can
easily jump to any changed file through the dropdown navigation.

![Merge request diff file navigation](img/merge_request_diff_file_navigation.png)

Ignore whitespace changes in Merge Request diff view

If you click the Hide whitespace changes button, you can see the diff
without whitespace changes (if there are any). This is also working when on a
specific commit page.

![MR diff](img/merge_request_diff.png)

>**Tip:**
You can append ?w=1 while on the diffs page of a merge request to ignore any
whitespace changes.

Live preview with Review Apps

If you configured [Review Apps](https://about.gitlab.com/features/review-apps/) for your project,
you can preview the changes submitted to a feature-branch through a merge request
in a per-branch basis. No need to checkout the branch, install and preview locally;
all your changes will be available to preview by anyone with the Review Apps link.

[Read more about Review Apps.](../../../ci/review_apps/index.md)

Bulk editing merge requests

Find out about [bulk editing merge requests](../../project/bulk_editing.md).

Tips

Here are some tips that will help you be more efficient with merge requests in
the command line.

> Note:
This section might move in its own document in the future.

Checkout merge requests locally

A merge request contains all the history from a repository, plus the additional
commits added to the branch associated with the merge request. Here’s a few
tricks to checkout a merge request locally.

Please note that you can checkout a merge request locally even if the source
project is a fork (even a private fork) of the target project.

Checkout locally by adding a git alias

Add the following alias to your ~/.gitconfig:

```
[alias]


mr = !sh -c ‘git fetch $1 merge-requests/$2/head:mr-$1-$2 && git checkout mr-$1-$2’ -




```

Now you can check out a particular merge request from any repository and any
remote. For example, to check out the merge request with ID 5 as shown in GitLab
from the upstream remote, do:

`
git mr upstream 5
`

This will fetch the merge request into a local mr-upstream-5 branch and check
it out.

Checkout locally by modifying .git/config for a given repository

Locate the section for your GitLab remote in the .git/config file. It looks
like this:

```
[remote “origin”]


url = https://gitlab.com/gitlab-org/gitlab-ce.git
fetch = +refs/heads/:refs/remotes/origin/




```

You can open the file with:

`
git config -e
`

Now add the following line to the above section:

`
fetch = +refs/merge-requests/*/head:refs/remotes/origin/merge-requests/*
`

In the end, it should look like this:

```
[remote “origin”]


url = https://gitlab.com/gitlab-org/gitlab-ce.git
fetch = +refs/heads/:refs/remotes/origin/
fetch = +refs/merge-requests//head:refs/remotes/origin/merge-requests/




```

Now you can fetch all the merge requests:

```
git fetch origin

…
From https://gitlab.com/gitlab-org/gitlab-ce.git



	[new ref]         refs/merge-requests/1/head -> origin/merge-requests/1


	[new ref]         refs/merge-requests/2/head -> origin/merge-requests/2








…

And to check out a particular merge request:

`
git checkout origin/merge-requests/1
`

[protected branches]: ../protected_branches.md
[ee]: https://about.gitlab.com/pricing/ “GitLab Enterprise Edition”





            

          

      

      

    

  

    
      
          
            
  This document was moved to [another location](allow_collaboration.md).



            

          

      

      

    

  

    
      
          
            
  This document was moved to [another location](../../discussions/index.md).



            

          

      

      

    

  

    
      
          
            
  This document was moved to [merge_when_pipeline_succeeds](merge_when_pipeline_succeeds.md).

>[Introduced][ce-7135] by the “Rename MWBS service to Merge When Pipeline Succeeds” change.

[ce-7135]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/7135



            

          

      

      

    

  

    
      
          
            
  # Merge When Pipeline Succeeds

When reviewing a merge request that looks ready to merge but still has one or
more CI jobs running, you can set it to be merged automatically when the
jobs pipeline succeeds. This way, you don’t have to wait for the jobs to
finish and remember to merge the request manually.

![Enable](img/merge_when_pipeline_succeeds_enable.png)

When you hit the “Merge When Pipeline Succeeds” button, the status of the merge
request will be updated to represent the impending merge. If you cannot wait
for the pipeline to succeed and want to merge immediately, this option is
available in the dropdown menu on the right of the main button.

Both team developers and the author of the merge request have the option to
cancel the automatic merge if they find a reason why it shouldn’t be merged
after all.

![Status](img/merge_when_pipeline_succeeds_status.png)

When the pipeline succeeds, the merge request will automatically be merged.
When the pipeline fails, the author gets a chance to retry any failed jobs,
or to push new commits to fix the failure.

When the jobs are retried and succeed on the second try, the merge request
will automatically be merged after all. When the merge request is updated with
new commits, the automatic merge is automatically canceled to allow the new
changes to be reviewed.

## Only allow merge requests to be merged if the pipeline succeeds

> Note:
You need to have jobs configured to enable this feature.

You can prevent merge requests from being merged if their pipeline did not succeed
or if there are discussions to be resolved.

Navigate to your project’s settings page, select the
Only allow merge requests to be merged if the pipeline succeeds check box and
hit Save for the changes to take effect.

![Only allow merge if pipeline succeeds settings](img/merge_when_pipeline_succeeds_only_if_succeeds_settings.png)

From now on, every time the pipeline fails you will not be able to merge the
merge request from the UI, until you make all relevant jobs pass.

![Only allow merge if pipeline succeeds message](img/merge_when_pipeline_succeeds_only_if_succeeds_msg.png)



            

          

      

      

    

  

    
      
          
            
  # Merge conflict resolution

> [Introduced][ce-5479] in GitLab 8.11.

When a merge request has conflicts, GitLab may provide the option to resolve
those conflicts in the GitLab UI. (See
[conflicts available for resolution](#conflicts-available-for-resolution) for
more information on when this is available.) If this is an option, you will see
a resolve these conflicts link in the merge request widget:

![Merge request widget](img/merge_request_widget.png)

Clicking this will show a list of files with conflicts, with conflict sections
highlighted:

![Conflict section](img/conflict_section.png)

Once all conflicts have been marked as using ‘ours’ or ‘theirs’, the conflict
can be resolved. This will perform a merge of the target branch of the merge
request into the source branch, resolving the conflicts using the options
chosen. If the source branch is feature and the target branch is master,
this is similar to performing git checkout feature; git merge master locally.

## Merge conflict editor

> Introduced in GitLab 8.13.

The merge conflict resolution editor allows for more complex merge conflicts,
which require the user to manually modify a file in order to resolve a conflict,
to be solved right form the GitLab interface. Use the Edit inline button
to open the editor. Once you’re sure about your changes, hit the
Commit to source branch button.

![Merge conflict editor](img/merge_conflict_editor.png)

## Conflicts available for resolution

GitLab allows resolving conflicts in a file where all of the below are true:


	The file is text, not binary


	The file is in a UTF-8 compatible encoding


	The file does not already contain conflict markers


	The file, with conflict markers added, is not over 200 KB in size


	The file exists under the same path in both branches




If any file with conflicts in that merge request does not meet all of these
criteria, the conflicts for that merge request cannot be resolved in the UI.

Additionally, GitLab does not detect conflicts in renames away from a path. For
example, this will not create a conflict: on branch a, doing git mv file1
file2; on branch b, doing git mv file1 file3. Instead, both files will be
present in the branch after the merge request is merged.

[ce-5479]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/5479



            

          

      

      

    

  

    
      
          
            
  # Reverting changes

> [Introduced][ce-1990] in GitLab 8.5.

GitLab implements Git’s powerful feature to [revert any commit][git-revert]
with introducing a Revert button in merge requests and commit details.

## Reverting a Merge Request

NOTE: Note:
The Revert button will only be available for merge requests
created since GitLab 8.5. However, you can still revert a merge request
by reverting the merge commit from the list of Commits page.

After the Merge Request has been merged, a Revert button will be available
to revert the changes introduced by that merge request.

![Revert Merge Request](img/cherry_pick_changes_mr.png)

After you click that button, a modal will appear where you can choose to
revert the changes directly into the selected branch or you can opt to
create a new merge request with the revert changes.

After the merge request has been reverted, the Revert button will not be
available anymore.

## Reverting a Commit

You can revert a Commit from the Commit details page:

![Revert commit](img/cherry_pick_changes_commit.png)

Similar to reverting a merge request, you can opt to revert the changes
directly into the target branch or create a new merge request to revert the
changes.

After the commit has been reverted, the Revert button will not be available
anymore.

Please note that when reverting merge commits, the mainline will always be the
first parent. If you want to use a different mainline then you need to do that
from the command line.

Here is a quick example to revert a merge commit using the second parent as the
mainline:

`bash
git revert -m 2 7a39eb0
`

[ce-1990]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/1990 “Revert button Merge Request”
[git-revert]: https://git-scm.com/docs/git-revert “Git revert documentation”



            

          

      

      

    

  

    
      
          
            
  # Squash and merge

> [Introduced][ee-1024] in [GitLab Starter][ee] 8.17, and in [GitLab Core][ce] [11.0][ce-18956].

Combine all commits of your merge request into one and retain a clean history.

## Overview

Squashing lets you tidy up the commit history of a branch when accepting a merge
request. It applies all of the changes in the merge request as a single commit,
and then merges that commit using the merge method set for the project.

In other words, squashing a merge request turns a long list of commits:

![List of commits from a merge request][mr-commits]

Into a single commit on merge:

![A squashed commit followed by a merge commit][squashed-commit]

The squashed commit’s commit message is the merge request title. And note that
the squashed commit is still followed by a merge commit, as the merge
method for this example repository uses a merge commit. Squashing also works
with the fast-forward merge strategy, see
[squashing and fast-forward merge](#squash-and-fast-forward-merge) for more
details.

## Use cases

When working on a feature branch, you sometimes want to commit your current
progress, but don’t really care about the commit messages. Those ‘work in
progress commits’ don’t necessarily contain important information and as such
you’d rather not include them in your target branch.

With squash and merge, when the merge request is ready to be merged,
all you have to do is enable squashing before you press merge to join
the commits include in the merge request into a single commit.

This way, the history of your base branch remains clean with
meaningful commit messages and is simpler to [revert] if necessary.

## Enabling squash for a merge request

Anyone who can create or edit a merge request can choose for it to be squashed
on the merge request form:

![Squash commits checkbox on edit form][squash-edit-form]

—

This can then be overridden at the time of accepting the merge request:

![Squash commits checkbox on accept merge request form][squash-mr-widget]

## Commit metadata for squashed commits

The squashed commit has the following metadata:


	Message: the title of the merge request.


	Author: the author of the merge request.


	Committer: the user who initiated the squash.




## Squash and fast-forward merge

When a project has the [fast-forward merge setting enabled][ff-merge], the merge
request must be able to be fast-forwarded without squashing in order to squash
it. This is because squashing is only available when accepting a merge request,
so a merge request may need to be rebased before squashing, even though
squashing can itself be considered equivalent to rebasing.

[ee-1024]: https://gitlab.com/gitlab-org/gitlab-ee/merge_requests/1024
[ce-18956]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/18956
[mr-commits]: img/squash_mr_commits.png
[squashed-commit]: img/squash_squashed_commit.png
[squash-edit-form]: img/squash_edit_form.png
[squash-mr-widget]: img/squash_mr_widget.png
[ff-merge]: fast_forward_merge.md#enabling-fast-forward-merges
[ce]: https://about.gitlab.com/pricing/
[ee]: https://about.gitlab.com/pricing/
[revert]: revert_changes.md



            

          

      

      

    

  

    
      
          
            
  # Merge requests versions

>**Notes:**
- [Introduced][ce-5467] in GitLab 8.12.
- Comments are disabled while viewing outdated merge versions or comparing to


versions other than base.





	Merge request versions are based on push not on commit. So, if you pushed 5
commits in a single push, it will be a single option in the dropdown. If you
pushed 5 times, that will count for 5 options.




Every time you push to a branch that is tied to a merge request, a new version
of merge request diff is created. When you visit a merge request that contains
more than one pushes, you can select and compare the versions of those merge
request diffs.

![Merge request versions](img/versions.png)

—

By default, the latest version of changes is shown. However, you
can select an older one from version dropdown.

![Merge request versions dropdown](img/versions_dropdown.png)

—

You can also compare the merge request version with an older one to see what has
changed since then.

![Merge request versions compare](img/versions_compare.png)

—

Every time you push new changes to the branch, a link to compare the last
changes appears as a system note.

![Merge request versions system note](img/versions_system_note.png)

[ce-5467]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/5467



            

          

      

      

    

  

    
      
          
            
  # “Work In Progress” Merge Requests

To prevent merge requests from accidentally being accepted before they’re
completely ready, GitLab blocks the “Accept” button for merge requests that
have been marked a Work In Progress.

![Blocked Accept Button](img/wip_blocked_accept_button.png)

To mark a merge request a Work In Progress, simply start its title with [WIP]
or WIP:. As an alternative, you’re also able to do it by sending a commit
with its title starting with wip or WIP to the merge request’s source branch.

![Mark as WIP](img/wip_mark_as_wip.png)

To allow a Work In Progress merge request to be accepted again when it’s ready,
simply remove the WIP prefix.

![Unark as WIP](img/wip_unmark_as_wip.png)



            

          

      

      

    

  

    
      
          
            
  # Milestones

## Overview

Milestones in GitLab are a way to track issues and merge requests created to achieve a broader goal in a certain period of time.

Milestones allow you to organize issues and merge requests into a cohesive group, with an optional start date and an optional due date.

## Project milestones and group milestones


	Project milestones can be assigned to issues or merge requests in that project only.


	Group milestones can be assigned to any issue or merge request of any project in that group.




## Creating milestones

>**Note:**
A permission level of Developer or higher is required to create milestones.

### New project milestone

To create a project milestone, navigate to Issues > Milestones in the project.

Click the New milestone button. Enter the title, an optional description, an optional start date, and an optional due date. Click Create milestone to create the milestone.

![New project milestone](img/milestones_new_project_milestone.png)

### New group milestone

To create a group milestone, follow similar steps from above to project milestones. Navigate to Issues > Milestones in the group and create it from there.

![New group milestone](img/milestones_new_group_milestone.png)

## Editing milestones

>**Note:**
A permission level of Developer or higher is required to edit milestones.

You can update a milestone by navigating to Issues > Milestones in the project or group and clicking the Edit button.

You can delete a milestone by clicking the Delete button.

### Promoting project milestones to group milestones

If you are expanding from a few projects to a larger number of projects within the same group, you may want to share the same milestone among multiple projects in the same group. If you previously created a project milestone and now want to make it available for other milestones, you can promote it to a group milestone.

From the project milestone list page, you can promote a project milestone to a group milestone. This will merge all project milestones across all projects in this group with the same name into a single group milestones. All issues and merge requests that previously were assigned one of these project milestones will now be assigned the new group milestones. This action cannot be reversed and the changes are permanent.

>**Note:**
Not all features on the project milestone view are available on the group milestone view. If you promote a project milestone to a group milestone, you will lose these features. See [Milestone view](#milestone-view) to see which features are missing from the group milestone view.

![Promote milestone](img/milestones_promote_milestone.png)

## Assigning milestones from the sidebar

Every issue and merge request can be assigned a milestone. The milestones are visible on every issue and merge request page, in the sidebar. They are also visible in the issue board. From the sidebar, you can assign or unassign a milestones to the object. You can also perform this as a [quick action](../quick_actions.md) in a comment. [As mentioned](#project-milestones-and-group-milestones), for a given issue or merge request, both project milestones and group milestones can be selected and assigned to the object.

## Filtering issues and merge requests by milestone

### Filtering in list pages

From the project issue/merge request list pages and the group issue/merge request list pages, you can [filter](../../search/index.md#issues-and-merge-requests) by both group milestones and project milestones.

### Filtering in issue boards

From [project issue boards](../issue_board.md), you can filter by both group milestones and project milestones in the [search and filter bar](../../search/index.md#issue-boards).

### Special milestone filters

When filtering by milestone, in addition to choosing a specific project milestone or group milestone, you can choose a special milestone filter.


	No Milestone: Show issues or merge requests with no assigned milestone.


	Upcoming: Show issues or merge requests that have been assigned the open milestone that has the next upcoming due date (i.e. nearest due date in the future).


	Started: Show issues or merge requests that have an assigned milestone with a start date that is before today.




## Milestone view

Not all features in the project milestone view are available in the group milestone view. This table summarizes the differences:


Feature | Project milestone view | Group milestone view |



|---|:—:|:---:|
| Title an description | ✓ | ✓ |
| Issues assigned to milestone | ✓ |  |
| Merge requests assigned to milestone | ✓ |  |
| Participants and labels used | ✓ |  |
| Percentage complete | ✓ | ✓ |
| Start date and due date | ✓ | ✓ |
| Total issue time spent | ✓ | ✓ |
| Total issue weight | ✓ |  |

The milestone view shows the title and description.

### Project milestone features

These features are only available for project milestones and not group milestones.


	Issues assigned to the milestone are displayed in three columns: Unstarted issues, ongoing issues, and completed issues.


	Merge requests assigned to the milestone are displayed in four columns: Work in progress merge requests, waiting for merge, rejected, and closed.


	Participants and labels that are used in issues and merge requests that have the milestone assigned are displayed.




### Milestone sidebar

The milestone sidebar on the milestone view shows the following:


	Percentage complete, which is calculated as number of closed issues plus number of closed/merged merge requests divided by total number issues and merge requests.


	The start date and due date.


	The total time spent on all issues that have the milestone assigned.




For project milestones only, the milestone sidebar shows the total issue weight of all issues that have the milestone assigned.

![Project milestone page](img/milestones_project_milestone_page.png)



            

          

      

      

    

  

    
      
          
            
  —
last_updated: 2018-02-16
author: Marcia Ramos
author_gitlab: marcia
level: intermediate
article_type: user guide
date: 2017-02-22
—

# Creating and Tweaking GitLab CI/CD for GitLab Pages

[GitLab CI](https://about.gitlab.com/gitlab-ci/) serves
numerous purposes, to build, test, and deploy your app
from GitLab through
[Continuous Integration, Continuous Delivery, and Continuous Deployment](https://about.gitlab.com/2016/08/05/continuous-integration-delivery-and-deployment-with-gitlab/)
methods. You will need it to build your website with GitLab Pages,
and deploy it to the Pages server.

To implement GitLab CI/CD, the first thing we need is a configuration
file called .gitlab-ci.yml placed at your website’s root directory.

What this file actually does is telling the
[GitLab Runner](https://docs.gitlab.com/runner/) to run scripts
as you would do from the command line. The Runner acts as your
terminal. GitLab CI/CD tells the Runner which commands to run.
Both are built-in in GitLab, and you don’t need to set up
anything for them to work.

Explaining [every detail of GitLab CI](https://docs.gitlab.com/ce/ci/yaml/README.html)
and GitLab Runner is out of the scope of this guide, but we’ll
need to understand just a few things to be able to write our own
.gitlab-ci.yml or tweak an existing one. It’s an
[Yaml](http://docs.ansible.com/ansible/YAMLSyntax.html) file,
with its own syntax. You can always check your CI syntax with
the [GitLab CI Lint Tool](https://gitlab.com/ci/lint).

## Practical example

Let’s consider you have a [Jekyll](https://jekyllrb.com/) site.
To build it locally, you would open your terminal, and run jekyll build.
Of course, before building it, you had to install Jekyll in your computer.
For that, you had to open your terminal and run gem install jekyll.
Right? GitLab CI + GitLab Runner do the same thing. But you need to
write in the .gitlab-ci.yml the script you want to run so
GitLab Runner will do it for you. It looks more complicated then it
is. What you need to tell the Runner:

`
$ gem install jekyll
$ jekyll build
`

### Script

To transpose this script to Yaml, it would be like this:

```yaml
script:

	gem install jekyll

	jekyll build


```

### Job

So far so good. Now, each script, in GitLab is organized by
a job, which is a bunch of scripts and settings you want to
apply to that specific task.

```yaml
job:

script:
- gem install jekyll
- jekyll build


```

For GitLab Pages, this job has a specific name, called pages,
which tells the Runner you want that task to deploy your website
with GitLab Pages:

```yaml
pages:

script:
- gem install jekyll
- jekyll build


```

### The public directory

We also need to tell Jekyll where do you want the website to build,
and GitLab Pages will only consider files in a directory called public.
To do that with Jekyll, we need to add a flag specifying the
[destination (-d)](https://jekyllrb.com/docs/usage/) of the
built website: jekyll build -d public. Of course, we need
to tell this to our Runner:

```yaml
pages:

script:
- gem install jekyll
- jekyll build -d public


```

### Artifacts

We also need to tell the Runner that this _job_ generates
_artifacts_, which is the site built by Jekyll.
Where are these artifacts stored? In the public directory:

```yaml
pages:

script:
- gem install jekyll
- jekyll build -d public
artifacts:

paths:
- public


```

The script above would be enough to build your Jekyll
site with GitLab Pages. But, from Jekyll 3.4.0 on, its default
template originated by jekyll new project requires
[Bundler](http://bundler.io/) to install Jekyll dependencies
and the default theme. To adjust our script to meet these new
requirements, we only need to install and build Jekyll with Bundler:

```yaml
pages:

script:
- bundle install
- bundle exec jekyll build -d public
artifacts:

paths:
- public


```

That’s it! A .gitlab-ci.yml with the content above would deploy
your Jekyll 3.4.0 site with GitLab Pages. This is the minimum
configuration for our example. On the steps below, we’ll refine
the script by adding extra options to our GitLab CI.

Artifacts will be automatically deleted once GitLab Pages got deployed.
You can preserve artifacts for limited time by specifying the expiry time.

### Image

At this point, you probably ask yourself: “okay, but to install Jekyll
I need Ruby. Where is Ruby on that script?”. The answer is simple: the
first thing GitLab Runner will look for in your .gitlab-ci.yml is a
[Docker](https://www.docker.com/) image specifying what do you need in
your container to run that script:

```yaml
image: ruby:2.3

	pages:
	script:
- bundle install
- bundle exec jekyll build -d public
artifacts:

paths:
- public


```

In this case, you’re telling the Runner to pull this image, which
contains Ruby 2.3 as part of its file system. When you don’t specify
this image in your configuration, the Runner will use a default
image, which is Ruby 2.1.

If your SSG needs [NodeJS](https://nodejs.org/) to build, you’ll
need to specify which image you want to use, and this image should
contain NodeJS as part of its file system. E.g., for a
[Hexo](https://gitlab.com/pages/hexo) site, you can use image: node:4.2.2.

>**Note:**
We’re not trying to explain what a Docker image is,
we just need to introduce the concept with a minimum viable
explanation. To know more about Docker images, please visit
their website or take a look at a
[summarized explanation](http://paislee.io/how-to-automate-docker-deployments/) here.

Let’s go a little further.

### Branching

If you use GitLab as a version control platform, you will have your
branching strategy to work on your project. Meaning, you will have
other branches in your project, but you’ll want only pushes to the
default branch (usually master) to be deployed to your website.
To do that, we need to add another line to our CI, telling the Runner
to only perform that _job_ called pages on the master branch only:

```yaml
image: ruby:2.3

	pages:
	script:
- bundle install
- bundle exec jekyll build -d public
artifacts:

paths:
- public

only:
- master


```

### Stages

Another interesting concept to keep in mind are build stages.
Your web app can pass through a lot of tests and other tasks
until it’s deployed to staging or production environments.
There are three default stages on GitLab CI: build, test,
and deploy. To specify which stage your _job_ is running,
simply add another line to your CI:

```yaml
image: ruby:2.3

	pages:
	stage: deploy
script:
- bundle install
- bundle exec jekyll build -d public
artifacts:

paths:
- public

only:
- master


```

You might ask yourself: “why should I bother with stages
at all?” Well, let’s say you want to be able to test your
script and check the built site before deploying your site
to production. You want to run the test exactly as your
script will do when you push to master. It’s simple,
let’s add another task (_job_) to our CI, telling it to
test every push to other branches, except the master branch:

```yaml
image: ruby:2.3

	pages:
	stage: deploy
script:
- bundle install
- bundle exec jekyll build -d public
artifacts:

paths:
- public

only:
- master

	test:
	stage: test
script:
- bundle install
- bundle exec jekyll build -d test
artifacts:

paths:
- test

except:
- master


```

The test job is running on the stage test, Jekyll
will build the site in a directory called test, and
this job will affect all the branches except master.

The best benefit of applying _stages_ to different
_jobs_ is that every job in the same stage builds in
parallel. So, if your web app needs more than one test
before being deployed, you can run all your test at the
same time, it’s not necessary to wait one test to finish
to run the other. Of course, this is just a brief
introduction of GitLab CI and GitLab Runner, which are
tools much more powerful than that. This is what you
need to be able to create and tweak your builds for
your GitLab Pages site.

### Before Script

To avoid running the same script multiple times across
your _jobs_, you can add the parameter before_script,
in which you specify which commands you want to run for
every single _job_. In our example, notice that we run
bundle install for both jobs, pages and test.
We don’t need to repeat it:

```yaml
image: ruby:2.3

	before_script:
	
	bundle install

	pages:
	stage: deploy
script:
- bundle exec jekyll build -d public
artifacts:

paths:
- public

only:
- master

	test:
	stage: test
script:
- bundle exec jekyll build -d test
artifacts:

paths:
- test

except:
- master


```

### Caching Dependencies

If you want to cache the installation files for your
projects dependencies, for building faster, you can
use the parameter cache. For this example, we’ll
cache Jekyll dependencies in a vendor directory
when we run bundle install:

```yaml
image: ruby:2.3

	cache:
	paths:
- vendor/

	before_script:
	
	bundle install –path vendor

	pages:
	stage: deploy
script:
- bundle exec jekyll build -d public
artifacts:

paths:
- public

only:
- master

	test:
	stage: test
script:
- bundle exec jekyll build -d test
artifacts:

paths:
- test

except:
- master


```

For this specific case, we need to exclude /vendor
from Jekyll _config.yml file, otherwise Jekyll will
understand it as a regular directory to build
together with the site:

```yml
exclude:

	vendor


```

There we go! Now our GitLab CI not only builds our website,
but also continuously test pushes to feature-branches,
caches dependencies installed with Bundler, and
continuously deploy every push to the master branch.

## Advanced GitLab CI for GitLab Pages

What you can do with GitLab CI is pretty much up to your
creativity. Once you get used to it, you start creating
awesome scripts that automate most of tasks you’d do
manually in the past. Read through the
[documentation of GitLab CI](https://docs.gitlab.com/ce/ci/yaml/README.html)
to understand how to go even further on your scripts.


	On this blog post, understand the concept of




[using GitLab CI environments to deploy your
web app to staging and production](https://about.gitlab.com/2016/08/26/ci-deployment-and-environments/).
- On this post, learn [how to run jobs sequentially,
in parallel, or build a custom pipeline](https://about.gitlab.com/2016/07/29/the-basics-of-gitlab-ci/)
- On this blog post, we go through the process of
[pulling specific directories from different projects](https://about.gitlab.com/2016/12/07/building-a-new-gitlab-docs-site-with-nanoc-gitlab-ci-and-gitlab-pages/)
to deploy this website you’re looking at, docs.gitlab.com.
- On this blog post, we teach you [how to use GitLab Pages to produce a code coverage report](https://about.gitlab.com/2016/11/03/publish-code-coverage-report-with-gitlab-pages/).



            

          

      

      

    

  

    
      
          
            
  —
last_updated: 2018-02-16
author: Marcia Ramos
author_gitlab: marcia
level: beginner
article_type: user guide
date: 2017-02-22
—

# Static sites and GitLab Pages domains

This document is the beginning of a comprehensive guide, made for those who want to
publish a website with GitLab Pages but aren’t familiar with
the entire process involved.

This [first document](#what-you-need-to-know-before-getting-started) of this series will present you to the concepts of
static sites, and go over how the default Pages domains work.

The [second document](getting_started_part_two.md) covers how to get started with GitLab Pages: deploy
a website from a forked project or create a new one from scratch.

The [third document](getting_started_part_three.md) will show you how to set up a custom domain or subdomain
to your site already deployed.

The [fourth document](getting_started_part_four.md) will show you how to create and tweak GitLab CI for
GitLab Pages.

To enable GitLab Pages for GitLab CE (Community Edition)
and GitLab EE (Enterprise Edition), please read the
[admin documentation](https://docs.gitlab.com/ce/administration/pages/index.html),
and/or watch this [video tutorial](https://youtu.be/dD8c7WNcc6s).

>**Note:**
For this guide, we assume you already have GitLab Pages
server up and running for your GitLab instance.

## What you need to know before getting started

Before we begin, let’s understand a few concepts first.

## Static sites

GitLab Pages only supports static websites, meaning,
your output files must be HTML, CSS, and JavaScript only.

To create your static site, you can either hardcode in HTML,
CSS, and JS, or use a [Static Site Generator (SSG)](https://www.staticgen.com/)
to simplify your code and build the static site for you,
which is highly recommendable and much faster than hardcoding.

### Further reading


	Read through this technical overview on [Static versus Dynamic Websites](https://about.gitlab.com/2016/06/03/ssg-overview-gitlab-pages-part-1-dynamic-x-static/)


	Understand [how modern Static Site Generators work](https://about.gitlab.com/2016/06/10/ssg-overview-gitlab-pages-part-2/) and what you can add to your static site


	You can use [any SSG with GitLab Pages](https://about.gitlab.com/2016/06/17/ssg-overview-gitlab-pages-part-3-examples-ci/)


	Fork an [example project](https://gitlab.com/pages) to build your website based upon




## GitLab Pages domain

If you set up a GitLab Pages project on GitLab.com,
it will automatically be accessible under a
[subdomain of namespace.gitlab.io](introduction.md#gitlab-pages-on-gitlab-com).
The namespace is defined by your username on GitLab.com,
or the group name you created this project under.

>**Note:**
If you use your own GitLab instance to deploy your
site with GitLab Pages, check with your sysadmin what’s your
Pages wildcard domain. This guide is valid for any GitLab instance,
you just need to replace Pages wildcard domain on GitLab.com
(*.gitlab.io) with your own.

Learn more about [namespaces](../../group/index.md#namespaces).

### Practical examples

#### Project Websites


	You created a project called blog under your username john,




therefore your project URL is https://gitlab.com/john/blog/.
Once you enable GitLab Pages for this project, and build your site,
it will be available under https://john.gitlab.io/blog/.
- You created a group for all your websites called websites,
and a project within this group is called blog. Your project
URL is https://gitlab.com/websites/blog/. Once you enable
GitLab Pages for this project, the site will live under
https://websites.gitlab.io/blog/.

#### User and Group Websites


	Under your username, john, you created a project called




john.gitlab.io. Your project URL will be https://gitlab.com/john/john.gitlab.io.
Once you enable GitLab Pages for your project, your website
will be published under https://john.gitlab.io.
- Under your group websites, you created a project called
websites.gitlab.io. your project’s URL will be https://gitlab.com/websites/websites.gitlab.io.
Once you enable GitLab Pages for your project,
your website will be published under https://websites.gitlab.io.

>**Note:**
GitLab Pages [does not support subgroups](../../group/subgroups/index.md#limitations).
You can only create the highest level group website.

General example:


	On GitLab.com, a project site will always be available under




https://namespace.gitlab.io/project-name
- On GitLab.com, a user or group website will be available under
https://namespace.gitlab.io/
- On your GitLab instance, replace gitlab.io above with your
Pages server domain. Ask your sysadmin for this information.

_Read on about [Projects for GitLab Pages and URL structure](getting_started_part_two.md)._



            

          

      

      

    

  

    
      
          
            
  —
last_updated: 2018-08-16
author: Marcia Ramos
author_gitlab: marcia
level: beginner
article_type: user guide
date: 2017-02-22
—

# GitLab Pages custom domains and SSL/TLS Certificates

Setting up GitLab Pages with custom domains, and adding SSL/TLS certificates to them, are optional features of GitLab Pages.

These steps assume you’ve already [set your site up](getting_started_part_two.md) and and it’s served under the default Pages domain namespace.gitlab.io, or namespace.gitlab.io/project-name.

## Adding your custom domain to GitLab Pages

To use one or more custom domain with your Pages site, there are two things
you should consider first, which we’ll cover in this guide:

1. Either if you’re adding a root domain or a subdomain, for which
you’ll need to set up [DNS records](#dns-records)
1. Whether you want to add an [SSL/TLS certificate](#ssl-tls-certificates) or not

To finish the association, you need to [add your domain to your project’s Pages settings](#add-your-custom-domain-to-gitlab-pages-settings).

Let’s start from the beginning with [DNS records](#dns-records).
If you already know how they work and want to skip the introduction to DNS,
you may be interested in skipping it until the [TL;DR](#tl-dr) section below.

### DNS Records

A Domain Name System (DNS) web service routes visitors to websites
by translating domain names (such as www.example.com) into the
numeric IP addresses (such as 192.0.2.1) that computers use to
connect to each other.

A DNS record is created to point a (sub)domain to a certain location,
which can be an IP address or another domain. In case you want to use
GitLab Pages with your own (sub)domain, you need to access your domain’s
registrar control panel to add a DNS record pointing it back to your
GitLab Pages site.

Note that how to add DNS records depends on which server your domain
is hosted on. Every control panel has its own place to do it. If you are
not an admin of your domain, and don’t have access to your registrar,
you’ll need to ask for the technical support of your hosting service
to do it for you.

To help you out, we’ve gathered some instructions on how to do that
for the most popular hosting services:


	[Amazon](http://docs.aws.amazon.com/gettingstarted/latest/swh/getting-started-configure-route53.html)


	[Bluehost](https://my.bluehost.com/cgi/help/559)


	[CloudFlare](https://support.cloudflare.com/hc/en-us/articles/200169096-How-do-I-add-A-records-)


	[cPanel](https://documentation.cpanel.net/display/ALD/Edit+DNS+Zone)


	[DreamHost](https://help.dreamhost.com/hc/en-us/articles/215414867-How-do-I-add-custom-DNS-records-)


	[Go Daddy](https://www.godaddy.com/help/add-an-a-record-19238)


	[Hostgator](http://support.hostgator.com/articles/changing-dns-records)


	[Inmotion hosting](https://my.bluehost.com/cgi/help/559)


	[Media Temple](https://mediatemple.net/community/products/dv/204403794/how-can-i-change-the-dns-records-for-my-domain)


	[Microsoft](https://msdn.microsoft.com/en-us/library/bb727018.aspx)




If your hosting service is not listed above, you can just try to
search the web for how to add dns record on <my hosting service>.

#### DNS A record

In case you want to point a root domain (example.com) to your
GitLab Pages site, deployed to namespace.gitlab.io, you need to
log into your domain’s admin control panel and add a DNS A record
pointing your domain to Pages’ server IP address. For projects on
GitLab.com, this IP is 35.185.44.232. For projects living in
other GitLab instances (CE or EE), please contact your sysadmin
asking for this information (which IP address is Pages server
running on your instance).

Practical Example:

![DNS A record pointing to GitLab.com Pages server](img/dns_add_new_a_record_example_updated_2018.png)

NOTE: Note:
Note that if you use your root domain for your GitLab Pages website only, and if
your domain registrar supports this feature, you can add a DNS apex CNAME
record instead of an A record. The main advantage of doing so is that when GitLab Pages
IP on GitLab.com changes for whatever reason, you don’t need to update your A record.

#### DNS CNAME record

In case you want to point a subdomain (hello-world.example.com)
to your GitLab Pages site initially deployed to namespace.gitlab.io,
you need to log into your domain’s admin control panel and add a DNS
CNAME record pointing your subdomain to your website URL
(namespace.gitlab.io) address.

Notice that, despite it’s a user or project website, the CNAME
should point to your Pages domain (namespace.gitlab.io),
without any /project-name.

Practical Example:

![DNS CNAME record pointing to GitLab.com project](img/dns_cname_record_example.png)

#### DNS TXT record

Unless your GitLab administrator has [disabled custom domain verification](../../../administration/pages/index.md#custom-domain-verification),
you’ll have to prove that you own the domain by creating a TXT record
containing a verification code. The code will be displayed after you
[add your custom domain to GitLab Pages settings](#add-your-custom-domain-to-gitlab-pages-settings).

If using a [DNS A record](#dns-a-record), you can place the TXT record directly
under the domain. If using a [DNS CNAME record](#dns-cname-record), the two record types won’t
co-exist, so you need to place the TXT record in a special subdomain of its own.

#### TL;DR

If the domain has multiple uses (e.g., you host email on it as well):


From | DNS Record | To |

—- | ———- | – |

domain.com | A | 35.185.44.232 |

domain.com | TXT | gitlab-pages-verification-code=00112233445566778899aabbccddeeff |



If the domain is dedicated to GitLab Pages use and no other services run on it:


From | DNS Record | To |

—- | ———- | – |

subdomain.domain.com | CNAME | namespace.gitlab.io |

_gitlab-pages-verification-code.subdomain.domain.com | TXT | gitlab-pages-verification-code=00112233445566778899aabbccddeeff |



> Notes:
>
> - Do not use a CNAME record if you want to point your
domain.com to your GitLab Pages site. Use an A record instead.
> - Do not add any special chars after the default Pages
domain. E.g., do not point your subdomain.domain.com to
namespace.gitlab.io. or namespace.gitlab.io/.
> - GitLab Pages IP on GitLab.com [was changed](https://about.gitlab.com/2017/03/06/we-are-changing-the-ip-of-gitlab-pages-on-gitlab-com/) in 2017
> - GitLab Pages IP on GitLab.com [has been changed](https://about.gitlab.com/2018/07/19/gcp-move-update/#gitlab-pages-and-custom-domains)
from 52.167.214.135 to 35.185.44.232 in 2018

### Add your custom domain to GitLab Pages settings

Once you’ve set the DNS record, you’ll need navigate to your project’s
Setting > Pages and click + New domain to add your custom domain to
GitLab Pages. You can choose whether to add an [SSL/TLS certificate](#ssl-tls-certificates)
to make your website accessible under HTTPS or leave it blank. If don’t add a certificate,
your site will be accessible only via HTTP:

![Add new domain](img/add_certificate_to_pages.png)

Once you have added a new domain, you will need to verify your ownership
(unless the GitLab administrator has disabled this feature). A verification code
will be shown to you; add it as a [DNS TXT record](#dns-txt-record), then press
the “Verify ownership” button to activate your new domain:

![Verify your domain](img/verify_your_domain.png)

Once your domain has been verified, leave the verification record in place -
your domain will be periodically reverified, and may be disabled if the record
is removed.

You can add more than one alias (custom domains and subdomains) to the same project.
An alias can be understood as having many doors leading to the same room.

All the aliases you’ve set to your site will be listed on Setting > Pages.
From that page, you can view, add, and remove them.

Note that [DNS propagation may take some time (up to 24h)](http://www.inmotionhosting.com/support/domain-names/dns-nameserver-changes/domain-names-dns-changes),
although it’s usually a matter of minutes to complete. Until it does, verification
will fail and attempts to visit your domain will respond with a 404.

Read through the [general documentation on GitLab Pages](introduction.md#add-a-custom-domain-to-your-pages-website) to learn more about adding
custom domains to GitLab Pages sites.

### Redirecting www.domain.com to domain.com with Cloudflare

If you use Cloudflare, you can redirect www to domain.com without the need of adding both
www.domain.com and domain.com to GitLab. This happens due to a [Cloudflare feature that creates
a 301 redirect as a “page rule”](https://gitlab.com/gitlab-org/gitlab-ce/issues/48848#note_87314849) for redirecting www.domain.com to domain.com. In this case,
you can use the following setup:


	In Cloudflare, create a DNS A record pointing domain.com to 35.185.44.232


	In GitLab, add the domain to GitLab Pages


	In Cloudflare, create a DNS TXT record to verify your domain


	In Cloudflare, create a DNS CNAME record poiting www to domain.com




## SSL/TLS Certificates

Every GitLab Pages project on GitLab.com will be available under
HTTPS for the default Pages domain (*.gitlab.io). Once you set
up your Pages project with your custom (sub)domain, if you want
it secured by HTTPS, you will have to issue a certificate for that
(sub)domain and install it on your project.

>**Note:**
Certificates are NOT required to add to your custom
(sub)domain on your GitLab Pages project, though they are
highly recommendable.

Let’s start with an introduction to the importance of HTTPS.
Alternatively, jump ahead to [adding certificates to your project](#adding-certificates-to-your-project).

### Why should I care about HTTPS?

This might be your first question. If our sites are hosted by GitLab Pages,
they are static, hence we are not dealing with server-side scripts
nor credit card transactions, then why do we need secure connections?

Back in the 1990s, where HTTPS came out, [SSL](https://en.wikipedia.org/wiki/Transport_Layer_Security#SSL_1.0.2C_2.0_and_3.0) was considered a “special”
security measure, necessary just for big companies, like banks and shoppings sites
with financial transactions.
Now we have a different picture. [According to Josh Aas](https://letsencrypt.org/2015/10/29/phishing-and-malware.html), Executive Director at [ISRG](https://en.wikipedia.org/wiki/Internet_Security_Research_Group):

> _We’ve since come to realize that HTTPS is important for almost all websites. It’s important for any website that allows people to log in with a password, any website that [tracks its users](https://www.washingtonpost.com/news/the-switch/wp/2013/12/10/nsa-uses-google-cookies-to-pinpoint-targets-for-hacking/) in any way, any website that [doesn’t want its content altered](http://arstechnica.com/tech-policy/2014/09/why-comcasts-javascript-ad-injections-threaten-security-net-neutrality/), and for any site that offers content people might not want others to know they are consuming. We’ve also learned that any site not secured by HTTPS [can be used to attack other sites](http://krebsonsecurity.com/2015/04/dont-be-fodder-for-chinas-great-cannon/)._

Therefore, the reason why certificates are so important is that they encrypt
the connection between the client (you, me, your visitors)
and the server (where you site lives), through a keychain of
authentications and validations.

How about taking Josh’s advice and protecting our sites too? We will be
well supported, and we’ll contribute to a safer internet.

### Organizations supporting HTTPS

There is a huge movement in favor of securing all the web. W3C fully
[supports the cause](https://w3ctag.github.io/web-https/) and explains very well
the reasons for that. Richard Barnes, a writer for Mozilla Security Blog,
suggested that [Firefox would deprecate HTTP](https://blog.mozilla.org/security/2015/04/30/deprecating-non-secure-http/),
and would no longer accept unsecured connections. Recently, Mozilla published a
[communication](https://blog.mozilla.org/security/2016/03/29/march-2016-ca-communication/)
reiterating the importance of HTTPS.

## Issuing Certificates

GitLab Pages accepts [PEM](https://support.quovadisglobal.com/kb/a37/what-is-pem-format.aspx) certificates issued by
[Certificate Authorities (CA)](https://en.wikipedia.org/wiki/Certificate_authority)
and self-signed certificates. Of course,
[you’d rather issue a certificate than generate a self-signed](https://en.wikipedia.org/wiki/Self-signed_certificate),
for security reasons and for having browsers trusting your
site’s certificate.

There are several different kinds of certificates, each one
with certain security level. A static personal website will
not require the same security level as an online banking web app,
for instance. There are a couple Certificate Authorities that
offer free certificates, aiming to make the internet more secure
to everyone. The most popular is [Let’s Encrypt](https://letsencrypt.org/),
which issues certificates trusted by most of browsers, it’s open
source, and free to use. Please read through this tutorial to
understand [how to secure your GitLab Pages website with Let’s Encrypt](https://about.gitlab.com/2016/04/11/tutorial-securing-your-gitlab-pages-with-tls-and-letsencrypt/).

With the same popularity, there are [certificates issued by CloudFlare](https://www.cloudflare.com/ssl/),
which also offers a [free CDN service](https://blog.cloudflare.com/cloudflares-free-cdn-and-you/).
Their certs are valid up to 15 years. Read through the tutorial on
[how to add a CloudFlare Certificate to your GitLab Pages website](https://about.gitlab.com/2017/02/07/setting-up-gitlab-pages-with-cloudflare-certificates/).

### Adding certificates to your project

Regardless the CA you choose, the steps to add your certificate to
your Pages project are the same.

### What do you need

1. A PEM certificate
1. An intermediate certificate
1. A public key

![Pages project - adding certificates](img/add_certificate_to_pages.png)

These fields are found under your Project’s Settings > Pages > New Domain.

### What’s what?


	A PEM certificate is the certificate generated by the CA,




which needs to be added to the field Certificate (PEM).
- An [intermediate certificate](https://en.wikipedia.org/wiki/Intermediate_certificate_authority) (aka “root certificate”) is
the part of the encryption keychain that identifies the CA.
Usually it’s combined with the PEM certificate, but there are
some cases in which you need to add them manually.
[CloudFlare certs](https://about.gitlab.com/2017/02/07/setting-up-gitlab-pages-with-cloudflare-certificates/)
are one of these cases.
- A public key is an encrypted key which validates
your PEM against your domain.

### Now what?

Now that you hopefully understand why you need all
of this, it’s simple:


	Your PEM certificate needs to be added to the first field


	If your certificate is missing its intermediate, copy




and paste the root certificate (usually available from your CA website)
and paste it in the [same field as your PEM certificate](https://about.gitlab.com/2017/02/07/setting-up-gitlab-pages-with-cloudflare-certificates/),
just jumping a line between them.
- Copy your public key and paste it in the last field

>**Note:**
Do not open certificates or encryption keys in
regular text editors. Always use code editors (such as
Sublime Text, Atom, Dreamweaver, Brackets, etc).

_Read on about [Creating and Tweaking GitLab CI/CD for GitLab Pages](getting_started_part_four.md)_



            

          

      

      

    

  

    
      
          
            
  —
last_updated: 2018-02-16
author: Marcia Ramos
author_gitlab: marcia
level: beginner
article_type: user guide
date: 2017-02-22
—

# Projects for GitLab Pages and URL structure

## What you need to get started

To get started with GitLab Pages, you need:

1. A project
1. A configuration file (.gitlab-ci.yml) to deploy your site
1. A specific job called pages in the configuration file
that will make GitLab aware that you are deploying a GitLab Pages website
1. A public directory with the content of the website

Optional Features:

1. A custom domain or subdomain
1. A DNS pointing your (sub)domain to your Pages site


1. Optional: an SSL/TLS certificate so your custom
domain is accessible under HTTPS.




The optional settings, custom domain, DNS records, and SSL/TLS certificates, are described in [Part 3](getting_started_part_three.md)).

## Project

Your GitLab Pages project is a regular project created the
same way you do for the other ones. To get started with GitLab Pages, you have two ways:


	Fork one of the templates from Page Examples, or


	Create a new project from scratch




Let’s go over both options.

### Fork a project to get started from

To make things easy for you, we’ve created this
[group](https://gitlab.com/pages) of default projects
containing the most popular SSGs templates.

Watch the [video tutorial](https://youtu.be/TWqh9MtT4Bg) we’ve
created for the steps below.

1. [Fork a sample project](../../../gitlab-basics/fork-project.md) from the [Pages group](https://gitlab.com/pages)
1. Trigger a build (push a change to any file)
1. As soon as the build passes, your website will have been deployed with GitLab Pages. Your website URL will be available under your project’s Settings > Pages
1. Optionally, remove the fork relationship by navigating to your project’s Settings > expanding Advanced settings and scrolling down to Remove fork relationship:


![remove fork relationship](img/remove_fork_relationship.png)




To turn a project website forked from the Pages group into a user/group website, you’ll need to:


	Rename it to namespace.gitlab.io: navigate to project’s Settings > expand Advanced settings > and scroll down to Rename repository


	Adjust your SSG’s [base URL](#urls-and-baseurls) to from “project-name” to “”. This setting will be at a different place for each SSG, as each of them have their own structure and file tree. Most likely, it will be in the SSG’s config file.




> Notes:
>
> Why do I need to remove the fork relationship?
>
> Unless you want to contribute to the original project,
you won’t need it connected to the upstream. A
[fork](https://about.gitlab.com/2016/12/01/how-to-keep-your-fork-up-to-date-with-its-origin/#fork)
is useful for submitting merge requests to the upstream.

### Create a project from scratch

1. From your Project’s [Dashboard](https://gitlab.com/dashboard/projects),
click New project, and name it considering the
[practical examples](getting_started_part_one.md#practical-examples).
1. Clone it to your local computer, add your website
files to your project, add, commit and push to GitLab.
1. From the your Project’s page, click Set up CI/CD:


![setup GitLab CI/CD](img/setup_ci.png)




1. Choose one of the templates from the dropbox menu.
Pick up the template corresponding to the SSG you’re using (or plain HTML).


![gitlab-ci templates](img/choose_ci_template.png)




Once you have both site files and .gitlab-ci.yml in your project’s
root, GitLab CI/CD will build your site and deploy it with Pages.
Once the first build passes, you see your site is live by
navigating to your Project’s Settings > Pages,
where you’ll find its default URL.

> Notes:
>
> - GitLab Pages [supports any SSG](https://about.gitlab.com/2016/06/17/ssg-overview-gitlab-pages-part-3-examples-ci/), but,
if you don’t find yours among the templates, you’ll need
to configure your own .gitlab-ci.yml. Do do that, please
read through the article [Creating and Tweaking GitLab CI/CD for GitLab Pages](getting_started_part_four.md). New SSGs are very welcome among
the [example projects](https://gitlab.com/pages). If you set
up a new one, please
[contribute](https://gitlab.com/pages/pages.gitlab.io/blob/master/CONTRIBUTING.md)
to our examples.
>
> - The second step _”Clone it to your local computer”_, can be done
differently, achieving the same results: instead of cloning the bare
repository to you local computer and moving your site files into it,
you can run git init in your local website directory, add the
remote URL: git remote add origin git@gitlab.com:namespace/project-name.git,
then add, commit, and push.

## URLs and Baseurls

Every Static Site Generator (SSG) default configuration expects
to find your website under a (sub)domain (example.com), not
in a subdirectory of that domain (example.com/subdir). Therefore,
whenever you publish a project website (namespace.gitlab.io/project-name),
you’ll have to look for this configuration (base URL) on your SSG’s
documentation and set it up to reflect this pattern.

For example, for a Jekyll site, the baseurl is defined in the Jekyll
configuration file, _config.yml. If your website URL is
https://john.gitlab.io/blog/, you need to add this line to _config.yml:

`yaml
baseurl: "/blog"
`

On the contrary, if you deploy your website after forking one of
our [default examples](https://gitlab.com/pages), the baseurl will
already be configured this way, as all examples there are project
websites. If you decide to make yours a user or group website, you’ll
have to remove this configuration from your project. For the Jekyll
example we’ve just mentioned, you’d have to change Jekyll’s _config.yml to:

`yaml
baseurl: ""
`

## Custom Domains

GitLab Pages supports custom domains and subdomains, served under HTTP or HTTPS.
Please check the [next part](getting_started_part_three.md) of this series for an overview.



            

          

      

      

    

  

    
      
          
            
  —
description: ‘Learn how to use GitLab Pages to deploy a static website at no additional cost.’
—

# GitLab Pages

With GitLab Pages it’s easy to publish your project website. GitLab Pages is a hosting service for static websites, at no additional cost.

## Getting Started

[Create a project from scratch](getting_started_part_two.md#create-a-project-from-scratch)
to get you started quickly, or,
alternatively, start from an existing project as follows:


	
	[Fork](../../../gitlab-basics/fork-project.md#how-to-fork-a-project) an [example project](https://gitlab.com/pages):








by forking a project, you create a copy of the codebase you’re forking from to start from a template instead of starting from scratch.
- 2. Change a file to trigger a GitLab CI/CD pipeline: GitLab CI/CD will build and deploy your site to GitLab Pages.
- 3. Visit your project’s Settings > Pages to see your website link, and click on it. Bam! Your website is live! :)

_Further steps (optional):_


	
	Remove the [fork relationship](getting_started_part_two.md#fork-a-project-to-get-started-from)








(_You don’t need the relationship unless you intent to contribute back to the example project you forked from_).
- 5. Make it a [user/group website](getting_started_part_one.md#user-and-group-websites)

Watch a video with the steps above: https://www.youtube.com/watch?v=TWqh9MtT4Bg

_Advanced options:_


	[Use a custom domain](getting_started_part_three.md#adding-your-custom-domain-to-gitlab-pages)


	Apply [SSL/TLS certification](getting_started_part_three.md#ssl-tls-certificates) to your custom domain




## How Does It Work?

With GitLab Pages you can create [static websites](getting_started_part_one.md#what-you-need-to-know-before-getting-started)
for your GitLab projects, groups, or user accounts.

It supports plain static content, such as HTML, and all [static site generators (SSGs)](https://about.gitlab.com/2016/06/03/ssg-overview-gitlab-pages-part-1-dynamic-x-static/), such as Jekyll, Middleman, Hexo, Hugo, and Pelican.

Connect as many custom domains as you like and bring your own TLS certificate
to secure them.

Your files live in a project [repository](../repository/index.md) on GitLab.
[GitLab CI](../../../ci/README.md) picks up those files and makes them available at, typically,
https://<username>.gitlab.io/<projectname>. Please read through the docs on
[GitLab Pages domains](getting_started_part_one.md#gitlab-pages-domain) for more info.

## Explore GitLab Pages

Read the following tutorials to know more about:


	[Static websites and GitLab Pages domains](getting_started_part_one.md): Understand what is a static website, and how GitLab Pages default domains work


	[Projects for GitLab Pages and URL structure](getting_started_part_two.md): Forking projects and creating new ones from scratch, understanding URLs structure and baseurls


	[GitLab Pages custom domains and SSL/TLS Certificates](getting_started_part_three.md): How to add custom domains and subdomains to your website, configure DNS records, and SSL/TLS certificates


	[Creating and Tweaking GitLab CI/CD for GitLab Pages](getting_started_part_four.md): Understand how to create your own .gitlab-ci.yml for your site


	[Technical aspects, custom 404 pages, limitations](introduction.md)


	[Hosting on GitLab.com with GitLab Pages](https://about.gitlab.com/2016/04/07/gitlab-pages-setup/) (outdated)




_Blog posts series about Static Site Generators (SSGs):_


	[SSGs part 1: Static vs dynamic websites](https://about.gitlab.com/2016/06/03/ssg-overview-gitlab-pages-part-1-dynamic-x-static/)


	[SSGs part 2: Modern static site generators](https://about.gitlab.com/2016/06/10/ssg-overview-gitlab-pages-part-2/)


	[SSGs part 3: Build any SSG site with GitLab Pages](https://about.gitlab.com/2016/06/17/ssg-overview-gitlab-pages-part-3-examples-ci/)




_Blog posts for securing GitLab Pages custom domains with SSL/TLS certificates:_


	[CloudFlare](https://about.gitlab.com/2017/02/07/setting-up-gitlab-pages-with-cloudflare-certificates/)


	[Let’s Encrypt](https://about.gitlab.com/2016/04/11/tutorial-securing-your-gitlab-pages-with-tls-and-letsencrypt/) (outdated)




## Advanced use


	[Posting to your GitLab Pages blog from iOS](https://about.gitlab.com/2016/08/19/posting-to-your-gitlab-pages-blog-from-ios/)


	[GitLab CI: Run jobs sequentially, in parallel, or build a custom pipeline](https://about.gitlab.com/2016/07/29/the-basics-of-gitlab-ci/)


	[GitLab CI: Deployment & environments](https://about.gitlab.com/2016/08/26/ci-deployment-and-environments/)


	[Building a new GitLab docs site with Nanoc, GitLab CI, and GitLab Pages](https://about.gitlab.com/2016/12/07/building-a-new-gitlab-docs-site-with-nanoc-gitlab-ci-and-gitlab-pages/)


	[Publish code coverage reports with GitLab Pages](https://about.gitlab.com/2016/11/03/publish-code-coverage-report-with-gitlab-pages/)




## Admin GitLab Pages for CE and EE

Enable and configure GitLab Pages on your own instance (GitLab Community Edition and Enterprise Editions) with
the [admin guide](../../../administration/pages/index.md).

Watch the video: https://www.youtube.com/watch?v=dD8c7WNcc6s

## More information about GitLab Pages


	For an overview, visit the [feature webpage](https://about.gitlab.com/features/pages/)


	Announcement (2016-12-24): [“We’re bringing GitLab Pages to CE”](https://about.gitlab.com/2016/12/24/were-bringing-gitlab-pages-to-community-edition/)


	Announcement (2017-03-06): [“We are changing the IP of GitLab Pages on GitLab.com”](https://about.gitlab.com/2017/03/06/we-are-changing-the-ip-of-gitlab-pages-on-gitlab-com/)






            

          

      

      

    

  

    
      
          
            
  # Exploring GitLab Pages

> Notes:
> - This feature was [introduced][ee-80] in GitLab EE 8.3.
> - Custom CNAMEs with TLS support were [introduced][ee-173] in GitLab EE 8.5.
> - GitLab Pages [was ported][ce-14605] to Community Edition in GitLab 8.17.
> - This document is about the user guide. To learn how to enable GitLab Pages
>   across your GitLab instance, visit the [administrator documentation](../../../administration/pages/index.md).

With GitLab Pages you can host for free your static websites on GitLab.
Combined with the power of [GitLab CI] and the help of [GitLab Runner] you can
deploy static pages for your individual projects, your user or your group.

Read [GitLab Pages on GitLab.com](#gitlab-pages-on-gitlab-com) for specific
information, if you are using GitLab.com to host your website.

## Getting started with GitLab Pages domains

> Note:
> In the rest of this document we will assume that the general domain name that
> is used for GitLab Pages is example.io.

In general there are two types of pages one might create:


	Pages per user (username.example.io) or per group (groupname.example.io)


	Pages per project (username.example.io/projectname or groupname.example.io/projectname)




In GitLab, usernames and groupnames are unique and we often refer to them
as [namespaces](../../group/index.md#namespaces). There can be only one namespace
in a GitLab instance. Below you
can see the connection between the type of GitLab Pages, what the project name
that is created on GitLab looks like and the website URL it will be ultimately
be served on.


Type of GitLab Pages | The name of the project created in GitLab | Website URL |

——————– | ———— | ———– |

User pages  | username.example.io  | http(s)://username.example.io  |

Group pages | groupname.example.io | http(s)://groupname.example.io |

Project pages owned by a user  | projectname | http(s)://username.example.io/projectname |

Project pages owned by a group | projectname | `http(s)://groupname.example.io/projectname`|



> Warning:
> There are some known [limitations](#limitations) regarding namespaces served
> under the general domain name and HTTPS. Make sure to read that section.

### GitLab Pages requirements

In brief, this is what you need to upload your website in GitLab Pages:


	Find out the general domain name that is used for GitLab Pages
(ask your administrator). This is very important, so you should first make
sure you get that right.




1. Create a project
1. Push a [.gitlab-ci.yml file][yaml] in the root directory


of your repository with a specific job named [pages][pages]





	Set up a GitLab Runner to build your website




> Note:
If [shared runners](../../../ci/runners/README.md) are enabled by your GitLab
administrator, you should be able to use them instead of bringing your own.

### User or group Pages

For user and group pages, the name of the project should be specific to the
username or groupname and the general domain name that is used for GitLab Pages.
Head over your GitLab instance that supports GitLab Pages and create a
repository named username.example.io, where username is your username on
GitLab. If the first part of the project name doesn’t match exactly your
username, it won’t work, so make sure to get it right.

To create a group page, the steps are the same like when creating a website for
users. Just make sure that you are creating the project within the group’s
namespace.

![Create a user-based pages project](img/pages_create_user_page.png)

—

After you push some static content to your repository and GitLab Runner uploads
the artifacts to GitLab CI, you will be able to access your website under
http(s)://username.example.io. Keep reading to find out how.

>**Note:**
If your username/groupname contains a dot, for example foo.bar, you will not
be able to use the wildcard domain HTTPS, read more at [limitations](#limitations).

### Project Pages

GitLab Pages for projects can be created by both user and group accounts.
The steps to create a project page for a user or a group are identical:

1. Create a new project
1. Push a [.gitlab-ci.yml file][yaml] in the root directory


of your repository with a specific job named [pages][pages].





	Set up a GitLab Runner to build your website




A user’s project will be served under http(s)://username.example.io/projectname
whereas a group’s project under http(s)://groupname.example.io/projectname.

For practical examples for group and project Pages, read through the guide
[GitLab Pages from A to Z: Part 1 - Static sites and GitLab Pages domains](getting_started_part_one.md#practical-examples).

## Quick Start

Read through [GitLab Pages Quick Start Guide][pages-quick] or watch the video tutorial on
[how to publish a website with GitLab Pages on GitLab.com from a forked project][video-pages-fork].

See also [All you Need to Know About GitLab Pages][pages-index-guide] for a list with all the resources we have for GitLab Pages.

### Explore the contents of .gitlab-ci.yml

The key thing about GitLab Pages is the .gitlab-ci.yml file, something that
gives you absolute control over the build process. You can actually watch your
website being built live by following the CI job traces.

For a simplified user guide on setting up GitLab CI/CD for Pages, read through
the article [GitLab Pages from A to Z: Part 4 - Creating and Tweaking .gitlab-ci.yml for GitLab Pages](getting_started_part_four.md#creating-and-tweaking-gitlab-ci-yml-for-gitlab-pages)

> Note:
> Before reading this section, make sure you familiarize yourself with GitLab CI
> and the specific syntax of[.gitlab-ci.yml][yaml] by
> following our [quick start guide].

To make use of GitLab Pages, the contents of .gitlab-ci.yml must follow the
rules below:

1. A special job named [pages][pages] must be defined
1. Any static content which will be served by GitLab Pages must be placed under


a public/ directory





	artifacts with a path to the public/ directory must be defined




In its simplest form, .gitlab-ci.yml looks like:

```yaml
pages:

script:
- my_commands
artifacts:

paths:
- public


```

When the Runner reaches to build the pages job, it executes whatever is
defined in the script parameter and if the job completes with a non-zero
exit status, it then uploads the public/ directory to GitLab Pages.

The public/ directory should contain all the static content of your website.
Depending on how you plan to publish your website, the steps defined in the
[script parameter](../../../ci/yaml/README.md#script) may differ.

Be aware that Pages are by default branch/tag agnostic and their deployment
relies solely on what you specify in .gitlab-ci.yml. If you don’t limit the
pages job with the [only parameter](../../../ci/yaml/README.md#only-and-except),
whenever a new commit is pushed to whatever branch or tag, the Pages will be
overwritten. In the example below, we limit the Pages to be deployed whenever
a commit is pushed only on the master branch:

```yaml
pages:

script:
- my_commands
artifacts:

paths:
- public

only:
- master


```

We then tell the Runner to treat the public/ directory as artifacts and
upload it to GitLab. And since all these parameters were all under a pages
job, the contents of the public directory will be served by GitLab Pages.

#### How .gitlab-ci.yml looks like when the static content is in your repository

Supposed your repository contained the following files:

```
├── index.html
├── css
│ └── main.css
└── js

└── main.js


```

Then the .gitlab-ci.yml example below simply moves all files from the root
directory of the project to the public/ directory. The .public workaround
is so cp doesn’t also copy public/ to itself in an infinite loop:

```yaml
pages:

script:
- mkdir .public
- cp -r * .public
- mv .public public
artifacts:

paths:
- public

only:
- master


```

#### How .gitlab-ci.yml looks like when using a static generator

In general, GitLab Pages support any kind of [static site generator][staticgen],
since .gitlab-ci.yml can be configured to run any possible command.

In the root directory of your Git repository, place the source files of your
favorite static generator. Then provide a .gitlab-ci.yml file which is
specific to your static generator.

The example below, uses [Jekyll] to build the static site:

```yaml
image: ruby:2.1 # the script will run in Ruby 2.1 using the Docker image ruby:2.1

	pages: # the build job must be named pages
	script:
- gem install jekyll # we install jekyll
- jekyll build -d public/ # we tell jekyll to build the site for us
artifacts:

paths:
- public # this is where the site will live and the Runner uploads it in GitLab

only:
- master # this script is only affecting the master branch


```

Here, we used the Docker executor and in the first line we specified the base
image against which our jobs will run.

You have to make sure that the generated static files are ultimately placed
under the public directory, that’s why in the script section we run the
jekyll command that jobs the website and puts all content in the public/
directory. Depending on the static generator of your choice, this command will
differ. Search in the documentation of the static generator you will use if
there is an option to explicitly set the output directory. If there is not
such an option, you can always add one more line under script to rename the
resulting directory in public/.

We then tell the Runner to treat the public/ directory as artifacts and
upload it to GitLab.

—

See the [jekyll example project][pages-jekyll] to better understand how this
works.

For a list of Pages projects, see the [example projects](#example-projects) to
get you started.

#### How to set up GitLab Pages in a repository where there’s also actual code

Remember that GitLab Pages are by default branch/tag agnostic and their
deployment relies solely on what you specify in .gitlab-ci.yml. You can limit
the pages job with the [only parameter](../../../ci/yaml/README.md#only-and-except),
whenever a new commit is pushed to a branch that will be used specifically for
your pages.

That way, you can have your project’s code in the master branch and use an
orphan branch (let’s name it pages) that will host your static generator site.

You can create a new empty branch like this:

`bash
git checkout --orphan pages
`

The first commit made on this new branch will have no parents and it will be
the root of a new history totally disconnected from all the other branches and
commits. Push the source files of your static generator in the pages branch.

Below is a copy of .gitlab-ci.yml where the most significant line is the last
one, specifying to execute everything in the pages branch:

```
image: ruby:2.1

	pages:
	script:
- gem install jekyll
- jekyll build -d public/
artifacts:

paths:
- public

only:
- pages


```

See an example that has different files in the [master branch][jekyll-master]
and the source files for Jekyll are in a [pages branch][jekyll-pages] which
also includes .gitlab-ci.yml.

[jekyll-master]: https://gitlab.com/pages/jekyll-branched/tree/master
[jekyll-pages]: https://gitlab.com/pages/jekyll-branched/tree/pages

## Next steps

So you have successfully deployed your website, congratulations! Let’s check
what more you can do with GitLab Pages.

### Example projects

Below is a list of example projects for GitLab Pages with a plain HTML website
or various static site generators. Contributions are very welcome.


	[Plain HTML](https://gitlab.com/pages/plain-html)


	[Jekyll](https://gitlab.com/pages/jekyll)


	[Hugo](https://gitlab.com/pages/hugo)


	[Middleman](https://gitlab.com/pages/middleman)


	[Hexo](https://gitlab.com/pages/hexo)


	[Brunch](https://gitlab.com/pages/brunch)


	[Metalsmith](https://gitlab.com/pages/metalsmith)


	[Harp](https://gitlab.com/pages/harp)




Visit the GitLab Pages group for a full list of example projects:
<https://gitlab.com/groups/pages>.

### Serving compressed assets

Most modern browsers support downloading files in a compressed format. This
speeds up downloads by reducing the size of files.

Before serving an uncompressed file, Pages will check whether the same file
exists with a .gz extension. If it does, and the browser supports receiving
compressed files, it will serve that version instead of the uncompressed one.

To take advantage of this feature, the artifact you upload to the Pages should
have this structure:

```
public/
├─┬ index.html
│ └ index.html.gz
│
├── css/
│ └─┬ main.css
│ └ main.css.gz
│
└── js/

	└─┬ main.js
	└ main.js.gz


```

This can be achieved by including a script: command like this in your
.gitlab-ci.yml pages job:

```yaml
pages:

Other directives
script:

	# build the public/ directory first

	find public -type f -iregex ‘.*.(htm|html|txt|text|js|css)$’ -execdir gzip -f –keep {} ;


```

By pre-compressing the files and including both versions in the artifact, Pages
can serve requests for both compressed and uncompressed content without
needing to compress files on-demand.

### Add a custom domain to your Pages website

For a complete guide on Pages domains, read through the article
[GitLab Pages from A to Z: Part 3 - Setting Up Custom Domains - DNS Records and SSL/TLS Certificates](getting_started_part_three.md#setting-up-custom-domains-dns-records-and-ssl-tls-certificates)

If this setting is enabled by your GitLab administrator, you should be able to
see the New Domain button when visiting your project’s settings through the
gear icon in the top right and then navigating to Pages.

![New domain button](img/pages_new_domain_button.png)

—

You can add multiple domains pointing to your website hosted under GitLab.
Once the domain is added, you can see it listed under the Domains section.

![Pages multiple domains](img/pages_multiple_domains.png)

—

As a last step, you need to configure your DNS and add a CNAME pointing to your
user/group page. Click on the Details button of a domain for further
instructions.

![Pages DNS details](img/pages_dns_details.png)

—

>**Note:**
Currently there is support only for custom domains on per-project basis. That
means that if you add a custom domain (example.com) for your user website
(username.example.io), a project that is served under username.example.io/foo,
will not be accessible under example.com/foo.

### Secure your custom domain website with TLS

When you add a new custom domain, you also have the chance to add a TLS
certificate. If this setting is enabled by your GitLab administrator, you
should be able to see the option to upload the public certificate and the
private key when adding a new domain.

![Pages upload cert](img/pages_upload_cert.png)

For a complete guide on Pages domains, read through the article
[GitLab Pages from A to Z: Part 3 - Setting Up Custom Domains - DNS Records and SSL/TLS Certificates](getting_started_part_three.md#setting-up-custom-domains-dns-records-and-ssl-tls-certificates)

### Custom error codes pages

You can provide your own 403 and 404 error pages by creating the 403.html and
404.html files respectively in the root directory of the public/ directory
that will be included in the artifacts. Usually this is the root directory of
your project, but that may differ depending on your static generator
configuration.

If the case of 404.html, there are different scenarios. For example:


	If you use project Pages (served under /projectname/) and try to access
/projectname/non/existing_file, GitLab Pages will try to serve first
/projectname/404.html, and then /404.html.


	If you use user/group Pages (served under /) and try to access
/non/existing_file GitLab Pages will try to serve /404.html.


	If you use a custom domain and try to access /non/existing_file, GitLab
Pages will try to serve only /404.html.




### Remove the contents of your pages

If you ever feel the need to purge your Pages content, you can do so by going
to your project’s settings through the gear icon in the top right, and then
navigating to Pages. Hit the Remove pages button and your Pages website
will be deleted. Simple as that.

![Remove pages](img/pages_remove.png)

## GitLab Pages on GitLab.com

If you are using GitLab.com to host your website, then:


	The general domain name for GitLab Pages on GitLab.com is gitlab.io.


	Custom domains and TLS support are enabled.


	Shared runners are enabled by default, provided for free and can be used to
build your website. If you want you can still bring your own Runner.




The rest of the guide still applies.

See also: [GitLab Pages from A to Z: Part 1 - Static sites and GitLab Pages domains](getting_started_part_one.md#gitlab-pages-domain).

## Limitations

When using Pages under the general domain of a GitLab instance (*.example.io),
you _cannot_ use HTTPS with sub-subdomains. That means that if your
username/groupname contains a dot, for example foo.bar, the domain
https://foo.bar.example.io will _not_ work. This is a limitation of the
[HTTP Over TLS protocol][rfc]. HTTP pages will continue to work provided you
don’t redirect HTTP to HTTPS.

[rfc]: https://tools.ietf.org/html/rfc2818#section-3.1 “HTTP Over TLS RFC”

GitLab Pages [does not support subgroups](../../group/subgroups/index.md#limitations).
You can only create the highest level group website.

## Redirects in GitLab Pages

Since you cannot use any custom server configuration files, like .htaccess or
any .conf file, if you want to redirect a page to another
location, you can use the [HTTP meta refresh tag][metarefresh].

Some static site generators provide plugins for that functionality so that you
don’t have to create and edit HTML files manually. For example, Jekyll has the
[redirect-from plugin](https://github.com/jekyll/jekyll-redirect-from).

## Frequently Asked Questions

### Can I download my generated pages?

Sure. All you need to do is download the artifacts archive from the job page.

### Can I use GitLab Pages if my project is private?

Yes. GitLab Pages doesn’t care whether you set your project’s visibility level
to private, internal or public.

### Do I need to create a user/group website before creating a project website?

No, you don’t. You can create your project first and it will be accessed under
http(s)://namespace.example.io/projectname.

## Known issues

For a list of known issues, visit GitLab’s [public issue tracker].

[jekyll]: http://jekyllrb.com/
[ee-80]: https://gitlab.com/gitlab-org/gitlab-ee/merge_requests/80
[ee-173]: https://gitlab.com/gitlab-org/gitlab-ee/merge_requests/173
[pages-daemon]: https://gitlab.com/gitlab-org/gitlab-pages
[gitlab ci]: https://about.gitlab.com/gitlab-ci
[gitlab runner]: https://docs.gitlab.com/runner/
[pages]: ../../../ci/yaml/README.md#pages
[yaml]: ../../../ci/yaml/README.md
[staticgen]: https://www.staticgen.com/
[pages-jekyll]: https://gitlab.com/pages/jekyll
[metarefresh]: https://en.wikipedia.org/wiki/Meta_refresh
[public issue tracker]: https://gitlab.com/gitlab-org/gitlab-ce/issues?label_name=pages
[ce-14605]: https://gitlab.com/gitlab-org/gitlab-ce/issues/14605
[quick start guide]: ../../../ci/quick_start/README.md
[pages-index-guide]: index.md
[pages-quick]: getting_started_part_one.md
[video-pages-fork]: https://youtu.be/TWqh9MtT4Bg



            

          

      

      

    

  

    
      
          
            
  # Introduction to job artifacts

>**Notes:**
>- Since GitLab 8.2 and GitLab Runner 0.7.0, job artifacts that are created by


GitLab Runner are uploaded to GitLab and are downloadable as a single archive
(tar.gz) using the GitLab UI.





	>- Starting with GitLab 8.4 and GitLab Runner 1.0, the artifacts archive format
	changed to ZIP, and it is now possible to browse its contents, with the added
ability of downloading the files separately.





>- Starting with GitLab 8.17, builds are renamed to jobs.
>- The artifacts browser will be available only for new artifacts that are sent


to GitLab using GitLab Runner version 1.0 and up. It will not be possible to
browse old artifacts already uploaded to GitLab.





	>- This is the user documentation. For the administration guide see
	[administration/job_artifacts](../../../administration/job_artifacts.md).





Artifacts is a list of files and directories which are attached to a job
after it completes successfully. This feature is enabled by default in all
GitLab installations.

## Defining artifacts in .gitlab-ci.yml

A simple example of using the artifacts definition in .gitlab-ci.yml would be
the following:

```yaml
pdf:

script: xelatex mycv.tex
artifacts:

paths:
- mycv.pdf
expire_in: 1 week


```

A job named pdf calls the xelatex command in order to build a pdf file from
the latex source file mycv.tex. We then define the artifacts paths which in
turn are defined with the paths keyword. All paths to files and directories
are relative to the repository that was cloned during the build. These uploaded
artifacts will be kept in GitLab for 1 week as defined by the expire_in
definition. You have the option to keep the artifacts from expiring via the
[web interface](#browsing-job-artifacts). If you don’t define an expiry date,
the artifacts will be kept forever.

For more examples on artifacts, follow the [artifacts reference in
.gitlab-ci.yml](../../../ci/yaml/README.md#artifacts).

## Browsing artifacts

>**Note:**
With GitLab 9.2, PDFs, images, videos and other formats can be previewed
directly in the job artifacts browser without the need to download them.

>**Note:**
With [GitLab 10.1][ce-14399], HTML files in a public project can be previewed
directly in a new tab without the need to download them when
[GitLab Pages](../../../administration/pages/index.md) is enabled

After a job finishes, if you visit the job’s specific page, there are three
buttons. You can download the artifacts archive or browse its contents, whereas
the Keep button appears only if you have set an [expiry date] to the
artifacts in case you changed your mind and want to keep them.

![Job artifacts browser button](img/job_artifacts_browser_button.png)

—

The archive browser shows the name and the actual file size of each file in the
archive. If your artifacts contained directories, then you are also able to
browse inside them.

Below you can see how browsing looks like. In this case we have browsed inside
the archive and at this point there is one directory, a couple files, and
one HTML file that you can view directly online when
[GitLab Pages](../../../administration/pages/index.md) is enabled (opens in a new tab).

![Job artifacts browser](img/job_artifacts_browser.png)

—

## Downloading artifacts

If you need to download the whole archive, there are buttons in various places
inside GitLab that make that possible.


	While on the pipelines page, you can see the download icon for each job’s
artifacts archive in the right corner:


![Job artifacts in Pipelines page](img/job_artifacts_pipelines_page.png)









	While on the Jobs page, you can see the download icon for each job’s
artifacts archive in the right corner:


![Job artifacts in Builds page](img/job_artifacts_builds_page.png)









	While inside a specific job, you are presented with a download button
along with the one that browses the archive:


![Job artifacts browser button](img/job_artifacts_browser_button.png)









	And finally, when browsing an archive you can see the download button at
the top right corner:


![Job artifacts browser](img/job_artifacts_browser.png)








## Downloading the latest artifacts

It is possible to download the latest artifacts of a job via a well known URL
so you can use it for scripting purposes.

>**Note:**
The latest artifacts are considered as the artifacts created by jobs in the
latest pipeline that succeeded for the specific ref.
Artifacts for other pipelines can be accessed with direct access to them.

The structure of the URL to download the whole artifacts archive is the following:

`
https://example.com/<namespace>/<project>/-/jobs/artifacts/<ref>/download?job=<job_name>
`

To download a single file from the artifacts use the following URL:

`
https://example.com/<namespace>/<project>/-/jobs/artifacts/<ref>/raw/<path_to_file>?job=<job_name>
`

For example, to download the latest artifacts of the job named coverage of
the master branch of the gitlab-ce project that belongs to the gitlab-org
namespace, the URL would be:

`
https://gitlab.com/gitlab-org/gitlab-ce/-/jobs/artifacts/master/download?job=coverage
`

To download the file coverage/index.html from the same
artifacts use the following URL:

`
https://gitlab.com/gitlab-org/gitlab-ce/-/jobs/artifacts/master/raw/coverage/index.html?job=coverage
`

There is also a URL to browse the latest job artifacts:

`
https://example.com/<namespace>/<project>/-/jobs/artifacts/<ref>/browse?job=<job_name>
`

For example:

`
https://gitlab.com/gitlab-org/gitlab-ce/-/jobs/artifacts/master/browse?job=coverage
`

The latest builds are also exposed in the UI in various places. Specifically,
look for the download button in:


	the main project’s page


	the branches page


	the tags page




If the latest job has failed to upload the artifacts, you can see that
information in the UI.

![Latest artifacts button](img/job_latest_artifacts_browser.png)

## Erasing artifacts

DANGER: Warning:
This is a destructive action that leads to data loss. Use with caution.

If you have at least Developer [permissions](../../permissions.md#gitlab-ci-cd-permissions)
on the project, you can erase a single job via the UI which will also remove the
artifacts and the job’s trace.

1. Navigate to a job’s page.
1. Click the trash icon at the top right of the job’s trace.
1. Confirm the deletion.

[expiry date]: ../../../ci/yaml/README.md#artifacts-expire_in
[ce-14399]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/14399



            

          

      

      

    

  

    
      
          
            
  # Pipeline Schedules

> Notes:
- This feature was introduced in 9.1 as [Trigger Schedule][ce-10533].
- In 9.2, the feature was [renamed to Pipeline Schedule][ce-10853].
- Cron notation is parsed by [Rufus-Scheduler](https://github.com/jmettraux/rufus-scheduler).

Pipeline schedules can be used to run a pipeline at specific intervals, for example every
month on the 22nd for a certain branch.

## Using Pipeline schedules

In order to schedule a pipeline:


	Navigate to your project’s CI / CD ➔ Schedules and click the
New Schedule button.




1. Fill in the form
1. Hit Save pipeline schedule for the changes to take effect.

![New Schedule Form](img/pipeline_schedules_new_form.png)

>**Attention:**
The pipelines won’t be executed precisely, because schedules are handled by
Sidekiq, which runs according to its interval.
See [advanced admin configuration](#advanced-admin-configuration) for more
information.

In the Schedules index page you can see a list of the pipelines that are
scheduled to run. The next run is automatically calculated by the server GitLab
is installed on.

![Schedules list](img/pipeline_schedules_list.png)

### Running a scheduled pipeline manually

> [Introduced][ce-15700] in GitLab 10.4.

To trigger a pipeline schedule manually, click the “Play” button:

![Play Pipeline Schedule](img/pipeline_schedule_play.png)

This will schedule a background job to run the pipeline schedule. A flash
message will provide a link to the CI/CD Pipeline index page.

To help avoid abuse, users are rate limited to triggering a pipeline once per
minute.

### Making use of scheduled pipeline variables

> [Introduced][ce-12328] in GitLab 9.4.

You can pass any number of arbitrary variables and they will be available in
GitLab CI so that they can be used in your .gitlab-ci.yml file.

![Scheduled pipeline variables](img/pipeline_schedule_variables.png)

## Using only and except

To configure that a job can be executed only when the pipeline has been
scheduled (or the opposite), you can use
[only and except](../../../ci/yaml/README.md#only-and-except-simplified) configuration keywords.

```
job:on-schedule:

	only:
	
	schedules

	script:
	
	make world

	job:
	
	except:
	
	schedules

	script:
	
	make build


```

## Taking ownership

Pipelines are executed as a user, who owns a schedule. This influences what
projects and other resources the pipeline has access to. If a user does not own
a pipeline, you can take ownership by clicking the Take ownership button.
The next time a pipeline is scheduled, your credentials will be used.

![Schedules list](img/pipeline_schedules_ownership.png)

>**Note:**
When the owner of the schedule doesn’t have the ability to create pipelines
anymore, due to e.g., being blocked or removed from the project, or lacking
the permission to run on protected branches or tags. When this happened, the
schedule is deactivated. Another user can take ownership and activate it, so
the schedule can be run again.

## Advanced admin configuration

The pipelines won’t be executed precisely, because schedules are handled by
Sidekiq, which runs according to its interval. For example, if you set a
schedule to create a pipeline every minute (* * * * *) and the Sidekiq worker
runs on 00:00 and 12:00 every day (0 */12 * * *), only 2 pipelines will be
created per day. To change the Sidekiq worker’s frequency, you have to edit the
pipeline_schedule_worker_cron value in your gitlab.rb and restart GitLab.
For GitLab.com, you can check the [dedicated settings page][settings]. If you
don’t have admin access to the server, ask your administrator.

[ce-10533]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/10533
[ce-10853]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/10853
[ce-12328]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/12328
[ce-15700]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/15700
[settings]: https://about.gitlab.com/gitlab-com/settings/#cron-jobs



            

          

      

      

    

  

    
      
          
            
  # Pipelines settings

To reach the pipelines settings navigate to your project’s
Settings ➔ CI/CD.

The following settings can be configured per project.

## Git strategy

With Git strategy, you can choose the default way your repository is fetched
from GitLab in a job.

There are two options:


	Using git clone which is slower since it clones the repository from scratch
for every job, ensuring that the project workspace is always pristine.


	Using git fetch which is faster as it re-uses the project workspace (falling
back to clone if it doesn’t exist).




The default Git strategy can be overridden by the [GIT_STRATEGY variable][var]
in .gitlab-ci.yml.

## Timeout

Timeout defines the maximum amount of time in minutes that a job is able run.
The default value is 60 minutes. Decrease the time limit if you want to impose
a hard limit on your jobs’ running time or increase it otherwise. In any case,
if the job surpasses the threshold, it is marked as failed.

### Timeout overriding on Runner level

> - [Introduced][ce-17221] in GitLab 10.7.

Project defined timeout (either specific timeout set by user or the default
60 minutes timeout) may be [overridden on Runner level][timeout overriding].

## Custom CI config path

>  - [Introduced][ce-12509] in GitLab 9.4.

By default we look for the .gitlab-ci.yml file in the project’s root
directory. If you require a different location within the repository,
you can set a custom filepath that will be used to lookup the config file,
this filepath should be relative to the root.

Here are some valid examples:

> * .gitlab-ci.yml
> * .my-custom-file.yml
> * my/path/.gitlab-ci.yml
> * my/path/.my-custom-file.yml

## Test coverage parsing

If you use test coverage in your code, GitLab can capture its output in the
job log using a regular expression. In the pipelines settings, search for the
“Test coverage parsing” section.

![Pipelines settings test coverage](img/pipelines_settings_test_coverage.png)

Leave blank if you want to disable it or enter a ruby regular expression. You
can use http://rubular.com to test your regex.

If the pipeline succeeds, the coverage is shown in the merge request widget and
in the jobs table.

![MR widget coverage](img/pipelines_test_coverage_mr_widget.png)

![Build status coverage](img/pipelines_test_coverage_build.png)

A few examples of known coverage tools for a variety of languages can be found
in the pipelines settings page.

## Visibility of pipelines

Access to pipelines and job details (including output of logs and artifacts)
is checked against your current user access level and the Public pipelines
project setting under your project’s Settings > CI/CD > General pipelines settings.

If Public pipelines is enabled (default):


	for public projects, anyone can view the pipelines and access the job details
(output logs and artifacts)


	for internal projects, any logged in user can view the pipelines
and access the job details
(output logs and artifacts)


	for private projects, any member (guest or higher) can view the pipelines
and access the job details
(output logs and artifacts)




If Public pipelines is disabled:


	for public projects, anyone can view the pipelines, but only members
(reporter or higher) can access the job details (output logs and artifacts)


	for internal projects, any logged in user can view the pipelines,
but only members (reporter or higher) can access the job details (output logs
and artifacts)


	for private projects, only members (reporter or higher)
can view the pipelines and access the job details (output logs and artifacts)




## Auto-cancel pending pipelines

> [Introduced][ce-9362] in GitLab 9.1.

If you want to auto-cancel all pending non-HEAD pipelines on branch, when
new pipeline will be created (after your git push or manually from UI),
check Auto-cancel pending pipelines checkbox and save the changes.

## Pipeline Badges

In the pipelines settings page you can find pipeline status and test coverage
badges for your project. The latest successful pipeline will be used to read
the pipeline status and test coverage values.

Visit the pipelines settings page in your project to see the exact link to
your badges, as well as ways to embed the badge image in your HTML or Markdown
pages.

![Pipelines badges](img/pipelines_settings_badges.png)

### Pipeline status badge

Depending on the status of your job, a badge can have the following values:


	pending


	running


	passed


	failed


	skipped


	canceled


	unknown




You can access a pipeline status badge image using the following link:

`
https://example.gitlab.com/<namespace>/<project>/badges/<branch>/build.svg
`

### Test coverage report badge

GitLab makes it possible to define the regular expression for [coverage report],
that each job log will be matched against. This means that each job in the
pipeline can have the test coverage percentage value defined.

The test coverage badge can be accessed using following link:

`
https://example.gitlab.com/<namespace>/<project>/badges/<branch>/coverage.svg
`

If you would like to get the coverage report from a specific job, you can add
the job=coverage_job_name parameter to the URL. For example, the following
Markdown code will embed the test coverage report badge of the coverage job
into your README.md:

`markdown
![coverage](https://gitlab.com/gitlab-org/gitlab-ce/badges/master/coverage.svg?job=coverage)
`

[var]: ../../../ci/yaml/README.md#git-strategy
[coverage report]: #test-coverage-parsing
[timeout overriding]: ../../../ci/runners/README.html#setting-maximum-job-timeout-for-a-runner
[ce-9362]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/9362
[ce-12509]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/12509
[ce-17221]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/17221



            

          

      

      

    

  

    
      
          
            
  # Repository

A [repository](https://git-scm.com/book/en/v2/Git-Basics-Getting-a-Git-Repository)
is what you use to store your codebase in GitLab and change it with version control.
A repository is part of a [project](../index.md), which has a lot of other features.

## Create a repository

To create a new repository, all you need to do is
[create a new project](../../../gitlab-basics/create-project.md).

Once you create a new project, you can add new files via UI
(read the section below) or via command line.
To add files from the command line, follow the instructions that will
be presented on the screen when you create a new project, or read
through them in the [command line basics](../../../gitlab-basics/start-using-git.md)
documentation.

> Important:
For security reasons, when using the command line, we strongly recommend
that you [connect with GitLab via SSH](../../../ssh/README.md).

## Files

### Create and edit files

Host your codebase in GitLab repositories by pushing your files to GitLab.
You can either use the user interface (UI), or connect your local computer
with GitLab [through the command line](../../../gitlab-basics/command-line-commands.md#start-working-on-your-project).

To configure [GitLab CI/CD](../../../ci/README.md) to build, test, and deploy
you code, add a file called [.`gitlab-ci.yml`](../../../ci/quick_start/README.md)
to your repository’s root.

From the user interface:

GitLab’s UI allows you to perform lots of Git commands without having to
touch the command line. Even if you use the command line regularly, sometimes
it’s easier to do so [via GitLab UI](web_editor.md):


	[Create a file](web_editor.md#create-a-file)


	[Upload a file](web_editor.md#upload-a-file)


	[File templates](web_editor.md#template-dropdowns)


	[Create a directory](web_editor.md#create-a-directory)


	[Start a merge request](web_editor.md#tips)




From the command line:

To get started with the command line, please read through the
[command line basics documentation](../../../gitlab-basics/command-line-commands.md).

### Find files

Use GitLab’s [file finder](../../../workflow/file_finder.md) to search for files in a repository.

### Jupyter Notebook files

> [Introduced](https://gitlab.com/gitlab-org/gitlab-ce/issues/2508) in GitLab 9.1

[Jupyter][jupyter] Notebook (previously IPython Notebook) files are used for
interactive computing in many fields and contain a complete record of the
user’s sessions and include code, narrative text, equations and rich output.

When added to a repository, Jupyter Notebooks with a .ipynb extension will be
rendered to HTML when viewed.

![Jupyter Notebook Rich Output](img/jupyter_notebook.png)

Interactive features, including JavaScript plots, will not work when viewed in
GitLab.

## Branches

When you submit changes in a new [branch](branches/index.md), you create a new version
of that project’s file tree. Your branch contains all the changes
you are presenting, which are detected by Git line by line.

To continue your workflow, once you pushed your changes to a new branch,
you can create a [merge request](../merge_requests/index.md), perform
inline code review, and [discuss](../../discussions/index.md)
your implementation with your team.
You can live preview changes submitted to a new branch with
[Review Apps](../../../ci/review_apps/index.md).

With [GitLab Starter](https://about.gitlab.com/pricing/), you can also request
[approval](https://docs.gitlab.com/ee/user/project/merge_requests/merge_request_approvals.html) from your managers.

To create, delete, and [branches](branches/index.md) via GitLab’s UI:


	[Default branches](branches/index.md#default-branch)


	[Create a branch](web_editor.md#create-a-new-branch)


	[Protected branches](../protected_branches.md#protected-branches)


	[Delete merged branches](branches/index.md#delete-merged-branches)




Alternatively, you can use the
[command line](../../../gitlab-basics/start-using-git.md#create-a-branch).

To learn more about branching strategies read through the
[GitLab Flow](../../../university/training/gitlab_flow.md) documentation.

## Commits

When you [commit your changes](https://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository),
you are introducing those changes to your branch.
Via command line, you can commit multiple times before pushing.


	Commit message:




A commit message is important to identity what is being changed and,
more importantly, why. In GitLab, you can add keywords to the commit
message that will perform one of the actions below:



	Trigger a GitLab CI/CD pipeline:




If you have your project configured with [GitLab CI/CD](../../../ci/README.md),
you will trigger a pipeline per push, not per commit.
- Skip pipelines:
You can add to you commit message the keyword
[[ci skip]](../../../ci/yaml/README.html#skipping-jobs)
and GitLab CI will skip that pipeline.
- Cross-link issues and merge requests:
[Cross-linking](../issues/crosslinking_issues.md#from-commit-messages)
is great to keep track of what’s is somehow related in your workflow.
If you mention an issue or a merge request in a commit message, they will be shown
on their respective thread.





	Cherry-pick a commit:




In GitLab, you can
[cherry-pick a commit](../merge_requests/cherry_pick_changes.md#cherry-picking-a-commit)
right from the UI.
- Revert a commit:
Easily [revert a commit](../merge_requests/revert_changes.md#reverting-a-commit)
from the UI to a selected branch.
- Sign a commit:
Use GPG to [sign your commits](gpg_signed_commits/index.md).

## Repository size

On GitLab.com, your [repository size limit is 10GB](../../gitlab_com/index.md#repository-size-limit)
(including LFS). For other instances, the repository size is limited by your
system administrators.

You can also [reduce a repository size using Git](reducing_the_repo_size_using_git.md).

## Contributors

All the contributors to your codebase are displayed under your project’s Settings > Contributors.

They are ordered from the collaborator with the greatest number
of commits to the fewest, and displayed on a nice graph:

![contributors to code](img/contributors_graph.png)

## Repository graph

The repository graph displays visually the Git flow strategy used in that repository:

![repository Git flow](img/repo_graph.png)

Find it under your project’s Repository > Graph.

## Compare

Select branches to compare and view the changes inline:

![compare branches](img/compare_branches.png)

Find it under your project’s Repository > Compare.

## Locked files

> Available in [GitLab Premium](https://about.gitlab.com/pricing/).

Lock your files to prevent any conflicting changes.

[File Locking](https://docs.gitlab.com/ee/user/project/file_lock.html) is available only in
[GitLab Premium](https://about.gitlab.com/pricing/).

## Repository’s API

You can access your repos via [repository API](../../../api/repositories.md).

## Clone in Apple Xcode

> [Introduced](https://gitlab.com/gitlab-org/gitlab-ce/issues/45820) in GitLab 11.0

Projects that contain a .xcodeproj or .xcworkspace directory can now be cloned
in Xcode using the new Open in Xcode button, located next to the Git URL
used for cloning your project. The button is only shown on macOS.

[jupyter]: https://jupyter.org



            

          

      

      

    

  

    
      
          
            
  # Reducing the repository size using Git

A GitLab Enterprise Edition administrator can set a [repository size limit][admin-repo-size]
which will prevent you to exceed it.

When a project has reached its size limit, you will not be able to push to it,
create a new merge request, or merge existing ones. You will still be able to
create new issues, and clone the project though. Uploading LFS objects will
also be denied.

In order to lift these restrictions, the administrator of the GitLab instance
needs to increase the limit on the particular project that exceeded it or you
need to instruct Git to rewrite changes.

If you exceed the repository size limit, your first thought might be to remove
some data, make a new commit and push back to the repository. Unfortunately,
it’s not so easy and that workflow won’t work. Deleting files in a commit doesn’t
actually reduce the size of the repo since the earlier commits and blobs are
still around. What you need to do is rewrite history with Git’s
[filter-branch option][gitscm].

Note that even with that method, until git gc runs on the GitLab side, the
“removed” commits and blobs will still be around. And if a commit was ever
included in an MR, or if a build was run for a commit, or if a user commented
on it, it will be kept around too. So, in these cases the size will not decrease.

The only fool proof way to actually decrease the repository size is to prune all
the unneeded stuff locally, and then create a new project on GitLab and start
using that instead.

With that being said, you can try reducing your repository size with the
following method.

## Using git filter-branch to purge files

>
Warning:
Make sure to first make a copy of your repository since rewriting history will
purge the files and information you are about to delete. Also make sure to
inform any collaborators to not use pull after your changes, but use rebase.


	Navigate to your repository:


`
cd my_repository/
`









	Change to the branch you want to remove the big file from:


`
git checkout master
`









	Use filter-branch to remove the big file:


`
git filter-branch --force --tree-filter 'rm -f path/to/big_file.mpg' HEAD
`









	Instruct Git to purge the unwanted data:


`
git reflog expire --expire=now --all && git gc --prune=now --aggressive
`









	Lastly, force push to the repository:


`
git push --force origin master
`








Your repository should now be below the size limit.

>**Note:**
As an alternative to filter-branch, you can use the bfg tool with a
command like: bfg –delete-files path/to/big_file.mpg. Read the
[BFG Repo-Cleaner][bfg] documentation for more information.

[admin-repo-size]: https://docs.gitlab.com/ee/user/admin_area/settings/account_and_limit_settings.html#repository-size-limit
[bfg]: https://rtyley.github.io/bfg-repo-cleaner/
[gitscm]: https://git-scm.com/book/en/v2/Git-Tools-Rewriting-History#The-Nuclear-Option:-filter-branch



            

          

      

      

    

  

    
      
          
            
  # GitLab Web Editor

Sometimes it’s easier to make quick changes directly from the GitLab interface
than to clone the project and use the Git command line tool. In this feature
highlight we look at how you can create a new file, directory, branch or
tag from the file browser. All of these actions are available from a single
dropdown menu.

## Create a file

From a project’s files page, click the ‘+’ button to the right of the branch selector.
Choose New file from the dropdown.

![New file dropdown menu](img/web_editor_new_file_dropdown.png)

—

Enter a file name in the File name box. Then, add file content in the editor
area. Add a descriptive commit message and choose a branch. The branch field
will default to the branch you were viewing in the file browser. If you enter
a new branch name, a checkbox will appear allowing you to start a new merge
request after you commit the changes.

When you are satisfied with your new file, click Commit Changes at the bottom.

![Create file editor](img/web_editor_new_file_editor.png)

### Template dropdowns

When starting a new project, there are some common files which the new project
might need too. Therefore a message will be displayed by GitLab to make this
easy for you.

![First file for your project](img/web_editor_template_dropdown_first_file.png)

When clicking on either LICENSE or .gitignore, a dropdown will be displayed
to provide you with a template which might be suitable for your project.

![MIT license selected](img/web_editor_template_dropdown_mit_license.png)

The license, changelog, contribution guide, or .gitlab-ci.yml file could also
be added through a button on the project page. In the example below the license
has already been created, which creates a link to the license itself.

![New file button](img/web_editor_template_dropdown_buttons.png)

>**Note:**
The Set up CI/CD button will not appear on an empty repository. You have to at
least add a file in order for the button to show up.

## Upload a file

The ability to create a file is great when the content is text. However, this
doesn’t work well for binary data such as images, PDFs or other file types. In
this case you need to upload a file.

From a project’s files page, click the ‘+’ button to the right of the branch
selector. Choose Upload file from the dropdown.

![Upload file dropdown menu](img/web_editor_upload_file_dropdown.png)

—

Once the upload dialog pops up there are two ways to upload your file. Either
drag and drop a file on the pop up or use the click to upload link. A file
preview will appear once you have selected a file to upload.

Enter a commit message, choose a branch, and click Upload file when you are
ready.

![Upload file dialog](img/web_editor_upload_file_dialog.png)

## Create a directory

To keep files in the repository organized it is often helpful to create a new
directory.

From a project’s files page, click the ‘+’ button to the right of the branch selector.
Choose New directory from the dropdown.

![New directory dropdown](img/web_editor_new_directory_dropdown.png)

—

In the new directory dialog enter a directory name, a commit message and choose
the target branch. Click Create directory to finish.

![New directory dialog](img/web_editor_new_directory_dialog.png)

## Create a new branch

There are multiple ways to create a branch from GitLab’s web interface.

### Create a new branch from an issue

> [Introduced][ce-2808] in GitLab 8.6.

In case your development workflow dictates to have an issue for every merge
request, you can quickly create a branch right on the issue page which will be
tied with the issue itself. You can see a New branch button after the issue
description, unless there is already a branch with the same name or a referenced
merge request.

![New Branch Button](img/web_editor_new_branch_from_issue.png)

Once you click it, a new branch will be created that diverges from the default
branch of your project, by default master. The branch name will be based on
the title of the issue and as a prefix, it will have its internal ID. Thus, the example
screenshot above will yield a branch named
2-et-cum-et-sed-expedita-repellat-consequatur-ut-assumenda-numquam-rerum.

Since GitLab 9.0, when you click the New branch in an empty repository project, GitLab automatically creates the master branch, commits a blank README.md file to it and creates and redirects you to a new branch based on the issue title.
If your [project is already configured with a deployment service][project-services-doc] (e.g. Kubernetes), GitLab takes one step further and prompts you to set up [auto deploy][auto-deploy-doc] by helping you create a .gitlab-ci.yml file.

After the branch is created, you can edit files in the repository to fix
the issue. When a merge request is created based on the newly created branch,
the description field will automatically display the [issue closing pattern]
Closes #ID, where ID the ID of the issue. This will close the issue once the
merge request is merged.

[project-services-doc]: ../integrations/project_services.md
[auto-deploy-doc]: ../../../ci/autodeploy/index.md

### Create a new branch from a project’s dashboard

If you want to make changes to several files before creating a new merge
request, you can create a new branch up front. From a project’s files page,
choose New branch from the dropdown.

![New branch dropdown](img/web_editor_new_branch_dropdown.png)

—

Enter a new Branch name. Optionally, change the Create from field
to choose which branch, tag or commit SHA this new branch will originate from.
This field will autocomplete if you start typing an existing branch or tag.
Click Create branch and you will be returned to the file browser on this new
branch.

![New branch page](img/web_editor_new_branch_page.png)

—

You can now make changes to any files, as needed. When you’re ready to merge
the changes back to master you can use the widget at the top of the screen.
This widget only appears for a period of time after you create the branch or
modify files.

![New push widget](img/web_editor_new_push_widget.png)

## Create a new tag

Tags are useful for marking major milestones such as production releases,
release candidates, and more. You can create a tag from a branch or a commit
SHA. From a project’s files page, choose New tag from the dropdown.

![New tag dropdown](img/web_editor_new_tag_dropdown.png)

—

Give the tag a name such as v1.0.0. Choose the branch or SHA from which you
would like to create this new tag. You can optionally add a message and
release notes. The release notes section supports markdown format and you can
also upload an attachment. Click Create tag and you will be taken to the tag
list page.

![New tag page](img/web_editor_new_tag_page.png)

## Tips

When creating or uploading a new file, or creating a new directory, you can
trigger a new merge request rather than committing directly to master. Enter
a new branch name in the Target branch field. You will notice a checkbox
appear that is labeled Start a new merge request with these changes. After
you commit the changes you will be taken to a new merge request form.

![Start a new merge request with these changes](img/web_editor_start_new_merge_request.png)

[ce-2808]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/2808
[issue closing pattern]: ../issues/automatic_issue_closing.md



            

          

      

      

    

  

    
      
          
            
  # Branches

Read through GiLab’s branching documentation:


	[Create a branch](../web_editor.md#create-a-new-branch)


	[Default branch](#default-branch)


	[Protected branches](../../protected_branches.md#protected-branches)


	[Delete merged branches](#delete-merged-branches)




See also:


	[GitLab Flow](../../../../university/training/gitlab_flow.md#gitlab-flow): use the best of GitLab for your branching strategies


	[Getting started with Git](../../../../topics/git/index.md) and GitLab




## Default branch

When you create a new [project](../../index.md), GitLab sets master as the default
branch for your project. You can choose another branch to be your project’s
default under your project’s Settings > General.

The default branch is the branch affected by the
[issue closing pattern](../../issues/automatic_issue_closing.md),
which means that _an issue will be closed when a merge request is merged to
the **default branch**_.

The default branch is also protected against accidental deletion. Read through
the documentation on [protected branches](../../protected_branches.md#protected-branches)
to learn more.

## Delete merged branches

> [Introduced][ce-6449] in GitLab 8.14.

![Delete merged branches](img/delete_merged_branches.png)

This feature allows merged branches to be deleted in bulk. Only branches that
have been merged and [are not protected][protected] will be deleted as part of
this operation.

It’s particularly useful to clean up old branches that were not deleted
automatically when a merge request was merged.

[ce-6449]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/6449 “Add button to delete all merged branches”
[protected]: ../../protected_branches.md



            

          

      

      

    

  

    
      
          
            
  # Signing commits with GPG

NOTE: Note:
The term GPG is used for all OpenPGP/PGP/GPG related material and
implementations.

> - [Introduced][ce-9546] in GitLab 9.5.
> - Subkeys support was added in GitLab 10.1.

GitLab can show whether a commit is verified or not when signed with a GPG key.
All you need to do is upload the public GPG key in your profile settings.

GPG verified tags are not supported yet.

## Getting started with GPG

Here are a few guides to get you started with GPG:


	[Git Tools - Signing Your Work](https://git-scm.com/book/en/v2/Git-Tools-Signing-Your-Work)


	[Managing OpenPGP Keys](https://riseup.net/en/security/message-security/openpgp/gpg-keys)


	[OpenPGP Best Practices](https://riseup.net/en/security/message-security/openpgp/best-practices)


	[Creating a new GPG key with subkeys](https://www.void.gr/kargig/blog/2013/12/02/creating-a-new-gpg-key-with-subkeys/) (advanced)




## How GitLab handles GPG

GitLab uses its own keyring to verify the GPG signature. It does not access any
public key server.

In order to have a commit verified on GitLab the corresponding public key needs
to be uploaded to GitLab. For a signature to be verified three conditions need
to be met:

1. The public key needs to be added your GitLab account
1. One of the emails in the GPG key matches a verified email address you use in GitLab
1. The committer’s email matches the verified email from the gpg key

## Generating a GPG key

>**Notes:**
- If your Operating System has gpg2 installed, replace gpg with gpg2 in


the following commands.





	If Git is using gpg and you get errors like secret key not available or
gpg: signing failed: secret key not available, run the following command to
change to gpg2:


`
git config --global gpg.program gpg2
`








If you don’t already have a GPG key, the following steps will help you get
started:

1. [Install GPG](https://www.gnupg.org/download/index.html) for your operating system
1. Generate the private/public key pair with the following command:


`sh
gpg --full-gen-key
`

This will spawn a series of questions.





	The first question is which algorithm can be used.  Select the kind you want
or press <kbd>Enter</kbd> to choose the default (RSA and RSA):


```
Please select what kind of key you want:

	RSA and RSA (default)

	DSA and Elgamal

	DSA (sign only)

	RSA (sign only)

Your selection? 1
```









	The next question is key length. We recommend to choose the highest value
which is 4096:


`
RSA keys may be between 1024 and 4096 bits long.
What keysize do you want? (2048) 4096
Requested keysize is 4096 bits
`









	Next, you need to specify the validity period of your key. This is something
subjective, and you can use the default value which is to never expire:


```
Please specify how long the key should be valid.

0 = key does not expire

<n> = key expires in n days
<n>w = key expires in n weeks
<n>m = key expires in n months
<n>y = key expires in n years

Key is valid for? (0) 0
Key does not expire at all
```









	Confirm that the answers you gave were correct by typing y:


`
Is this correct? (y/N) y
`









	Enter you real name, the email address to be associated with this key (should
match a verified email address you use in GitLab) and an optional comment
(press <kbd>Enter</kbd> to skip):


```
GnuPG needs to construct a user ID to identify your key.

Real name: Mr. Robot
Email address: mr@robot.sh
Comment:
You selected this USER-ID:

“Mr. Robot <mr@robot.sh>”

Change (N)ame, (C)omment, (E)mail or (O)kay/(Q)uit? O
```








1. Pick a strong password when asked and type it twice to confirm.
1. Use the following command to list the private GPG key you just created:


`
gpg --list-secret-keys --keyid-format LONG mr@robot.sh
`

Replace mr@robot.sh with the email address you entered above.





	Copy the GPG key ID that starts with sec. In the following example, that’s
30F2B65B9246B6CA:


```
sec rsa4096/30F2B65B9246B6CA 2017-08-18 [SC]

D5E4F29F3275DC0CDA8FFC8730F2B65B9246B6CA

uid [ultimate] Mr. Robot <mr@robot.sh>
ssb rsa4096/B7ABC0813E4028C0 2017-08-18 [E]
```









	Export the public key of that ID (replace your key ID from the previous step):


`
gpg --armor --export 30F2B65B9246B6CA
`









	Finally, copy the public key and [add it in your profile settings](#adding-a-gpg-key-to-your-account)




## Adding a GPG key to your account

>**Note:**
Once you add a key, you cannot edit it, only remove it. In case the paste
didn’t work, you’ll have to remove the offending key and re-add it.

You can add a GPG key in your profile’s settings:


	On the upper right corner, click on your avatar and go to your Settings.


![Settings dropdown](../../../profile/img/profile_settings_dropdown.png)









	Navigate to the GPG keys tab and paste your _public_ key in the ‘Key’
box.


![Paste GPG public key](img/profile_settings_gpg_keys_paste_pub.png)









	Finally, click on Add key to add it to GitLab. You will be able to see
its fingerprint, the corresponding email address and creation date.


![GPG key single page](img/profile_settings_gpg_keys_single_key.png)








## Associating your GPG key with Git

After you have [created your GPG key](#generating-a-gpg-key) and [added it to
your account](#adding-a-gpg-key-to-your-account), it’s time to tell Git which
key to use.


	Use the following command to list the private GPG key you just created:


`
gpg --list-secret-keys --keyid-format LONG mr@robot.sh
`

Replace mr@robot.sh with the email address you entered above.









	Copy the GPG key ID that starts with sec. In the following example, that’s
30F2B65B9246B6CA:


```
sec rsa4096/30F2B65B9246B6CA 2017-08-18 [SC]

D5E4F29F3275DC0CDA8FFC8730F2B65B9246B6CA

uid [ultimate] Mr. Robot <mr@robot.sh>
ssb rsa4096/B7ABC0813E4028C0 2017-08-18 [E]
```









	Tell Git to use that key to sign the commits:


`
git config --global user.signingkey 30F2B65B9246B6CA
`

Replace 30F2B65B9246B6CA with your GPG key ID.








## Signing commits

After you have [created your GPG key](#generating-a-gpg-key) and [added it to
your account](#adding-a-gpg-key-to-your-account), you can start signing your
commits:


	Commit like you used to, the only difference is the addition of the -S flag:


`
git commit -S -m "My commit msg"
`








1. Enter the passphrase of your GPG key when asked.
1. Push to GitLab and check that your commits [are verified](#verifying-commits).

If you don’t want to type the -S flag every time you commit, you can tell Git
to sign your commits automatically:

`
git config --global commit.gpgsign true
`

## Verifying commits


	Within a project or [merge request](../../merge_requests/index.md), navigate to
the Commits tab. Signed commits will show a badge containing either
“Verified” or “Unverified”, depending on the verification status of the GPG
signature.


![Signed and unsigned commits](img/project_signed_and_unsigned_commits.png)









	By clicking on the GPG badge, details of the signature are displayed.


![Signed commit with verified signature](img/project_signed_commit_verified_signature.png)

![Signed commit with verified signature](img/project_signed_commit_unverified_signature.png)








## Revoking a GPG key

Revoking a key unverifies already signed commits. Commits that were
verified by using this key will change to an unverified state. Future commits
will also stay unverified once you revoke this key. This action should be used
in case your key has been compromised.

To revoke a GPG key:

1. On the upper right corner, click on your avatar and go to your Settings.
1. Navigate to the GPG keys tab.
1. Click on Revoke besides the GPG key you want to delete.

## Removing a GPG key

Removing a key does not unverify already signed commits. Commits that were
verified by using this key will stay verified. Only unpushed commits will stay
unverified once you remove this key. To unverify already signed commits, you need
to [revoke the associated GPG key](#revoking-a-gpg-key) from your account.

To remove a GPG key from your account:

1. On the upper right corner, click on your avatar and go to your Settings.
1. Navigate to the GPG keys tab.
1. Click on the trash icon besides the GPG key you want to delete.

[ce-9546]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/9546



            

          

      

      

    

  

    
      
          
            
  # Project import/export

>**Notes:**
>
>  - [Introduced][ce-3050] in GitLab 8.9.
>  - Importing will not be possible if the import instance version differs from
>    that of the exporter.
>  - For GitLab admins, please read through [Project import/export administration](../../../administration/raketasks/project_import_export.md).
>  - For existing installations, the project import option has to be enabled in
>    application settings (/admin/application_settings) under ‘Import sources’.
>    Ask your administrator if you don’t see the GitLab export button when
>    creating a new project.
>  - Starting with GitLab 10.0, administrators can disable the project export option
>    on the GitLab instance in application settings (/admin/application_settings)
>    under ‘Visibility and Access Controls’.
>  - You can find some useful raketasks if you are an administrator in the
>    [import_export](../../../administration/raketasks/project_import_export.md)
>    raketask.
>  - The exports are stored in a temporary [shared directory][tmp] and are deleted
>    every 24 hours by a specific worker.
>  - Group members will get exported as project members, as long as the user has
>    maintainer or admin access to the group where the exported project lives. An admin
>    in the import side is required to map the users, based on email or username.
>    Otherwise, a supplementary comment is left to mention the original author and
>    the MRs, notes or issues will be owned by the importer.
>  - Control project Import/Export with the [API](../../../api/project_import_export.md).

Existing projects running on any GitLab instance or GitLab.com can be exported
with all their related data and be moved into a new GitLab instance.

## Version history


GitLab version   | Import/Export version |

—————- | ——————— |

11.1 to current  | 0.2.4                 |

10.8             | 0.2.3                 |

10.4             | 0.2.2                 |

10.3             | 0.2.1                 |

10.0             | 0.2.0                 |

9.4.0            | 0.1.8                 |

9.2.0            | 0.1.7                 |

8.17.0           | 0.1.6                 |

8.13.0           | 0.1.5                 |

8.12.0           | 0.1.4                 |

8.10.3           | 0.1.3                 |

8.10.0           | 0.1.2                 |

8.9.5            | 0.1.1                 |

8.9.0            | 0.1.0                 |




> The table reflects what GitLab version we updated the Import/Export version at.
> For instance, 8.10.3 and 8.11 will have the same Import/Export version (0.1.3)
> and the exports between them will be compatible.




## Exported contents

The following items will be exported:


	Project and wiki repositories


	Project uploads


	Project configuration including web hooks and services


	Issues with comments, merge requests with diffs and comments, labels, milestones, snippets,
and other project entities


	LFS objects




The following items will NOT be exported:


	Build traces and artifacts


	Container registry images


	CI variables


	Any encrypted tokens




## Exporting a project and its data


	Go to the project settings page by clicking on Edit Project:


![Project settings button](img/settings_edit_button.png)









	Scroll down to find the Export project button:


![Export button](img/import_export_export_button.png)









	Once the export is generated, you should receive an e-mail with a link to
download the file:


![Email download link](img/import_export_mail_link.png)









	Alternatively, you can come back to the project settings and download the
file from there, or generate a new export. Once the file available, the page
should show the Download export button:


![Download export](img/import_export_download_export.png)








## Importing the project


	The new GitLab project import feature is at the far right of the import
options when creating a New Project. Make sure you are in the right namespace
and you have entered a project name. Click on GitLab export:


![New project](img/import_export_new_project.png)









	You can see where the project will be imported to. You can now select file
exported previously:


![Select file](img/import_export_select_file.png)









	Click on Import project to begin importing. Your newly imported project
page will appear soon.




[ce-3050]: https://gitlab.com/gitlab-org/gitlab-ce/issues/3050
[tmp]: ../../../development/shared_files.md



            

          

      

      

    

  

    
      
          
            
  # Project settings

NOTE: Note:
Only project Maintainers and Admin users have the [permissions] to access a project
settings.

You can adjust your [project](../index.md) settings by navigating
to your project’s homepage and clicking Settings.

## General settings

Under a project’s general settings you can find everything concerning the
functionality of a project.

### General project settings

Adjust your project’s name, description, avatar, [default branch](../repository/branches/index.md#default-branch), and tags:

![general project settings](img/general_settings.png)

### Sharing and permissions

Set up your project’s access, [visibility](../../../public_access/public_access.md), and enable [Container Registry](../container_registry.md) for your projects:

![projects sharing permissions](img/sharing_and_permissions_settings.png)

### Issue settings

Add an [issue description template](../description_templates.md#description-templates) to your project, so that every new issue will start with a custom template.

### Merge request settings

Set up your project’s merge request settings:


	Set up the merge request method (merge commit, [fast-forward merge](../merge_requests/fast_forward_merge.html)).


	Merge request [description templates](../description_templates.md#description-templates).


	Enable [merge request approvals](https://docs.gitlab.com/ee/user/project/merge_requests/merge_request_approvals.html#merge-request-approvals). [STARTER]


	Enable [merge only of pipeline succeeds](../merge_requests/merge_when_pipeline_succeeds.md).


	Enable [merge only when all discussions are resolved](../../discussions/index.md#only-allow-merge-requests-to-be-merged-if-all-discussions-are-resolved).




![project’s merge request settings](img/merge_requests_settings.png)

### Service Desk

Enable [Service Desk](https://docs.gitlab.com/ee/user/project/service_desk.html) for your project to offer customer support. Service Desk is available in [GitLab Premium](https://about.gitlab.com/pricing/).

### Export project

Learn how to [export a project](import_export.md#importing-the-project) in GitLab.

### Advanced settings

Here you can run housekeeping, archive, rename, transfer, or remove a project.

#### Archiving a project

NOTE: Note:
Only project Owners and Admin users have the [permissions] to archive a project.

Archiving a project makes it read-only for all users and indicates that it is
no longer actively maintained. Projects that have been archived can also be
unarchived.

When a project is archived, the repository, issues, merge requests and all
other features are read-only. Archived projects are also hidden
in project listings.

To archive a project:

1. Navigate to your project’s Settings > General > Advanced settings.
1. In the Archive project section, click the Archive project button.
1. Confirm the action when asked to.

#### Renaming a repository

NOTE: Note:
Only project Maintainers and Admin users have the [permissions] to rename a
repository. Not to be confused with a project’s name where it can also be
changed from the [general project settings](#general-project-settings).

A project’s repository name defines its URL (the one you use to access the
project via a browser) and its place on the file disk where GitLab is installed.

To rename a repository:

1. Navigate to your project’s Settings > General > Advanced settings.
1. Under “Rename repository”, change the “Path” to your liking.
1. Hit Rename project.

Remember that this can have unintended side effects since everyone with the
old URL will not be able to push or pull. Read more about what happens with the
[redirects when renaming repositories](../index.md#redirects-when-changing-repository-paths).

#### Transferring an existing project into another namespace

NOTE: Note:
Only project Owners and Admin users have the [permissions] to transfer a project.

You can transfer an existing project into a [group](../../group/index.md) if:

1. you have at least Maintainer [permissions] to that group
1. you are an Owner of the project.

Similarly, if you are an owner of a group, you can transfer any of its projects
under your own user.

To transfer a project:

1. Navigate to your project’s Settings > General > Advanced settings.
1. Under “Transfer project”, choose the namespace you want to transfer the


project to.





	Confirm the transfer by typing the project’s path as instructed.




Once done, you will be taken to the new project’s namespace. At this point,
read what happens with the
[redirects from the old project to the new one](../index.md#redirects-when-changing-repository-paths).

NOTE: Note:
GitLab administrators can use the admin interface to move any project to any
namespace if needed.

[permissions]: ../../permissions.md##project-members-permissions



            

          

      

      

    

  

    
      
          
            
  # Web IDE

> [Introduced in](https://gitlab.com/gitlab-org/gitlab-ee/issues/4539) [GitLab Ultimate][ee] 10.4.
> [Brought to GitLab Core](https://gitlab.com/gitlab-org/gitlab-ce/issues/44157) in 10.7.

The Web IDE makes it faster and easier to contribute changes to your projects
by providing an advanced editor with commit staging.

## Open the Web IDE

The Web IDE can be opened when viewing a file, from the repository file list,
and from merge requests.

![Open Web IDE](img/open_web_ide.png)

## File finder

> [Introduced in](https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/18323) [GitLab Core][ce] 10.8.

The file finder allows you to quickly open files in the current branch by
searching. The file finder is launched using the keyboard shortcut Command-p,
Control-p, or t (when editor is not in focus). Type the filename or
file path fragments to start seeing results.

## Stage and commit changes

After making your changes, click the Commit button in the bottom left to
review the list of changed files. Click on each file to review the changes and
click the tick icon to stage the file.

Once you have staged some changes, you can add a commit message and commit the
staged changes. Unstaged changes will not be commited.

![Commit changes](img/commit_changes.png)

## Reviewing changes

Before you commit your changes, you can compare them with the previous commit
by switching to the review mode or selecting the file from the staged files
list.

An additional review mode is available when you open a merge request, which
shows you a preview of the merge request diff if you commit your changes.

## View CI job logs

> [Introduced in](https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/19279) [GitLab Core][ce] 11.0.

The Web IDE can be used to quickly fix failing tests by opening the branch or
merge request in the Web IDE and opening the logs of the failed job. The status
of all jobs for the most recent pipeline and job traces for the current commit
can be accessed by clicking the Pipelines button in the top right.

The pipeline status is also shown at all times in the status bar in the bottom
left.

## Switching merge requests

> [Introduced in](https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/19318) [GitLab Core][ce] 11.0.

Switching between your authored and assigned merge requests can be done without
leaving the Web IDE. Click the dropdown in the top of the sidebar to open a list
of merge requests. You will need to commit or discard all your changes before
switching to a different merge request.

## Switching branches

> [Introduced in](https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/20850) [GitLab Core][ce] 11.2.

Switching between branches of the current project repository can be done without
leaving the Web IDE. Click the dropdown in the top of the sidebar to open a list
of branches. You will need to commit or discard all your changes before
switching to a different branch.

## Client Side Evaluation

> [Introduced in](https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/19764) [GitLab Core][ce] 11.2.

The Web IDE can be used to preview JavaScript projects right in the browser.
This feature uses CodeSandbox to compile and bundle the JavaScript used to
preview the web application. On public projects, an Open in CodeSandbox
button is visible which will transfer the contents of the project into a
CodeSandbox project to share with others.
Note this button is not visible on private or internal projects.

![Web IDE Client Side Evaluation](img/clientside_evaluation.png)

### Enabling Client Side Evaluation

The Client Side Evaluation feature needs to be enabled in the GitLab instances
admin settings. Client Side Evaluation is enabled for all projects on
GitLab.com

![Admin Client Side Evaluation setting](img/admin_clientside_evaluation.png)

Once it has been enabled in application settings, projects with a
package.json file and a main entry point can be previewed inside of the Web
IDE. An example package.json is below.

```json
{

“main”: “index.js”,
“dependencies”: {

“vue”: “latest”

}

}

[ce]: https://about.gitlab.com/pricing/
[ee]: https://about.gitlab.com/pricing/

 # Wiki

A separate system for documentation called Wiki, is built right into each
GitLab project. It is enabled by default on all new projects and you can find
it under Wiki in your project.

Wikis are very convenient if you don’t want to keep your documentation in your
repository, but you do want to keep it in the same project where your code
resides.

You can create Wiki pages in the web interface or
[locally using Git](#adding-and-editing-wiki-pages-locally) since every Wiki is
a separate Git repository.

>**Note:**
A [permission level][permissions] of Guest is needed to view a Wiki and
Developer is needed to create and edit Wiki pages.

First time creating the Home page

The first time you visit a Wiki, you will be directed to create the Home page.
The Home page is necessary to be created since it serves as the landing page
when viewing a Wiki. You only have to fill in the Content section and click
Create page. You can always edit it later, so go ahead and write a welcome
message.

![New home page](img/wiki_create_home_page.png)

Creating a new wiki page

Create a new page by clicking the New page button that can be found
in all wiki pages. You will be asked to fill in the page name from which GitLab
will create the path to the page. You can specify a full path for the new file
and any missing directories will be created automatically.

![New page modal](img/wiki_create_new_page_modal.png)

Once you enter the page name, it’s time to fill in its content. GitLab wikis
support Markdown, RDoc and AsciiDoc. For Markdown based pages, all the
[Markdown features](../../markdown.md) are supported and for links there is
some [wiki specific](../../markdown.md#wiki-specific-markdown) behavior.

>**Note:**
The wiki is based on a Git repository and contains only text files. Uploading
files via the web interface will upload them in GitLab itself, and they will
not be available if you clone the wiki repo locally.

In the web interface the commit message is optional, but the GitLab Wiki is
based on Git and needs a commit message, so one will be created for you if you
do not enter one.

When you’re ready, click the Create page and the new page will be created.

![New page](img/wiki_create_new_page.png)

Editing a wiki page

To edit a page, simply click on the Edit button. From there on, you can
change its content. When done, click Save changes for the changes to take
effect.

Deleting a wiki page

You can find the Delete button only when editing a page. Click on it and
confirm you want the page to be deleted.

Moving a wiki page

You can move a wiki page from one directory to another by specifying the full
path in the wiki page title in the [edit](#editing-a-wiki-page) form.

![Moving a page](img/wiki_move_page_1.png)

![After moving a page](img/wiki_move_page_2.png)

In order to move a wiki page to the root directory, the wiki page title must
be preceded by the slash (/) character.

Viewing a list of all created wiki pages

Every wiki has a sidebar from which a short list of the created pages can be
found. The list is ordered alphabetically.

![Wiki sidebar](img/wiki_sidebar.png)

If you have many pages, not all will be listed in the sidebar. Click on
More pages to see all of them.

Viewing the history of a wiki page

The changes of a wiki page over time are recorded in the wiki’s Git repository,
and you can view them by clicking the Page history button.

From the history page you can see the revision of the page (Git commit SHA), its
author, the commit message, when it was last updated and the page markup format.
To see how a previous version of the page looked like, click on a revision
number.

![Wiki page history](img/wiki_page_history.png)

Adding and editing wiki pages locally

Since wikis are based on Git repositories, you can clone them locally and edit
them like you would do with every other Git repository.

On the right sidebar, click on Clone repository and follow the on-screen
instructions.

[permissions]: ../../permissions.md

Customizing sidebar

By default, the wiki would render a sidebar which lists all the pages for the
wiki. You could as well provide a _sidebar page to replace this default
sidebar. When this customized sidebar page is provided, the default sidebar
would not be rendered, but the customized one.

 # Search through GitLab

Issues and merge requests

To search through issues and merge requests in multiple projects, you can use the left-sidebar.

Click the menu bar, then Issues or Merge Requests, which work in the same way,
therefore, the following notes are valid for both.

The number displayed on their right represents the number of issues and merge requests assigned to you.

![menu bar - issues and MRs assigned to you](img/left_menu_bar.png)

When you click Issues, you’ll see the opened issues assigned to you straight away:

![Issues assigned to you](img/issues_assigned_to_you.png)

You can filter them by Author, Assignee, Milestone, and Labels,
searching through Open, Closed, and All issues.

Of course, you can combine all filters together.

Issues and MRs assigned to you or created by you

You’ll find a shortcut to issues and merge requests create by you or assigned to you
on the search field on the top-right of your screen:

![shortcut to your issues and mrs](img/issues_mrs_shortcut.png)

Issues and merge requests per project

If you want to search for issues present in a specific project, navigate to
a project’s Issues tab, and click on the field Search or filter results…. It will
display a dropdown menu, from which you can add filters per author, assignee, milestone,
label, weight, and ‘my-reaction’ (based on your emoji votes). When done, press Enter on your keyboard to filter the issues.

![filter issues in a project](img/issue_search_filter.png)

The same process is valid for merge requests. Navigate to your project’s Merge Requests tab,
and click Search or filter results…. Merge requests can be filtered by author, assignee,
milestone, and label.

Searching for specific terms

You can filter issues and merge requests by specific terms included in titles or descriptions.

	
	Syntax
	
	Searches look for all the words in a query, in any order. E.g.: searching
issues for display bug will return all issues matching both those words, in any order.

	To find the exact term, use double quotes: “display bug”

	
	Limitation
	
	For performance reasons, terms shorter than 3 chars are ignored. E.g.: searching
issues for included in titles is same as included titles

![filter issues by specific terms](img/issue_search_by_term.png)

Issues and merge requests per group

Similar to Issues and merge requests per project, you can also search for issues
within a group. Navigate to a group’s Issues tab and query search results in
the same way as you do for projects.

![filter issues in a group](img/group_issues_filter.png)

The same process is valid for merge requests. Navigate to your project’s Merge Requests tab.

Search history

You can view recent searches by clicking on the little arrow-clock icon, which is to the left of the search input. Click the search entry to run that search again. This feature is available for issues and merge requests. Searches are stored locally in your browser.

![search history](img/search_history.gif)

Removing search filters

Individual filters can be removed by clicking on the filter’s (x) button or backspacing. The entire search filter can be cleared by clicking on the search box’s (x) button.

Shortcut

You’ll also find a shortcut on the search field on the top-right of the project’s dashboard to
quickly access issues and merge requests created or assigned to you within that project:

![search per project - shortcut](img/project_search.png)

Todos

Your [todos](../../workflow/todos.md#gitlab-todos) can be searched by “to do” and “done”.
You can [filter](../../workflow/todos.md#filtering-your-todos) them per project,
author, type, and action. Also, you can sort them by
[Label priority](../../user/project/labels.md#prioritize-labels),
Last created and Oldest created.

Projects

You can search through your projects from the left menu, by clicking the menu bar, then Projects.
On the field Filter by name, type the project or group name you want to find, and GitLab
will filter them for you as you type.

You can also look for the projects you starred (Starred projects), and Explore all
public and internal projects available in GitLab.com, from which you can filter by visibility,
through Trending, best rated with Most starts, or All of them.

You can also sort them by Name, Last created, Oldest created, Last updated,
Oldest updated, Owner, and choose to hide or show archived projects:

![sort projects](img/sort_projects.png)

Groups

Similarly to [projects search](#projects), you can search through your groups from
the left menu, by clicking the menu bar, then Groups.

On the field Filter by name, type the group name you want to find, and GitLab
will filter them for you as you type.

You can also Explore all public and internal groups available in GitLab.com,
and sort them by Last created, Oldest created, Last updated, or Oldest updated.

Issue Boards

From an [Issue Board](../../user/project/issue_board.md), you can filter issues by Author, Assignee, Milestone, and Labels.
You can also filter them by name (issue title), from the field Filter by name, which is loaded as you type.

When you want to search for issues to add to lists present in your Issue Board, click
the button Add issues on the top-right of your screen, opening a modal window from which
you’ll be able to, besides filtering them by Name, Author, Assignee, Milestone,
and Labels, select multiple issues to add to a list of your choice:

![search and select issues to add to board](img/search_issues_board.png)

 This document was moved to [project/integrations/webhooks](../user/project/integrations/webhooks.md).

 —
comments: false
—

Workflow

	[Automatic issue closing](../user/project/issues/automatic_issue_closing.md)

	[Change your time zone](timezone.md)

	[Cycle Analytics](../user/project/cycle_analytics.md)

	[Description templates](../user/project/description_templates.md)

	[Feature branch workflow](workflow.md)

	[GitLab Flow](gitlab_flow.md)

	[Groups](../user/group/index.md)

	Issues - The GitLab Issue Tracker is an advanced and complete tool for
tracking the evolution of a new idea or the process of solving a problem.
- [Confidential issues](../user/project/issues/confidential_issues.md)
- [Due date for issues](../user/project/issues/due_dates.md)

	[Issue Board](../user/project/issue_board.md)

	[Keyboard shortcuts](shortcuts.md)

	[File finder](file_finder.md)

	[Labels](../user/project/labels.md)

	[Notification emails](notifications.md)

	[Projects](../user/project/index.md)

	[Project forking workflow](forking_workflow.md)

	[Project users](../user/project/members/index.md)

	[Protected branches](../user/project/protected_branches.md)

	[Protected tags](../user/project/protected_tags.md)

	[Quick Actions](../user/project/quick_actions.md)

	[Sharing projects with groups](../user/project/members/share_project_with_groups.md)

	[Time tracking](time_tracking.md)

	[Web Editor](../user/project/repository/web_editor.md)

	[Releases](releases.md)

	[Milestones](../user/project/milestones/index.md)

	[Merge Requests](../user/project/merge_requests/index.md)
- [Authorization for merge requests](../user/project/merge_requests/authorization_for_merge_requests.md)
- [Cherry-pick changes](../user/project/merge_requests/cherry_pick_changes.md)
- [Merge when pipeline succeeds](../user/project/merge_requests/merge_when_pipeline_succeeds.md)
- [Resolve discussion comments in merge requests reviews](../user/discussions/index.md)
- [Resolve merge conflicts in the UI](../user/project/merge_requests/resolve_conflicts.md)
- [Revert changes in the UI](../user/project/merge_requests/revert_changes.md)
- [Merge requests versions](../user/project/merge_requests/versions.md)
- [“Work In Progress” merge requests](../user/project/merge_requests/work_in_progress_merge_requests.md)
- [Fast-forward merge requests](../user/project/merge_requests/fast_forward_merge.md)

	[Manage large binaries with Git LFS](lfs/manage_large_binaries_with_git_lfs.md)

	[Importing from SVN, GitHub, Bitbucket, etc](importing/README.md)

	[Todos](todos.md)

	[Snippets](../user/snippets.md)

	[Subgroups](../user/group/subgroups/index.md)

 This document was moved to [user/project/merge_requests/authorization_for_merge_requests](../user/project/merge_requests/authorization_for_merge_requests.md)

 This document was moved to [another location](../user/award_emojis.md).

 This document was moved to [user/project/merge_requests/cherry_pick_changes](../user/project/merge_requests/cherry_pick_changes.md).

 # File finder

> [Introduced][gh-9889] in GitLab 8.4.

—

The file finder feature allows you to quickly shortcut your way when you are
searching for a file in a repository using the GitLab UI.

You can find the Find File button when in the Files section of a
project.

![Find file button](img/file_finder_find_button.png)

—

For those who prefer to keep their fingers on the keyboard, there is a
[shortcut button](shortcuts.md) as well, which you can invoke from _anywhere_
in a project.

Press t to launch the File search function when in Issues,
Merge requests, Milestones, even the project’s settings.

Start typing what you are searching for and watch the magic happen. With the
up/down arrows, you go up and down the results, with Esc you close the search
and go back to Files.

How it works

The File finder feature is powered by the [Fuzzy filter] library.

It implements a fuzzy search with highlight, and tries to provide intuitive
results by recognizing patterns that people use while searching.

For example, consider the [GitLab CE repository][ce] and that we want to open
the app/controllers/admin/deploy_keys_controller.rb file.

Using fuzzy search, we start by typing letters that get us closer to the file.

Protip: To narrow down your search, include / in your search terms.

![Find file button](img/file_finder_find_file.png)

[gh-9889]: https://github.com/gitlabhq/gitlabhq/pull/9889 “File finder pull request”
[fuzzy filter]: https://github.com/jeancroy/fuzzaldrin-plus “fuzzaldrin-plus on GitHub”
[ce]: https://gitlab.com/gitlab-org/gitlab-ce/tree/master “GitLab CE repository”

 # Project forking workflow

Forking a project to your own namespace is useful if you have no write
access to the project you want to contribute to. If you do have write
access or can request it, we recommend working together in the same
repository since it is simpler. See our [GitLab Flow](gitlab_flow.md)
document more information about using branches to work together.

Creating a fork

Forking a project is in most cases a two-step process.

	Click on the fork button located in the middle of the page or a project’s
home page right next to the stars button.

![Fork button](img/forking_workflow_fork_button.png)

—

	Once you do that, you’ll be presented with a screen where you can choose
the namespace to fork to. Only namespaces (groups and your own
namespace) where you have write access to, will be shown. Click on the
namespace to create your fork there.

![Choose namespace](img/forking_workflow_choose_namespace.png)

—

Note:
If the namespace you chose to fork the project to has another project with
the same path name, you will be presented with a warning that the forking
could not be completed. Try to resolve the error and repeat the forking
process.

![Path taken error](img/forking_workflow_path_taken_error.png)

—

After the forking is done, you can start working on the newly created
repository. There, you will have full [Owner](../user/permissions.md)
access, so you can set it up as you please.

Merging upstream

Once you are ready to send your code back to the main project, you need
to create a merge request. Choose your forked project’s main branch as
the source and the original project’s main branch as the destination and
create the [merge request](merge_requests.md).

![Selecting branches](forking/branch_select.png)

You can then assign the merge request to someone to have them review
your changes. Upon pressing the ‘Accept Merge Request’ button, your
changes will be added to the repository and branch you’re merging into.

![New merge request](forking/merge_request.png)

[gitlab flow]: https://about.gitlab.com/2014/09/29/gitlab-flow/ “GitLab Flow blog post”

 ![GitLab Flow](gitlab_flow.png)

Introduction to GitLab Flow

Version management with git makes branching and merging much easier than older versioning systems such as SVN.
This allows a wide variety of branching strategies and workflows.
Almost all of these are an improvement over the methods used before git.
But many organizations end up with a workflow that is not clearly defined, overly complex or not integrated with issue tracking systems.
Therefore we propose the GitLab flow as clearly defined set of best practices.
It combines [feature driven development](https://en.wikipedia.org/wiki/Feature-driven_development) and [feature branches](http://martinfowler.com/bliki/FeatureBranch.html) with issue tracking.

Organizations coming to git from other version control systems frequently find it hard to develop an effective workflow.
This article describes the GitLab flow that integrates the git workflow with an issue tracking system.
It offers a simple, transparent and effective way to work with git.

![Four stages (working copy, index, local repo, remote repo) and three steps between them](four_stages.png)

When converting to git you have to get used to the fact that there are three steps before a commit is shared with colleagues.
Most version control systems have only one step, committing from the working copy to a shared server.
In git you add files from the working copy to the staging area. After that you commit them to the local repo.
The third step is pushing to a shared remote repository.
After getting used to these three steps the branching model becomes the challenge.

![Multiple long running branches and merging in all directions](messy_flow.png)

Since many organizations new to git have no conventions how to work with it, it can quickly become a mess.
The biggest problem they run into is that many long running branches that each contain part of the changes are around.
People have a hard time figuring out which branch they should develop on or deploy to production.
Frequently the reaction to this problem is to adopt a standardized pattern such as [git flow](http://nvie.com/posts/a-successful-git-branching-model/) and [GitHub flow](http://scottchacon.com/2011/08/31/github-flow.html).
We think there is still room for improvement and will detail a set of practices we call GitLab flow.

Git flow and its problems

![Git Flow timeline by Vincent Driessen, used with permission](gitdashflow.png)

Git flow was one of the first proposals to use git branches and it has gotten a lot of attention.
It advocates a master branch and a separate develop branch as well as supporting branches for features, releases and hotfixes.
The development happens on the develop branch, moves to a release branch and is finally merged into the master branch.
Git flow is a well defined standard but its complexity introduces two problems.
The first problem is that developers must use the develop branch and not master, master is reserved for code that is released to production.
It is a convention to call your default branch master and to mostly branch from and merge to this.
Since most tools automatically make the master branch the default one and display that one by default it is annoying to have to switch to another one.
The second problem of git flow is the complexity introduced by the hotfix and release branches.
These branches can be a good idea for some organizations but are overkill for the vast majority of them.
Nowadays most organizations practice continuous delivery which means that your default branch can be deployed.
This means that hotfix and release branches can be prevented including all the ceremony they introduce.
An example of this ceremony is the merging back of release branches.
Though specialized tools do exist to solve this, they require documentation and add complexity.
Frequently developers make a mistake and for example changes are only merged into master and not into the develop branch.
The root cause of these errors is that git flow is too complex for most of the use cases.
And doing releases doesn’t automatically mean also doing hotfixes.

GitHub flow as a simpler alternative

![Master branch with feature branches merged in](github_flow.png)

In reaction to git flow a simpler alternative was detailed, [GitHub flow](https://guides.github.com/introduction/flow/index.html).
This flow has only feature branches and a master branch.
This is very simple and clean, many organizations have adopted it with great success.
Atlassian recommends [a similar strategy](http://blogs.atlassian.com/2014/01/simple-git-workflow-simple/) although they rebase feature branches.
Merging everything into the master branch and deploying often means you minimize the amount of code in ‘inventory’ which is in line with the lean and continuous delivery best practices.
But this flow still leaves a lot of questions unanswered regarding deployments, environments, releases and integrations with issues.
With GitLab flow we offer additional guidance for these questions.

Production branch with GitLab flow

![Master branch and production branch with arrow that indicate deployments](production_branch.png)

GitHub flow does assume you are able to deploy to production every time you merge a feature branch.
This is possible for e.g. SaaS applications, but there are many cases where this is not possible.
One would be a situation where you are not in control of the exact release moment, for example an iOS application that needs to pass App Store validation.
Another example is when you have deployment windows (workdays from 10am to 4pm when the operations team is at full capacity) but you also merge code at other times.
In these cases you can make a production branch that reflects the deployed code.
You can deploy a new version by merging in master to the production branch.
If you need to know what code is in production you can just checkout the production branch to see.
The approximate time of deployment is easily visible as the merge commit in the version control system.
This time is pretty accurate if you automatically deploy your production branch.
If you need a more exact time you can have your deployment script create a tag on each deployment.
This flow prevents the overhead of releasing, tagging and merging that is common to git flow.

Environment branches with GitLab flow

![Multiple branches with the code cascading from one to another](environment_branches.png)

It might be a good idea to have an environment that is automatically updated to the master branch.
Only in this case, the name of this environment might differ from the branch name.
Suppose you have a staging environment, a pre-production environment and a production environment.
In this case the master branch is deployed on staging. When someone wants to deploy to pre-production they create a merge request from the master branch to the pre-production branch.
And going live with code happens by merging the pre-production branch into the production branch.
This workflow where commits only flow downstream ensures that everything has been tested on all environments.
If you need to cherry-pick a commit with a hotfix it is common to develop it on a feature branch and merge it into master with a merge request, do not delete the feature branch.
If master is good to go (it should be if you are practicing [continuous delivery](http://martinfowler.com/bliki/ContinuousDelivery.html)) you then merge it to the other branches.
If this is not possible because more manual testing is required you can send merge requests from the feature branch to the downstream branches.

Release branches with GitLab flow

![Master and multiple release branches that vary in length with cherry-picks from master](release_branches.png)

Only in case you need to release software to the outside world you need to work with release branches.
In this case, each branch contains a minor version (2-3-stable, 2-4-stable, etc.).
The stable branch uses master as a starting point and is created as late as possible.
By branching as late as possible you minimize the time you have to apply bug fixes to multiple branches.
After a release branch is announced, only serious bug fixes are included in the release branch.
If possible these bug fixes are first merged into master and then cherry-picked into the release branch.
This way you can’t forget to cherry-pick them into master and encounter the same bug on subsequent releases.
This is called an ‘upstream first’ policy that is also practiced by [Google](https://www.chromium.org/chromium-os/chromiumos-design-docs/upstream-first) and [Red Hat](https://www.redhat.com/about/news/archive/2013/5/a-community-for-using-openstack-with-red-hat-rdo).
Every time a bug-fix is included in a release branch the patch version is raised (to comply with [Semantic Versioning](http://semver.org/)) by setting a new tag.
Some projects also have a stable branch that points to the same commit as the latest released branch.
In this flow it is not common to have a production branch (or git flow master branch).

Merge/pull requests with GitLab flow

![Merge request with line comments](mr_inline_comments.png)

Merge or pull requests are created in a git management application and ask an assigned person to merge two branches.
Tools such as GitHub and Bitbucket choose the name pull request since the first manual action would be to pull the feature branch.
Tools such as GitLab and others choose the name merge request since that is the final action that is requested of the assignee.
In this article we’ll refer to them as merge requests.

If you work on a feature branch for more than a few hours it is good to share the intermediate result with the rest of the team.
This can be done by creating a merge request without assigning it to anyone, instead you mention people in the description or a comment (/cc @mark @susan).
This means it is not ready to be merged but feedback is welcome.
Your team members can comment on the merge request in general or on specific lines with line comments.
The merge requests serves as a code review tool and no separate tools such as Gerrit and reviewboard should be needed.
If the review reveals shortcomings anyone can commit and push a fix.
Commonly the person to do this is the creator of the merge/pull request.
The diff in the merge/pull requests automatically updates when new commits are pushed on the branch.

When you feel comfortable with it to be merged you assign it to the person that knows most about the codebase you are changing and mention any other people you would like feedback from.
There is room for more feedback and after the assigned person feels comfortable with the result the branch is merged.
If the assigned person does not feel comfortable they can close the merge request without merging.

In GitLab it is common to protect the long-lived branches (e.g. the master branch) so that normal developers [can’t modify these protected branches](http://docs.gitlab.com/ce/permissions/permissions.html).
So if you want to merge it into a protected branch you assign it to someone with maintainer authorizations.

Issue tracking with GitLab flow

![Merge request with the branch name 15-require-a-password-to-change-it and assignee field shown](merge_request.png)

GitLab flow is a way to make the relation between the code and the issue tracker more transparent.

Any significant change to the code should start with an issue where the goal is described.
Having a reason for every code change is important to inform everyone on the team and to help people keep the scope of a feature branch small.
In GitLab each change to the codebase starts with an issue in the issue tracking system.
If there is no issue yet it should be created first provided there is significant work involved (more than 1 hour).
For many organizations this will be natural since the issue will have to be estimated for the sprint.
Issue titles should describe the desired state of the system, e.g. “As an administrator I want to remove users without receiving an error” instead of “Admin can’t remove users.”.

When you are ready to code you start a branch for the issue from the master branch.
The name of this branch should start with the issue number, for example ‘15-require-a-password-to-change-it’.

When you are done or want to discuss the code you open a merge request.
This is an online place to discuss the change and review the code.
Opening a merge request is a manual action since you do not always want to merge a new branch you push, it could be a long-running environment or release branch.
If you open the merge request but do not assign it to anyone it is a ‘Work In Progress’ merge request.
These are used to discuss the proposed implementation but are not ready for inclusion in the master branch yet.
Pro tip: Start the title of the merge request with [WIP] or WIP: to prevent it from being merged before it’s ready.

When the author thinks the code is ready the merge request is assigned to reviewer.
The reviewer presses the merge button when they think the code is ready for inclusion in the master branch.
In this case the code is merged and a merge commit is generated that makes this event easily visible later on.
Merge requests always create a merge commit even when the commit could be added without one.
This merge strategy is called ‘no fast-forward’ in git.
After the merge the feature branch is deleted since it is no longer needed, in GitLab this deletion is an option when merging.

Suppose that a branch is merged but a problem occurs and the issue is reopened.
In this case it is no problem to reuse the same branch name since it was deleted when the branch was merged.
At any time there is at most one branch for every issue.
It is possible that one feature branch solves more than one issue.

Linking and closing issues from merge requests

![Merge request showing the linked issues that will be closed](close_issue_mr.png)

Linking to issues can happen by mentioning them in commit messages (fixes #14, closes #67, etc.) or in the merge request description.
GitLab then creates links to the mentioned issues and creates comments in the corresponding issues linking back to the merge request.

These issues are closed once code is merged into the default branch.

If you only want to make the reference without closing the issue you can also just mention it: “Duck typing is preferred. #12”.

If you have an issue that spans across multiple repositories, the best thing is to create an issue for each repository and link all issues to a parent issue.

Squashing commits with rebase

![Vim screen showing the rebase view](rebase.png)

With git you can use an interactive rebase (rebase -i) to squash multiple commits into one and reorder them.
In GitLab EE and .com you can also [rebase before merge](http://docs.gitlab.com/ee/workflow/rebase_before_merge.html) from the web interface.
This functionality is useful if you made a couple of commits for small changes during development and want to replace them with a single commit or if you want to make the order more logical.
However you should never rebase commits you have pushed to a remote server.
Somebody can have referred to the commits or cherry-picked them.
When you rebase you change the identifier (SHA-1) of the commit and this is confusing.
If you do that the same change will be known under multiple identifiers and this can cause much confusion.
If people already reviewed your code it will be hard for them to review only the improvements you made since then if you have rebased everything into one commit.
Another reasons not to rebase is that you lose authorship information, maybe someone created a merge request, another person pushed a commit on there to improve it and a third one merged it.
In this case rebasing all the commits into one prevent the other authors from being properly attributed and sharing part of the [git blame](https://git-scm.com/docs/git-blame).

People are encouraged to commit often and to frequently push to the remote repository so other people are aware what everyone is working on.
This will lead to many commits per change which makes the history harder to understand.
But the advantages of having stable identifiers outweigh this drawback.
And to understand a change in context one can always look at the merge commit that groups all the commits together when the code is merged into the master branch.

After you merge multiple commits from a feature branch into the master branch this is harder to undo.
If you had squashed all the commits into one you could have just reverted this commit but as we indicated you should not rebase commits after they are pushed.
Fortunately [reverting a merge made some time ago](https://git-scm.com/blog/2010/03/02/undoing-merges.html) can be done with git.
This however, requires having specific merge commits for the commits your want to revert.
If you revert a merge and you change your mind, revert the revert instead of merging again since git will not allow you to merge the code again otherwise.

Being able to revert a merge is a good reason always to create a merge commit when you merge manually with the –no-ff option.
Git management software will always create a merge commit when you accept a merge request.

Do not order commits with rebase

![List of sequential merge commits](merge_commits.png)

With git you can also rebase your feature branch commits to order them after the commits on the master branch.
This prevents creating a merge commit when merging master into your feature branch and creates a nice linear history.
However, just like with squashing you should never rebase commits you have pushed to a remote server.
This makes it impossible to rebase work in progress that you already shared with your team which is something we recommend.
When using rebase to keep your feature branch updated you [need to resolve similar conflicts again and again](https://blogs.atlassian.com/2013/10/git-team-workflows-merge-or-rebase/).
You can reuse recorded resolutions (rerere) sometimes, but without rebasing you only have to solve the conflicts one time and you’re set.
There has to be a better way to avoid many merge commits.

The way to prevent creating many merge commits is to not frequently merge master into the feature branch.
We’ll discuss the three reasons to merge in master: leveraging code, merge conflicts, and long running branches.
If you need to leverage some code that was introduced in master after you created the feature branch you can sometimes solve this by just cherry-picking a commit.
If your feature branch has a merge conflict, creating a merge commit is a normal way of solving this.
You can prevent some merge conflicts by using [gitattributes](http://git-scm.com/docs/gitattributes) for files that can be in a random order.
For example in GitLab our changelog file is specified in .gitattributes as CHANGELOG.md merge=union so that there are fewer merge conflicts in it.
The last reason for creating merge commits is having long lived branches that you want to keep up to date with the latest state of the project.
Martin Fowler, in [his article about feature branches](http://martinfowler.com/bliki/FeatureBranch.html) talks about this Continuous Integration (CI).
At GitLab we are guilty of confusing CI with branch testing. Quoting Martin Fowler: “I’ve heard people say they are doing CI because they are running builds, perhaps using a CI server, on every branch with every commit.
That’s continuous building, and a Good Thing, but there’s no integration, so it’s not CI.”.
The solution to prevent many merge commits is to keep your feature branches short-lived, the vast majority should take less than one day of work.
If your feature branches commonly take more than a day of work, look into ways to create smaller units of work and/or use [feature toggles](http://martinfowler.com/bliki/FeatureToggle.html).
As for the long running branches that take more than one day there are two strategies.
In a CI strategy you can merge in master at the start of the day to prevent painful merges at a later time.
In a synchronization point strategy you only merge in from well defined points in time, for example a tagged release.
This strategy is [advocated by Linus Torvalds](https://www.mail-archive.com/dri-devel@lists.sourceforge.net/msg39091.html) because the state of the code at these points is better known.

In conclusion, we can say that you should try to prevent merge commits, but not eliminate them.
Your codebase should be clean but your history should represent what actually happened.
Developing software happen in small messy steps and it is OK to have your history reflect this.
You can use tools to view the network graphs of commits and understand the messy history that created your code.
If you rebase code the history is incorrect, and there is no way for tools to remedy this because they can’t deal with changing commit identifiers.

Award emojis on issues and merge requests

![Emoji bar in GitLab](award_emoji.png)

It is common to voice approval or disapproval by using +1 or -1. In GitLab you
can use emojis to give a virtual high five on issues and merge requests.

Pushing and removing branches

![Remove checkbox for branch in merge requests](remove_checkbox.png)

We recommend that people push their feature branches frequently, even when they are not ready for review yet.
By doing this you prevent team members from accidentally starting to work on the same issue.
Of course this situation should already be prevented by assigning someone to the issue in the issue tracking software.
However sometimes one of the two parties forgets to assign someone in the issue tracking software.
After a branch is merged it should be removed from the source control software.
In GitLab and similar systems this is an option when merging.
This ensures that the branch overview in the repository management software shows only work in progress.
This also ensures that when someone reopens the issue a new branch with the same name can be used without problem.
When you reopen an issue you need to create a new merge request.

Committing often and with the right message

![Good and bad commit message](good_commit.png)

We recommend to commit early and often.
Each time you have a functioning set of tests and code a commit can be made.
The advantage is that when an extension or refactor goes wrong it is easy to revert to a working version.
This is quite a change for programmers that used SVN before, they used to commit when their work was ready to share.
The trick is to use the merge/pull request with multiple commits when your work is ready to share.
The commit message should reflect your intention, not the contents of the commit.
The contents of the commit can be easily seen anyway, the question is why you did it.
An example of a good commit message is: “Combine templates to dry up the user views.”.
Some words that are bad commit messages because they don’t contain much information are: change, improve and refactor.
The word fix or fixes is also a red flag, unless it comes after the commit sentence and references an issue number.
To see more information about the formatting of commit messages please see this great [blog post by Tim Pope](http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html).

Testing before merging

![Merge requests showing the test states, red, yellow and green](ci_mr.png)

In old workflows the Continuous Integration (CI) server commonly ran tests on the master branch only.
Developers had to ensure their code did not break the master branch.
When using GitLab flow developers create their branches from this master branch so it is essential it is green.
Therefore each merge request must be tested before it is accepted.
CI software like Travis and GitLab CI show the build results right in the merge request itself to make this easy.
One drawback is that they are testing the feature branch itself and not the merged result.
What one can do to improve this is to test the merged result itself.
The problem is that the merge result changes every time something is merged into master.
Retesting on every commit to master is computationally expensive and means you are more frequently waiting for test results.
If there are no merge conflicts and the feature branches are short lived the risk is acceptable.
If there are merge conflicts you merge the master branch into the feature branch and the CI server will rerun the tests.
If you have long lived feature branches that last for more than a few days you should make your issues smaller.

Working with feature branches

![Shell output showing git pull output](git_pull.png)

When initiating a feature branch, always start with an up to date master to branch off from.
If you know beforehand that your work absolutely depends on another branch you can also branch from there.
If you need to merge in another branch after starting explain the reason in the merge commit.
If you have not pushed your commits to a shared location yet you can also rebase on master or another feature branch.
Do not merge in upstream if your code will work and merge cleanly without doing so, Linus even says that [you should never merge in upstream at random points, only at major releases](https://lwn.net/Articles/328438/).
Merging only when needed prevents creating merge commits in your feature branch that later end up littering the master history.

References

	[Git Flow by Vincent Driessen](http://nvie.com/posts/a-successful-git-branching-model/)

 This document was moved to [another location](../user/group/index.md).

 # Labels

This document was moved to [user/project/labels.md](../user/project/labels.md).

 This document was moved to [user/project/merge_requests/index.md](../user/project/merge_requests/index.md).

 This document was moved to [merge_when_pipeline_succeeds](../user/project/merge_requests/merge_when_pipeline_succeeds.md).

 This document was moved to [another location](../user/project/milestones/index.md).

 # GitLab Notification Emails

GitLab has a notification system in place to notify a user of events that are important for the workflow.

Notification settings

You can find notification settings under the user profile.

![notification settings](img/notification_global_settings.png)

Notification settings are divided into three groups:

	Global Settings

	Group Settings

	Project Settings

Each of these settings have levels of notification:

	Disabled - turns off notifications

	Participating - receive notifications from related resources

	Watch - receive notifications from projects or groups user is a member of

	Global - notifications as set at the global settings

	Custom - user will receive notifications when mentioned, is participant and custom selected events.

Global Settings

Global Settings are at the bottom of the hierarchy.
Any setting set here will be overridden by a setting at the group or a project level.

Group or Project settings can use global notification setting which will then use
anything that is set at Global Settings.

Group Settings

![notification settings](img/notification_group_settings.png)

Group Settings are taking precedence over Global Settings but are on a level below Project or Subgroup Settings:

`
Group < Subgroup < Project
`

This means that you can set a different level of notifications per group while still being able
to have a finer level setting per project or subgroup.
Organization like this is suitable for users that belong to different groups but don’t have the
same need for being notified for every group they are member of.
These settings can be configured on group page under the name of the group. It will be the dropdown with the bell icon. They can also be configured on the user profile notifications dropdown.

Project Settings

![notification settings](img/notification_project_settings.png)

Project Settings are at the top level and any setting placed at this level will take precedence of any
other setting.
This is suitable for users that have different needs for notifications per project basis.
These settings can be configured on project page under the name of the project. It will be the dropdown with the bell icon. They can also be configured on the user profile notifications dropdown.

Notification events

Below is the table of events users can be notified of:

Event | Sent to | Settings level |

|------------------------------|——————————————————————-|------------------------------|
| New SSH key added | User | Security email, always sent. |
| New email added | User | Security email, always sent. |
| New user created | User | Sent on user creation, except for omniauth (LDAP)|
| User added to project | User | Sent when user is added to project |
| Project access level changed | User | Sent when user project access level is changed |
| User added to group | User | Sent when user is added to group |
| Group access level changed | User | Sent when user group access level is changed |
| Project moved | Project members [1] | [1] not disabled |

Issue / Merge request events

In most of the below cases, the notification will be sent to:
- Participants:

	the author and assignee of the issue/merge request

	authors of comments on the issue/merge request

	anyone mentioned by @username in the issue/merge request title or description

	anyone mentioned by @username in any of the comments on the issue/merge request

…with notification level “Participating” or higher

	Watchers: users with notification level “Watch”

	Subscribers: anyone who manually subscribed to the issue/merge request

	Custom: Users with notification level “custom” who turned on notifications for any of the events present in the table below

Event | Sent to |

|------------------------|———|
| New issue | |
| Close issue | |
| Reassign issue | The above, plus the old assignee |
| Reopen issue | |
| Due issue | Participants and Custom notification level with this event selected |
| New merge request | |
| Push to merge request | Participants and Custom notification level with this event selected |
| Reassign merge request | The above, plus the old assignee |
| Close merge request | |
| Reopen merge request | |
| Merge merge request | |
| New comment | The above, plus anyone mentioned by @username in the comment, with notification level “Mention” or higher |
| Failed pipeline | The author of the pipeline |
| Successful pipeline | The author of the pipeline, if they have the custom notification setting for successful pipelines set |

In addition, if the title or description of an Issue or Merge Request is
changed, notifications will be sent to any new mentions by @username as
if they had been mentioned in the original text.

You won’t receive notifications for Issues, Merge Requests or Milestones created
by yourself (except when an issue is due). You will only receive automatic
notifications when somebody else comments or adds changes to the ones that
you’ve created or mentions you.

If an open merge request becomes unmergeable due to conflict, its author will be notified about the cause.
If a user has also set the merge request to automatically merge once pipeline succeeds,
then that user will also be notified.

Email Headers

Notification emails include headers that provide extra content about the notification received:

Header | Description |

|-----------------------------|————————————————————————-|
| X-GitLab-Project | The name of the project the notification belongs to |
| X-GitLab-Project-Id | The ID of the project |
| X-GitLab-Project-Path | The path of the project |
| X-GitLab-(Resource)-ID | The ID of the resource the notification is for, where resource is Issue, MergeRequest, Commit, etc|
| X-GitLab-Discussion-ID | Only in comment emails, the ID of the discussion the comment is from |
| X-GitLab-Pipeline-Id | Only in pipeline emails, the ID of the pipeline the notification is for |
| X-GitLab-Reply-Key | A unique token to support reply by email |
| X-GitLab-NotificationReason | The reason for being notified. “mentioned”, “assigned”, etc |

X-GitLab-NotificationReason
This header holds the reason for the notification to have been sent out,
where reason can be mentioned, assigned, own_activity, etc.
Only one reason is sent out according to its priority:
- own_activity
- assigned
- mentioned

The reason in this header will also be shown in the footer of the notification email. For example an email with the
reason assigned will have this sentence in the footer:
“You are receiving this email because you have been assigned an item on {configured GitLab hostname}”

Note: Only reasons listed above have been implemented so far
Further implementation is [being discussed here](https://gitlab.com/gitlab-org/gitlab-ce/issues/42062)

 This document was moved to ../user/project/index.md

 This document was moved to [another location](../user/project/protected_branches.md).

 # Releases

You can turn any git tag into a release, by adding a note to it.
Release notes behave like any other markdown form in GitLab so you can write text and drag-n-drop files to it.
Release notes are stored in the database of GitLab.

There are several ways to add release notes:

	In the interface, when you create a new git tag with GitLab

	In the interface, by adding a note to an existing git tag

	with the GitLab API

New tag page with release notes text area

![new_tag](releases/new_tag.png)

Tags page with button to add or edit release notes for existing git tag

![tags](releases/tags.png)

 # Repository mirroring

Repository mirroring is a way to mirror repositories from external sources.
It can be used to mirror all branches, tags, and commits that you have
in your repository.

Your mirror at GitLab will be updated automatically. You can
also manually trigger an update at most once every 5 minutes.

Overview

Repository mirroring is very useful when, for some reason, you must use a
project from another source.

There are two kinds of repository mirroring features supported by GitLab:
push and pull, the latter being only available in GitLab Enterprise Edition.
The push method mirrors the repository in GitLab to another location.

Once the mirror repository is updated, all new branches,
tags, and commits will be visible in the project’s activity feed.
Users with at least [developer access][perms] to the project can also force an
immediate update with the click of a button. This button will not be available if
the mirror is already being updated or 5 minutes still haven’t passed since its last update.

A few things/limitations to consider:

	The repository must be accessible over http://, https://, ssh:// or git://.

	If your HTTP repository is not publicly accessible, add authentication
information to the URL, like: https://username@gitlab.company.com/group/project.git.
In some cases, you might need to use a personal access token instead of a
password, e.g., you want to mirror to GitHub and have 2FA enabled.

	The import will time out after 15 minutes. For repositories that take longer
use a clone/push combination.

	The Git LFS objects will not be synced. You’ll need to push/pull them
manually.

Use cases

	You migrated to GitLab but still need to keep your project in another source.
In that case, you can simply set it up to mirror to GitLab (pull) and all the
essential history of commits, tags and branches will be available in your
GitLab instance.

	You have old projects in another source that you don’t use actively anymore,
but don’t want to remove for archiving purposes. In that case, you can create
a push mirror so that your active GitLab repository can push its changes to the
old location.

Pulling from a remote repository [STARTER]

>[Introduced][ee-51] in GitLab Enterprise Edition 8.2.

You can set up a repository to automatically have its branches, tags, and commits
updated from an upstream repository. This is useful when a repository you’re
interested in is located on a different server, and you want to be able to
browse its content and its activity using the familiar GitLab interface.

When creating a new project, you can enable repository mirroring when you choose
to import the repository from “Any repo by URL”. Enter the full URL of the Git
repository to pull from and click on the Mirror repository checkbox.

![New project](repository_mirroring/repository_mirroring_new_project.png)

For an existing project, you can set up mirror pulling by visiting your project’s
Settings ➔ Repository and searching for the “Pull from a remote repository”
section. Check the “Mirror repository” box and hit Save changes at the bottom.
You have a few options to choose from one being the user who will be the author
of all events in the activity feed that are the result of an update. This user
needs to have at least [master access][perms] to the project. Another option is
whether you want to trigger builds for mirror updates.

![Pull settings](repository_mirroring/repository_mirroring_pull_settings.png)

Since the repository on GitLab functions as a mirror of the upstream repository,
you are advised not to push commits directly to the repository on GitLab.
Instead, any commits should be pushed to the upstream repository, and will end
up in the GitLab repository automatically within a certain period of time
or when a [forced update](#forcing-an-update) is initiated.

If you do manually update a branch in the GitLab repository, the branch will
become diverged from upstream, and GitLab will no longer automatically update
this branch to prevent any changes from being lost.

![Diverged branch](repository_mirroring/repository_mirroring_diverged_branch.png)

Trigger update using API [STARTER]

>[Introduced][ee-3453] in GitLab Enterprise Edition 10.3.

Pull mirroring uses polling to detect new branches and commits added upstream,
often many minutes afterwards. If you notify GitLab by [API][pull-api], updates
will be pulled immediately.

Read the [Pull Mirror Trigger API docs][pull-api].

Pull only protected branches [STARTER]

>[Introduced][ee-3326] in GitLab Enterprise Edition 10.3.

You can choose to only pull the protected branches from your remote repository to GitLab.

To use this option go to your project’s repository settings page under pull mirror.

Overwrite diverged branches [STARTER]

>[Introduced][ee-4559] in GitLab Enterprise Edition 10.6.

You can choose to always update your local branch with the remote version even
if your local version has diverged from the remote.

To use this option go to your project’s repository settings page under pull mirror.

Hard failure [STARTER]

>[Introduced][ee-3117] in GitLab Enterprise Edition 10.2.

Once a mirror gets retried 14 times in a row, it will get marked as hard failed,
this will become visible in either the project main dashboard or in the
pull mirror settings page.

![Hard failed mirror main notice](repository_mirroring/repository_mirroring_hard_failed_main.png)

![Hard failed mirror settings notice](repository_mirroring/repository_mirroring_hard_failed_settings.png)

When a project is hard failed, it will no longer get picked up for mirroring.
A user can resume the project mirroring again by either [forcing an update](#forcing-an-update)
or by changing the import URL in repository settings.

SSH authentication [STARTER]

> [Introduced][ee-2551] in GitLab Starter 9.5

If you’re mirroring over SSH (i.e., an ssh:// URL), you can authenticate using
password-based authentication, just as over HTTPS, but you can also use public
key authentication. This is often more secure than password authentication,
especially when the source repository supports [Deploy Keys][deploy-key].

To get started, navigate to Settings ➔ Repository ➔ Pull from a remote repository,
enable mirroring (if not already enabled) and enter an ssh:// URL.

> NOTE: SCP-style URLs, e.g., git@example.com:group/project.git, are not
supported at this time.

Entering the URL adds two features to the page - Fingerprints and
SSH public key authentication:

![Pull settings for SSH](repository_mirroring/repository_mirroring_pull_settings_for_ssh.png)

SSH authentication is mutual. You have to prove to the server that you’re
allowed to access the repository, but the server also has to prove to you that
it’s who it claims to be. You provide your credentials as a password or public
key. The server that the source repository resides on provides its credentials
as a “host key”, the fingerprint of which needs to be verified manually.

Press the Detect host keys button. GitLab will fetch the host keys from the
server, and display the fingerprints to you:

![Detect SSH host keys](repository_mirroring/repository_mirroring_detect_host_keys.png)

You now need to verify that the fingerprints are those you expect. GitLab.com
and other code hosting sites publish their fingerprints in the open for you
to check:

	[AWS CodeCommit](http://docs.aws.amazon.com/codecommit/latest/userguide/regions.html#regions-fingerprints)

	[Bitbucket](https://confluence.atlassian.com/bitbucket/use-the-ssh-protocol-with-bitbucket-cloud-221449711.html#UsetheSSHprotocolwithBitbucketCloud-KnownhostorBitbucket%27spublickeyfingerprints)

	[GitHub](https://help.github.com/articles/github-s-ssh-key-fingerprints/)

	[GitLab.com](https://about.gitlab.com/gitlab-com/settings/#ssh-host-keys-fingerprints)

	[Launchpad](https://help.launchpad.net/SSHFingerprints)

	[Savannah](http://savannah.gnu.org/maintenance/SshAccess/)

	[SourceForge](https://sourceforge.net/p/forge/documentation/SSH%20Key%20Fingerprints/)

Other providers will vary. If you’re running on-premises GitLab, or otherwise
have access to the source server, you can securely gather the key fingerprints:

`
$ cat /etc/ssh/ssh_host*pub | ssh-keygen -E md5 -l -f -
256 MD5:f4:28:9f:23:99:15:21:1b:bf:ed:1f:8e:a0:76:b2:9d root@example.com (ECDSA)
256 MD5:e6:eb:45:8a:3c:59:35:5f:e9:5b:80:12:be:7e:22:73 root@example.com (ED25519)
2048 MD5:3f:72:be:3d:62:03:5c:62:83:e8:6e:14:34:3a:85:1d root@example.com (RSA)
`

(You may need to exclude -E md5 for some older versions of SSH).

If you’re an SSH expert and already have a known_hosts file you’d like to use
unaltered, then you can skip these steps. Just press the “Show advanced” button
and paste in the file contents:

![Advanced SSH host key management](repository_mirroring/repository_mirroring_pull_advanced_host_keys.png)

Once you’ve carefully verified that all the fingerprints match your trusted
source, you can press Save changes. This will record the host keys, along with
the person who verified them (you!) and the date:

![SSH host keys submitted](repository_mirroring/repository_mirroring_ssh_host_keys_verified.png)

When pulling changes from the source repository, GitLab will now check that at
least one of the stored host keys matches before connecting. This can prevent
malicious code from being injected into your mirror, or your password being
stolen!

To use SSH public key authentication, you’ll also need to choose that option
from the authentication methods dropdown. GitLab will generate a 4096-bit RSA
key and display the public component of that key to you:

![SSH public key authentication](repository_mirroring/repository_mirroring_ssh_public_key_authentication.png)

You then need to add the public SSH key to the source repository configuration.
If the source is hosted on GitLab, you should add it as a [Deploy Key][deploy-key].
Other sources may require you to add the key to your user’s authorized_keys
file - just paste the entire ssh-rsa AAA…. user@host block into the file on
its own line and save it.

Once the public key is set up on the source repository, press Save changes and your
mirror will begin working.

If you need to change the key at any time, you can press the Regenerate key
button to do so. You’ll have to update the source repository with the new key
to keep the mirror running.

How it works

Once you activate the pull mirroring feature, the mirror will be inserted into
a queue. A scheduler will start every minute and schedule a fixed amount of
mirrors for update, based on the configured maximum capacity.

If the mirror successfully updates it will be enqueued once again with a small
backoff period.

If the mirror fails (eg: branch diverged from upstream), the project’s backoff
period will be penalized each time it fails up to a maximum amount of time.

Pushing to a remote repository

>[Introduced](https://gitlab.com/gitlab-org/gitlab-ee/merge_requests/249) in
GitLab Enterprise Edition 8.7. [Moved to GitLab Community Edition][ce-18715] in 10.8.

For an existing project, you can set up push mirror from your project’s
Settings ➔ Repository and searching for the “Push to a remote repository”
section. Check the “Remote mirror repository” box and fill in the Git URL of
the repository to push to. Click Save changes for the changes to take
effect.

![Push settings](repository_mirroring/repository_mirroring_push_settings.png)

When push mirroring is enabled, you are advised not to push commits directly
to the mirrored repository to prevent the mirror diverging.
All changes will end up in the mirrored repository whenever commits
are pushed to GitLab, or when a [forced update](#forcing-an-update) is
initiated.

Pushes into GitLab are automatically pushed to the remote mirror at least once
every 5 minutes after they are received or once every minute if push only
protected branches is enabled.

In case of a diverged branch, you will see an error indicated at the Mirror
repository settings.

![Diverged branch](
repository_mirroring/repository_mirroring_diverged_branch_push.png)

Push only protected branches

>[Introduced][ee-3350] in GitLab Enterprise Edition 10.3. [Moved to GitLab Community Edition][ce-18715] in 10.8.

You can choose to only push your protected branches from GitLab to your remote repository.

To use this option go to your project’s repository settings page under push mirror.

Setting up a push mirror from GitLab to GitHub

To set up a mirror from GitLab to GitHub, you need to follow these steps:

	Create a [GitHub personal access token](https://help.github.com/articles/creating-a-personal-access-token-for-the-command-line/) with the “public_repo” box checked:

![edit personal access token GitHub](repository_mirroring/repository_mirroring_github_edit_personal_access_token.png)

	Fill in the “Git repository URL” with the personal access token replacing the password https://GitHubUsername:GitHubPersonalAccessToken@github.com/group/project.git:

![push to remote repo](repository_mirroring/repository_mirroring_gitlab_push_to_a_remote_repository.png)

1. Save
1. And either wait or trigger the “Update Now” button:

![update now](repository_mirroring/repository_mirroring_gitlab_push_to_a_remote_repository_update_now.png)

Forcing an update

While mirrors are scheduled to update automatically, you can always force an update
by using the Update now button which is exposed in various places:

	in the commits page

	in the branches page

	in the tags page

	in the Mirror repository settings page

Bidirectional mirroring

CAUTION: Warning:
There is no bidirectional support without conflicts. If you
configure a repository to pull and push to a second remote, there is no
guarantee that it will update correctly on both remotes. If you configure
a repository for bidirectional mirroring, you should consider when conflicts
occur who and how they will be resolved.

Rewriting any mirrored commit on either remote will cause conflicts and
mirroring to fail. This can be prevented by [only pulling protected branches](
#pull-only-protected-branches) and [only pushing protected branches](
#push-only-protected-branches). You should protect the branches you wish to
mirror on both remotes to prevent conflicts caused by rewriting history.

Bidirectional mirroring also creates a race condition where commits to the same
branch in close proximity will cause conflicts. The race condition can be
mitigated by reducing the mirroring delay by using a Push event webhook to
trigger an immediate pull to GitLab. Push mirroring from GitLab is rate limited
to once per minute when only push mirroring protected branches.

It may be possible to implement a locking mechanism using the server-side
pre-receive hook to prevent the race condition. Read about [configuring
custom Git hooks][hooks] on the GitLab server.

Mirroring with Perforce via GitFusion

CAUTION: Warning:
Bidirectional mirroring should not be used as a permanent
configuration. There is no bidirectional mirroring without conflicts.
Refer to [Migrating from Perforce Helix][perforce] for alternative migration
approaches.

GitFusion provides a Git interface to Perforce which can be used by GitLab to
bidirectionally mirror projects with GitLab. This may be useful in some
situations when migrating from Perforce to GitLab where overlapping Perforce
workspaces cannot be migrated simultaneously to GitLab.

If using mirroring with Perforce you should only mirror protected branches.
Perforce will reject any pushes that rewrite history. It is recommended that
only the fewest number of branches are mirrored due to the performance
limitations of GitFusion.

[ee-51]: https://gitlab.com/gitlab-org/gitlab-ee/merge_requests/51
[ee-2551]: https://gitlab.com/gitlab-org/gitlab-ee/merge_requests/2551
[ee-3117]: https://gitlab.com/gitlab-org/gitlab-ee/merge_requests/3117
[ee-3326]: https://gitlab.com/gitlab-org/gitlab-ee/merge_requests/3326
[ee-3350]: https://gitlab.com/gitlab-org/gitlab-ee/merge_requests/3350
[ee-3453]: https://gitlab.com/gitlab-org/gitlab-ee/merge_requests/3453
[ee-4559]: https://gitlab.com/gitlab-org/gitlab-ee/merge_requests/4559
[ce-18715]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/18715
[perms]: ../user/permissions.md
[hooks]: ../administration/custom_hooks.md
[deploy-key]: ../ssh/README.md#deploy-keys
[webhook]: ../user/project/integrations/webhooks.md#push-events
[pull-api]: ../api/projects.md#start-the-pull-mirroring-process-for-a-project
[perforce]: ../user/project/import/perforce.md

 This document was moved to [user/project/merge_requests/revert_changes](../user/project/merge_requests/revert_changes.md).

 This document was moved to ../user/project/members/share_project_with_groups.md

 This document was moved to ../user/project/members/share_project_with_groups.md

 # GitLab keyboard shortcuts

You can see GitLab’s keyboard shortcuts by using ‘shift + ?’

Global Shortcuts

Keyboard Shortcut | Description |

—————– | ———– |

<kbd>n</kbd> | Main navigation |

<kbd>s</kbd> | Focus search |

<kbd>f</kbd> | Focus filter |

<kbd>p</kbd> + <kbd>b</kbd> | Show/hide the Performance Bar |

<kbd>?</kbd> | Show/hide this dialog |

<kbd>Cmd</kbd>/<kbd>Ctrl</kbd> + <kbd>Shift</kbd> + <kbd>p</kbd> | Toggle markdown preview |

<kbd>↑</kbd> | Edit last comment (when focused on an empty textarea) |

Project Files Browsing

Keyboard Shortcut | Description |

—————– | ———– |

<kbd>↑</kbd> | Move selection up |

<kbd>↓</kbd> | Move selection down |

<kbd>enter</kbd> | Open selection |

Finding Project File

Keyboard Shortcut | Description |

—————– | ———– |

<kbd>↑</kbd> | Move selection up |

<kbd>↓</kbd> | Move selection down |

<kbd>enter</kbd> | Open selection |

<kbd>esc</kbd> | Go back |

Global Dashboard

Keyboard Shortcut | Description |

—————– | ———– |

<kbd>g</kbd> + <kbd>a</kbd> | Go to the activity feed |

<kbd>g</kbd> + <kbd>p</kbd> | Go to projects |

<kbd>g</kbd> + <kbd>i</kbd> | Go to issues |

<kbd>g</kbd> + <kbd>m</kbd> | Go to merge requests |

<kbd>g</kbd> + <kbd>t</kbd> | Go to todos |

Project

Keyboard Shortcut | Description |

—————– | ———– |

<kbd>g</kbd> + <kbd>p</kbd> | Go to the project’s home page |

<kbd>g</kbd> + <kbd>v</kbd> | Go to the project’s activity feed |

<kbd>g</kbd> + <kbd>f</kbd> | Go to files |

<kbd>g</kbd> + <kbd>c</kbd> | Go to commits |

<kbd>g</kbd> + <kbd>j</kbd> | Go to jobs |

<kbd>g</kbd> + <kbd>n</kbd> | Go to network graph |

<kbd>g</kbd> + <kbd>d</kbd> | Go to repository charts |

<kbd>g</kbd> + <kbd>i</kbd> | Go to issues |

<kbd>g</kbd> + <kbd>b</kbd> | Go to issue boards |

<kbd>g</kbd> + <kbd>m</kbd> | Go to merge requests |

<kbd>g</kbd> + <kbd>e</kbd> | Go to environments |

<kbd>g</kbd> + <kbd>k</kbd> | Go to kubernetes |

<kbd>g</kbd> + <kbd>s</kbd> | Go to snippets |

<kbd>g</kbd> + <kbd>w</kbd> | Go to wiki |

<kbd>t</kbd> | Go to finding file |

<kbd>i</kbd> | New issue |

Network Graph

Keyboard Shortcut | Description |

—————– | ———– |

<kbd>←</kbd> or <kbd>h</kbd> | Scroll left |

<kbd>→</kbd> or <kbd>l</kbd> | Scroll right |

<kbd>↑</kbd> or <kbd>k</kbd> | Scroll up |

<kbd>↓</kbd> or <kbd>j</kbd> | Scroll down |

<kbd>Shift</kbd> + <kbd>↑</kbd> or <kbd>Shift</kbd> + <kbd>k</kbd> | Scroll to top |

<kbd>Shift</kbd> + <kbd>↓</kbd> or <kbd>Shift</kbd> + <kbd>j</kbd> | Scroll to bottom |

Issues and Merge Requests

Keyboard Shortcut | Description |

—————– | ———– |

<kbd>a</kbd> | Change assignee |

<kbd>m</kbd> | Change milestone |

<kbd>r</kbd> | Reply (quoting selected text) |

<kbd>e</kbd> | Edit issue/merge request |

<kbd>l</kbd> | Change label |

Wiki pages

Keyboard Shortcut | Description |

—————– | ———– |

<kbd>e</kbd> | Edit wiki page|

Web IDE

Keyboard Shortcut | Description |

—————– | ———– |

<kbd>⌘</kbd> + <kbd>p</kbd> | Go to file |

 # Time Tracking

> Introduced in GitLab 8.14.

Time Tracking allows you to track estimates and time spent on issues and merge
requests within GitLab.

Overview

Time Tracking lets you:
* record the time spent working on an issue or a merge request,
* add an estimate of the amount of time needed to complete an issue or a merge
request.

You don’t have to indicate an estimate to enter the time spent, and vice versa.

Data about time tracking is shown on the issue/merge request sidebar, as shown
below.

![Time tracking in the sidebar](time-tracking/time-tracking-sidebar.png)

How to enter data

Time Tracking uses two [quick actions] that GitLab introduced with this new
feature: /spend and /estimate.

Quick actions can be used in the body of an issue or a merge request, but also
in a comment in both an issue or a merge request.

Below is an example of how you can use those new quick actions inside a comment.

![Time tracking example in a comment](time-tracking/time-tracking-example.png)

Adding time entries (time spent or estimates) is limited to project members.

Estimates

To enter an estimate, write /estimate, followed by the time. For example, if
you need to enter an estimate of 3 days, 5 hours and 10 minutes, you would write
/estimate 3d 5h 10m.

Every time you enter a new time estimate, any previous time estimates will be
overridden by this new value. There should only be one valid estimate in an
issue or a merge request.

To remove an estimation entirely, use /remove_estimation.

Time spent

To enter a time spent, use /spend 3d 5h 10m.

Every new time spent entry will be added to the current total time spent for the
issue or the merge request.

You can remove time by entering a negative amount: /spend -3d will remove 3
days from the total time spent. You can’t go below 0 minutes of time spent,
so GitLab will automatically reset the time spent if you remove a larger amount
of time compared to the time that was entered already.

To remove all the time spent at once, use /remove_time_spent.

Configuration

The following time units are available:
* weeks (w)
* days (d)
* hours (h)
* minutes (m)

Default conversion rates are 1w = 5d and 1d = 8h.

[landing]: https://about.gitlab.com/features/time-tracking
[quick actions]: ../user/project/quick_actions.md

 # Changing your time zone

The global time zone configuration parameter can be changed in config/gitlab.yml:
```


# time_zone: ‘UTC’




```

Uncomment and customize if you want to change the default time zone of GitLab application.

To see all available time zones, run bundle exec rake time:zones:all.

Changing time zone in omnibus installations

GitLab defaults its time zone to UTC. It has a global timezone configuration parameter in /etc/gitlab/gitlab.rb.

To update, add the time zone that best applies to your location. Here are two examples:
`
gitlab_rails['time_zone'] = 'America/New_York'
`
or
`
gitlab_rails['time_zone'] = 'Europe/Brussels'
`

After you added this field, reconfigure and restart:
`
gitlab-ctl reconfigure
gitlab-ctl restart
`

 # GitLab Todos

> [Introduced][ce-2817] in GitLab 8.5.

When you log into GitLab, you normally want to see where you should spend your
time and take some action, or what you need to keep an eye on. All without the
mess of a huge pile of e-mail notifications. GitLab is where you do your work,
so being able to get started quickly is very important.

Todos is a chronological list of to-dos that are waiting for your input, all
in a simple dashboard.

![Todos screenshot showing a list of items to check on](img/todos_index.png)

—

You can quickly access the Todos dashboard using the bell icon next to the
search bar in the upper right corner. The number in blue is the number of Todos
you still have open if the count is < 100, else it’s 99+. The exact number
will still be shown in the body of the _To do_ tab.

![Todos icon](img/todos_icon.png)

What triggers a Todo

A Todo appears in your Todos dashboard when:

	an issue or merge request is assigned to you,

	you are @mentioned in an issue or merge request, be it the description of
the issue/merge request or in a comment,

	you are @mentioned in a comment on a commit,

	a job in the CI pipeline running for your merge request failed, but this
job is not allowed to fail.

	an open merge request becomes unmergeable due to conflict, and you are either:
- the author, or
- have set it to automatically merge once pipeline succeeds.

Directly addressed Todos

> [Introduced][ce-7926] in GitLab 9.0.

If you are mentioned at the start of a line, the todo you receive will be listed
as ‘directly addressed’. For instance, in this comment:

```markdown
@alice What do you think? cc: @bob


	@carol can you please have a look?




>>>
@dan what do you think?
>>>





@erin @frank thank you!
```

The people receiving directly addressed todos are @alice, @erin, and
@frank. Directly addressed todos only differ from mention todos in their type,
for filtering; otherwise, they appear as normal.

Manually creating a Todo

You can also add an issue or merge request to your Todos dashboard by clicking
the “Add todo” button in the issue or merge request sidebar.

![Adding a Todo from the issuable sidebar](img/todos_add_todo_sidebar.png)

Marking a Todo as done

Any action to the corresponding issue or merge request will mark your Todo as
Done. Actions that dismiss Todos include:

	changing the assignee

	changing the milestone

	adding/removing a label

	commenting on the issue

—

Todos are personal, and they’re only marked as done if the action is coming from
you. If you close the issue or merge request, your Todo will automatically
be marked as done.

If someone else closes, merges, or takes action on the issue or merge
request, your Todo will remain pending. This prevents other users from closing issues without you being notified.

There is just one Todo per issue or merge request, so mentioning a user a
hundred times in an issue will only trigger one Todo.

—

If no action is needed, you can manually mark the Todo as done by clicking the
corresponding Done button, and it will disappear from your Todo list.

![A Todo in the Todos dashboard](img/todo_list_item.png)

A Todo can also be marked as done from the issue or merge request sidebar using
the “Mark todo as done” button.

![Mark todo as done from the issuable sidebar](img/todos_mark_done_sidebar.png)

You can mark all your Todos as done at once by clicking on the Mark all as
done button.

Filtering your Todos

There are four kinds of filters you can use on your Todos dashboard.

Filter | Description |

——- | ———– |

Project | Filter by project |

Group | Filter by group |

Author | Filter by the author that triggered the Todo |

Type | Filter by issue or merge request |

Action | Filter by the action that triggered the Todo |

You can also filter by more than one of these at the same time. The possible Actions are Any Action, Assigned, Mentioned, Added, Pipelines, and Directly Addressed, [as described above](#what-triggers-a-todo).

[ce-2817]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/2817
[ce-7926]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/7926

 This document was moved to [user/project/repository/web_editor](../user/project/repository/web_editor.md).

 This document was moved to [user/project/merge_requests/work_in_progress_merge_requests](../user/project/merge_requests/work_in_progress_merge_requests.md).

 # Feature branch workflow

	Clone project:

`bash
git clone git@example.com:project-name.git
`

	Create branch with your feature:

`bash
git checkout -b $feature_name
`

	Write code. Commit changes:

`bash
git commit -am "My feature is ready"
`

	Push your branch to GitLab:

`bash
git push origin $feature_name
`

	Review your code on commits page.

	Create a merge request.

	Your team lead will review the code & merge it to the main branch.

 This document was moved to ../../user/project/members/index.md

 This document was moved to [another location](../../user/project/import/index.md).

 This document was moved to [another location](../../user/project/import/bitbucket.md).

 This document was moved to [another location](../../user/project/import/fogbugz.md).

 This document was moved to [another location](../../user/project/import/gitea.md).

 This document was moved to [another location](../../user/project/import/github.md).

 This document was moved to [another location](../../user/project/import/gitlab_com.md).

 This document was moved to [another location](../../user/project/import/svn.md).

 # GitLab Git LFS Administration

Documentation on how to use Git LFS are under [Managing large binary files with Git LFS doc](manage_large_binaries_with_git_lfs.md).

Requirements

	Git LFS is supported in GitLab starting with version 8.2.

	Support for object storage, such as AWS S3, was introduced in 10.0.

	Users need to install [Git LFS client](https://git-lfs.github.com) version 1.0.1 and up.

Configuration

Git LFS objects can be large in size. By default, they are stored on the server
GitLab is installed on.

There are various configuration options to help GitLab server administrators:

	Enabling/disabling Git LFS support

	Changing the location of LFS object storage

	Setting up object storage supported by [Fog](http://fog.io/about/provider_documentation.html)

Configuration for Omnibus installations

In /etc/gitlab/gitlab.rb:

```ruby
# Change to true to enable lfs
gitlab_rails[‘lfs_enabled’] = false

# Optionally, change the storage path location. Defaults to
# #{gitlab_rails[‘shared_path’]}/lfs-objects. Which evaluates to
# /var/opt/gitlab/gitlab-rails/shared/lfs-objects by default.
gitlab_rails[‘lfs_storage_path’] = “/mnt/storage/lfs-objects”
```

Configuration for installations from source

In config/gitlab.yml:

```yaml
# Change to true to enable lfs



	lfs:
	enabled: false
storage_path: /mnt/storage/lfs-objects








```

Storing LFS objects in remote object storage

> [Introduced][ee-2760] in [GitLab Premium][eep] 10.0. Brought to GitLab Core
in 10.7.

It is possible to store LFS objects in remote object storage which allows you
to offload local hard disk R/W operations, and free up disk space significantly.
GitLab is tightly integrated with Fog, so you can refer to its [documentation](http://fog.io/about/provider_documentation.html)
to check which storage services can be integrated with GitLab.
You can also use external object storage in a private local network. For example,
[Minio](https://www.minio.io/) is a standalone object storage service, is easy to setup, and works well with GitLab instances.

GitLab provides two different options for the uploading mechanism: “Direct upload” and “Background upload”.

Option 1. Direct upload

1. User pushes an lfs file to the GitLab instance
1. GitLab-workhorse uploads the file directly to the external object storage
1. GitLab-workhorse notifies GitLab-rails that the upload process is complete

Option 2. Background upload

1. User pushes an lfs file to the GitLab instance
1. GitLab-rails stores the file in the local file storage
1. GitLab-rails then uploads the file to the external object storage asynchronously

The following general settings are supported.

Setting | Description | Default |

---------	————-	---------
enabled	Enable/disable object storage	false
remote_directory	The bucket name where LFS objects will be stored	
direct_upload	Set to true to enable direct upload of LFS without the need of local shared storage. Option may be removed once we decide to support only single storage for all files.	false
background_upload	Set to false to disable automatic upload. Option may be removed once upload is direct to S3	true
proxy_download	Set to true to enable proxying all files served. Option allows to reduce egress traffic as this allows clients to download directly from remote storage instead of proxying all data	false
connection	Various connection options described below	

The connection settings match those provided by [Fog](https://github.com/fog).

Here is a configuration example with S3.

Setting | Description | example |

---------	————-	---------
provider	The provider name	AWS
aws_access_key_id	AWS credentials, or compatible	ABC123DEF456
aws_secret_access_key	AWS credentials, or compatible	ABC123DEF456ABC123DEF456ABC123DEF456
aws_signature_version	AWS signature version to use. 2 or 4 are valid options. Digital Ocean Spaces and other providers may need 2.	4
region	AWS region	us-east-1
host	S3 compatible host for when not using AWS, e.g. localhost or storage.example.com	s3.amazonaws.com
endpoint	Can be used when configuring an S3 compatible service such as [Minio](https://www.minio.io), by entering a URL such as http://127.0.0.1:9000	(optional)
path_style	Set to true to use host/bucket_name/object style paths instead of bucket_name.host/object. Leave as false for AWS S3	false

Here is a configuration example with GCS.

Setting | Description | example |

---------	————-	---------
provider	The provider name	Google
google_project	GCP project name	gcp-project-12345
google_client_email	The email address of the service account	foo@gcp-project-12345.iam.gserviceaccount.com
google_json_key_location	The json key path	/path/to/gcp-project-12345-abcde.json

NOTE: The service account must have permission to access the bucket. [See more](https://cloud.google.com/storage/docs/authentication)

Manual uploading to an object storage

There are two ways to manually do the same thing as automatic uploading (described above).

Option 1: rake task

`
$ rake gitlab:lfs:migrate
`

Option 2: rails console

```
$ sudo gitlab-rails console            # Login to rails console

> # Upload LFS files manually
> LfsObject.where(file_store: [nil, 1]).find_each do |lfs_object|
>   lfs_object.file.migrate!(ObjectStorage::Store::REMOTE) if lfs_object.file.file.exists?
> end
```

S3 for Omnibus installations

On Omnibus installations, the settings are prefixed by lfs_object_store_:

	Edit /etc/gitlab/gitlab.rb and add the following lines by replacing with
the values you want:


```ruby
gitlab_rails[‘lfs_object_store_enabled’] = true
gitlab_rails[‘lfs_object_store_remote_directory’] = “lfs-objects”
gitlab_rails[‘lfs_object_store_connection’] = {


‘provider’ => ‘AWS’,
‘region’ => ‘eu-central-1’,
‘aws_access_key_id’ => ‘1ABCD2EFGHI34JKLM567N’,
‘aws_secret_access_key’ => ‘abcdefhijklmnopQRSTUVwxyz0123456789ABCDE’,
# The below options configure an S3 compatible host instead of AWS
‘host’ => ‘localhost’,
‘endpoint’ => ‘http://127.0.0.1:9000’,
‘path_style’ => true











1. Save the file and [reconfigure GitLab]s for the changes to take effect.
1. Migrate any existing local LFS objects to the object storage:


`bash
gitlab-rake gitlab:lfs:migrate
`

This will migrate existing LFS objects to object storage. New LFS objects
will be forwarded to object storage unless
gitlab_rails[‘lfs_object_store_background_upload’] is set to false.




### S3 for installations from source

For source installations the settings are nested under lfs: and then
object_store::


	Edit /home/git/gitlab/config/gitlab.yml and add or amend the following
lines:


```yaml
lfs:
enabled: true
object_store:

enabled: false
remote_directory: lfs-objects # Bucket name
connection:

provider: AWS
aws_access_key_id: 1ABCD2EFGHI34JKLM567N
aws_secret_access_key: abcdefhijklmnopQRSTUVwxyz0123456789ABCDE
region: eu-central-1
Use the following options to configure an AWS compatible host such as Minio
host: ‘localhost’
endpoint: ‘http://127.0.0.1:9000’
path_style: true


```








1. Save the file and [restart GitLab][] for the changes to take effect.
1. Migrate any existing local LFS objects to the object storage:


`bash
sudo -u git -H bundle exec rake gitlab:lfs:migrate RAILS_ENV=production
`

This will migrate existing LFS objects to object storage. New LFS objects
will be forwarded to object storage unless background_upload is set to
false.




## Storage statistics

You can see the total storage used for LFS objects on groups and projects
in the administration area, as well as through the [groups](../../api/groups.md)
and [projects APIs](../../api/projects.md).

## Troubleshooting: Google::Apis::TransmissionError: execution expired

If LFS integration is configred with Google Cloud Storage and background uploads (background_upload: true and direct_upload: false),
sidekiq workers may encouter this error. This is because the uploading timed out with very large files.
LFS files up to 6Gb can be uploaded without any extra steps, otherwise you need to use the following workaround.

```shell
$ sudo gitlab-rails console # Login to rails console

> # Set up timeouts. 20 minutes is enough to upload 30GB LFS files.
> # These settings are only in effect for the same session, i.e. they are not effective for sidekiq workers.
> ::Google::Apis::ClientOptions.default.open_timeout_sec = 1200
> ::Google::Apis::ClientOptions.default.read_timeout_sec = 1200
> ::Google::Apis::ClientOptions.default.send_timeout_sec = 1200

> # Upload LFS files manually. This process does not use sidekiq at all.
> LfsObject.where(file_store: [nil, 1]).find_each do |lfs_object|
> lfs_object.file.migrate!(ObjectStorage::Store::REMOTE) if lfs_object.file.file.exists?
> end
```

See more information in [!19581](https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/19581)

## Known limitations


	Support for removing unreferenced LFS objects was added in 8.14 onwards.


	LFS authentications via SSH was added with GitLab 8.12


	Only compatible with the GitLFS client versions 1.1.0 and up, or 1.0.2.


	The storage statistics currently count each LFS object multiple times for
every project linking to it




[reconfigure gitlab]: ../../administration/restart_gitlab.md#omnibus-gitlab-reconfigure “How to reconfigure Omnibus GitLab”
[restart gitlab]: ../../administration/restart_gitlab.md#installations-from-source “How to restart GitLab”
[eep]: https://about.gitlab.com/pricing/ “GitLab Premium”
[ee-2760]: https://gitlab.com/gitlab-org/gitlab-ee/merge_requests/2760



            

          

      

      

    

  

    
      
          
            
  # Git LFS

Managing large files such as audio, video and graphics files has always been one
of the shortcomings of Git. The general recommendation is to not have Git repositories
larger than 1GB to preserve performance.

![Git LFS tracking status](img/lfs-icon.png)

An LFS icon is shown on files tracked by Git LFS to denote if a file is stored
as a blob or as an LFS pointer.

## How it works

Git LFS client talks with the GitLab server over HTTPS. It uses HTTP Basic Authentication
to authorize client requests. Once the request is authorized, Git LFS client receives
instructions from where to fetch or where to push the large file.

## GitLab server configuration

Documentation for GitLab instance administrators is under [LFS administration doc](lfs_administration.md).

## Requirements


	Git LFS is supported in GitLab starting with version 8.2


	Git LFS must be enabled under project settings


	[Git LFS client](https://git-lfs.github.com) version 1.0.1 and up




## Known limitations


	Git LFS v1 original API is not supported since it was deprecated early in LFS
development


	When SSH is set as a remote, Git LFS objects still go through HTTPS


	Any Git LFS request will ask for HTTPS credentials to be provided so a good Git
credentials store is recommended


	Git LFS always assumes HTTPS so if you have GitLab server on HTTP you will have
to add the URL to Git config manually (see [troubleshooting](#troubleshooting))





	>**Note**: With 8.12 GitLab added LFS support to SSH. The Git LFS communication
	still goes over HTTP, but now the SSH client passes the correct credentials
to the Git LFS client, so no action is required by the user.





## Using Git LFS

Lets take a look at the workflow when you need to check large files into your Git
repository with Git LFS. For example, if you want to upload a very large file and
check it into your Git repository:

`bash
git clone git@gitlab.example.com:group/project.git
git lfs install                       # initialize the Git LFS project
git lfs track "*.iso"                 # select the file extensions that you want to treat as large files
`

Once a certain file extension is marked for tracking as a LFS object you can use
Git as usual without having to redo the command to track a file with the same extension:

`bash
cp ~/tmp/debian.iso ./                # copy a large file into the current directory
git add .                             # add the large file to the project
git commit -am "Added Debian iso"     # commit the file meta data
git push origin master                # sync the git repo and large file to the GitLab server
`


	>**Note**: Make sure that .gitattributes is tracked by git. Otherwise Git
	LFS will not be working properly for people cloning the project.
`bash
git add .gitattributes
`





Cloning the repository works the same as before. Git automatically detects the
LFS-tracked files and clones them via HTTP. If you performed the git clone
command with a SSH URL, you have to enter your GitLab credentials for HTTP
authentication.

`bash
git clone git@gitlab.example.com:group/project.git
`

If you already cloned the repository and you want to get the latest LFS object
that are on the remote repository, eg. from branch master:

`bash
git lfs fetch master
`

## File Locking

> [Introduced](https://gitlab.com/gitlab-org/gitlab-ce/issues/35856) in GitLab 10.5.

The first thing to do before using File Locking is to tell Git LFS which
kind of files are lockable. The following command will store PNG files
in LFS and flag them as lockable:

`bash
git lfs track "*.png" --lockable
`

After executing the above command a file named .gitattributes will be
created or updated with the following content:

`bash
*.png filter=lfs diff=lfs merge=lfs -text lockable
`

You can also register a file type as lockable without using LFS
(In order to be able to lock/unlock a file you need a remote server that implements the  LFS File Locking API),
in order to do that you can edit the .gitattributes file manually:

`bash
*.pdf lockable
`

After a file type has been registered as lockable, Git LFS will make
them readonly on the file system automatically. This means you will
need to lock the file before editing it.

### Managing Locked Files

Once you’re ready to edit your file you need to lock it first:

`bash
git lfs lock images/banner.png
Locked images/banner.png
`

This will register the file as locked in your name on the server:

`bash
git lfs locks
images/banner.png  joe   ID:123
`

Once you have pushed your changes, you can unlock the file so others can
also edit it:

`bash
git lfs unlock images/banner.png
`

You can also unlock by id:

`bash
git lfs unlock --id=123
`

If for some reason you need to unlock a file that was not locked by you,
you can use the –force flag as long as you have a maintainer access on
the project:

`bash
git lfs unlock --id=123 --force
`

## Troubleshooting

### error: Repository or object not found

There are a couple of reasons why this error can occur:


	You don’t have permissions to access certain LFS object




Check if you have permissions to push to the project or fetch from the project.


	Project is not allowed to access the LFS object




LFS object you are trying to push to the project or fetch from the project is not
available to the project anymore. Probably the object was removed from the server.


	Local git repository is using deprecated LFS API




### Invalid status for <url> : 501

Git LFS will log the failures into a log file.
To view this log file, while in project directory:

`bash
git lfs logs last
`

If the status error 501 is shown, it is because:


	Git LFS is not enabled in project settings. Check your project settings and
enable Git LFS.


	Git LFS support is not enabled on the GitLab server. Check with your GitLab
administrator why Git LFS is not enabled on the server. See
[LFS administration documentation](lfs_administration.md) for instructions
on how to enable LFS support.


	Git LFS client version is not supported by GitLab server. Check your Git LFS
version with git lfs version. Check the Git config of the project for traces
of deprecated API with git lfs -l. If batch = false is set in the config,
remove the line and try to update your Git LFS client. Only version 1.0.1 and
newer are supported.




### getsockopt: connection refused

If you push a LFS object to a project and you receive an error similar to:
Post <URL>/info/lfs/objects/batch: dial tcp IP: getsockopt: connection refused,
the LFS client is trying to reach GitLab through HTTPS. However, your GitLab
instance is being served on HTTP.

This behaviour is caused by Git LFS using HTTPS connections by default when a
lfsurl is not set in the Git config.

To prevent this from happening, set the lfs url in project Git config:

`bash
git config --add lfs.url "http://gitlab.example.com/group/project.git/info/lfs"
`

### Credentials are always required when pushing an object


	>**Note**: With 8.12 GitLab added LFS support to SSH. The Git LFS communication
	still goes over HTTP, but now the SSH client passes the correct credentials
to the Git LFS client, so no action is required by the user.





Given that Git LFS uses HTTP Basic Authentication to authenticate the user pushing
the LFS object on every push for every object, user HTTPS credentials are required.

By default, Git has support for remembering the credentials for each repository
you use. This is described in [Git credentials man pages](https://git-scm.com/docs/gitcredentials).

For example, you can tell Git to remember the password for a period of time in
which you expect to push the objects:

`bash
git config --global credential.helper 'cache --timeout=3600'
`

This will remember the credentials for an hour after which Git operations will
require re-authentication.

If you are using OS X you can use osxkeychain to store and encrypt your credentials.
For Windows, you can use wincred or Microsoft’s [Git Credential Manager for Windows](https://github.com/Microsoft/Git-Credential-Manager-for-Windows/releases).

More details about various methods of storing the user credentials can be found
on [Git Credential Storage documentation](https://git-scm.com/book/en/v2/Git-Tools-Credential-Storage).

### LFS objects are missing on push

GitLab checks files to detect LFS pointers on push. If LFS pointers are detected, GitLab tries to verify that those files already exist in LFS on GitLab.

Verify that LFS in installed locally and consider a manual push with git lfs push –all.

If you are storing LFS files outside of GitLab you can disable LFS on the project by setting lfs_enabled: false with the [projects api](../../api/projects.md#edit-project).

### Hosting LFS objects externally

It is possible to host LFS objects externally by setting a custom LFS url with git config -f .lfsconfig lfs.url https://example.com/<project>.git/info/lfs.

Because GitLab verifies the existence of objects referenced by LFS pointers, push will fail when LFS is enabled for the project.

LFS can be disabled from the [Project settings](../../user/project/settings/index.md).



            

          

      

      

    

  nav.xhtml

    
      Table of Contents


      
        		
          Welcome to Read the Docs
        


      


    
  

_static/plus.png





_static/file.png





_static/minus.png





